of_spi: add generic binding support to specify cs gpio
[linux-2.6.git] / drivers / spi / spi.c
blob1587a4a5ff412de0ba2a0df62b24dadfeacfa97f
1 /*
2 * SPI init/core code
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
40 static void spidev_release(struct device *dev)
42 struct spi_device *spi = to_spi_device(dev);
44 /* spi masters may cleanup for released devices */
45 if (spi->master->cleanup)
46 spi->master->cleanup(spi);
48 spi_master_put(spi->master);
49 kfree(spi);
52 static ssize_t
53 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
55 const struct spi_device *spi = to_spi_device(dev);
57 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
60 static struct device_attribute spi_dev_attrs[] = {
61 __ATTR_RO(modalias),
62 __ATTR_NULL,
65 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
66 * and the sysfs version makes coldplug work too.
69 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
70 const struct spi_device *sdev)
72 while (id->name[0]) {
73 if (!strcmp(sdev->modalias, id->name))
74 return id;
75 id++;
77 return NULL;
80 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
82 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
84 return spi_match_id(sdrv->id_table, sdev);
86 EXPORT_SYMBOL_GPL(spi_get_device_id);
88 static int spi_match_device(struct device *dev, struct device_driver *drv)
90 const struct spi_device *spi = to_spi_device(dev);
91 const struct spi_driver *sdrv = to_spi_driver(drv);
93 /* Attempt an OF style match */
94 if (of_driver_match_device(dev, drv))
95 return 1;
97 if (sdrv->id_table)
98 return !!spi_match_id(sdrv->id_table, spi);
100 return strcmp(spi->modalias, drv->name) == 0;
103 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
105 const struct spi_device *spi = to_spi_device(dev);
107 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
108 return 0;
111 #ifdef CONFIG_PM_SLEEP
112 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
114 int value = 0;
115 struct spi_driver *drv = to_spi_driver(dev->driver);
117 /* suspend will stop irqs and dma; no more i/o */
118 if (drv) {
119 if (drv->suspend)
120 value = drv->suspend(to_spi_device(dev), message);
121 else
122 dev_dbg(dev, "... can't suspend\n");
124 return value;
127 static int spi_legacy_resume(struct device *dev)
129 int value = 0;
130 struct spi_driver *drv = to_spi_driver(dev->driver);
132 /* resume may restart the i/o queue */
133 if (drv) {
134 if (drv->resume)
135 value = drv->resume(to_spi_device(dev));
136 else
137 dev_dbg(dev, "... can't resume\n");
139 return value;
142 static int spi_pm_suspend(struct device *dev)
144 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
146 if (pm)
147 return pm_generic_suspend(dev);
148 else
149 return spi_legacy_suspend(dev, PMSG_SUSPEND);
152 static int spi_pm_resume(struct device *dev)
154 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
156 if (pm)
157 return pm_generic_resume(dev);
158 else
159 return spi_legacy_resume(dev);
162 static int spi_pm_freeze(struct device *dev)
164 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
166 if (pm)
167 return pm_generic_freeze(dev);
168 else
169 return spi_legacy_suspend(dev, PMSG_FREEZE);
172 static int spi_pm_thaw(struct device *dev)
174 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
176 if (pm)
177 return pm_generic_thaw(dev);
178 else
179 return spi_legacy_resume(dev);
182 static int spi_pm_poweroff(struct device *dev)
184 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
186 if (pm)
187 return pm_generic_poweroff(dev);
188 else
189 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
192 static int spi_pm_restore(struct device *dev)
194 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
196 if (pm)
197 return pm_generic_restore(dev);
198 else
199 return spi_legacy_resume(dev);
201 #else
202 #define spi_pm_suspend NULL
203 #define spi_pm_resume NULL
204 #define spi_pm_freeze NULL
205 #define spi_pm_thaw NULL
206 #define spi_pm_poweroff NULL
207 #define spi_pm_restore NULL
208 #endif
210 static const struct dev_pm_ops spi_pm = {
211 .suspend = spi_pm_suspend,
212 .resume = spi_pm_resume,
213 .freeze = spi_pm_freeze,
214 .thaw = spi_pm_thaw,
215 .poweroff = spi_pm_poweroff,
216 .restore = spi_pm_restore,
217 SET_RUNTIME_PM_OPS(
218 pm_generic_runtime_suspend,
219 pm_generic_runtime_resume,
220 pm_generic_runtime_idle
224 struct bus_type spi_bus_type = {
225 .name = "spi",
226 .dev_attrs = spi_dev_attrs,
227 .match = spi_match_device,
228 .uevent = spi_uevent,
229 .pm = &spi_pm,
231 EXPORT_SYMBOL_GPL(spi_bus_type);
234 static int spi_drv_probe(struct device *dev)
236 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
238 return sdrv->probe(to_spi_device(dev));
241 static int spi_drv_remove(struct device *dev)
243 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
245 return sdrv->remove(to_spi_device(dev));
248 static void spi_drv_shutdown(struct device *dev)
250 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
252 sdrv->shutdown(to_spi_device(dev));
256 * spi_register_driver - register a SPI driver
257 * @sdrv: the driver to register
258 * Context: can sleep
260 int spi_register_driver(struct spi_driver *sdrv)
262 sdrv->driver.bus = &spi_bus_type;
263 if (sdrv->probe)
264 sdrv->driver.probe = spi_drv_probe;
265 if (sdrv->remove)
266 sdrv->driver.remove = spi_drv_remove;
267 if (sdrv->shutdown)
268 sdrv->driver.shutdown = spi_drv_shutdown;
269 return driver_register(&sdrv->driver);
271 EXPORT_SYMBOL_GPL(spi_register_driver);
273 /*-------------------------------------------------------------------------*/
275 /* SPI devices should normally not be created by SPI device drivers; that
276 * would make them board-specific. Similarly with SPI master drivers.
277 * Device registration normally goes into like arch/.../mach.../board-YYY.c
278 * with other readonly (flashable) information about mainboard devices.
281 struct boardinfo {
282 struct list_head list;
283 struct spi_board_info board_info;
286 static LIST_HEAD(board_list);
287 static LIST_HEAD(spi_master_list);
290 * Used to protect add/del opertion for board_info list and
291 * spi_master list, and their matching process
293 static DEFINE_MUTEX(board_lock);
296 * spi_alloc_device - Allocate a new SPI device
297 * @master: Controller to which device is connected
298 * Context: can sleep
300 * Allows a driver to allocate and initialize a spi_device without
301 * registering it immediately. This allows a driver to directly
302 * fill the spi_device with device parameters before calling
303 * spi_add_device() on it.
305 * Caller is responsible to call spi_add_device() on the returned
306 * spi_device structure to add it to the SPI master. If the caller
307 * needs to discard the spi_device without adding it, then it should
308 * call spi_dev_put() on it.
310 * Returns a pointer to the new device, or NULL.
312 struct spi_device *spi_alloc_device(struct spi_master *master)
314 struct spi_device *spi;
315 struct device *dev = master->dev.parent;
317 if (!spi_master_get(master))
318 return NULL;
320 spi = kzalloc(sizeof *spi, GFP_KERNEL);
321 if (!spi) {
322 dev_err(dev, "cannot alloc spi_device\n");
323 spi_master_put(master);
324 return NULL;
327 spi->master = master;
328 spi->dev.parent = &master->dev;
329 spi->dev.bus = &spi_bus_type;
330 spi->dev.release = spidev_release;
331 spi->cs_gpio = -EINVAL;
332 device_initialize(&spi->dev);
333 return spi;
335 EXPORT_SYMBOL_GPL(spi_alloc_device);
338 * spi_add_device - Add spi_device allocated with spi_alloc_device
339 * @spi: spi_device to register
341 * Companion function to spi_alloc_device. Devices allocated with
342 * spi_alloc_device can be added onto the spi bus with this function.
344 * Returns 0 on success; negative errno on failure
346 int spi_add_device(struct spi_device *spi)
348 static DEFINE_MUTEX(spi_add_lock);
349 struct spi_master *master = spi->master;
350 struct device *dev = master->dev.parent;
351 struct device *d;
352 int status;
354 /* Chipselects are numbered 0..max; validate. */
355 if (spi->chip_select >= master->num_chipselect) {
356 dev_err(dev, "cs%d >= max %d\n",
357 spi->chip_select,
358 master->num_chipselect);
359 return -EINVAL;
362 /* Set the bus ID string */
363 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
364 spi->chip_select);
367 /* We need to make sure there's no other device with this
368 * chipselect **BEFORE** we call setup(), else we'll trash
369 * its configuration. Lock against concurrent add() calls.
371 mutex_lock(&spi_add_lock);
373 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
374 if (d != NULL) {
375 dev_err(dev, "chipselect %d already in use\n",
376 spi->chip_select);
377 put_device(d);
378 status = -EBUSY;
379 goto done;
382 if (master->cs_gpios)
383 spi->cs_gpio = master->cs_gpios[spi->chip_select];
385 /* Drivers may modify this initial i/o setup, but will
386 * normally rely on the device being setup. Devices
387 * using SPI_CS_HIGH can't coexist well otherwise...
389 status = spi_setup(spi);
390 if (status < 0) {
391 dev_err(dev, "can't setup %s, status %d\n",
392 dev_name(&spi->dev), status);
393 goto done;
396 /* Device may be bound to an active driver when this returns */
397 status = device_add(&spi->dev);
398 if (status < 0)
399 dev_err(dev, "can't add %s, status %d\n",
400 dev_name(&spi->dev), status);
401 else
402 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
404 done:
405 mutex_unlock(&spi_add_lock);
406 return status;
408 EXPORT_SYMBOL_GPL(spi_add_device);
411 * spi_new_device - instantiate one new SPI device
412 * @master: Controller to which device is connected
413 * @chip: Describes the SPI device
414 * Context: can sleep
416 * On typical mainboards, this is purely internal; and it's not needed
417 * after board init creates the hard-wired devices. Some development
418 * platforms may not be able to use spi_register_board_info though, and
419 * this is exported so that for example a USB or parport based adapter
420 * driver could add devices (which it would learn about out-of-band).
422 * Returns the new device, or NULL.
424 struct spi_device *spi_new_device(struct spi_master *master,
425 struct spi_board_info *chip)
427 struct spi_device *proxy;
428 int status;
430 /* NOTE: caller did any chip->bus_num checks necessary.
432 * Also, unless we change the return value convention to use
433 * error-or-pointer (not NULL-or-pointer), troubleshootability
434 * suggests syslogged diagnostics are best here (ugh).
437 proxy = spi_alloc_device(master);
438 if (!proxy)
439 return NULL;
441 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
443 proxy->chip_select = chip->chip_select;
444 proxy->max_speed_hz = chip->max_speed_hz;
445 proxy->mode = chip->mode;
446 proxy->irq = chip->irq;
447 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
448 proxy->dev.platform_data = (void *) chip->platform_data;
449 proxy->controller_data = chip->controller_data;
450 proxy->controller_state = NULL;
452 status = spi_add_device(proxy);
453 if (status < 0) {
454 spi_dev_put(proxy);
455 return NULL;
458 return proxy;
460 EXPORT_SYMBOL_GPL(spi_new_device);
462 static void spi_match_master_to_boardinfo(struct spi_master *master,
463 struct spi_board_info *bi)
465 struct spi_device *dev;
467 if (master->bus_num != bi->bus_num)
468 return;
470 dev = spi_new_device(master, bi);
471 if (!dev)
472 dev_err(master->dev.parent, "can't create new device for %s\n",
473 bi->modalias);
477 * spi_register_board_info - register SPI devices for a given board
478 * @info: array of chip descriptors
479 * @n: how many descriptors are provided
480 * Context: can sleep
482 * Board-specific early init code calls this (probably during arch_initcall)
483 * with segments of the SPI device table. Any device nodes are created later,
484 * after the relevant parent SPI controller (bus_num) is defined. We keep
485 * this table of devices forever, so that reloading a controller driver will
486 * not make Linux forget about these hard-wired devices.
488 * Other code can also call this, e.g. a particular add-on board might provide
489 * SPI devices through its expansion connector, so code initializing that board
490 * would naturally declare its SPI devices.
492 * The board info passed can safely be __initdata ... but be careful of
493 * any embedded pointers (platform_data, etc), they're copied as-is.
495 int __devinit
496 spi_register_board_info(struct spi_board_info const *info, unsigned n)
498 struct boardinfo *bi;
499 int i;
501 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
502 if (!bi)
503 return -ENOMEM;
505 for (i = 0; i < n; i++, bi++, info++) {
506 struct spi_master *master;
508 memcpy(&bi->board_info, info, sizeof(*info));
509 mutex_lock(&board_lock);
510 list_add_tail(&bi->list, &board_list);
511 list_for_each_entry(master, &spi_master_list, list)
512 spi_match_master_to_boardinfo(master, &bi->board_info);
513 mutex_unlock(&board_lock);
516 return 0;
519 /*-------------------------------------------------------------------------*/
522 * spi_pump_messages - kthread work function which processes spi message queue
523 * @work: pointer to kthread work struct contained in the master struct
525 * This function checks if there is any spi message in the queue that
526 * needs processing and if so call out to the driver to initialize hardware
527 * and transfer each message.
530 static void spi_pump_messages(struct kthread_work *work)
532 struct spi_master *master =
533 container_of(work, struct spi_master, pump_messages);
534 unsigned long flags;
535 bool was_busy = false;
536 int ret;
538 /* Lock queue and check for queue work */
539 spin_lock_irqsave(&master->queue_lock, flags);
540 if (list_empty(&master->queue) || !master->running) {
541 if (master->busy && master->unprepare_transfer_hardware) {
542 ret = master->unprepare_transfer_hardware(master);
543 if (ret) {
544 spin_unlock_irqrestore(&master->queue_lock, flags);
545 dev_err(&master->dev,
546 "failed to unprepare transfer hardware\n");
547 return;
550 master->busy = false;
551 spin_unlock_irqrestore(&master->queue_lock, flags);
552 return;
555 /* Make sure we are not already running a message */
556 if (master->cur_msg) {
557 spin_unlock_irqrestore(&master->queue_lock, flags);
558 return;
560 /* Extract head of queue */
561 master->cur_msg =
562 list_entry(master->queue.next, struct spi_message, queue);
564 list_del_init(&master->cur_msg->queue);
565 if (master->busy)
566 was_busy = true;
567 else
568 master->busy = true;
569 spin_unlock_irqrestore(&master->queue_lock, flags);
571 if (!was_busy && master->prepare_transfer_hardware) {
572 ret = master->prepare_transfer_hardware(master);
573 if (ret) {
574 dev_err(&master->dev,
575 "failed to prepare transfer hardware\n");
576 return;
580 ret = master->transfer_one_message(master, master->cur_msg);
581 if (ret) {
582 dev_err(&master->dev,
583 "failed to transfer one message from queue\n");
584 return;
588 static int spi_init_queue(struct spi_master *master)
590 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
592 INIT_LIST_HEAD(&master->queue);
593 spin_lock_init(&master->queue_lock);
595 master->running = false;
596 master->busy = false;
598 init_kthread_worker(&master->kworker);
599 master->kworker_task = kthread_run(kthread_worker_fn,
600 &master->kworker,
601 dev_name(&master->dev));
602 if (IS_ERR(master->kworker_task)) {
603 dev_err(&master->dev, "failed to create message pump task\n");
604 return -ENOMEM;
606 init_kthread_work(&master->pump_messages, spi_pump_messages);
609 * Master config will indicate if this controller should run the
610 * message pump with high (realtime) priority to reduce the transfer
611 * latency on the bus by minimising the delay between a transfer
612 * request and the scheduling of the message pump thread. Without this
613 * setting the message pump thread will remain at default priority.
615 if (master->rt) {
616 dev_info(&master->dev,
617 "will run message pump with realtime priority\n");
618 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
621 return 0;
625 * spi_get_next_queued_message() - called by driver to check for queued
626 * messages
627 * @master: the master to check for queued messages
629 * If there are more messages in the queue, the next message is returned from
630 * this call.
632 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
634 struct spi_message *next;
635 unsigned long flags;
637 /* get a pointer to the next message, if any */
638 spin_lock_irqsave(&master->queue_lock, flags);
639 if (list_empty(&master->queue))
640 next = NULL;
641 else
642 next = list_entry(master->queue.next,
643 struct spi_message, queue);
644 spin_unlock_irqrestore(&master->queue_lock, flags);
646 return next;
648 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
651 * spi_finalize_current_message() - the current message is complete
652 * @master: the master to return the message to
654 * Called by the driver to notify the core that the message in the front of the
655 * queue is complete and can be removed from the queue.
657 void spi_finalize_current_message(struct spi_master *master)
659 struct spi_message *mesg;
660 unsigned long flags;
662 spin_lock_irqsave(&master->queue_lock, flags);
663 mesg = master->cur_msg;
664 master->cur_msg = NULL;
666 queue_kthread_work(&master->kworker, &master->pump_messages);
667 spin_unlock_irqrestore(&master->queue_lock, flags);
669 mesg->state = NULL;
670 if (mesg->complete)
671 mesg->complete(mesg->context);
673 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
675 static int spi_start_queue(struct spi_master *master)
677 unsigned long flags;
679 spin_lock_irqsave(&master->queue_lock, flags);
681 if (master->running || master->busy) {
682 spin_unlock_irqrestore(&master->queue_lock, flags);
683 return -EBUSY;
686 master->running = true;
687 master->cur_msg = NULL;
688 spin_unlock_irqrestore(&master->queue_lock, flags);
690 queue_kthread_work(&master->kworker, &master->pump_messages);
692 return 0;
695 static int spi_stop_queue(struct spi_master *master)
697 unsigned long flags;
698 unsigned limit = 500;
699 int ret = 0;
701 spin_lock_irqsave(&master->queue_lock, flags);
704 * This is a bit lame, but is optimized for the common execution path.
705 * A wait_queue on the master->busy could be used, but then the common
706 * execution path (pump_messages) would be required to call wake_up or
707 * friends on every SPI message. Do this instead.
709 while ((!list_empty(&master->queue) || master->busy) && limit--) {
710 spin_unlock_irqrestore(&master->queue_lock, flags);
711 msleep(10);
712 spin_lock_irqsave(&master->queue_lock, flags);
715 if (!list_empty(&master->queue) || master->busy)
716 ret = -EBUSY;
717 else
718 master->running = false;
720 spin_unlock_irqrestore(&master->queue_lock, flags);
722 if (ret) {
723 dev_warn(&master->dev,
724 "could not stop message queue\n");
725 return ret;
727 return ret;
730 static int spi_destroy_queue(struct spi_master *master)
732 int ret;
734 ret = spi_stop_queue(master);
737 * flush_kthread_worker will block until all work is done.
738 * If the reason that stop_queue timed out is that the work will never
739 * finish, then it does no good to call flush/stop thread, so
740 * return anyway.
742 if (ret) {
743 dev_err(&master->dev, "problem destroying queue\n");
744 return ret;
747 flush_kthread_worker(&master->kworker);
748 kthread_stop(master->kworker_task);
750 return 0;
754 * spi_queued_transfer - transfer function for queued transfers
755 * @spi: spi device which is requesting transfer
756 * @msg: spi message which is to handled is queued to driver queue
758 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
760 struct spi_master *master = spi->master;
761 unsigned long flags;
763 spin_lock_irqsave(&master->queue_lock, flags);
765 if (!master->running) {
766 spin_unlock_irqrestore(&master->queue_lock, flags);
767 return -ESHUTDOWN;
769 msg->actual_length = 0;
770 msg->status = -EINPROGRESS;
772 list_add_tail(&msg->queue, &master->queue);
773 if (master->running && !master->busy)
774 queue_kthread_work(&master->kworker, &master->pump_messages);
776 spin_unlock_irqrestore(&master->queue_lock, flags);
777 return 0;
780 static int spi_master_initialize_queue(struct spi_master *master)
782 int ret;
784 master->queued = true;
785 master->transfer = spi_queued_transfer;
787 /* Initialize and start queue */
788 ret = spi_init_queue(master);
789 if (ret) {
790 dev_err(&master->dev, "problem initializing queue\n");
791 goto err_init_queue;
793 ret = spi_start_queue(master);
794 if (ret) {
795 dev_err(&master->dev, "problem starting queue\n");
796 goto err_start_queue;
799 return 0;
801 err_start_queue:
802 err_init_queue:
803 spi_destroy_queue(master);
804 return ret;
807 /*-------------------------------------------------------------------------*/
809 #if defined(CONFIG_OF) && !defined(CONFIG_SPARC)
811 * of_register_spi_devices() - Register child devices onto the SPI bus
812 * @master: Pointer to spi_master device
814 * Registers an spi_device for each child node of master node which has a 'reg'
815 * property.
817 static void of_register_spi_devices(struct spi_master *master)
819 struct spi_device *spi;
820 struct device_node *nc;
821 const __be32 *prop;
822 int rc;
823 int len;
825 if (!master->dev.of_node)
826 return;
828 for_each_child_of_node(master->dev.of_node, nc) {
829 /* Alloc an spi_device */
830 spi = spi_alloc_device(master);
831 if (!spi) {
832 dev_err(&master->dev, "spi_device alloc error for %s\n",
833 nc->full_name);
834 spi_dev_put(spi);
835 continue;
838 /* Select device driver */
839 if (of_modalias_node(nc, spi->modalias,
840 sizeof(spi->modalias)) < 0) {
841 dev_err(&master->dev, "cannot find modalias for %s\n",
842 nc->full_name);
843 spi_dev_put(spi);
844 continue;
847 /* Device address */
848 prop = of_get_property(nc, "reg", &len);
849 if (!prop || len < sizeof(*prop)) {
850 dev_err(&master->dev, "%s has no 'reg' property\n",
851 nc->full_name);
852 spi_dev_put(spi);
853 continue;
855 spi->chip_select = be32_to_cpup(prop);
857 /* Mode (clock phase/polarity/etc.) */
858 if (of_find_property(nc, "spi-cpha", NULL))
859 spi->mode |= SPI_CPHA;
860 if (of_find_property(nc, "spi-cpol", NULL))
861 spi->mode |= SPI_CPOL;
862 if (of_find_property(nc, "spi-cs-high", NULL))
863 spi->mode |= SPI_CS_HIGH;
865 /* Device speed */
866 prop = of_get_property(nc, "spi-max-frequency", &len);
867 if (!prop || len < sizeof(*prop)) {
868 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
869 nc->full_name);
870 spi_dev_put(spi);
871 continue;
873 spi->max_speed_hz = be32_to_cpup(prop);
875 /* IRQ */
876 spi->irq = irq_of_parse_and_map(nc, 0);
878 /* Store a pointer to the node in the device structure */
879 of_node_get(nc);
880 spi->dev.of_node = nc;
882 /* Register the new device */
883 request_module(spi->modalias);
884 rc = spi_add_device(spi);
885 if (rc) {
886 dev_err(&master->dev, "spi_device register error %s\n",
887 nc->full_name);
888 spi_dev_put(spi);
893 #else
894 static void of_register_spi_devices(struct spi_master *master) { }
895 #endif
897 static void spi_master_release(struct device *dev)
899 struct spi_master *master;
901 master = container_of(dev, struct spi_master, dev);
902 kfree(master);
905 static struct class spi_master_class = {
906 .name = "spi_master",
907 .owner = THIS_MODULE,
908 .dev_release = spi_master_release,
914 * spi_alloc_master - allocate SPI master controller
915 * @dev: the controller, possibly using the platform_bus
916 * @size: how much zeroed driver-private data to allocate; the pointer to this
917 * memory is in the driver_data field of the returned device,
918 * accessible with spi_master_get_devdata().
919 * Context: can sleep
921 * This call is used only by SPI master controller drivers, which are the
922 * only ones directly touching chip registers. It's how they allocate
923 * an spi_master structure, prior to calling spi_register_master().
925 * This must be called from context that can sleep. It returns the SPI
926 * master structure on success, else NULL.
928 * The caller is responsible for assigning the bus number and initializing
929 * the master's methods before calling spi_register_master(); and (after errors
930 * adding the device) calling spi_master_put() and kfree() to prevent a memory
931 * leak.
933 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
935 struct spi_master *master;
937 if (!dev)
938 return NULL;
940 master = kzalloc(size + sizeof *master, GFP_KERNEL);
941 if (!master)
942 return NULL;
944 device_initialize(&master->dev);
945 master->bus_num = -1;
946 master->num_chipselect = 1;
947 master->dev.class = &spi_master_class;
948 master->dev.parent = get_device(dev);
949 spi_master_set_devdata(master, &master[1]);
951 return master;
953 EXPORT_SYMBOL_GPL(spi_alloc_master);
955 #ifdef CONFIG_OF
956 static int of_spi_register_master(struct spi_master *master)
958 u16 nb;
959 int i, *cs;
960 struct device_node *np = master->dev.of_node;
962 if (!np)
963 return 0;
965 nb = of_gpio_named_count(np, "cs-gpios");
966 master->num_chipselect = max(nb, master->num_chipselect);
968 if (nb < 1)
969 return 0;
971 cs = devm_kzalloc(&master->dev,
972 sizeof(int) * master->num_chipselect,
973 GFP_KERNEL);
974 master->cs_gpios = cs;
976 if (!master->cs_gpios)
977 return -ENOMEM;
979 memset(cs, -EINVAL, master->num_chipselect);
981 for (i = 0; i < nb; i++)
982 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
984 return 0;
986 #else
987 static int of_spi_register_master(struct spi_master *master)
989 return 0;
991 #endif
994 * spi_register_master - register SPI master controller
995 * @master: initialized master, originally from spi_alloc_master()
996 * Context: can sleep
998 * SPI master controllers connect to their drivers using some non-SPI bus,
999 * such as the platform bus. The final stage of probe() in that code
1000 * includes calling spi_register_master() to hook up to this SPI bus glue.
1002 * SPI controllers use board specific (often SOC specific) bus numbers,
1003 * and board-specific addressing for SPI devices combines those numbers
1004 * with chip select numbers. Since SPI does not directly support dynamic
1005 * device identification, boards need configuration tables telling which
1006 * chip is at which address.
1008 * This must be called from context that can sleep. It returns zero on
1009 * success, else a negative error code (dropping the master's refcount).
1010 * After a successful return, the caller is responsible for calling
1011 * spi_unregister_master().
1013 int spi_register_master(struct spi_master *master)
1015 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1016 struct device *dev = master->dev.parent;
1017 struct boardinfo *bi;
1018 int status = -ENODEV;
1019 int dynamic = 0;
1021 if (!dev)
1022 return -ENODEV;
1024 status = of_spi_register_master(master);
1025 if (status)
1026 return status;
1028 /* even if it's just one always-selected device, there must
1029 * be at least one chipselect
1031 if (master->num_chipselect == 0)
1032 return -EINVAL;
1034 /* convention: dynamically assigned bus IDs count down from the max */
1035 if (master->bus_num < 0) {
1036 /* FIXME switch to an IDR based scheme, something like
1037 * I2C now uses, so we can't run out of "dynamic" IDs
1039 master->bus_num = atomic_dec_return(&dyn_bus_id);
1040 dynamic = 1;
1043 spin_lock_init(&master->bus_lock_spinlock);
1044 mutex_init(&master->bus_lock_mutex);
1045 master->bus_lock_flag = 0;
1047 /* register the device, then userspace will see it.
1048 * registration fails if the bus ID is in use.
1050 dev_set_name(&master->dev, "spi%u", master->bus_num);
1051 status = device_add(&master->dev);
1052 if (status < 0)
1053 goto done;
1054 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1055 dynamic ? " (dynamic)" : "");
1057 /* If we're using a queued driver, start the queue */
1058 if (master->transfer)
1059 dev_info(dev, "master is unqueued, this is deprecated\n");
1060 else {
1061 status = spi_master_initialize_queue(master);
1062 if (status) {
1063 device_unregister(&master->dev);
1064 goto done;
1068 mutex_lock(&board_lock);
1069 list_add_tail(&master->list, &spi_master_list);
1070 list_for_each_entry(bi, &board_list, list)
1071 spi_match_master_to_boardinfo(master, &bi->board_info);
1072 mutex_unlock(&board_lock);
1074 /* Register devices from the device tree */
1075 of_register_spi_devices(master);
1076 done:
1077 return status;
1079 EXPORT_SYMBOL_GPL(spi_register_master);
1081 static int __unregister(struct device *dev, void *null)
1083 spi_unregister_device(to_spi_device(dev));
1084 return 0;
1088 * spi_unregister_master - unregister SPI master controller
1089 * @master: the master being unregistered
1090 * Context: can sleep
1092 * This call is used only by SPI master controller drivers, which are the
1093 * only ones directly touching chip registers.
1095 * This must be called from context that can sleep.
1097 void spi_unregister_master(struct spi_master *master)
1099 int dummy;
1101 if (master->queued) {
1102 if (spi_destroy_queue(master))
1103 dev_err(&master->dev, "queue remove failed\n");
1106 mutex_lock(&board_lock);
1107 list_del(&master->list);
1108 mutex_unlock(&board_lock);
1110 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1111 device_unregister(&master->dev);
1113 EXPORT_SYMBOL_GPL(spi_unregister_master);
1115 int spi_master_suspend(struct spi_master *master)
1117 int ret;
1119 /* Basically no-ops for non-queued masters */
1120 if (!master->queued)
1121 return 0;
1123 ret = spi_stop_queue(master);
1124 if (ret)
1125 dev_err(&master->dev, "queue stop failed\n");
1127 return ret;
1129 EXPORT_SYMBOL_GPL(spi_master_suspend);
1131 int spi_master_resume(struct spi_master *master)
1133 int ret;
1135 if (!master->queued)
1136 return 0;
1138 ret = spi_start_queue(master);
1139 if (ret)
1140 dev_err(&master->dev, "queue restart failed\n");
1142 return ret;
1144 EXPORT_SYMBOL_GPL(spi_master_resume);
1146 static int __spi_master_match(struct device *dev, void *data)
1148 struct spi_master *m;
1149 u16 *bus_num = data;
1151 m = container_of(dev, struct spi_master, dev);
1152 return m->bus_num == *bus_num;
1156 * spi_busnum_to_master - look up master associated with bus_num
1157 * @bus_num: the master's bus number
1158 * Context: can sleep
1160 * This call may be used with devices that are registered after
1161 * arch init time. It returns a refcounted pointer to the relevant
1162 * spi_master (which the caller must release), or NULL if there is
1163 * no such master registered.
1165 struct spi_master *spi_busnum_to_master(u16 bus_num)
1167 struct device *dev;
1168 struct spi_master *master = NULL;
1170 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1171 __spi_master_match);
1172 if (dev)
1173 master = container_of(dev, struct spi_master, dev);
1174 /* reference got in class_find_device */
1175 return master;
1177 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1180 /*-------------------------------------------------------------------------*/
1182 /* Core methods for SPI master protocol drivers. Some of the
1183 * other core methods are currently defined as inline functions.
1187 * spi_setup - setup SPI mode and clock rate
1188 * @spi: the device whose settings are being modified
1189 * Context: can sleep, and no requests are queued to the device
1191 * SPI protocol drivers may need to update the transfer mode if the
1192 * device doesn't work with its default. They may likewise need
1193 * to update clock rates or word sizes from initial values. This function
1194 * changes those settings, and must be called from a context that can sleep.
1195 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1196 * effect the next time the device is selected and data is transferred to
1197 * or from it. When this function returns, the spi device is deselected.
1199 * Note that this call will fail if the protocol driver specifies an option
1200 * that the underlying controller or its driver does not support. For
1201 * example, not all hardware supports wire transfers using nine bit words,
1202 * LSB-first wire encoding, or active-high chipselects.
1204 int spi_setup(struct spi_device *spi)
1206 unsigned bad_bits;
1207 int status;
1209 /* help drivers fail *cleanly* when they need options
1210 * that aren't supported with their current master
1212 bad_bits = spi->mode & ~spi->master->mode_bits;
1213 if (bad_bits) {
1214 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1215 bad_bits);
1216 return -EINVAL;
1219 if (!spi->bits_per_word)
1220 spi->bits_per_word = 8;
1222 status = spi->master->setup(spi);
1224 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1225 "%u bits/w, %u Hz max --> %d\n",
1226 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1227 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1228 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1229 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1230 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1231 spi->bits_per_word, spi->max_speed_hz,
1232 status);
1234 return status;
1236 EXPORT_SYMBOL_GPL(spi_setup);
1238 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1240 struct spi_master *master = spi->master;
1242 /* Half-duplex links include original MicroWire, and ones with
1243 * only one data pin like SPI_3WIRE (switches direction) or where
1244 * either MOSI or MISO is missing. They can also be caused by
1245 * software limitations.
1247 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1248 || (spi->mode & SPI_3WIRE)) {
1249 struct spi_transfer *xfer;
1250 unsigned flags = master->flags;
1252 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1253 if (xfer->rx_buf && xfer->tx_buf)
1254 return -EINVAL;
1255 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1256 return -EINVAL;
1257 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1258 return -EINVAL;
1262 message->spi = spi;
1263 message->status = -EINPROGRESS;
1264 return master->transfer(spi, message);
1268 * spi_async - asynchronous SPI transfer
1269 * @spi: device with which data will be exchanged
1270 * @message: describes the data transfers, including completion callback
1271 * Context: any (irqs may be blocked, etc)
1273 * This call may be used in_irq and other contexts which can't sleep,
1274 * as well as from task contexts which can sleep.
1276 * The completion callback is invoked in a context which can't sleep.
1277 * Before that invocation, the value of message->status is undefined.
1278 * When the callback is issued, message->status holds either zero (to
1279 * indicate complete success) or a negative error code. After that
1280 * callback returns, the driver which issued the transfer request may
1281 * deallocate the associated memory; it's no longer in use by any SPI
1282 * core or controller driver code.
1284 * Note that although all messages to a spi_device are handled in
1285 * FIFO order, messages may go to different devices in other orders.
1286 * Some device might be higher priority, or have various "hard" access
1287 * time requirements, for example.
1289 * On detection of any fault during the transfer, processing of
1290 * the entire message is aborted, and the device is deselected.
1291 * Until returning from the associated message completion callback,
1292 * no other spi_message queued to that device will be processed.
1293 * (This rule applies equally to all the synchronous transfer calls,
1294 * which are wrappers around this core asynchronous primitive.)
1296 int spi_async(struct spi_device *spi, struct spi_message *message)
1298 struct spi_master *master = spi->master;
1299 int ret;
1300 unsigned long flags;
1302 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1304 if (master->bus_lock_flag)
1305 ret = -EBUSY;
1306 else
1307 ret = __spi_async(spi, message);
1309 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1311 return ret;
1313 EXPORT_SYMBOL_GPL(spi_async);
1316 * spi_async_locked - version of spi_async with exclusive bus usage
1317 * @spi: device with which data will be exchanged
1318 * @message: describes the data transfers, including completion callback
1319 * Context: any (irqs may be blocked, etc)
1321 * This call may be used in_irq and other contexts which can't sleep,
1322 * as well as from task contexts which can sleep.
1324 * The completion callback is invoked in a context which can't sleep.
1325 * Before that invocation, the value of message->status is undefined.
1326 * When the callback is issued, message->status holds either zero (to
1327 * indicate complete success) or a negative error code. After that
1328 * callback returns, the driver which issued the transfer request may
1329 * deallocate the associated memory; it's no longer in use by any SPI
1330 * core or controller driver code.
1332 * Note that although all messages to a spi_device are handled in
1333 * FIFO order, messages may go to different devices in other orders.
1334 * Some device might be higher priority, or have various "hard" access
1335 * time requirements, for example.
1337 * On detection of any fault during the transfer, processing of
1338 * the entire message is aborted, and the device is deselected.
1339 * Until returning from the associated message completion callback,
1340 * no other spi_message queued to that device will be processed.
1341 * (This rule applies equally to all the synchronous transfer calls,
1342 * which are wrappers around this core asynchronous primitive.)
1344 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1346 struct spi_master *master = spi->master;
1347 int ret;
1348 unsigned long flags;
1350 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1352 ret = __spi_async(spi, message);
1354 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1356 return ret;
1359 EXPORT_SYMBOL_GPL(spi_async_locked);
1362 /*-------------------------------------------------------------------------*/
1364 /* Utility methods for SPI master protocol drivers, layered on
1365 * top of the core. Some other utility methods are defined as
1366 * inline functions.
1369 static void spi_complete(void *arg)
1371 complete(arg);
1374 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1375 int bus_locked)
1377 DECLARE_COMPLETION_ONSTACK(done);
1378 int status;
1379 struct spi_master *master = spi->master;
1381 message->complete = spi_complete;
1382 message->context = &done;
1384 if (!bus_locked)
1385 mutex_lock(&master->bus_lock_mutex);
1387 status = spi_async_locked(spi, message);
1389 if (!bus_locked)
1390 mutex_unlock(&master->bus_lock_mutex);
1392 if (status == 0) {
1393 wait_for_completion(&done);
1394 status = message->status;
1396 message->context = NULL;
1397 return status;
1401 * spi_sync - blocking/synchronous SPI data transfers
1402 * @spi: device with which data will be exchanged
1403 * @message: describes the data transfers
1404 * Context: can sleep
1406 * This call may only be used from a context that may sleep. The sleep
1407 * is non-interruptible, and has no timeout. Low-overhead controller
1408 * drivers may DMA directly into and out of the message buffers.
1410 * Note that the SPI device's chip select is active during the message,
1411 * and then is normally disabled between messages. Drivers for some
1412 * frequently-used devices may want to minimize costs of selecting a chip,
1413 * by leaving it selected in anticipation that the next message will go
1414 * to the same chip. (That may increase power usage.)
1416 * Also, the caller is guaranteeing that the memory associated with the
1417 * message will not be freed before this call returns.
1419 * It returns zero on success, else a negative error code.
1421 int spi_sync(struct spi_device *spi, struct spi_message *message)
1423 return __spi_sync(spi, message, 0);
1425 EXPORT_SYMBOL_GPL(spi_sync);
1428 * spi_sync_locked - version of spi_sync with exclusive bus usage
1429 * @spi: device with which data will be exchanged
1430 * @message: describes the data transfers
1431 * Context: can sleep
1433 * This call may only be used from a context that may sleep. The sleep
1434 * is non-interruptible, and has no timeout. Low-overhead controller
1435 * drivers may DMA directly into and out of the message buffers.
1437 * This call should be used by drivers that require exclusive access to the
1438 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1439 * be released by a spi_bus_unlock call when the exclusive access is over.
1441 * It returns zero on success, else a negative error code.
1443 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1445 return __spi_sync(spi, message, 1);
1447 EXPORT_SYMBOL_GPL(spi_sync_locked);
1450 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1451 * @master: SPI bus master that should be locked for exclusive bus access
1452 * Context: can sleep
1454 * This call may only be used from a context that may sleep. The sleep
1455 * is non-interruptible, and has no timeout.
1457 * This call should be used by drivers that require exclusive access to the
1458 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1459 * exclusive access is over. Data transfer must be done by spi_sync_locked
1460 * and spi_async_locked calls when the SPI bus lock is held.
1462 * It returns zero on success, else a negative error code.
1464 int spi_bus_lock(struct spi_master *master)
1466 unsigned long flags;
1468 mutex_lock(&master->bus_lock_mutex);
1470 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1471 master->bus_lock_flag = 1;
1472 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1474 /* mutex remains locked until spi_bus_unlock is called */
1476 return 0;
1478 EXPORT_SYMBOL_GPL(spi_bus_lock);
1481 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1482 * @master: SPI bus master that was locked for exclusive bus access
1483 * Context: can sleep
1485 * This call may only be used from a context that may sleep. The sleep
1486 * is non-interruptible, and has no timeout.
1488 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1489 * call.
1491 * It returns zero on success, else a negative error code.
1493 int spi_bus_unlock(struct spi_master *master)
1495 master->bus_lock_flag = 0;
1497 mutex_unlock(&master->bus_lock_mutex);
1499 return 0;
1501 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1503 /* portable code must never pass more than 32 bytes */
1504 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
1506 static u8 *buf;
1509 * spi_write_then_read - SPI synchronous write followed by read
1510 * @spi: device with which data will be exchanged
1511 * @txbuf: data to be written (need not be dma-safe)
1512 * @n_tx: size of txbuf, in bytes
1513 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1514 * @n_rx: size of rxbuf, in bytes
1515 * Context: can sleep
1517 * This performs a half duplex MicroWire style transaction with the
1518 * device, sending txbuf and then reading rxbuf. The return value
1519 * is zero for success, else a negative errno status code.
1520 * This call may only be used from a context that may sleep.
1522 * Parameters to this routine are always copied using a small buffer;
1523 * portable code should never use this for more than 32 bytes.
1524 * Performance-sensitive or bulk transfer code should instead use
1525 * spi_{async,sync}() calls with dma-safe buffers.
1527 int spi_write_then_read(struct spi_device *spi,
1528 const void *txbuf, unsigned n_tx,
1529 void *rxbuf, unsigned n_rx)
1531 static DEFINE_MUTEX(lock);
1533 int status;
1534 struct spi_message message;
1535 struct spi_transfer x[2];
1536 u8 *local_buf;
1538 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
1539 * (as a pure convenience thing), but we can keep heap costs
1540 * out of the hot path ...
1542 if ((n_tx + n_rx) > SPI_BUFSIZ)
1543 return -EINVAL;
1545 spi_message_init(&message);
1546 memset(x, 0, sizeof x);
1547 if (n_tx) {
1548 x[0].len = n_tx;
1549 spi_message_add_tail(&x[0], &message);
1551 if (n_rx) {
1552 x[1].len = n_rx;
1553 spi_message_add_tail(&x[1], &message);
1556 /* ... unless someone else is using the pre-allocated buffer */
1557 if (!mutex_trylock(&lock)) {
1558 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1559 if (!local_buf)
1560 return -ENOMEM;
1561 } else
1562 local_buf = buf;
1564 memcpy(local_buf, txbuf, n_tx);
1565 x[0].tx_buf = local_buf;
1566 x[1].rx_buf = local_buf + n_tx;
1568 /* do the i/o */
1569 status = spi_sync(spi, &message);
1570 if (status == 0)
1571 memcpy(rxbuf, x[1].rx_buf, n_rx);
1573 if (x[0].tx_buf == buf)
1574 mutex_unlock(&lock);
1575 else
1576 kfree(local_buf);
1578 return status;
1580 EXPORT_SYMBOL_GPL(spi_write_then_read);
1582 /*-------------------------------------------------------------------------*/
1584 static int __init spi_init(void)
1586 int status;
1588 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1589 if (!buf) {
1590 status = -ENOMEM;
1591 goto err0;
1594 status = bus_register(&spi_bus_type);
1595 if (status < 0)
1596 goto err1;
1598 status = class_register(&spi_master_class);
1599 if (status < 0)
1600 goto err2;
1601 return 0;
1603 err2:
1604 bus_unregister(&spi_bus_type);
1605 err1:
1606 kfree(buf);
1607 buf = NULL;
1608 err0:
1609 return status;
1612 /* board_info is normally registered in arch_initcall(),
1613 * but even essential drivers wait till later
1615 * REVISIT only boardinfo really needs static linking. the rest (device and
1616 * driver registration) _could_ be dynamically linked (modular) ... costs
1617 * include needing to have boardinfo data structures be much more public.
1619 postcore_initcall(spi_init);