4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
40 static void spidev_release(struct device
*dev
)
42 struct spi_device
*spi
= to_spi_device(dev
);
44 /* spi masters may cleanup for released devices */
45 if (spi
->master
->cleanup
)
46 spi
->master
->cleanup(spi
);
48 spi_master_put(spi
->master
);
53 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
55 const struct spi_device
*spi
= to_spi_device(dev
);
57 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
60 static struct device_attribute spi_dev_attrs
[] = {
65 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
66 * and the sysfs version makes coldplug work too.
69 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
70 const struct spi_device
*sdev
)
73 if (!strcmp(sdev
->modalias
, id
->name
))
80 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
82 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
84 return spi_match_id(sdrv
->id_table
, sdev
);
86 EXPORT_SYMBOL_GPL(spi_get_device_id
);
88 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
90 const struct spi_device
*spi
= to_spi_device(dev
);
91 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
93 /* Attempt an OF style match */
94 if (of_driver_match_device(dev
, drv
))
98 return !!spi_match_id(sdrv
->id_table
, spi
);
100 return strcmp(spi
->modalias
, drv
->name
) == 0;
103 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
105 const struct spi_device
*spi
= to_spi_device(dev
);
107 add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
111 #ifdef CONFIG_PM_SLEEP
112 static int spi_legacy_suspend(struct device
*dev
, pm_message_t message
)
115 struct spi_driver
*drv
= to_spi_driver(dev
->driver
);
117 /* suspend will stop irqs and dma; no more i/o */
120 value
= drv
->suspend(to_spi_device(dev
), message
);
122 dev_dbg(dev
, "... can't suspend\n");
127 static int spi_legacy_resume(struct device
*dev
)
130 struct spi_driver
*drv
= to_spi_driver(dev
->driver
);
132 /* resume may restart the i/o queue */
135 value
= drv
->resume(to_spi_device(dev
));
137 dev_dbg(dev
, "... can't resume\n");
142 static int spi_pm_suspend(struct device
*dev
)
144 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
147 return pm_generic_suspend(dev
);
149 return spi_legacy_suspend(dev
, PMSG_SUSPEND
);
152 static int spi_pm_resume(struct device
*dev
)
154 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
157 return pm_generic_resume(dev
);
159 return spi_legacy_resume(dev
);
162 static int spi_pm_freeze(struct device
*dev
)
164 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
167 return pm_generic_freeze(dev
);
169 return spi_legacy_suspend(dev
, PMSG_FREEZE
);
172 static int spi_pm_thaw(struct device
*dev
)
174 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
177 return pm_generic_thaw(dev
);
179 return spi_legacy_resume(dev
);
182 static int spi_pm_poweroff(struct device
*dev
)
184 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
187 return pm_generic_poweroff(dev
);
189 return spi_legacy_suspend(dev
, PMSG_HIBERNATE
);
192 static int spi_pm_restore(struct device
*dev
)
194 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
197 return pm_generic_restore(dev
);
199 return spi_legacy_resume(dev
);
202 #define spi_pm_suspend NULL
203 #define spi_pm_resume NULL
204 #define spi_pm_freeze NULL
205 #define spi_pm_thaw NULL
206 #define spi_pm_poweroff NULL
207 #define spi_pm_restore NULL
210 static const struct dev_pm_ops spi_pm
= {
211 .suspend
= spi_pm_suspend
,
212 .resume
= spi_pm_resume
,
213 .freeze
= spi_pm_freeze
,
215 .poweroff
= spi_pm_poweroff
,
216 .restore
= spi_pm_restore
,
218 pm_generic_runtime_suspend
,
219 pm_generic_runtime_resume
,
220 pm_generic_runtime_idle
224 struct bus_type spi_bus_type
= {
226 .dev_attrs
= spi_dev_attrs
,
227 .match
= spi_match_device
,
228 .uevent
= spi_uevent
,
231 EXPORT_SYMBOL_GPL(spi_bus_type
);
234 static int spi_drv_probe(struct device
*dev
)
236 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
238 return sdrv
->probe(to_spi_device(dev
));
241 static int spi_drv_remove(struct device
*dev
)
243 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
245 return sdrv
->remove(to_spi_device(dev
));
248 static void spi_drv_shutdown(struct device
*dev
)
250 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
252 sdrv
->shutdown(to_spi_device(dev
));
256 * spi_register_driver - register a SPI driver
257 * @sdrv: the driver to register
260 int spi_register_driver(struct spi_driver
*sdrv
)
262 sdrv
->driver
.bus
= &spi_bus_type
;
264 sdrv
->driver
.probe
= spi_drv_probe
;
266 sdrv
->driver
.remove
= spi_drv_remove
;
268 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
269 return driver_register(&sdrv
->driver
);
271 EXPORT_SYMBOL_GPL(spi_register_driver
);
273 /*-------------------------------------------------------------------------*/
275 /* SPI devices should normally not be created by SPI device drivers; that
276 * would make them board-specific. Similarly with SPI master drivers.
277 * Device registration normally goes into like arch/.../mach.../board-YYY.c
278 * with other readonly (flashable) information about mainboard devices.
282 struct list_head list
;
283 struct spi_board_info board_info
;
286 static LIST_HEAD(board_list
);
287 static LIST_HEAD(spi_master_list
);
290 * Used to protect add/del opertion for board_info list and
291 * spi_master list, and their matching process
293 static DEFINE_MUTEX(board_lock
);
296 * spi_alloc_device - Allocate a new SPI device
297 * @master: Controller to which device is connected
300 * Allows a driver to allocate and initialize a spi_device without
301 * registering it immediately. This allows a driver to directly
302 * fill the spi_device with device parameters before calling
303 * spi_add_device() on it.
305 * Caller is responsible to call spi_add_device() on the returned
306 * spi_device structure to add it to the SPI master. If the caller
307 * needs to discard the spi_device without adding it, then it should
308 * call spi_dev_put() on it.
310 * Returns a pointer to the new device, or NULL.
312 struct spi_device
*spi_alloc_device(struct spi_master
*master
)
314 struct spi_device
*spi
;
315 struct device
*dev
= master
->dev
.parent
;
317 if (!spi_master_get(master
))
320 spi
= kzalloc(sizeof *spi
, GFP_KERNEL
);
322 dev_err(dev
, "cannot alloc spi_device\n");
323 spi_master_put(master
);
327 spi
->master
= master
;
328 spi
->dev
.parent
= &master
->dev
;
329 spi
->dev
.bus
= &spi_bus_type
;
330 spi
->dev
.release
= spidev_release
;
331 spi
->cs_gpio
= -EINVAL
;
332 device_initialize(&spi
->dev
);
335 EXPORT_SYMBOL_GPL(spi_alloc_device
);
338 * spi_add_device - Add spi_device allocated with spi_alloc_device
339 * @spi: spi_device to register
341 * Companion function to spi_alloc_device. Devices allocated with
342 * spi_alloc_device can be added onto the spi bus with this function.
344 * Returns 0 on success; negative errno on failure
346 int spi_add_device(struct spi_device
*spi
)
348 static DEFINE_MUTEX(spi_add_lock
);
349 struct spi_master
*master
= spi
->master
;
350 struct device
*dev
= master
->dev
.parent
;
354 /* Chipselects are numbered 0..max; validate. */
355 if (spi
->chip_select
>= master
->num_chipselect
) {
356 dev_err(dev
, "cs%d >= max %d\n",
358 master
->num_chipselect
);
362 /* Set the bus ID string */
363 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->master
->dev
),
367 /* We need to make sure there's no other device with this
368 * chipselect **BEFORE** we call setup(), else we'll trash
369 * its configuration. Lock against concurrent add() calls.
371 mutex_lock(&spi_add_lock
);
373 d
= bus_find_device_by_name(&spi_bus_type
, NULL
, dev_name(&spi
->dev
));
375 dev_err(dev
, "chipselect %d already in use\n",
382 if (master
->cs_gpios
)
383 spi
->cs_gpio
= master
->cs_gpios
[spi
->chip_select
];
385 /* Drivers may modify this initial i/o setup, but will
386 * normally rely on the device being setup. Devices
387 * using SPI_CS_HIGH can't coexist well otherwise...
389 status
= spi_setup(spi
);
391 dev_err(dev
, "can't setup %s, status %d\n",
392 dev_name(&spi
->dev
), status
);
396 /* Device may be bound to an active driver when this returns */
397 status
= device_add(&spi
->dev
);
399 dev_err(dev
, "can't add %s, status %d\n",
400 dev_name(&spi
->dev
), status
);
402 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
405 mutex_unlock(&spi_add_lock
);
408 EXPORT_SYMBOL_GPL(spi_add_device
);
411 * spi_new_device - instantiate one new SPI device
412 * @master: Controller to which device is connected
413 * @chip: Describes the SPI device
416 * On typical mainboards, this is purely internal; and it's not needed
417 * after board init creates the hard-wired devices. Some development
418 * platforms may not be able to use spi_register_board_info though, and
419 * this is exported so that for example a USB or parport based adapter
420 * driver could add devices (which it would learn about out-of-band).
422 * Returns the new device, or NULL.
424 struct spi_device
*spi_new_device(struct spi_master
*master
,
425 struct spi_board_info
*chip
)
427 struct spi_device
*proxy
;
430 /* NOTE: caller did any chip->bus_num checks necessary.
432 * Also, unless we change the return value convention to use
433 * error-or-pointer (not NULL-or-pointer), troubleshootability
434 * suggests syslogged diagnostics are best here (ugh).
437 proxy
= spi_alloc_device(master
);
441 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
443 proxy
->chip_select
= chip
->chip_select
;
444 proxy
->max_speed_hz
= chip
->max_speed_hz
;
445 proxy
->mode
= chip
->mode
;
446 proxy
->irq
= chip
->irq
;
447 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
448 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
449 proxy
->controller_data
= chip
->controller_data
;
450 proxy
->controller_state
= NULL
;
452 status
= spi_add_device(proxy
);
460 EXPORT_SYMBOL_GPL(spi_new_device
);
462 static void spi_match_master_to_boardinfo(struct spi_master
*master
,
463 struct spi_board_info
*bi
)
465 struct spi_device
*dev
;
467 if (master
->bus_num
!= bi
->bus_num
)
470 dev
= spi_new_device(master
, bi
);
472 dev_err(master
->dev
.parent
, "can't create new device for %s\n",
477 * spi_register_board_info - register SPI devices for a given board
478 * @info: array of chip descriptors
479 * @n: how many descriptors are provided
482 * Board-specific early init code calls this (probably during arch_initcall)
483 * with segments of the SPI device table. Any device nodes are created later,
484 * after the relevant parent SPI controller (bus_num) is defined. We keep
485 * this table of devices forever, so that reloading a controller driver will
486 * not make Linux forget about these hard-wired devices.
488 * Other code can also call this, e.g. a particular add-on board might provide
489 * SPI devices through its expansion connector, so code initializing that board
490 * would naturally declare its SPI devices.
492 * The board info passed can safely be __initdata ... but be careful of
493 * any embedded pointers (platform_data, etc), they're copied as-is.
496 spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
498 struct boardinfo
*bi
;
501 bi
= kzalloc(n
* sizeof(*bi
), GFP_KERNEL
);
505 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
506 struct spi_master
*master
;
508 memcpy(&bi
->board_info
, info
, sizeof(*info
));
509 mutex_lock(&board_lock
);
510 list_add_tail(&bi
->list
, &board_list
);
511 list_for_each_entry(master
, &spi_master_list
, list
)
512 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
513 mutex_unlock(&board_lock
);
519 /*-------------------------------------------------------------------------*/
522 * spi_pump_messages - kthread work function which processes spi message queue
523 * @work: pointer to kthread work struct contained in the master struct
525 * This function checks if there is any spi message in the queue that
526 * needs processing and if so call out to the driver to initialize hardware
527 * and transfer each message.
530 static void spi_pump_messages(struct kthread_work
*work
)
532 struct spi_master
*master
=
533 container_of(work
, struct spi_master
, pump_messages
);
535 bool was_busy
= false;
538 /* Lock queue and check for queue work */
539 spin_lock_irqsave(&master
->queue_lock
, flags
);
540 if (list_empty(&master
->queue
) || !master
->running
) {
541 if (master
->busy
&& master
->unprepare_transfer_hardware
) {
542 ret
= master
->unprepare_transfer_hardware(master
);
544 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
545 dev_err(&master
->dev
,
546 "failed to unprepare transfer hardware\n");
550 master
->busy
= false;
551 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
555 /* Make sure we are not already running a message */
556 if (master
->cur_msg
) {
557 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
560 /* Extract head of queue */
562 list_entry(master
->queue
.next
, struct spi_message
, queue
);
564 list_del_init(&master
->cur_msg
->queue
);
569 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
571 if (!was_busy
&& master
->prepare_transfer_hardware
) {
572 ret
= master
->prepare_transfer_hardware(master
);
574 dev_err(&master
->dev
,
575 "failed to prepare transfer hardware\n");
580 ret
= master
->transfer_one_message(master
, master
->cur_msg
);
582 dev_err(&master
->dev
,
583 "failed to transfer one message from queue\n");
588 static int spi_init_queue(struct spi_master
*master
)
590 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
592 INIT_LIST_HEAD(&master
->queue
);
593 spin_lock_init(&master
->queue_lock
);
595 master
->running
= false;
596 master
->busy
= false;
598 init_kthread_worker(&master
->kworker
);
599 master
->kworker_task
= kthread_run(kthread_worker_fn
,
601 dev_name(&master
->dev
));
602 if (IS_ERR(master
->kworker_task
)) {
603 dev_err(&master
->dev
, "failed to create message pump task\n");
606 init_kthread_work(&master
->pump_messages
, spi_pump_messages
);
609 * Master config will indicate if this controller should run the
610 * message pump with high (realtime) priority to reduce the transfer
611 * latency on the bus by minimising the delay between a transfer
612 * request and the scheduling of the message pump thread. Without this
613 * setting the message pump thread will remain at default priority.
616 dev_info(&master
->dev
,
617 "will run message pump with realtime priority\n");
618 sched_setscheduler(master
->kworker_task
, SCHED_FIFO
, ¶m
);
625 * spi_get_next_queued_message() - called by driver to check for queued
627 * @master: the master to check for queued messages
629 * If there are more messages in the queue, the next message is returned from
632 struct spi_message
*spi_get_next_queued_message(struct spi_master
*master
)
634 struct spi_message
*next
;
637 /* get a pointer to the next message, if any */
638 spin_lock_irqsave(&master
->queue_lock
, flags
);
639 if (list_empty(&master
->queue
))
642 next
= list_entry(master
->queue
.next
,
643 struct spi_message
, queue
);
644 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
648 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
651 * spi_finalize_current_message() - the current message is complete
652 * @master: the master to return the message to
654 * Called by the driver to notify the core that the message in the front of the
655 * queue is complete and can be removed from the queue.
657 void spi_finalize_current_message(struct spi_master
*master
)
659 struct spi_message
*mesg
;
662 spin_lock_irqsave(&master
->queue_lock
, flags
);
663 mesg
= master
->cur_msg
;
664 master
->cur_msg
= NULL
;
666 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
667 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
671 mesg
->complete(mesg
->context
);
673 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
675 static int spi_start_queue(struct spi_master
*master
)
679 spin_lock_irqsave(&master
->queue_lock
, flags
);
681 if (master
->running
|| master
->busy
) {
682 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
686 master
->running
= true;
687 master
->cur_msg
= NULL
;
688 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
690 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
695 static int spi_stop_queue(struct spi_master
*master
)
698 unsigned limit
= 500;
701 spin_lock_irqsave(&master
->queue_lock
, flags
);
704 * This is a bit lame, but is optimized for the common execution path.
705 * A wait_queue on the master->busy could be used, but then the common
706 * execution path (pump_messages) would be required to call wake_up or
707 * friends on every SPI message. Do this instead.
709 while ((!list_empty(&master
->queue
) || master
->busy
) && limit
--) {
710 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
712 spin_lock_irqsave(&master
->queue_lock
, flags
);
715 if (!list_empty(&master
->queue
) || master
->busy
)
718 master
->running
= false;
720 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
723 dev_warn(&master
->dev
,
724 "could not stop message queue\n");
730 static int spi_destroy_queue(struct spi_master
*master
)
734 ret
= spi_stop_queue(master
);
737 * flush_kthread_worker will block until all work is done.
738 * If the reason that stop_queue timed out is that the work will never
739 * finish, then it does no good to call flush/stop thread, so
743 dev_err(&master
->dev
, "problem destroying queue\n");
747 flush_kthread_worker(&master
->kworker
);
748 kthread_stop(master
->kworker_task
);
754 * spi_queued_transfer - transfer function for queued transfers
755 * @spi: spi device which is requesting transfer
756 * @msg: spi message which is to handled is queued to driver queue
758 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
760 struct spi_master
*master
= spi
->master
;
763 spin_lock_irqsave(&master
->queue_lock
, flags
);
765 if (!master
->running
) {
766 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
769 msg
->actual_length
= 0;
770 msg
->status
= -EINPROGRESS
;
772 list_add_tail(&msg
->queue
, &master
->queue
);
773 if (master
->running
&& !master
->busy
)
774 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
776 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
780 static int spi_master_initialize_queue(struct spi_master
*master
)
784 master
->queued
= true;
785 master
->transfer
= spi_queued_transfer
;
787 /* Initialize and start queue */
788 ret
= spi_init_queue(master
);
790 dev_err(&master
->dev
, "problem initializing queue\n");
793 ret
= spi_start_queue(master
);
795 dev_err(&master
->dev
, "problem starting queue\n");
796 goto err_start_queue
;
803 spi_destroy_queue(master
);
807 /*-------------------------------------------------------------------------*/
809 #if defined(CONFIG_OF) && !defined(CONFIG_SPARC)
811 * of_register_spi_devices() - Register child devices onto the SPI bus
812 * @master: Pointer to spi_master device
814 * Registers an spi_device for each child node of master node which has a 'reg'
817 static void of_register_spi_devices(struct spi_master
*master
)
819 struct spi_device
*spi
;
820 struct device_node
*nc
;
825 if (!master
->dev
.of_node
)
828 for_each_child_of_node(master
->dev
.of_node
, nc
) {
829 /* Alloc an spi_device */
830 spi
= spi_alloc_device(master
);
832 dev_err(&master
->dev
, "spi_device alloc error for %s\n",
838 /* Select device driver */
839 if (of_modalias_node(nc
, spi
->modalias
,
840 sizeof(spi
->modalias
)) < 0) {
841 dev_err(&master
->dev
, "cannot find modalias for %s\n",
848 prop
= of_get_property(nc
, "reg", &len
);
849 if (!prop
|| len
< sizeof(*prop
)) {
850 dev_err(&master
->dev
, "%s has no 'reg' property\n",
855 spi
->chip_select
= be32_to_cpup(prop
);
857 /* Mode (clock phase/polarity/etc.) */
858 if (of_find_property(nc
, "spi-cpha", NULL
))
859 spi
->mode
|= SPI_CPHA
;
860 if (of_find_property(nc
, "spi-cpol", NULL
))
861 spi
->mode
|= SPI_CPOL
;
862 if (of_find_property(nc
, "spi-cs-high", NULL
))
863 spi
->mode
|= SPI_CS_HIGH
;
866 prop
= of_get_property(nc
, "spi-max-frequency", &len
);
867 if (!prop
|| len
< sizeof(*prop
)) {
868 dev_err(&master
->dev
, "%s has no 'spi-max-frequency' property\n",
873 spi
->max_speed_hz
= be32_to_cpup(prop
);
876 spi
->irq
= irq_of_parse_and_map(nc
, 0);
878 /* Store a pointer to the node in the device structure */
880 spi
->dev
.of_node
= nc
;
882 /* Register the new device */
883 request_module(spi
->modalias
);
884 rc
= spi_add_device(spi
);
886 dev_err(&master
->dev
, "spi_device register error %s\n",
894 static void of_register_spi_devices(struct spi_master
*master
) { }
897 static void spi_master_release(struct device
*dev
)
899 struct spi_master
*master
;
901 master
= container_of(dev
, struct spi_master
, dev
);
905 static struct class spi_master_class
= {
906 .name
= "spi_master",
907 .owner
= THIS_MODULE
,
908 .dev_release
= spi_master_release
,
914 * spi_alloc_master - allocate SPI master controller
915 * @dev: the controller, possibly using the platform_bus
916 * @size: how much zeroed driver-private data to allocate; the pointer to this
917 * memory is in the driver_data field of the returned device,
918 * accessible with spi_master_get_devdata().
921 * This call is used only by SPI master controller drivers, which are the
922 * only ones directly touching chip registers. It's how they allocate
923 * an spi_master structure, prior to calling spi_register_master().
925 * This must be called from context that can sleep. It returns the SPI
926 * master structure on success, else NULL.
928 * The caller is responsible for assigning the bus number and initializing
929 * the master's methods before calling spi_register_master(); and (after errors
930 * adding the device) calling spi_master_put() and kfree() to prevent a memory
933 struct spi_master
*spi_alloc_master(struct device
*dev
, unsigned size
)
935 struct spi_master
*master
;
940 master
= kzalloc(size
+ sizeof *master
, GFP_KERNEL
);
944 device_initialize(&master
->dev
);
945 master
->bus_num
= -1;
946 master
->num_chipselect
= 1;
947 master
->dev
.class = &spi_master_class
;
948 master
->dev
.parent
= get_device(dev
);
949 spi_master_set_devdata(master
, &master
[1]);
953 EXPORT_SYMBOL_GPL(spi_alloc_master
);
956 static int of_spi_register_master(struct spi_master
*master
)
960 struct device_node
*np
= master
->dev
.of_node
;
965 nb
= of_gpio_named_count(np
, "cs-gpios");
966 master
->num_chipselect
= max(nb
, master
->num_chipselect
);
971 cs
= devm_kzalloc(&master
->dev
,
972 sizeof(int) * master
->num_chipselect
,
974 master
->cs_gpios
= cs
;
976 if (!master
->cs_gpios
)
979 memset(cs
, -EINVAL
, master
->num_chipselect
);
981 for (i
= 0; i
< nb
; i
++)
982 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
987 static int of_spi_register_master(struct spi_master
*master
)
994 * spi_register_master - register SPI master controller
995 * @master: initialized master, originally from spi_alloc_master()
998 * SPI master controllers connect to their drivers using some non-SPI bus,
999 * such as the platform bus. The final stage of probe() in that code
1000 * includes calling spi_register_master() to hook up to this SPI bus glue.
1002 * SPI controllers use board specific (often SOC specific) bus numbers,
1003 * and board-specific addressing for SPI devices combines those numbers
1004 * with chip select numbers. Since SPI does not directly support dynamic
1005 * device identification, boards need configuration tables telling which
1006 * chip is at which address.
1008 * This must be called from context that can sleep. It returns zero on
1009 * success, else a negative error code (dropping the master's refcount).
1010 * After a successful return, the caller is responsible for calling
1011 * spi_unregister_master().
1013 int spi_register_master(struct spi_master
*master
)
1015 static atomic_t dyn_bus_id
= ATOMIC_INIT((1<<15) - 1);
1016 struct device
*dev
= master
->dev
.parent
;
1017 struct boardinfo
*bi
;
1018 int status
= -ENODEV
;
1024 status
= of_spi_register_master(master
);
1028 /* even if it's just one always-selected device, there must
1029 * be at least one chipselect
1031 if (master
->num_chipselect
== 0)
1034 /* convention: dynamically assigned bus IDs count down from the max */
1035 if (master
->bus_num
< 0) {
1036 /* FIXME switch to an IDR based scheme, something like
1037 * I2C now uses, so we can't run out of "dynamic" IDs
1039 master
->bus_num
= atomic_dec_return(&dyn_bus_id
);
1043 spin_lock_init(&master
->bus_lock_spinlock
);
1044 mutex_init(&master
->bus_lock_mutex
);
1045 master
->bus_lock_flag
= 0;
1047 /* register the device, then userspace will see it.
1048 * registration fails if the bus ID is in use.
1050 dev_set_name(&master
->dev
, "spi%u", master
->bus_num
);
1051 status
= device_add(&master
->dev
);
1054 dev_dbg(dev
, "registered master %s%s\n", dev_name(&master
->dev
),
1055 dynamic
? " (dynamic)" : "");
1057 /* If we're using a queued driver, start the queue */
1058 if (master
->transfer
)
1059 dev_info(dev
, "master is unqueued, this is deprecated\n");
1061 status
= spi_master_initialize_queue(master
);
1063 device_unregister(&master
->dev
);
1068 mutex_lock(&board_lock
);
1069 list_add_tail(&master
->list
, &spi_master_list
);
1070 list_for_each_entry(bi
, &board_list
, list
)
1071 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
1072 mutex_unlock(&board_lock
);
1074 /* Register devices from the device tree */
1075 of_register_spi_devices(master
);
1079 EXPORT_SYMBOL_GPL(spi_register_master
);
1081 static int __unregister(struct device
*dev
, void *null
)
1083 spi_unregister_device(to_spi_device(dev
));
1088 * spi_unregister_master - unregister SPI master controller
1089 * @master: the master being unregistered
1090 * Context: can sleep
1092 * This call is used only by SPI master controller drivers, which are the
1093 * only ones directly touching chip registers.
1095 * This must be called from context that can sleep.
1097 void spi_unregister_master(struct spi_master
*master
)
1101 if (master
->queued
) {
1102 if (spi_destroy_queue(master
))
1103 dev_err(&master
->dev
, "queue remove failed\n");
1106 mutex_lock(&board_lock
);
1107 list_del(&master
->list
);
1108 mutex_unlock(&board_lock
);
1110 dummy
= device_for_each_child(&master
->dev
, NULL
, __unregister
);
1111 device_unregister(&master
->dev
);
1113 EXPORT_SYMBOL_GPL(spi_unregister_master
);
1115 int spi_master_suspend(struct spi_master
*master
)
1119 /* Basically no-ops for non-queued masters */
1120 if (!master
->queued
)
1123 ret
= spi_stop_queue(master
);
1125 dev_err(&master
->dev
, "queue stop failed\n");
1129 EXPORT_SYMBOL_GPL(spi_master_suspend
);
1131 int spi_master_resume(struct spi_master
*master
)
1135 if (!master
->queued
)
1138 ret
= spi_start_queue(master
);
1140 dev_err(&master
->dev
, "queue restart failed\n");
1144 EXPORT_SYMBOL_GPL(spi_master_resume
);
1146 static int __spi_master_match(struct device
*dev
, void *data
)
1148 struct spi_master
*m
;
1149 u16
*bus_num
= data
;
1151 m
= container_of(dev
, struct spi_master
, dev
);
1152 return m
->bus_num
== *bus_num
;
1156 * spi_busnum_to_master - look up master associated with bus_num
1157 * @bus_num: the master's bus number
1158 * Context: can sleep
1160 * This call may be used with devices that are registered after
1161 * arch init time. It returns a refcounted pointer to the relevant
1162 * spi_master (which the caller must release), or NULL if there is
1163 * no such master registered.
1165 struct spi_master
*spi_busnum_to_master(u16 bus_num
)
1168 struct spi_master
*master
= NULL
;
1170 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
1171 __spi_master_match
);
1173 master
= container_of(dev
, struct spi_master
, dev
);
1174 /* reference got in class_find_device */
1177 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
1180 /*-------------------------------------------------------------------------*/
1182 /* Core methods for SPI master protocol drivers. Some of the
1183 * other core methods are currently defined as inline functions.
1187 * spi_setup - setup SPI mode and clock rate
1188 * @spi: the device whose settings are being modified
1189 * Context: can sleep, and no requests are queued to the device
1191 * SPI protocol drivers may need to update the transfer mode if the
1192 * device doesn't work with its default. They may likewise need
1193 * to update clock rates or word sizes from initial values. This function
1194 * changes those settings, and must be called from a context that can sleep.
1195 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1196 * effect the next time the device is selected and data is transferred to
1197 * or from it. When this function returns, the spi device is deselected.
1199 * Note that this call will fail if the protocol driver specifies an option
1200 * that the underlying controller or its driver does not support. For
1201 * example, not all hardware supports wire transfers using nine bit words,
1202 * LSB-first wire encoding, or active-high chipselects.
1204 int spi_setup(struct spi_device
*spi
)
1209 /* help drivers fail *cleanly* when they need options
1210 * that aren't supported with their current master
1212 bad_bits
= spi
->mode
& ~spi
->master
->mode_bits
;
1214 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
1219 if (!spi
->bits_per_word
)
1220 spi
->bits_per_word
= 8;
1222 status
= spi
->master
->setup(spi
);
1224 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s"
1225 "%u bits/w, %u Hz max --> %d\n",
1226 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
1227 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
1228 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
1229 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
1230 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
1231 spi
->bits_per_word
, spi
->max_speed_hz
,
1236 EXPORT_SYMBOL_GPL(spi_setup
);
1238 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
1240 struct spi_master
*master
= spi
->master
;
1242 /* Half-duplex links include original MicroWire, and ones with
1243 * only one data pin like SPI_3WIRE (switches direction) or where
1244 * either MOSI or MISO is missing. They can also be caused by
1245 * software limitations.
1247 if ((master
->flags
& SPI_MASTER_HALF_DUPLEX
)
1248 || (spi
->mode
& SPI_3WIRE
)) {
1249 struct spi_transfer
*xfer
;
1250 unsigned flags
= master
->flags
;
1252 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
1253 if (xfer
->rx_buf
&& xfer
->tx_buf
)
1255 if ((flags
& SPI_MASTER_NO_TX
) && xfer
->tx_buf
)
1257 if ((flags
& SPI_MASTER_NO_RX
) && xfer
->rx_buf
)
1263 message
->status
= -EINPROGRESS
;
1264 return master
->transfer(spi
, message
);
1268 * spi_async - asynchronous SPI transfer
1269 * @spi: device with which data will be exchanged
1270 * @message: describes the data transfers, including completion callback
1271 * Context: any (irqs may be blocked, etc)
1273 * This call may be used in_irq and other contexts which can't sleep,
1274 * as well as from task contexts which can sleep.
1276 * The completion callback is invoked in a context which can't sleep.
1277 * Before that invocation, the value of message->status is undefined.
1278 * When the callback is issued, message->status holds either zero (to
1279 * indicate complete success) or a negative error code. After that
1280 * callback returns, the driver which issued the transfer request may
1281 * deallocate the associated memory; it's no longer in use by any SPI
1282 * core or controller driver code.
1284 * Note that although all messages to a spi_device are handled in
1285 * FIFO order, messages may go to different devices in other orders.
1286 * Some device might be higher priority, or have various "hard" access
1287 * time requirements, for example.
1289 * On detection of any fault during the transfer, processing of
1290 * the entire message is aborted, and the device is deselected.
1291 * Until returning from the associated message completion callback,
1292 * no other spi_message queued to that device will be processed.
1293 * (This rule applies equally to all the synchronous transfer calls,
1294 * which are wrappers around this core asynchronous primitive.)
1296 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
1298 struct spi_master
*master
= spi
->master
;
1300 unsigned long flags
;
1302 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
1304 if (master
->bus_lock_flag
)
1307 ret
= __spi_async(spi
, message
);
1309 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
1313 EXPORT_SYMBOL_GPL(spi_async
);
1316 * spi_async_locked - version of spi_async with exclusive bus usage
1317 * @spi: device with which data will be exchanged
1318 * @message: describes the data transfers, including completion callback
1319 * Context: any (irqs may be blocked, etc)
1321 * This call may be used in_irq and other contexts which can't sleep,
1322 * as well as from task contexts which can sleep.
1324 * The completion callback is invoked in a context which can't sleep.
1325 * Before that invocation, the value of message->status is undefined.
1326 * When the callback is issued, message->status holds either zero (to
1327 * indicate complete success) or a negative error code. After that
1328 * callback returns, the driver which issued the transfer request may
1329 * deallocate the associated memory; it's no longer in use by any SPI
1330 * core or controller driver code.
1332 * Note that although all messages to a spi_device are handled in
1333 * FIFO order, messages may go to different devices in other orders.
1334 * Some device might be higher priority, or have various "hard" access
1335 * time requirements, for example.
1337 * On detection of any fault during the transfer, processing of
1338 * the entire message is aborted, and the device is deselected.
1339 * Until returning from the associated message completion callback,
1340 * no other spi_message queued to that device will be processed.
1341 * (This rule applies equally to all the synchronous transfer calls,
1342 * which are wrappers around this core asynchronous primitive.)
1344 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
1346 struct spi_master
*master
= spi
->master
;
1348 unsigned long flags
;
1350 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
1352 ret
= __spi_async(spi
, message
);
1354 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
1359 EXPORT_SYMBOL_GPL(spi_async_locked
);
1362 /*-------------------------------------------------------------------------*/
1364 /* Utility methods for SPI master protocol drivers, layered on
1365 * top of the core. Some other utility methods are defined as
1369 static void spi_complete(void *arg
)
1374 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
,
1377 DECLARE_COMPLETION_ONSTACK(done
);
1379 struct spi_master
*master
= spi
->master
;
1381 message
->complete
= spi_complete
;
1382 message
->context
= &done
;
1385 mutex_lock(&master
->bus_lock_mutex
);
1387 status
= spi_async_locked(spi
, message
);
1390 mutex_unlock(&master
->bus_lock_mutex
);
1393 wait_for_completion(&done
);
1394 status
= message
->status
;
1396 message
->context
= NULL
;
1401 * spi_sync - blocking/synchronous SPI data transfers
1402 * @spi: device with which data will be exchanged
1403 * @message: describes the data transfers
1404 * Context: can sleep
1406 * This call may only be used from a context that may sleep. The sleep
1407 * is non-interruptible, and has no timeout. Low-overhead controller
1408 * drivers may DMA directly into and out of the message buffers.
1410 * Note that the SPI device's chip select is active during the message,
1411 * and then is normally disabled between messages. Drivers for some
1412 * frequently-used devices may want to minimize costs of selecting a chip,
1413 * by leaving it selected in anticipation that the next message will go
1414 * to the same chip. (That may increase power usage.)
1416 * Also, the caller is guaranteeing that the memory associated with the
1417 * message will not be freed before this call returns.
1419 * It returns zero on success, else a negative error code.
1421 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
1423 return __spi_sync(spi
, message
, 0);
1425 EXPORT_SYMBOL_GPL(spi_sync
);
1428 * spi_sync_locked - version of spi_sync with exclusive bus usage
1429 * @spi: device with which data will be exchanged
1430 * @message: describes the data transfers
1431 * Context: can sleep
1433 * This call may only be used from a context that may sleep. The sleep
1434 * is non-interruptible, and has no timeout. Low-overhead controller
1435 * drivers may DMA directly into and out of the message buffers.
1437 * This call should be used by drivers that require exclusive access to the
1438 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1439 * be released by a spi_bus_unlock call when the exclusive access is over.
1441 * It returns zero on success, else a negative error code.
1443 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
1445 return __spi_sync(spi
, message
, 1);
1447 EXPORT_SYMBOL_GPL(spi_sync_locked
);
1450 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1451 * @master: SPI bus master that should be locked for exclusive bus access
1452 * Context: can sleep
1454 * This call may only be used from a context that may sleep. The sleep
1455 * is non-interruptible, and has no timeout.
1457 * This call should be used by drivers that require exclusive access to the
1458 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1459 * exclusive access is over. Data transfer must be done by spi_sync_locked
1460 * and spi_async_locked calls when the SPI bus lock is held.
1462 * It returns zero on success, else a negative error code.
1464 int spi_bus_lock(struct spi_master
*master
)
1466 unsigned long flags
;
1468 mutex_lock(&master
->bus_lock_mutex
);
1470 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
1471 master
->bus_lock_flag
= 1;
1472 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
1474 /* mutex remains locked until spi_bus_unlock is called */
1478 EXPORT_SYMBOL_GPL(spi_bus_lock
);
1481 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1482 * @master: SPI bus master that was locked for exclusive bus access
1483 * Context: can sleep
1485 * This call may only be used from a context that may sleep. The sleep
1486 * is non-interruptible, and has no timeout.
1488 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1491 * It returns zero on success, else a negative error code.
1493 int spi_bus_unlock(struct spi_master
*master
)
1495 master
->bus_lock_flag
= 0;
1497 mutex_unlock(&master
->bus_lock_mutex
);
1501 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
1503 /* portable code must never pass more than 32 bytes */
1504 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
1509 * spi_write_then_read - SPI synchronous write followed by read
1510 * @spi: device with which data will be exchanged
1511 * @txbuf: data to be written (need not be dma-safe)
1512 * @n_tx: size of txbuf, in bytes
1513 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1514 * @n_rx: size of rxbuf, in bytes
1515 * Context: can sleep
1517 * This performs a half duplex MicroWire style transaction with the
1518 * device, sending txbuf and then reading rxbuf. The return value
1519 * is zero for success, else a negative errno status code.
1520 * This call may only be used from a context that may sleep.
1522 * Parameters to this routine are always copied using a small buffer;
1523 * portable code should never use this for more than 32 bytes.
1524 * Performance-sensitive or bulk transfer code should instead use
1525 * spi_{async,sync}() calls with dma-safe buffers.
1527 int spi_write_then_read(struct spi_device
*spi
,
1528 const void *txbuf
, unsigned n_tx
,
1529 void *rxbuf
, unsigned n_rx
)
1531 static DEFINE_MUTEX(lock
);
1534 struct spi_message message
;
1535 struct spi_transfer x
[2];
1538 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
1539 * (as a pure convenience thing), but we can keep heap costs
1540 * out of the hot path ...
1542 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
)
1545 spi_message_init(&message
);
1546 memset(x
, 0, sizeof x
);
1549 spi_message_add_tail(&x
[0], &message
);
1553 spi_message_add_tail(&x
[1], &message
);
1556 /* ... unless someone else is using the pre-allocated buffer */
1557 if (!mutex_trylock(&lock
)) {
1558 local_buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
1564 memcpy(local_buf
, txbuf
, n_tx
);
1565 x
[0].tx_buf
= local_buf
;
1566 x
[1].rx_buf
= local_buf
+ n_tx
;
1569 status
= spi_sync(spi
, &message
);
1571 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
1573 if (x
[0].tx_buf
== buf
)
1574 mutex_unlock(&lock
);
1580 EXPORT_SYMBOL_GPL(spi_write_then_read
);
1582 /*-------------------------------------------------------------------------*/
1584 static int __init
spi_init(void)
1588 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
1594 status
= bus_register(&spi_bus_type
);
1598 status
= class_register(&spi_master_class
);
1604 bus_unregister(&spi_bus_type
);
1612 /* board_info is normally registered in arch_initcall(),
1613 * but even essential drivers wait till later
1615 * REVISIT only boardinfo really needs static linking. the rest (device and
1616 * driver registration) _could_ be dynamically linked (modular) ... costs
1617 * include needing to have boardinfo data structures be much more public.
1619 postcore_initcall(spi_init
);