2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_log_format.h"
38 #include "xfs_trans_resv.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
45 static kmem_zone_t
*xfs_buf_zone
;
47 static struct workqueue_struct
*xfslogd_workqueue
;
49 #ifdef XFS_BUF_LOCK_TRACKING
50 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
51 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
52 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
54 # define XB_SET_OWNER(bp) do { } while (0)
55 # define XB_CLEAR_OWNER(bp) do { } while (0)
56 # define XB_GET_OWNER(bp) do { } while (0)
59 #define xb_to_gfp(flags) \
60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
68 * Return true if the buffer is vmapped.
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
74 return bp
->b_addr
&& bp
->b_page_count
> 1;
81 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86 * b_lru_ref count so that the buffer is freed immediately when the buffer
87 * reference count falls to zero. If the buffer is already on the LRU, we need
88 * to remove the reference that LRU holds on the buffer.
90 * This prevents build-up of stale buffers on the LRU.
96 ASSERT(xfs_buf_islocked(bp
));
98 bp
->b_flags
|= XBF_STALE
;
101 * Clear the delwri status so that a delwri queue walker will not
102 * flush this buffer to disk now that it is stale. The delwri queue has
103 * a reference to the buffer, so this is safe to do.
105 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
107 spin_lock(&bp
->b_lock
);
108 atomic_set(&bp
->b_lru_ref
, 0);
109 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
) &&
110 (list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
)))
111 atomic_dec(&bp
->b_hold
);
113 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
114 spin_unlock(&bp
->b_lock
);
122 ASSERT(bp
->b_maps
== NULL
);
123 bp
->b_map_count
= map_count
;
125 if (map_count
== 1) {
126 bp
->b_maps
= &bp
->__b_map
;
130 bp
->b_maps
= kmem_zalloc(map_count
* sizeof(struct xfs_buf_map
),
138 * Frees b_pages if it was allocated.
144 if (bp
->b_maps
!= &bp
->__b_map
) {
145 kmem_free(bp
->b_maps
);
152 struct xfs_buftarg
*target
,
153 struct xfs_buf_map
*map
,
155 xfs_buf_flags_t flags
)
161 bp
= kmem_zone_zalloc(xfs_buf_zone
, KM_NOFS
);
166 * We don't want certain flags to appear in b_flags unless they are
167 * specifically set by later operations on the buffer.
169 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
171 atomic_set(&bp
->b_hold
, 1);
172 atomic_set(&bp
->b_lru_ref
, 1);
173 init_completion(&bp
->b_iowait
);
174 INIT_LIST_HEAD(&bp
->b_lru
);
175 INIT_LIST_HEAD(&bp
->b_list
);
176 RB_CLEAR_NODE(&bp
->b_rbnode
);
177 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
178 spin_lock_init(&bp
->b_lock
);
180 bp
->b_target
= target
;
184 * Set length and io_length to the same value initially.
185 * I/O routines should use io_length, which will be the same in
186 * most cases but may be reset (e.g. XFS recovery).
188 error
= xfs_buf_get_maps(bp
, nmaps
);
190 kmem_zone_free(xfs_buf_zone
, bp
);
194 bp
->b_bn
= map
[0].bm_bn
;
196 for (i
= 0; i
< nmaps
; i
++) {
197 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
198 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
199 bp
->b_length
+= map
[i
].bm_len
;
201 bp
->b_io_length
= bp
->b_length
;
203 atomic_set(&bp
->b_pin_count
, 0);
204 init_waitqueue_head(&bp
->b_waiters
);
206 XFS_STATS_INC(xb_create
);
207 trace_xfs_buf_init(bp
, _RET_IP_
);
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
220 xfs_buf_flags_t flags
)
222 /* Make sure that we have a page list */
223 if (bp
->b_pages
== NULL
) {
224 bp
->b_page_count
= page_count
;
225 if (page_count
<= XB_PAGES
) {
226 bp
->b_pages
= bp
->b_page_array
;
228 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
229 page_count
, KM_NOFS
);
230 if (bp
->b_pages
== NULL
)
233 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
239 * Frees b_pages if it was allocated.
245 if (bp
->b_pages
!= bp
->b_page_array
) {
246 kmem_free(bp
->b_pages
);
252 * Releases the specified buffer.
254 * The modification state of any associated pages is left unchanged.
255 * The buffer must not be on any hash - use xfs_buf_rele instead for
256 * hashed and refcounted buffers
262 trace_xfs_buf_free(bp
, _RET_IP_
);
264 ASSERT(list_empty(&bp
->b_lru
));
266 if (bp
->b_flags
& _XBF_PAGES
) {
269 if (xfs_buf_is_vmapped(bp
))
270 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
273 for (i
= 0; i
< bp
->b_page_count
; i
++) {
274 struct page
*page
= bp
->b_pages
[i
];
278 } else if (bp
->b_flags
& _XBF_KMEM
)
279 kmem_free(bp
->b_addr
);
280 _xfs_buf_free_pages(bp
);
281 xfs_buf_free_maps(bp
);
282 kmem_zone_free(xfs_buf_zone
, bp
);
286 * Allocates all the pages for buffer in question and builds it's page list.
289 xfs_buf_allocate_memory(
294 size_t nbytes
, offset
;
295 gfp_t gfp_mask
= xb_to_gfp(flags
);
296 unsigned short page_count
, i
;
297 xfs_off_t start
, end
;
301 * for buffers that are contained within a single page, just allocate
302 * the memory from the heap - there's no need for the complexity of
303 * page arrays to keep allocation down to order 0.
305 size
= BBTOB(bp
->b_length
);
306 if (size
< PAGE_SIZE
) {
307 bp
->b_addr
= kmem_alloc(size
, KM_NOFS
);
309 /* low memory - use alloc_page loop instead */
313 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
314 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
315 /* b_addr spans two pages - use alloc_page instead */
316 kmem_free(bp
->b_addr
);
320 bp
->b_offset
= offset_in_page(bp
->b_addr
);
321 bp
->b_pages
= bp
->b_page_array
;
322 bp
->b_pages
[0] = virt_to_page(bp
->b_addr
);
323 bp
->b_page_count
= 1;
324 bp
->b_flags
|= _XBF_KMEM
;
329 start
= BBTOB(bp
->b_maps
[0].bm_bn
) >> PAGE_SHIFT
;
330 end
= (BBTOB(bp
->b_maps
[0].bm_bn
+ bp
->b_length
) + PAGE_SIZE
- 1)
332 page_count
= end
- start
;
333 error
= _xfs_buf_get_pages(bp
, page_count
, flags
);
337 offset
= bp
->b_offset
;
338 bp
->b_flags
|= _XBF_PAGES
;
340 for (i
= 0; i
< bp
->b_page_count
; i
++) {
344 page
= alloc_page(gfp_mask
);
345 if (unlikely(page
== NULL
)) {
346 if (flags
& XBF_READ_AHEAD
) {
347 bp
->b_page_count
= i
;
353 * This could deadlock.
355 * But until all the XFS lowlevel code is revamped to
356 * handle buffer allocation failures we can't do much.
358 if (!(++retries
% 100))
360 "possible memory allocation deadlock in %s (mode:0x%x)",
363 XFS_STATS_INC(xb_page_retries
);
364 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
368 XFS_STATS_INC(xb_page_found
);
370 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
372 bp
->b_pages
[i
] = page
;
378 for (i
= 0; i
< bp
->b_page_count
; i
++)
379 __free_page(bp
->b_pages
[i
]);
384 * Map buffer into kernel address-space if necessary.
391 ASSERT(bp
->b_flags
& _XBF_PAGES
);
392 if (bp
->b_page_count
== 1) {
393 /* A single page buffer is always mappable */
394 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
395 } else if (flags
& XBF_UNMAPPED
) {
401 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
406 } while (retried
++ <= 1);
410 bp
->b_addr
+= bp
->b_offset
;
417 * Finding and Reading Buffers
421 * Look up, and creates if absent, a lockable buffer for
422 * a given range of an inode. The buffer is returned
423 * locked. No I/O is implied by this call.
427 struct xfs_buftarg
*btp
,
428 struct xfs_buf_map
*map
,
430 xfs_buf_flags_t flags
,
434 struct xfs_perag
*pag
;
435 struct rb_node
**rbp
;
436 struct rb_node
*parent
;
438 xfs_daddr_t blkno
= map
[0].bm_bn
;
443 for (i
= 0; i
< nmaps
; i
++)
444 numblks
+= map
[i
].bm_len
;
445 numbytes
= BBTOB(numblks
);
447 /* Check for IOs smaller than the sector size / not sector aligned */
448 ASSERT(!(numbytes
< (1 << btp
->bt_sshift
)));
449 ASSERT(!(BBTOB(blkno
) & (xfs_off_t
)btp
->bt_smask
));
452 * Corrupted block numbers can get through to here, unfortunately, so we
453 * have to check that the buffer falls within the filesystem bounds.
455 eofs
= XFS_FSB_TO_BB(btp
->bt_mount
, btp
->bt_mount
->m_sb
.sb_dblocks
);
458 * XXX (dgc): we should really be returning EFSCORRUPTED here,
459 * but none of the higher level infrastructure supports
460 * returning a specific error on buffer lookup failures.
462 xfs_alert(btp
->bt_mount
,
463 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
464 __func__
, blkno
, eofs
);
470 pag
= xfs_perag_get(btp
->bt_mount
,
471 xfs_daddr_to_agno(btp
->bt_mount
, blkno
));
474 spin_lock(&pag
->pag_buf_lock
);
475 rbp
= &pag
->pag_buf_tree
.rb_node
;
480 bp
= rb_entry(parent
, struct xfs_buf
, b_rbnode
);
482 if (blkno
< bp
->b_bn
)
483 rbp
= &(*rbp
)->rb_left
;
484 else if (blkno
> bp
->b_bn
)
485 rbp
= &(*rbp
)->rb_right
;
488 * found a block number match. If the range doesn't
489 * match, the only way this is allowed is if the buffer
490 * in the cache is stale and the transaction that made
491 * it stale has not yet committed. i.e. we are
492 * reallocating a busy extent. Skip this buffer and
493 * continue searching to the right for an exact match.
495 if (bp
->b_length
!= numblks
) {
496 ASSERT(bp
->b_flags
& XBF_STALE
);
497 rbp
= &(*rbp
)->rb_right
;
500 atomic_inc(&bp
->b_hold
);
507 rb_link_node(&new_bp
->b_rbnode
, parent
, rbp
);
508 rb_insert_color(&new_bp
->b_rbnode
, &pag
->pag_buf_tree
);
509 /* the buffer keeps the perag reference until it is freed */
511 spin_unlock(&pag
->pag_buf_lock
);
513 XFS_STATS_INC(xb_miss_locked
);
514 spin_unlock(&pag
->pag_buf_lock
);
520 spin_unlock(&pag
->pag_buf_lock
);
523 if (!xfs_buf_trylock(bp
)) {
524 if (flags
& XBF_TRYLOCK
) {
526 XFS_STATS_INC(xb_busy_locked
);
530 XFS_STATS_INC(xb_get_locked_waited
);
534 * if the buffer is stale, clear all the external state associated with
535 * it. We need to keep flags such as how we allocated the buffer memory
538 if (bp
->b_flags
& XBF_STALE
) {
539 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
540 ASSERT(bp
->b_iodone
== NULL
);
541 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
545 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
546 XFS_STATS_INC(xb_get_locked
);
551 * Assembles a buffer covering the specified range. The code is optimised for
552 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
553 * more hits than misses.
557 struct xfs_buftarg
*target
,
558 struct xfs_buf_map
*map
,
560 xfs_buf_flags_t flags
)
563 struct xfs_buf
*new_bp
;
566 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, NULL
);
570 new_bp
= _xfs_buf_alloc(target
, map
, nmaps
, flags
);
571 if (unlikely(!new_bp
))
574 error
= xfs_buf_allocate_memory(new_bp
, flags
);
576 xfs_buf_free(new_bp
);
580 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, new_bp
);
582 xfs_buf_free(new_bp
);
587 xfs_buf_free(new_bp
);
591 error
= _xfs_buf_map_pages(bp
, flags
);
592 if (unlikely(error
)) {
593 xfs_warn(target
->bt_mount
,
594 "%s: failed to map pagesn", __func__
);
600 XFS_STATS_INC(xb_get
);
601 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
608 xfs_buf_flags_t flags
)
610 ASSERT(!(flags
& XBF_WRITE
));
611 ASSERT(bp
->b_maps
[0].bm_bn
!= XFS_BUF_DADDR_NULL
);
613 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
);
614 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
616 xfs_buf_iorequest(bp
);
617 if (flags
& XBF_ASYNC
)
619 return xfs_buf_iowait(bp
);
624 struct xfs_buftarg
*target
,
625 struct xfs_buf_map
*map
,
627 xfs_buf_flags_t flags
,
628 const struct xfs_buf_ops
*ops
)
634 bp
= xfs_buf_get_map(target
, map
, nmaps
, flags
);
636 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
638 if (!XFS_BUF_ISDONE(bp
)) {
639 XFS_STATS_INC(xb_get_read
);
641 _xfs_buf_read(bp
, flags
);
642 } else if (flags
& XBF_ASYNC
) {
644 * Read ahead call which is already satisfied,
650 /* We do not want read in the flags */
651 bp
->b_flags
&= ~XBF_READ
;
659 * If we are not low on memory then do the readahead in a deadlock
663 xfs_buf_readahead_map(
664 struct xfs_buftarg
*target
,
665 struct xfs_buf_map
*map
,
667 const struct xfs_buf_ops
*ops
)
669 if (bdi_read_congested(target
->bt_bdi
))
672 xfs_buf_read_map(target
, map
, nmaps
,
673 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
, ops
);
677 * Read an uncached buffer from disk. Allocates and returns a locked
678 * buffer containing the disk contents or nothing.
681 xfs_buf_read_uncached(
682 struct xfs_buftarg
*target
,
686 const struct xfs_buf_ops
*ops
)
690 bp
= xfs_buf_get_uncached(target
, numblks
, flags
);
694 /* set up the buffer for a read IO */
695 ASSERT(bp
->b_map_count
== 1);
697 bp
->b_maps
[0].bm_bn
= daddr
;
698 bp
->b_flags
|= XBF_READ
;
701 xfsbdstrat(target
->bt_mount
, bp
);
707 * Return a buffer allocated as an empty buffer and associated to external
708 * memory via xfs_buf_associate_memory() back to it's empty state.
716 _xfs_buf_free_pages(bp
);
719 bp
->b_page_count
= 0;
721 bp
->b_length
= numblks
;
722 bp
->b_io_length
= numblks
;
724 ASSERT(bp
->b_map_count
== 1);
725 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
726 bp
->b_maps
[0].bm_bn
= XFS_BUF_DADDR_NULL
;
727 bp
->b_maps
[0].bm_len
= bp
->b_length
;
730 static inline struct page
*
734 if ((!is_vmalloc_addr(addr
))) {
735 return virt_to_page(addr
);
737 return vmalloc_to_page(addr
);
742 xfs_buf_associate_memory(
749 unsigned long pageaddr
;
750 unsigned long offset
;
754 pageaddr
= (unsigned long)mem
& PAGE_MASK
;
755 offset
= (unsigned long)mem
- pageaddr
;
756 buflen
= PAGE_ALIGN(len
+ offset
);
757 page_count
= buflen
>> PAGE_SHIFT
;
759 /* Free any previous set of page pointers */
761 _xfs_buf_free_pages(bp
);
766 rval
= _xfs_buf_get_pages(bp
, page_count
, 0);
770 bp
->b_offset
= offset
;
772 for (i
= 0; i
< bp
->b_page_count
; i
++) {
773 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
774 pageaddr
+= PAGE_SIZE
;
777 bp
->b_io_length
= BTOBB(len
);
778 bp
->b_length
= BTOBB(buflen
);
784 xfs_buf_get_uncached(
785 struct xfs_buftarg
*target
,
789 unsigned long page_count
;
792 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
794 bp
= _xfs_buf_alloc(target
, &map
, 1, 0);
795 if (unlikely(bp
== NULL
))
798 page_count
= PAGE_ALIGN(numblks
<< BBSHIFT
) >> PAGE_SHIFT
;
799 error
= _xfs_buf_get_pages(bp
, page_count
, 0);
803 for (i
= 0; i
< page_count
; i
++) {
804 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
808 bp
->b_flags
|= _XBF_PAGES
;
810 error
= _xfs_buf_map_pages(bp
, 0);
811 if (unlikely(error
)) {
812 xfs_warn(target
->bt_mount
,
813 "%s: failed to map pages", __func__
);
817 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
822 __free_page(bp
->b_pages
[i
]);
823 _xfs_buf_free_pages(bp
);
825 xfs_buf_free_maps(bp
);
826 kmem_zone_free(xfs_buf_zone
, bp
);
832 * Increment reference count on buffer, to hold the buffer concurrently
833 * with another thread which may release (free) the buffer asynchronously.
834 * Must hold the buffer already to call this function.
840 trace_xfs_buf_hold(bp
, _RET_IP_
);
841 atomic_inc(&bp
->b_hold
);
845 * Releases a hold on the specified buffer. If the
846 * the hold count is 1, calls xfs_buf_free.
852 struct xfs_perag
*pag
= bp
->b_pag
;
854 trace_xfs_buf_rele(bp
, _RET_IP_
);
857 ASSERT(list_empty(&bp
->b_lru
));
858 ASSERT(RB_EMPTY_NODE(&bp
->b_rbnode
));
859 if (atomic_dec_and_test(&bp
->b_hold
))
864 ASSERT(!RB_EMPTY_NODE(&bp
->b_rbnode
));
866 ASSERT(atomic_read(&bp
->b_hold
) > 0);
867 if (atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
)) {
868 spin_lock(&bp
->b_lock
);
869 if (!(bp
->b_flags
& XBF_STALE
) && atomic_read(&bp
->b_lru_ref
)) {
871 * If the buffer is added to the LRU take a new
872 * reference to the buffer for the LRU and clear the
873 * (now stale) dispose list state flag
875 if (list_lru_add(&bp
->b_target
->bt_lru
, &bp
->b_lru
)) {
876 bp
->b_state
&= ~XFS_BSTATE_DISPOSE
;
877 atomic_inc(&bp
->b_hold
);
879 spin_unlock(&bp
->b_lock
);
880 spin_unlock(&pag
->pag_buf_lock
);
883 * most of the time buffers will already be removed from
884 * the LRU, so optimise that case by checking for the
885 * XFS_BSTATE_DISPOSE flag indicating the last list the
886 * buffer was on was the disposal list
888 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
)) {
889 list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
);
891 ASSERT(list_empty(&bp
->b_lru
));
893 spin_unlock(&bp
->b_lock
);
895 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
896 rb_erase(&bp
->b_rbnode
, &pag
->pag_buf_tree
);
897 spin_unlock(&pag
->pag_buf_lock
);
906 * Lock a buffer object, if it is not already locked.
908 * If we come across a stale, pinned, locked buffer, we know that we are
909 * being asked to lock a buffer that has been reallocated. Because it is
910 * pinned, we know that the log has not been pushed to disk and hence it
911 * will still be locked. Rather than continuing to have trylock attempts
912 * fail until someone else pushes the log, push it ourselves before
913 * returning. This means that the xfsaild will not get stuck trying
914 * to push on stale inode buffers.
922 locked
= down_trylock(&bp
->b_sema
) == 0;
926 trace_xfs_buf_trylock(bp
, _RET_IP_
);
931 * Lock a buffer object.
933 * If we come across a stale, pinned, locked buffer, we know that we
934 * are being asked to lock a buffer that has been reallocated. Because
935 * it is pinned, we know that the log has not been pushed to disk and
936 * hence it will still be locked. Rather than sleeping until someone
937 * else pushes the log, push it ourselves before trying to get the lock.
943 trace_xfs_buf_lock(bp
, _RET_IP_
);
945 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
946 xfs_log_force(bp
->b_target
->bt_mount
, 0);
950 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
960 trace_xfs_buf_unlock(bp
, _RET_IP_
);
967 DECLARE_WAITQUEUE (wait
, current
);
969 if (atomic_read(&bp
->b_pin_count
) == 0)
972 add_wait_queue(&bp
->b_waiters
, &wait
);
974 set_current_state(TASK_UNINTERRUPTIBLE
);
975 if (atomic_read(&bp
->b_pin_count
) == 0)
979 remove_wait_queue(&bp
->b_waiters
, &wait
);
980 set_current_state(TASK_RUNNING
);
984 * Buffer Utility Routines
989 struct work_struct
*work
)
992 container_of(work
, xfs_buf_t
, b_iodone_work
);
993 bool read
= !!(bp
->b_flags
& XBF_READ
);
995 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
997 /* only validate buffers that were read without errors */
998 if (read
&& bp
->b_ops
&& !bp
->b_error
&& (bp
->b_flags
& XBF_DONE
))
999 bp
->b_ops
->verify_read(bp
);
1002 (*(bp
->b_iodone
))(bp
);
1003 else if (bp
->b_flags
& XBF_ASYNC
)
1006 ASSERT(read
&& bp
->b_ops
);
1007 complete(&bp
->b_iowait
);
1016 bool read
= !!(bp
->b_flags
& XBF_READ
);
1018 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1020 if (bp
->b_error
== 0)
1021 bp
->b_flags
|= XBF_DONE
;
1023 if (bp
->b_iodone
|| (read
&& bp
->b_ops
) || (bp
->b_flags
& XBF_ASYNC
)) {
1025 INIT_WORK(&bp
->b_iodone_work
, xfs_buf_iodone_work
);
1026 queue_work(xfslogd_workqueue
, &bp
->b_iodone_work
);
1028 xfs_buf_iodone_work(&bp
->b_iodone_work
);
1031 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1032 complete(&bp
->b_iowait
);
1041 ASSERT(error
>= 0 && error
<= 0xffff);
1042 bp
->b_error
= (unsigned short)error
;
1043 trace_xfs_buf_ioerror(bp
, error
, _RET_IP_
);
1047 xfs_buf_ioerror_alert(
1051 xfs_alert(bp
->b_target
->bt_mount
,
1052 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1053 (__uint64_t
)XFS_BUF_ADDR(bp
), func
, bp
->b_error
, bp
->b_length
);
1057 * Called when we want to stop a buffer from getting written or read.
1058 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1059 * so that the proper iodone callbacks get called.
1065 #ifdef XFSERRORDEBUG
1066 ASSERT(XFS_BUF_ISREAD(bp
) || bp
->b_iodone
);
1070 * No need to wait until the buffer is unpinned, we aren't flushing it.
1072 xfs_buf_ioerror(bp
, EIO
);
1075 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1081 xfs_buf_ioend(bp
, 0);
1087 * Same as xfs_bioerror, except that we are releasing the buffer
1088 * here ourselves, and avoiding the xfs_buf_ioend call.
1089 * This is meant for userdata errors; metadata bufs come with
1090 * iodone functions attached, so that we can track down errors.
1096 int64_t fl
= bp
->b_flags
;
1098 * No need to wait until the buffer is unpinned.
1099 * We aren't flushing it.
1101 * chunkhold expects B_DONE to be set, whether
1102 * we actually finish the I/O or not. We don't want to
1103 * change that interface.
1108 bp
->b_iodone
= NULL
;
1109 if (!(fl
& XBF_ASYNC
)) {
1111 * Mark b_error and B_ERROR _both_.
1112 * Lot's of chunkcache code assumes that.
1113 * There's no reason to mark error for
1116 xfs_buf_ioerror(bp
, EIO
);
1117 complete(&bp
->b_iowait
);
1129 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1130 trace_xfs_bdstrat_shut(bp
, _RET_IP_
);
1132 * Metadata write that didn't get logged but
1133 * written delayed anyway. These aren't associated
1134 * with a transaction, and can be ignored.
1136 if (!bp
->b_iodone
&& !XFS_BUF_ISREAD(bp
))
1137 return xfs_bioerror_relse(bp
);
1139 return xfs_bioerror(bp
);
1142 xfs_buf_iorequest(bp
);
1152 ASSERT(xfs_buf_islocked(bp
));
1154 bp
->b_flags
|= XBF_WRITE
;
1155 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
);
1159 error
= xfs_buf_iowait(bp
);
1161 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1162 SHUTDOWN_META_IO_ERROR
);
1168 * Wrapper around bdstrat so that we can stop data from going to disk in case
1169 * we are shutting down the filesystem. Typically user data goes thru this
1170 * path; one of the exceptions is the superblock.
1174 struct xfs_mount
*mp
,
1177 if (XFS_FORCED_SHUTDOWN(mp
)) {
1178 trace_xfs_bdstrat_shut(bp
, _RET_IP_
);
1179 xfs_bioerror_relse(bp
);
1183 xfs_buf_iorequest(bp
);
1191 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1192 xfs_buf_ioend(bp
, schedule
);
1200 xfs_buf_t
*bp
= (xfs_buf_t
*)bio
->bi_private
;
1203 * don't overwrite existing errors - otherwise we can lose errors on
1204 * buffers that require multiple bios to complete.
1207 xfs_buf_ioerror(bp
, -error
);
1209 if (!bp
->b_error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1210 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1212 _xfs_buf_ioend(bp
, 1);
1217 xfs_buf_ioapply_map(
1225 int total_nr_pages
= bp
->b_page_count
;
1228 sector_t sector
= bp
->b_maps
[map
].bm_bn
;
1232 total_nr_pages
= bp
->b_page_count
;
1234 /* skip the pages in the buffer before the start offset */
1236 offset
= *buf_offset
;
1237 while (offset
>= PAGE_SIZE
) {
1239 offset
-= PAGE_SIZE
;
1243 * Limit the IO size to the length of the current vector, and update the
1244 * remaining IO count for the next time around.
1246 size
= min_t(int, BBTOB(bp
->b_maps
[map
].bm_len
), *count
);
1248 *buf_offset
+= size
;
1251 atomic_inc(&bp
->b_io_remaining
);
1252 nr_pages
= BIO_MAX_SECTORS
>> (PAGE_SHIFT
- BBSHIFT
);
1253 if (nr_pages
> total_nr_pages
)
1254 nr_pages
= total_nr_pages
;
1256 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1257 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1258 bio
->bi_sector
= sector
;
1259 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1260 bio
->bi_private
= bp
;
1263 for (; size
&& nr_pages
; nr_pages
--, page_index
++) {
1264 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1269 rbytes
= bio_add_page(bio
, bp
->b_pages
[page_index
], nbytes
,
1271 if (rbytes
< nbytes
)
1275 sector
+= BTOBB(nbytes
);
1280 if (likely(bio
->bi_size
)) {
1281 if (xfs_buf_is_vmapped(bp
)) {
1282 flush_kernel_vmap_range(bp
->b_addr
,
1283 xfs_buf_vmap_len(bp
));
1285 submit_bio(rw
, bio
);
1290 * This is guaranteed not to be the last io reference count
1291 * because the caller (xfs_buf_iorequest) holds a count itself.
1293 atomic_dec(&bp
->b_io_remaining
);
1294 xfs_buf_ioerror(bp
, EIO
);
1304 struct blk_plug plug
;
1311 * Make sure we capture only current IO errors rather than stale errors
1312 * left over from previous use of the buffer (e.g. failed readahead).
1316 if (bp
->b_flags
& XBF_WRITE
) {
1317 if (bp
->b_flags
& XBF_SYNCIO
)
1321 if (bp
->b_flags
& XBF_FUA
)
1323 if (bp
->b_flags
& XBF_FLUSH
)
1327 * Run the write verifier callback function if it exists. If
1328 * this function fails it will mark the buffer with an error and
1329 * the IO should not be dispatched.
1332 bp
->b_ops
->verify_write(bp
);
1334 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1335 SHUTDOWN_CORRUPT_INCORE
);
1339 } else if (bp
->b_flags
& XBF_READ_AHEAD
) {
1345 /* we only use the buffer cache for meta-data */
1349 * Walk all the vectors issuing IO on them. Set up the initial offset
1350 * into the buffer and the desired IO size before we start -
1351 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1354 offset
= bp
->b_offset
;
1355 size
= BBTOB(bp
->b_io_length
);
1356 blk_start_plug(&plug
);
1357 for (i
= 0; i
< bp
->b_map_count
; i
++) {
1358 xfs_buf_ioapply_map(bp
, i
, &offset
, &size
, rw
);
1362 break; /* all done */
1364 blk_finish_plug(&plug
);
1371 trace_xfs_buf_iorequest(bp
, _RET_IP_
);
1373 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1375 if (bp
->b_flags
& XBF_WRITE
)
1376 xfs_buf_wait_unpin(bp
);
1379 /* Set the count to 1 initially, this will stop an I/O
1380 * completion callout which happens before we have started
1381 * all the I/O from calling xfs_buf_ioend too early.
1383 atomic_set(&bp
->b_io_remaining
, 1);
1384 _xfs_buf_ioapply(bp
);
1385 _xfs_buf_ioend(bp
, 1);
1391 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1392 * no I/O is pending or there is already a pending error on the buffer. It
1393 * returns the I/O error code, if any, or 0 if there was no error.
1399 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1402 wait_for_completion(&bp
->b_iowait
);
1404 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1416 return bp
->b_addr
+ offset
;
1418 offset
+= bp
->b_offset
;
1419 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1420 return (xfs_caddr_t
)page_address(page
) + (offset
& (PAGE_SIZE
-1));
1424 * Move data into or out of a buffer.
1428 xfs_buf_t
*bp
, /* buffer to process */
1429 size_t boff
, /* starting buffer offset */
1430 size_t bsize
, /* length to copy */
1431 void *data
, /* data address */
1432 xfs_buf_rw_t mode
) /* read/write/zero flag */
1436 bend
= boff
+ bsize
;
1437 while (boff
< bend
) {
1439 int page_index
, page_offset
, csize
;
1441 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1442 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1443 page
= bp
->b_pages
[page_index
];
1444 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1445 BBTOB(bp
->b_io_length
) - boff
);
1447 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1451 memset(page_address(page
) + page_offset
, 0, csize
);
1454 memcpy(data
, page_address(page
) + page_offset
, csize
);
1457 memcpy(page_address(page
) + page_offset
, data
, csize
);
1466 * Handling of buffer targets (buftargs).
1470 * Wait for any bufs with callbacks that have been submitted but have not yet
1471 * returned. These buffers will have an elevated hold count, so wait on those
1472 * while freeing all the buffers only held by the LRU.
1474 static enum lru_status
1475 xfs_buftarg_wait_rele(
1476 struct list_head
*item
,
1477 spinlock_t
*lru_lock
,
1481 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1482 struct list_head
*dispose
= arg
;
1484 if (atomic_read(&bp
->b_hold
) > 1) {
1485 /* need to wait, so skip it this pass */
1486 trace_xfs_buf_wait_buftarg(bp
, _RET_IP_
);
1489 if (!spin_trylock(&bp
->b_lock
))
1493 * clear the LRU reference count so the buffer doesn't get
1494 * ignored in xfs_buf_rele().
1496 atomic_set(&bp
->b_lru_ref
, 0);
1497 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1498 list_move(item
, dispose
);
1499 spin_unlock(&bp
->b_lock
);
1505 struct xfs_buftarg
*btp
)
1510 /* loop until there is nothing left on the lru list. */
1511 while (list_lru_count(&btp
->bt_lru
)) {
1512 list_lru_walk(&btp
->bt_lru
, xfs_buftarg_wait_rele
,
1513 &dispose
, LONG_MAX
);
1515 while (!list_empty(&dispose
)) {
1517 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1518 list_del_init(&bp
->b_lru
);
1526 static enum lru_status
1527 xfs_buftarg_isolate(
1528 struct list_head
*item
,
1529 spinlock_t
*lru_lock
,
1532 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1533 struct list_head
*dispose
= arg
;
1536 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1537 * If we fail to get the lock, just skip it.
1539 if (!spin_trylock(&bp
->b_lock
))
1542 * Decrement the b_lru_ref count unless the value is already
1543 * zero. If the value is already zero, we need to reclaim the
1544 * buffer, otherwise it gets another trip through the LRU.
1546 if (!atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1547 spin_unlock(&bp
->b_lock
);
1551 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1552 list_move(item
, dispose
);
1553 spin_unlock(&bp
->b_lock
);
1557 static unsigned long
1558 xfs_buftarg_shrink_scan(
1559 struct shrinker
*shrink
,
1560 struct shrink_control
*sc
)
1562 struct xfs_buftarg
*btp
= container_of(shrink
,
1563 struct xfs_buftarg
, bt_shrinker
);
1565 unsigned long freed
;
1566 unsigned long nr_to_scan
= sc
->nr_to_scan
;
1568 freed
= list_lru_walk_node(&btp
->bt_lru
, sc
->nid
, xfs_buftarg_isolate
,
1569 &dispose
, &nr_to_scan
);
1571 while (!list_empty(&dispose
)) {
1573 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1574 list_del_init(&bp
->b_lru
);
1581 static unsigned long
1582 xfs_buftarg_shrink_count(
1583 struct shrinker
*shrink
,
1584 struct shrink_control
*sc
)
1586 struct xfs_buftarg
*btp
= container_of(shrink
,
1587 struct xfs_buftarg
, bt_shrinker
);
1588 return list_lru_count_node(&btp
->bt_lru
, sc
->nid
);
1593 struct xfs_mount
*mp
,
1594 struct xfs_buftarg
*btp
)
1596 unregister_shrinker(&btp
->bt_shrinker
);
1597 list_lru_destroy(&btp
->bt_lru
);
1599 if (mp
->m_flags
& XFS_MOUNT_BARRIER
)
1600 xfs_blkdev_issue_flush(btp
);
1606 xfs_setsize_buftarg_flags(
1608 unsigned int blocksize
,
1609 unsigned int sectorsize
,
1612 btp
->bt_bsize
= blocksize
;
1613 btp
->bt_sshift
= ffs(sectorsize
) - 1;
1614 btp
->bt_smask
= sectorsize
- 1;
1616 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1617 char name
[BDEVNAME_SIZE
];
1619 bdevname(btp
->bt_bdev
, name
);
1621 xfs_warn(btp
->bt_mount
,
1622 "Cannot set_blocksize to %u on device %s",
1631 * When allocating the initial buffer target we have not yet
1632 * read in the superblock, so don't know what sized sectors
1633 * are being used at this early stage. Play safe.
1636 xfs_setsize_buftarg_early(
1638 struct block_device
*bdev
)
1640 return xfs_setsize_buftarg_flags(btp
,
1641 PAGE_SIZE
, bdev_logical_block_size(bdev
), 0);
1645 xfs_setsize_buftarg(
1647 unsigned int blocksize
,
1648 unsigned int sectorsize
)
1650 return xfs_setsize_buftarg_flags(btp
, blocksize
, sectorsize
, 1);
1655 struct xfs_mount
*mp
,
1656 struct block_device
*bdev
,
1662 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
| KM_NOFS
);
1665 btp
->bt_dev
= bdev
->bd_dev
;
1666 btp
->bt_bdev
= bdev
;
1667 btp
->bt_bdi
= blk_get_backing_dev_info(bdev
);
1671 if (xfs_setsize_buftarg_early(btp
, bdev
))
1674 if (list_lru_init(&btp
->bt_lru
))
1677 btp
->bt_shrinker
.count_objects
= xfs_buftarg_shrink_count
;
1678 btp
->bt_shrinker
.scan_objects
= xfs_buftarg_shrink_scan
;
1679 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1680 btp
->bt_shrinker
.flags
= SHRINKER_NUMA_AWARE
;
1681 register_shrinker(&btp
->bt_shrinker
);
1690 * Add a buffer to the delayed write list.
1692 * This queues a buffer for writeout if it hasn't already been. Note that
1693 * neither this routine nor the buffer list submission functions perform
1694 * any internal synchronization. It is expected that the lists are thread-local
1697 * Returns true if we queued up the buffer, or false if it already had
1698 * been on the buffer list.
1701 xfs_buf_delwri_queue(
1703 struct list_head
*list
)
1705 ASSERT(xfs_buf_islocked(bp
));
1706 ASSERT(!(bp
->b_flags
& XBF_READ
));
1709 * If the buffer is already marked delwri it already is queued up
1710 * by someone else for imediate writeout. Just ignore it in that
1713 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
1714 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
1718 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1721 * If a buffer gets written out synchronously or marked stale while it
1722 * is on a delwri list we lazily remove it. To do this, the other party
1723 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1724 * It remains referenced and on the list. In a rare corner case it
1725 * might get readded to a delwri list after the synchronous writeout, in
1726 * which case we need just need to re-add the flag here.
1728 bp
->b_flags
|= _XBF_DELWRI_Q
;
1729 if (list_empty(&bp
->b_list
)) {
1730 atomic_inc(&bp
->b_hold
);
1731 list_add_tail(&bp
->b_list
, list
);
1738 * Compare function is more complex than it needs to be because
1739 * the return value is only 32 bits and we are doing comparisons
1745 struct list_head
*a
,
1746 struct list_head
*b
)
1748 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1749 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1752 diff
= ap
->b_maps
[0].bm_bn
- bp
->b_maps
[0].bm_bn
;
1761 __xfs_buf_delwri_submit(
1762 struct list_head
*buffer_list
,
1763 struct list_head
*io_list
,
1766 struct blk_plug plug
;
1767 struct xfs_buf
*bp
, *n
;
1770 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
1772 if (xfs_buf_ispinned(bp
)) {
1776 if (!xfs_buf_trylock(bp
))
1783 * Someone else might have written the buffer synchronously or
1784 * marked it stale in the meantime. In that case only the
1785 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1786 * reference and remove it from the list here.
1788 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
1789 list_del_init(&bp
->b_list
);
1794 list_move_tail(&bp
->b_list
, io_list
);
1795 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
1798 list_sort(NULL
, io_list
, xfs_buf_cmp
);
1800 blk_start_plug(&plug
);
1801 list_for_each_entry_safe(bp
, n
, io_list
, b_list
) {
1802 bp
->b_flags
&= ~(_XBF_DELWRI_Q
| XBF_ASYNC
);
1803 bp
->b_flags
|= XBF_WRITE
;
1806 bp
->b_flags
|= XBF_ASYNC
;
1807 list_del_init(&bp
->b_list
);
1811 blk_finish_plug(&plug
);
1817 * Write out a buffer list asynchronously.
1819 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1820 * out and not wait for I/O completion on any of the buffers. This interface
1821 * is only safely useable for callers that can track I/O completion by higher
1822 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1826 xfs_buf_delwri_submit_nowait(
1827 struct list_head
*buffer_list
)
1829 LIST_HEAD (io_list
);
1830 return __xfs_buf_delwri_submit(buffer_list
, &io_list
, false);
1834 * Write out a buffer list synchronously.
1836 * This will take the @buffer_list, write all buffers out and wait for I/O
1837 * completion on all of the buffers. @buffer_list is consumed by the function,
1838 * so callers must have some other way of tracking buffers if they require such
1842 xfs_buf_delwri_submit(
1843 struct list_head
*buffer_list
)
1845 LIST_HEAD (io_list
);
1846 int error
= 0, error2
;
1849 __xfs_buf_delwri_submit(buffer_list
, &io_list
, true);
1851 /* Wait for IO to complete. */
1852 while (!list_empty(&io_list
)) {
1853 bp
= list_first_entry(&io_list
, struct xfs_buf
, b_list
);
1855 list_del_init(&bp
->b_list
);
1856 error2
= xfs_buf_iowait(bp
);
1868 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
1869 KM_ZONE_HWALIGN
, NULL
);
1873 xfslogd_workqueue
= alloc_workqueue("xfslogd",
1874 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 1);
1875 if (!xfslogd_workqueue
)
1876 goto out_free_buf_zone
;
1881 kmem_zone_destroy(xfs_buf_zone
);
1887 xfs_buf_terminate(void)
1889 destroy_workqueue(xfslogd_workqueue
);
1890 kmem_zone_destroy(xfs_buf_zone
);