hrtimer: Eliminate needless reprogramming of clock events device
[linux-2.6.git] / kernel / hrtimer.c
blob1363c1aac1582c810b776e80a7940ad9173b19cc
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
52 * The timer bases:
54 * Note: If we want to add new timer bases, we have to skip the two
55 * clock ids captured by the cpu-timers. We do this by holding empty
56 * entries rather than doing math adjustment of the clock ids.
57 * This ensures that we capture erroneous accesses to these clock ids
58 * rather than moving them into the range of valid clock id's.
60 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63 .clock_base =
66 .index = CLOCK_REALTIME,
67 .get_time = &ktime_get_real,
68 .resolution = KTIME_LOW_RES,
71 .index = CLOCK_MONOTONIC,
72 .get_time = &ktime_get,
73 .resolution = KTIME_LOW_RES,
79 * Get the coarse grained time at the softirq based on xtime and
80 * wall_to_monotonic.
82 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
84 ktime_t xtim, tomono;
85 struct timespec xts, tom;
86 unsigned long seq;
88 do {
89 seq = read_seqbegin(&xtime_lock);
90 xts = current_kernel_time();
91 tom = wall_to_monotonic;
92 } while (read_seqretry(&xtime_lock, seq));
94 xtim = timespec_to_ktime(xts);
95 tomono = timespec_to_ktime(tom);
96 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
97 base->clock_base[CLOCK_MONOTONIC].softirq_time =
98 ktime_add(xtim, tomono);
102 * Functions and macros which are different for UP/SMP systems are kept in a
103 * single place
105 #ifdef CONFIG_SMP
108 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
109 * means that all timers which are tied to this base via timer->base are
110 * locked, and the base itself is locked too.
112 * So __run_timers/migrate_timers can safely modify all timers which could
113 * be found on the lists/queues.
115 * When the timer's base is locked, and the timer removed from list, it is
116 * possible to set timer->base = NULL and drop the lock: the timer remains
117 * locked.
119 static
120 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
121 unsigned long *flags)
123 struct hrtimer_clock_base *base;
125 for (;;) {
126 base = timer->base;
127 if (likely(base != NULL)) {
128 spin_lock_irqsave(&base->cpu_base->lock, *flags);
129 if (likely(base == timer->base))
130 return base;
131 /* The timer has migrated to another CPU: */
132 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
134 cpu_relax();
140 * Get the preferred target CPU for NOHZ
142 static int hrtimer_get_target(int this_cpu, int pinned)
144 #ifdef CONFIG_NO_HZ
145 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
146 int preferred_cpu = get_nohz_load_balancer();
148 if (preferred_cpu >= 0)
149 return preferred_cpu;
151 #endif
152 return this_cpu;
156 * With HIGHRES=y we do not migrate the timer when it is expiring
157 * before the next event on the target cpu because we cannot reprogram
158 * the target cpu hardware and we would cause it to fire late.
160 * Called with cpu_base->lock of target cpu held.
162 static int
163 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
165 #ifdef CONFIG_HIGH_RES_TIMERS
166 ktime_t expires;
168 if (!new_base->cpu_base->hres_active)
169 return 0;
171 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
172 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
173 #else
174 return 0;
175 #endif
179 * Switch the timer base to the current CPU when possible.
181 static inline struct hrtimer_clock_base *
182 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
183 int pinned)
185 struct hrtimer_clock_base *new_base;
186 struct hrtimer_cpu_base *new_cpu_base;
187 int this_cpu = smp_processor_id();
188 int cpu = hrtimer_get_target(this_cpu, pinned);
190 again:
191 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
192 new_base = &new_cpu_base->clock_base[base->index];
194 if (base != new_base) {
196 * We are trying to move timer to new_base.
197 * However we can't change timer's base while it is running,
198 * so we keep it on the same CPU. No hassle vs. reprogramming
199 * the event source in the high resolution case. The softirq
200 * code will take care of this when the timer function has
201 * completed. There is no conflict as we hold the lock until
202 * the timer is enqueued.
204 if (unlikely(hrtimer_callback_running(timer)))
205 return base;
207 /* See the comment in lock_timer_base() */
208 timer->base = NULL;
209 spin_unlock(&base->cpu_base->lock);
210 spin_lock(&new_base->cpu_base->lock);
212 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
213 cpu = this_cpu;
214 spin_unlock(&new_base->cpu_base->lock);
215 spin_lock(&base->cpu_base->lock);
216 timer->base = base;
217 goto again;
219 timer->base = new_base;
221 return new_base;
224 #else /* CONFIG_SMP */
226 static inline struct hrtimer_clock_base *
227 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
229 struct hrtimer_clock_base *base = timer->base;
231 spin_lock_irqsave(&base->cpu_base->lock, *flags);
233 return base;
236 # define switch_hrtimer_base(t, b, p) (b)
238 #endif /* !CONFIG_SMP */
241 * Functions for the union type storage format of ktime_t which are
242 * too large for inlining:
244 #if BITS_PER_LONG < 64
245 # ifndef CONFIG_KTIME_SCALAR
247 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
248 * @kt: addend
249 * @nsec: the scalar nsec value to add
251 * Returns the sum of kt and nsec in ktime_t format
253 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
255 ktime_t tmp;
257 if (likely(nsec < NSEC_PER_SEC)) {
258 tmp.tv64 = nsec;
259 } else {
260 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
262 tmp = ktime_set((long)nsec, rem);
265 return ktime_add(kt, tmp);
268 EXPORT_SYMBOL_GPL(ktime_add_ns);
271 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
272 * @kt: minuend
273 * @nsec: the scalar nsec value to subtract
275 * Returns the subtraction of @nsec from @kt in ktime_t format
277 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
279 ktime_t tmp;
281 if (likely(nsec < NSEC_PER_SEC)) {
282 tmp.tv64 = nsec;
283 } else {
284 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
286 tmp = ktime_set((long)nsec, rem);
289 return ktime_sub(kt, tmp);
292 EXPORT_SYMBOL_GPL(ktime_sub_ns);
293 # endif /* !CONFIG_KTIME_SCALAR */
296 * Divide a ktime value by a nanosecond value
298 u64 ktime_divns(const ktime_t kt, s64 div)
300 u64 dclc;
301 int sft = 0;
303 dclc = ktime_to_ns(kt);
304 /* Make sure the divisor is less than 2^32: */
305 while (div >> 32) {
306 sft++;
307 div >>= 1;
309 dclc >>= sft;
310 do_div(dclc, (unsigned long) div);
312 return dclc;
314 #endif /* BITS_PER_LONG >= 64 */
317 * Add two ktime values and do a safety check for overflow:
319 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
321 ktime_t res = ktime_add(lhs, rhs);
324 * We use KTIME_SEC_MAX here, the maximum timeout which we can
325 * return to user space in a timespec:
327 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
328 res = ktime_set(KTIME_SEC_MAX, 0);
330 return res;
333 EXPORT_SYMBOL_GPL(ktime_add_safe);
335 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
337 static struct debug_obj_descr hrtimer_debug_descr;
340 * fixup_init is called when:
341 * - an active object is initialized
343 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
345 struct hrtimer *timer = addr;
347 switch (state) {
348 case ODEBUG_STATE_ACTIVE:
349 hrtimer_cancel(timer);
350 debug_object_init(timer, &hrtimer_debug_descr);
351 return 1;
352 default:
353 return 0;
358 * fixup_activate is called when:
359 * - an active object is activated
360 * - an unknown object is activated (might be a statically initialized object)
362 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
364 switch (state) {
366 case ODEBUG_STATE_NOTAVAILABLE:
367 WARN_ON_ONCE(1);
368 return 0;
370 case ODEBUG_STATE_ACTIVE:
371 WARN_ON(1);
373 default:
374 return 0;
379 * fixup_free is called when:
380 * - an active object is freed
382 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
384 struct hrtimer *timer = addr;
386 switch (state) {
387 case ODEBUG_STATE_ACTIVE:
388 hrtimer_cancel(timer);
389 debug_object_free(timer, &hrtimer_debug_descr);
390 return 1;
391 default:
392 return 0;
396 static struct debug_obj_descr hrtimer_debug_descr = {
397 .name = "hrtimer",
398 .fixup_init = hrtimer_fixup_init,
399 .fixup_activate = hrtimer_fixup_activate,
400 .fixup_free = hrtimer_fixup_free,
403 static inline void debug_hrtimer_init(struct hrtimer *timer)
405 debug_object_init(timer, &hrtimer_debug_descr);
408 static inline void debug_hrtimer_activate(struct hrtimer *timer)
410 debug_object_activate(timer, &hrtimer_debug_descr);
413 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
415 debug_object_deactivate(timer, &hrtimer_debug_descr);
418 static inline void debug_hrtimer_free(struct hrtimer *timer)
420 debug_object_free(timer, &hrtimer_debug_descr);
423 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
424 enum hrtimer_mode mode);
426 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
427 enum hrtimer_mode mode)
429 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
430 __hrtimer_init(timer, clock_id, mode);
433 void destroy_hrtimer_on_stack(struct hrtimer *timer)
435 debug_object_free(timer, &hrtimer_debug_descr);
438 #else
439 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
440 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
441 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
442 #endif
444 /* High resolution timer related functions */
445 #ifdef CONFIG_HIGH_RES_TIMERS
448 * High resolution timer enabled ?
450 static int hrtimer_hres_enabled __read_mostly = 1;
453 * Enable / Disable high resolution mode
455 static int __init setup_hrtimer_hres(char *str)
457 if (!strcmp(str, "off"))
458 hrtimer_hres_enabled = 0;
459 else if (!strcmp(str, "on"))
460 hrtimer_hres_enabled = 1;
461 else
462 return 0;
463 return 1;
466 __setup("highres=", setup_hrtimer_hres);
469 * hrtimer_high_res_enabled - query, if the highres mode is enabled
471 static inline int hrtimer_is_hres_enabled(void)
473 return hrtimer_hres_enabled;
477 * Is the high resolution mode active ?
479 static inline int hrtimer_hres_active(void)
481 return __get_cpu_var(hrtimer_bases).hres_active;
485 * Reprogram the event source with checking both queues for the
486 * next event
487 * Called with interrupts disabled and base->lock held
489 static void
490 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
492 int i;
493 struct hrtimer_clock_base *base = cpu_base->clock_base;
494 ktime_t expires, expires_next;
496 expires_next.tv64 = KTIME_MAX;
498 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
499 struct hrtimer *timer;
501 if (!base->first)
502 continue;
503 timer = rb_entry(base->first, struct hrtimer, node);
504 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
506 * clock_was_set() has changed base->offset so the
507 * result might be negative. Fix it up to prevent a
508 * false positive in clockevents_program_event()
510 if (expires.tv64 < 0)
511 expires.tv64 = 0;
512 if (expires.tv64 < expires_next.tv64)
513 expires_next = expires;
516 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
517 return;
519 cpu_base->expires_next.tv64 = expires_next.tv64;
521 if (cpu_base->expires_next.tv64 != KTIME_MAX)
522 tick_program_event(cpu_base->expires_next, 1);
526 * Shared reprogramming for clock_realtime and clock_monotonic
528 * When a timer is enqueued and expires earlier than the already enqueued
529 * timers, we have to check, whether it expires earlier than the timer for
530 * which the clock event device was armed.
532 * Called with interrupts disabled and base->cpu_base.lock held
534 static int hrtimer_reprogram(struct hrtimer *timer,
535 struct hrtimer_clock_base *base)
537 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
538 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
539 int res;
541 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
544 * When the callback is running, we do not reprogram the clock event
545 * device. The timer callback is either running on a different CPU or
546 * the callback is executed in the hrtimer_interrupt context. The
547 * reprogramming is handled either by the softirq, which called the
548 * callback or at the end of the hrtimer_interrupt.
550 if (hrtimer_callback_running(timer))
551 return 0;
554 * CLOCK_REALTIME timer might be requested with an absolute
555 * expiry time which is less than base->offset. Nothing wrong
556 * about that, just avoid to call into the tick code, which
557 * has now objections against negative expiry values.
559 if (expires.tv64 < 0)
560 return -ETIME;
562 if (expires.tv64 >= expires_next->tv64)
563 return 0;
566 * Clockevents returns -ETIME, when the event was in the past.
568 res = tick_program_event(expires, 0);
569 if (!IS_ERR_VALUE(res))
570 *expires_next = expires;
571 return res;
576 * Retrigger next event is called after clock was set
578 * Called with interrupts disabled via on_each_cpu()
580 static void retrigger_next_event(void *arg)
582 struct hrtimer_cpu_base *base;
583 struct timespec realtime_offset;
584 unsigned long seq;
586 if (!hrtimer_hres_active())
587 return;
589 do {
590 seq = read_seqbegin(&xtime_lock);
591 set_normalized_timespec(&realtime_offset,
592 -wall_to_monotonic.tv_sec,
593 -wall_to_monotonic.tv_nsec);
594 } while (read_seqretry(&xtime_lock, seq));
596 base = &__get_cpu_var(hrtimer_bases);
598 /* Adjust CLOCK_REALTIME offset */
599 spin_lock(&base->lock);
600 base->clock_base[CLOCK_REALTIME].offset =
601 timespec_to_ktime(realtime_offset);
603 hrtimer_force_reprogram(base, 0);
604 spin_unlock(&base->lock);
608 * Clock realtime was set
610 * Change the offset of the realtime clock vs. the monotonic
611 * clock.
613 * We might have to reprogram the high resolution timer interrupt. On
614 * SMP we call the architecture specific code to retrigger _all_ high
615 * resolution timer interrupts. On UP we just disable interrupts and
616 * call the high resolution interrupt code.
618 void clock_was_set(void)
620 /* Retrigger the CPU local events everywhere */
621 on_each_cpu(retrigger_next_event, NULL, 1);
625 * During resume we might have to reprogram the high resolution timer
626 * interrupt (on the local CPU):
628 void hres_timers_resume(void)
630 WARN_ONCE(!irqs_disabled(),
631 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
633 retrigger_next_event(NULL);
637 * Initialize the high resolution related parts of cpu_base
639 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
641 base->expires_next.tv64 = KTIME_MAX;
642 base->hres_active = 0;
646 * Initialize the high resolution related parts of a hrtimer
648 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
654 * When High resolution timers are active, try to reprogram. Note, that in case
655 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
656 * check happens. The timer gets enqueued into the rbtree. The reprogramming
657 * and expiry check is done in the hrtimer_interrupt or in the softirq.
659 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
660 struct hrtimer_clock_base *base,
661 int wakeup)
663 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
664 if (wakeup) {
665 spin_unlock(&base->cpu_base->lock);
666 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
667 spin_lock(&base->cpu_base->lock);
668 } else
669 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
671 return 1;
674 return 0;
678 * Switch to high resolution mode
680 static int hrtimer_switch_to_hres(void)
682 int cpu = smp_processor_id();
683 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
684 unsigned long flags;
686 if (base->hres_active)
687 return 1;
689 local_irq_save(flags);
691 if (tick_init_highres()) {
692 local_irq_restore(flags);
693 printk(KERN_WARNING "Could not switch to high resolution "
694 "mode on CPU %d\n", cpu);
695 return 0;
697 base->hres_active = 1;
698 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
699 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
701 tick_setup_sched_timer();
703 /* "Retrigger" the interrupt to get things going */
704 retrigger_next_event(NULL);
705 local_irq_restore(flags);
706 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
707 smp_processor_id());
708 return 1;
711 #else
713 static inline int hrtimer_hres_active(void) { return 0; }
714 static inline int hrtimer_is_hres_enabled(void) { return 0; }
715 static inline int hrtimer_switch_to_hres(void) { return 0; }
716 static inline void
717 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
718 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
719 struct hrtimer_clock_base *base,
720 int wakeup)
722 return 0;
724 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
725 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
727 #endif /* CONFIG_HIGH_RES_TIMERS */
729 #ifdef CONFIG_TIMER_STATS
730 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
732 if (timer->start_site)
733 return;
735 timer->start_site = addr;
736 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
737 timer->start_pid = current->pid;
739 #endif
742 * Counterpart to lock_hrtimer_base above:
744 static inline
745 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
747 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
751 * hrtimer_forward - forward the timer expiry
752 * @timer: hrtimer to forward
753 * @now: forward past this time
754 * @interval: the interval to forward
756 * Forward the timer expiry so it will expire in the future.
757 * Returns the number of overruns.
759 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
761 u64 orun = 1;
762 ktime_t delta;
764 delta = ktime_sub(now, hrtimer_get_expires(timer));
766 if (delta.tv64 < 0)
767 return 0;
769 if (interval.tv64 < timer->base->resolution.tv64)
770 interval.tv64 = timer->base->resolution.tv64;
772 if (unlikely(delta.tv64 >= interval.tv64)) {
773 s64 incr = ktime_to_ns(interval);
775 orun = ktime_divns(delta, incr);
776 hrtimer_add_expires_ns(timer, incr * orun);
777 if (hrtimer_get_expires_tv64(timer) > now.tv64)
778 return orun;
780 * This (and the ktime_add() below) is the
781 * correction for exact:
783 orun++;
785 hrtimer_add_expires(timer, interval);
787 return orun;
789 EXPORT_SYMBOL_GPL(hrtimer_forward);
792 * enqueue_hrtimer - internal function to (re)start a timer
794 * The timer is inserted in expiry order. Insertion into the
795 * red black tree is O(log(n)). Must hold the base lock.
797 * Returns 1 when the new timer is the leftmost timer in the tree.
799 static int enqueue_hrtimer(struct hrtimer *timer,
800 struct hrtimer_clock_base *base)
802 struct rb_node **link = &base->active.rb_node;
803 struct rb_node *parent = NULL;
804 struct hrtimer *entry;
805 int leftmost = 1;
807 debug_hrtimer_activate(timer);
810 * Find the right place in the rbtree:
812 while (*link) {
813 parent = *link;
814 entry = rb_entry(parent, struct hrtimer, node);
816 * We dont care about collisions. Nodes with
817 * the same expiry time stay together.
819 if (hrtimer_get_expires_tv64(timer) <
820 hrtimer_get_expires_tv64(entry)) {
821 link = &(*link)->rb_left;
822 } else {
823 link = &(*link)->rb_right;
824 leftmost = 0;
829 * Insert the timer to the rbtree and check whether it
830 * replaces the first pending timer
832 if (leftmost)
833 base->first = &timer->node;
835 rb_link_node(&timer->node, parent, link);
836 rb_insert_color(&timer->node, &base->active);
838 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
839 * state of a possibly running callback.
841 timer->state |= HRTIMER_STATE_ENQUEUED;
843 return leftmost;
847 * __remove_hrtimer - internal function to remove a timer
849 * Caller must hold the base lock.
851 * High resolution timer mode reprograms the clock event device when the
852 * timer is the one which expires next. The caller can disable this by setting
853 * reprogram to zero. This is useful, when the context does a reprogramming
854 * anyway (e.g. timer interrupt)
856 static void __remove_hrtimer(struct hrtimer *timer,
857 struct hrtimer_clock_base *base,
858 unsigned long newstate, int reprogram)
860 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
861 goto out;
864 * Remove the timer from the rbtree and replace the first
865 * entry pointer if necessary.
867 if (base->first == &timer->node) {
868 base->first = rb_next(&timer->node);
869 #ifdef CONFIG_HIGH_RES_TIMERS
870 /* Reprogram the clock event device. if enabled */
871 if (reprogram && hrtimer_hres_active()) {
872 ktime_t expires;
874 expires = ktime_sub(hrtimer_get_expires(timer),
875 base->offset);
876 if (base->cpu_base->expires_next.tv64 == expires.tv64)
877 hrtimer_force_reprogram(base->cpu_base, 1);
879 #endif
881 rb_erase(&timer->node, &base->active);
882 out:
883 timer->state = newstate;
887 * remove hrtimer, called with base lock held
889 static inline int
890 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
892 if (hrtimer_is_queued(timer)) {
893 int reprogram;
896 * Remove the timer and force reprogramming when high
897 * resolution mode is active and the timer is on the current
898 * CPU. If we remove a timer on another CPU, reprogramming is
899 * skipped. The interrupt event on this CPU is fired and
900 * reprogramming happens in the interrupt handler. This is a
901 * rare case and less expensive than a smp call.
903 debug_hrtimer_deactivate(timer);
904 timer_stats_hrtimer_clear_start_info(timer);
905 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
906 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
907 reprogram);
908 return 1;
910 return 0;
913 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
914 unsigned long delta_ns, const enum hrtimer_mode mode,
915 int wakeup)
917 struct hrtimer_clock_base *base, *new_base;
918 unsigned long flags;
919 int ret, leftmost;
921 base = lock_hrtimer_base(timer, &flags);
923 /* Remove an active timer from the queue: */
924 ret = remove_hrtimer(timer, base);
926 /* Switch the timer base, if necessary: */
927 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
929 if (mode & HRTIMER_MODE_REL) {
930 tim = ktime_add_safe(tim, new_base->get_time());
932 * CONFIG_TIME_LOW_RES is a temporary way for architectures
933 * to signal that they simply return xtime in
934 * do_gettimeoffset(). In this case we want to round up by
935 * resolution when starting a relative timer, to avoid short
936 * timeouts. This will go away with the GTOD framework.
938 #ifdef CONFIG_TIME_LOW_RES
939 tim = ktime_add_safe(tim, base->resolution);
940 #endif
943 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
945 timer_stats_hrtimer_set_start_info(timer);
947 leftmost = enqueue_hrtimer(timer, new_base);
950 * Only allow reprogramming if the new base is on this CPU.
951 * (it might still be on another CPU if the timer was pending)
953 * XXX send_remote_softirq() ?
955 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
956 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
958 unlock_hrtimer_base(timer, &flags);
960 return ret;
964 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
965 * @timer: the timer to be added
966 * @tim: expiry time
967 * @delta_ns: "slack" range for the timer
968 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
970 * Returns:
971 * 0 on success
972 * 1 when the timer was active
974 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
975 unsigned long delta_ns, const enum hrtimer_mode mode)
977 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
979 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
982 * hrtimer_start - (re)start an hrtimer on the current CPU
983 * @timer: the timer to be added
984 * @tim: expiry time
985 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
987 * Returns:
988 * 0 on success
989 * 1 when the timer was active
992 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
994 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
996 EXPORT_SYMBOL_GPL(hrtimer_start);
1000 * hrtimer_try_to_cancel - try to deactivate a timer
1001 * @timer: hrtimer to stop
1003 * Returns:
1004 * 0 when the timer was not active
1005 * 1 when the timer was active
1006 * -1 when the timer is currently excuting the callback function and
1007 * cannot be stopped
1009 int hrtimer_try_to_cancel(struct hrtimer *timer)
1011 struct hrtimer_clock_base *base;
1012 unsigned long flags;
1013 int ret = -1;
1015 base = lock_hrtimer_base(timer, &flags);
1017 if (!hrtimer_callback_running(timer))
1018 ret = remove_hrtimer(timer, base);
1020 unlock_hrtimer_base(timer, &flags);
1022 return ret;
1025 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1028 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1029 * @timer: the timer to be cancelled
1031 * Returns:
1032 * 0 when the timer was not active
1033 * 1 when the timer was active
1035 int hrtimer_cancel(struct hrtimer *timer)
1037 for (;;) {
1038 int ret = hrtimer_try_to_cancel(timer);
1040 if (ret >= 0)
1041 return ret;
1042 cpu_relax();
1045 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1048 * hrtimer_get_remaining - get remaining time for the timer
1049 * @timer: the timer to read
1051 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1053 struct hrtimer_clock_base *base;
1054 unsigned long flags;
1055 ktime_t rem;
1057 base = lock_hrtimer_base(timer, &flags);
1058 rem = hrtimer_expires_remaining(timer);
1059 unlock_hrtimer_base(timer, &flags);
1061 return rem;
1063 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1065 #ifdef CONFIG_NO_HZ
1067 * hrtimer_get_next_event - get the time until next expiry event
1069 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1070 * is pending.
1072 ktime_t hrtimer_get_next_event(void)
1074 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1075 struct hrtimer_clock_base *base = cpu_base->clock_base;
1076 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1077 unsigned long flags;
1078 int i;
1080 spin_lock_irqsave(&cpu_base->lock, flags);
1082 if (!hrtimer_hres_active()) {
1083 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1084 struct hrtimer *timer;
1086 if (!base->first)
1087 continue;
1089 timer = rb_entry(base->first, struct hrtimer, node);
1090 delta.tv64 = hrtimer_get_expires_tv64(timer);
1091 delta = ktime_sub(delta, base->get_time());
1092 if (delta.tv64 < mindelta.tv64)
1093 mindelta.tv64 = delta.tv64;
1097 spin_unlock_irqrestore(&cpu_base->lock, flags);
1099 if (mindelta.tv64 < 0)
1100 mindelta.tv64 = 0;
1101 return mindelta;
1103 #endif
1105 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1106 enum hrtimer_mode mode)
1108 struct hrtimer_cpu_base *cpu_base;
1110 memset(timer, 0, sizeof(struct hrtimer));
1112 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1114 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1115 clock_id = CLOCK_MONOTONIC;
1117 timer->base = &cpu_base->clock_base[clock_id];
1118 hrtimer_init_timer_hres(timer);
1120 #ifdef CONFIG_TIMER_STATS
1121 timer->start_site = NULL;
1122 timer->start_pid = -1;
1123 memset(timer->start_comm, 0, TASK_COMM_LEN);
1124 #endif
1128 * hrtimer_init - initialize a timer to the given clock
1129 * @timer: the timer to be initialized
1130 * @clock_id: the clock to be used
1131 * @mode: timer mode abs/rel
1133 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1134 enum hrtimer_mode mode)
1136 debug_hrtimer_init(timer);
1137 __hrtimer_init(timer, clock_id, mode);
1139 EXPORT_SYMBOL_GPL(hrtimer_init);
1142 * hrtimer_get_res - get the timer resolution for a clock
1143 * @which_clock: which clock to query
1144 * @tp: pointer to timespec variable to store the resolution
1146 * Store the resolution of the clock selected by @which_clock in the
1147 * variable pointed to by @tp.
1149 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1151 struct hrtimer_cpu_base *cpu_base;
1153 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1154 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1156 return 0;
1158 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1160 static void __run_hrtimer(struct hrtimer *timer)
1162 struct hrtimer_clock_base *base = timer->base;
1163 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1164 enum hrtimer_restart (*fn)(struct hrtimer *);
1165 int restart;
1167 WARN_ON(!irqs_disabled());
1169 debug_hrtimer_deactivate(timer);
1170 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1171 timer_stats_account_hrtimer(timer);
1172 fn = timer->function;
1175 * Because we run timers from hardirq context, there is no chance
1176 * they get migrated to another cpu, therefore its safe to unlock
1177 * the timer base.
1179 spin_unlock(&cpu_base->lock);
1180 restart = fn(timer);
1181 spin_lock(&cpu_base->lock);
1184 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1185 * we do not reprogramm the event hardware. Happens either in
1186 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1188 if (restart != HRTIMER_NORESTART) {
1189 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1190 enqueue_hrtimer(timer, base);
1192 timer->state &= ~HRTIMER_STATE_CALLBACK;
1195 #ifdef CONFIG_HIGH_RES_TIMERS
1197 static int force_clock_reprogram;
1200 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1201 * is hanging, which could happen with something that slows the interrupt
1202 * such as the tracing. Then we force the clock reprogramming for each future
1203 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1204 * threshold that we will overwrite.
1205 * The next tick event will be scheduled to 3 times we currently spend on
1206 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1207 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1208 * let it running without serious starvation.
1211 static inline void
1212 hrtimer_interrupt_hanging(struct clock_event_device *dev,
1213 ktime_t try_time)
1215 force_clock_reprogram = 1;
1216 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1217 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1218 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1221 * High resolution timer interrupt
1222 * Called with interrupts disabled
1224 void hrtimer_interrupt(struct clock_event_device *dev)
1226 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1227 struct hrtimer_clock_base *base;
1228 ktime_t expires_next, now;
1229 int nr_retries = 0;
1230 int i;
1232 BUG_ON(!cpu_base->hres_active);
1233 cpu_base->nr_events++;
1234 dev->next_event.tv64 = KTIME_MAX;
1236 retry:
1237 /* 5 retries is enough to notice a hang */
1238 if (!(++nr_retries % 5))
1239 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1241 now = ktime_get();
1243 expires_next.tv64 = KTIME_MAX;
1245 spin_lock(&cpu_base->lock);
1247 * We set expires_next to KTIME_MAX here with cpu_base->lock
1248 * held to prevent that a timer is enqueued in our queue via
1249 * the migration code. This does not affect enqueueing of
1250 * timers which run their callback and need to be requeued on
1251 * this CPU.
1253 cpu_base->expires_next.tv64 = KTIME_MAX;
1255 base = cpu_base->clock_base;
1257 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1258 ktime_t basenow;
1259 struct rb_node *node;
1261 basenow = ktime_add(now, base->offset);
1263 while ((node = base->first)) {
1264 struct hrtimer *timer;
1266 timer = rb_entry(node, struct hrtimer, node);
1269 * The immediate goal for using the softexpires is
1270 * minimizing wakeups, not running timers at the
1271 * earliest interrupt after their soft expiration.
1272 * This allows us to avoid using a Priority Search
1273 * Tree, which can answer a stabbing querry for
1274 * overlapping intervals and instead use the simple
1275 * BST we already have.
1276 * We don't add extra wakeups by delaying timers that
1277 * are right-of a not yet expired timer, because that
1278 * timer will have to trigger a wakeup anyway.
1281 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1282 ktime_t expires;
1284 expires = ktime_sub(hrtimer_get_expires(timer),
1285 base->offset);
1286 if (expires.tv64 < expires_next.tv64)
1287 expires_next = expires;
1288 break;
1291 __run_hrtimer(timer);
1293 base++;
1297 * Store the new expiry value so the migration code can verify
1298 * against it.
1300 cpu_base->expires_next = expires_next;
1301 spin_unlock(&cpu_base->lock);
1303 /* Reprogramming necessary ? */
1304 if (expires_next.tv64 != KTIME_MAX) {
1305 if (tick_program_event(expires_next, force_clock_reprogram))
1306 goto retry;
1311 * local version of hrtimer_peek_ahead_timers() called with interrupts
1312 * disabled.
1314 static void __hrtimer_peek_ahead_timers(void)
1316 struct tick_device *td;
1318 if (!hrtimer_hres_active())
1319 return;
1321 td = &__get_cpu_var(tick_cpu_device);
1322 if (td && td->evtdev)
1323 hrtimer_interrupt(td->evtdev);
1327 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1329 * hrtimer_peek_ahead_timers will peek at the timer queue of
1330 * the current cpu and check if there are any timers for which
1331 * the soft expires time has passed. If any such timers exist,
1332 * they are run immediately and then removed from the timer queue.
1335 void hrtimer_peek_ahead_timers(void)
1337 unsigned long flags;
1339 local_irq_save(flags);
1340 __hrtimer_peek_ahead_timers();
1341 local_irq_restore(flags);
1344 static void run_hrtimer_softirq(struct softirq_action *h)
1346 hrtimer_peek_ahead_timers();
1349 #else /* CONFIG_HIGH_RES_TIMERS */
1351 static inline void __hrtimer_peek_ahead_timers(void) { }
1353 #endif /* !CONFIG_HIGH_RES_TIMERS */
1356 * Called from timer softirq every jiffy, expire hrtimers:
1358 * For HRT its the fall back code to run the softirq in the timer
1359 * softirq context in case the hrtimer initialization failed or has
1360 * not been done yet.
1362 void hrtimer_run_pending(void)
1364 if (hrtimer_hres_active())
1365 return;
1368 * This _is_ ugly: We have to check in the softirq context,
1369 * whether we can switch to highres and / or nohz mode. The
1370 * clocksource switch happens in the timer interrupt with
1371 * xtime_lock held. Notification from there only sets the
1372 * check bit in the tick_oneshot code, otherwise we might
1373 * deadlock vs. xtime_lock.
1375 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1376 hrtimer_switch_to_hres();
1380 * Called from hardirq context every jiffy
1382 void hrtimer_run_queues(void)
1384 struct rb_node *node;
1385 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1386 struct hrtimer_clock_base *base;
1387 int index, gettime = 1;
1389 if (hrtimer_hres_active())
1390 return;
1392 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1393 base = &cpu_base->clock_base[index];
1395 if (!base->first)
1396 continue;
1398 if (gettime) {
1399 hrtimer_get_softirq_time(cpu_base);
1400 gettime = 0;
1403 spin_lock(&cpu_base->lock);
1405 while ((node = base->first)) {
1406 struct hrtimer *timer;
1408 timer = rb_entry(node, struct hrtimer, node);
1409 if (base->softirq_time.tv64 <=
1410 hrtimer_get_expires_tv64(timer))
1411 break;
1413 __run_hrtimer(timer);
1415 spin_unlock(&cpu_base->lock);
1420 * Sleep related functions:
1422 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1424 struct hrtimer_sleeper *t =
1425 container_of(timer, struct hrtimer_sleeper, timer);
1426 struct task_struct *task = t->task;
1428 t->task = NULL;
1429 if (task)
1430 wake_up_process(task);
1432 return HRTIMER_NORESTART;
1435 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1437 sl->timer.function = hrtimer_wakeup;
1438 sl->task = task;
1441 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1443 hrtimer_init_sleeper(t, current);
1445 do {
1446 set_current_state(TASK_INTERRUPTIBLE);
1447 hrtimer_start_expires(&t->timer, mode);
1448 if (!hrtimer_active(&t->timer))
1449 t->task = NULL;
1451 if (likely(t->task))
1452 schedule();
1454 hrtimer_cancel(&t->timer);
1455 mode = HRTIMER_MODE_ABS;
1457 } while (t->task && !signal_pending(current));
1459 __set_current_state(TASK_RUNNING);
1461 return t->task == NULL;
1464 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1466 struct timespec rmt;
1467 ktime_t rem;
1469 rem = hrtimer_expires_remaining(timer);
1470 if (rem.tv64 <= 0)
1471 return 0;
1472 rmt = ktime_to_timespec(rem);
1474 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1475 return -EFAULT;
1477 return 1;
1480 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1482 struct hrtimer_sleeper t;
1483 struct timespec __user *rmtp;
1484 int ret = 0;
1486 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1487 HRTIMER_MODE_ABS);
1488 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1490 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1491 goto out;
1493 rmtp = restart->nanosleep.rmtp;
1494 if (rmtp) {
1495 ret = update_rmtp(&t.timer, rmtp);
1496 if (ret <= 0)
1497 goto out;
1500 /* The other values in restart are already filled in */
1501 ret = -ERESTART_RESTARTBLOCK;
1502 out:
1503 destroy_hrtimer_on_stack(&t.timer);
1504 return ret;
1507 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1508 const enum hrtimer_mode mode, const clockid_t clockid)
1510 struct restart_block *restart;
1511 struct hrtimer_sleeper t;
1512 int ret = 0;
1513 unsigned long slack;
1515 slack = current->timer_slack_ns;
1516 if (rt_task(current))
1517 slack = 0;
1519 hrtimer_init_on_stack(&t.timer, clockid, mode);
1520 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1521 if (do_nanosleep(&t, mode))
1522 goto out;
1524 /* Absolute timers do not update the rmtp value and restart: */
1525 if (mode == HRTIMER_MODE_ABS) {
1526 ret = -ERESTARTNOHAND;
1527 goto out;
1530 if (rmtp) {
1531 ret = update_rmtp(&t.timer, rmtp);
1532 if (ret <= 0)
1533 goto out;
1536 restart = &current_thread_info()->restart_block;
1537 restart->fn = hrtimer_nanosleep_restart;
1538 restart->nanosleep.index = t.timer.base->index;
1539 restart->nanosleep.rmtp = rmtp;
1540 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1542 ret = -ERESTART_RESTARTBLOCK;
1543 out:
1544 destroy_hrtimer_on_stack(&t.timer);
1545 return ret;
1548 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1549 struct timespec __user *, rmtp)
1551 struct timespec tu;
1553 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1554 return -EFAULT;
1556 if (!timespec_valid(&tu))
1557 return -EINVAL;
1559 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1563 * Functions related to boot-time initialization:
1565 static void __cpuinit init_hrtimers_cpu(int cpu)
1567 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1568 int i;
1570 spin_lock_init(&cpu_base->lock);
1572 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1573 cpu_base->clock_base[i].cpu_base = cpu_base;
1575 hrtimer_init_hres(cpu_base);
1578 #ifdef CONFIG_HOTPLUG_CPU
1580 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1581 struct hrtimer_clock_base *new_base)
1583 struct hrtimer *timer;
1584 struct rb_node *node;
1586 while ((node = rb_first(&old_base->active))) {
1587 timer = rb_entry(node, struct hrtimer, node);
1588 BUG_ON(hrtimer_callback_running(timer));
1589 debug_hrtimer_deactivate(timer);
1592 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1593 * timer could be seen as !active and just vanish away
1594 * under us on another CPU
1596 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1597 timer->base = new_base;
1599 * Enqueue the timers on the new cpu. This does not
1600 * reprogram the event device in case the timer
1601 * expires before the earliest on this CPU, but we run
1602 * hrtimer_interrupt after we migrated everything to
1603 * sort out already expired timers and reprogram the
1604 * event device.
1606 enqueue_hrtimer(timer, new_base);
1608 /* Clear the migration state bit */
1609 timer->state &= ~HRTIMER_STATE_MIGRATE;
1613 static void migrate_hrtimers(int scpu)
1615 struct hrtimer_cpu_base *old_base, *new_base;
1616 int i;
1618 BUG_ON(cpu_online(scpu));
1619 tick_cancel_sched_timer(scpu);
1621 local_irq_disable();
1622 old_base = &per_cpu(hrtimer_bases, scpu);
1623 new_base = &__get_cpu_var(hrtimer_bases);
1625 * The caller is globally serialized and nobody else
1626 * takes two locks at once, deadlock is not possible.
1628 spin_lock(&new_base->lock);
1629 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1631 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1632 migrate_hrtimer_list(&old_base->clock_base[i],
1633 &new_base->clock_base[i]);
1636 spin_unlock(&old_base->lock);
1637 spin_unlock(&new_base->lock);
1639 /* Check, if we got expired work to do */
1640 __hrtimer_peek_ahead_timers();
1641 local_irq_enable();
1644 #endif /* CONFIG_HOTPLUG_CPU */
1646 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1647 unsigned long action, void *hcpu)
1649 int scpu = (long)hcpu;
1651 switch (action) {
1653 case CPU_UP_PREPARE:
1654 case CPU_UP_PREPARE_FROZEN:
1655 init_hrtimers_cpu(scpu);
1656 break;
1658 #ifdef CONFIG_HOTPLUG_CPU
1659 case CPU_DYING:
1660 case CPU_DYING_FROZEN:
1661 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1662 break;
1663 case CPU_DEAD:
1664 case CPU_DEAD_FROZEN:
1666 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1667 migrate_hrtimers(scpu);
1668 break;
1670 #endif
1672 default:
1673 break;
1676 return NOTIFY_OK;
1679 static struct notifier_block __cpuinitdata hrtimers_nb = {
1680 .notifier_call = hrtimer_cpu_notify,
1683 void __init hrtimers_init(void)
1685 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1686 (void *)(long)smp_processor_id());
1687 register_cpu_notifier(&hrtimers_nb);
1688 #ifdef CONFIG_HIGH_RES_TIMERS
1689 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1690 #endif
1694 * schedule_hrtimeout_range - sleep until timeout
1695 * @expires: timeout value (ktime_t)
1696 * @delta: slack in expires timeout (ktime_t)
1697 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1699 * Make the current task sleep until the given expiry time has
1700 * elapsed. The routine will return immediately unless
1701 * the current task state has been set (see set_current_state()).
1703 * The @delta argument gives the kernel the freedom to schedule the
1704 * actual wakeup to a time that is both power and performance friendly.
1705 * The kernel give the normal best effort behavior for "@expires+@delta",
1706 * but may decide to fire the timer earlier, but no earlier than @expires.
1708 * You can set the task state as follows -
1710 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1711 * pass before the routine returns.
1713 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1714 * delivered to the current task.
1716 * The current task state is guaranteed to be TASK_RUNNING when this
1717 * routine returns.
1719 * Returns 0 when the timer has expired otherwise -EINTR
1721 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1722 const enum hrtimer_mode mode)
1724 struct hrtimer_sleeper t;
1727 * Optimize when a zero timeout value is given. It does not
1728 * matter whether this is an absolute or a relative time.
1730 if (expires && !expires->tv64) {
1731 __set_current_state(TASK_RUNNING);
1732 return 0;
1736 * A NULL parameter means "inifinte"
1738 if (!expires) {
1739 schedule();
1740 __set_current_state(TASK_RUNNING);
1741 return -EINTR;
1744 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1745 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1747 hrtimer_init_sleeper(&t, current);
1749 hrtimer_start_expires(&t.timer, mode);
1750 if (!hrtimer_active(&t.timer))
1751 t.task = NULL;
1753 if (likely(t.task))
1754 schedule();
1756 hrtimer_cancel(&t.timer);
1757 destroy_hrtimer_on_stack(&t.timer);
1759 __set_current_state(TASK_RUNNING);
1761 return !t.task ? 0 : -EINTR;
1763 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1766 * schedule_hrtimeout - sleep until timeout
1767 * @expires: timeout value (ktime_t)
1768 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1770 * Make the current task sleep until the given expiry time has
1771 * elapsed. The routine will return immediately unless
1772 * the current task state has been set (see set_current_state()).
1774 * You can set the task state as follows -
1776 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1777 * pass before the routine returns.
1779 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1780 * delivered to the current task.
1782 * The current task state is guaranteed to be TASK_RUNNING when this
1783 * routine returns.
1785 * Returns 0 when the timer has expired otherwise -EINTR
1787 int __sched schedule_hrtimeout(ktime_t *expires,
1788 const enum hrtimer_mode mode)
1790 return schedule_hrtimeout_range(expires, 0, mode);
1792 EXPORT_SYMBOL_GPL(schedule_hrtimeout);