jfs: fix a couple races
[linux-2.6.git] / kernel / printk.c
blob19c0d7bcf24a77e0f6de246a30fab029cf3a30cc
1 /*
2 * linux/kernel/printk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
46 #include <asm/uaccess.h>
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/printk.h>
52 * Architectures can override it:
54 void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
58 /* printk's without a loglevel use this.. */
59 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
61 /* We show everything that is MORE important than this.. */
62 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
63 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
65 DECLARE_WAIT_QUEUE_HEAD(log_wait);
67 int console_printk[4] = {
68 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
69 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
70 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
71 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
90 #ifdef CONFIG_LOCKDEP
91 static struct lockdep_map console_lock_dep_map = {
92 .name = "console_lock"
94 #endif
97 * This is used for debugging the mess that is the VT code by
98 * keeping track if we have the console semaphore held. It's
99 * definitely not the perfect debug tool (we don't know if _WE_
100 * hold it are racing, but it helps tracking those weird code
101 * path in the console code where we end up in places I want
102 * locked without the console sempahore held
104 static int console_locked, console_suspended;
107 * If exclusive_console is non-NULL then only this console is to be printed to.
109 static struct console *exclusive_console;
112 * Array of consoles built from command line options (console=)
114 struct console_cmdline
116 char name[8]; /* Name of the driver */
117 int index; /* Minor dev. to use */
118 char *options; /* Options for the driver */
119 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
120 char *brl_options; /* Options for braille driver */
121 #endif
124 #define MAX_CMDLINECONSOLES 8
126 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
127 static int selected_console = -1;
128 static int preferred_console = -1;
129 int console_set_on_cmdline;
130 EXPORT_SYMBOL(console_set_on_cmdline);
132 /* Flag: console code may call schedule() */
133 static int console_may_schedule;
136 * The printk log buffer consists of a chain of concatenated variable
137 * length records. Every record starts with a record header, containing
138 * the overall length of the record.
140 * The heads to the first and last entry in the buffer, as well as the
141 * sequence numbers of these both entries are maintained when messages
142 * are stored..
144 * If the heads indicate available messages, the length in the header
145 * tells the start next message. A length == 0 for the next message
146 * indicates a wrap-around to the beginning of the buffer.
148 * Every record carries the monotonic timestamp in microseconds, as well as
149 * the standard userspace syslog level and syslog facility. The usual
150 * kernel messages use LOG_KERN; userspace-injected messages always carry
151 * a matching syslog facility, by default LOG_USER. The origin of every
152 * message can be reliably determined that way.
154 * The human readable log message directly follows the message header. The
155 * length of the message text is stored in the header, the stored message
156 * is not terminated.
158 * Optionally, a message can carry a dictionary of properties (key/value pairs),
159 * to provide userspace with a machine-readable message context.
161 * Examples for well-defined, commonly used property names are:
162 * DEVICE=b12:8 device identifier
163 * b12:8 block dev_t
164 * c127:3 char dev_t
165 * n8 netdev ifindex
166 * +sound:card0 subsystem:devname
167 * SUBSYSTEM=pci driver-core subsystem name
169 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
170 * follows directly after a '=' character. Every property is terminated by
171 * a '\0' character. The last property is not terminated.
173 * Example of a message structure:
174 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
175 * 0008 34 00 record is 52 bytes long
176 * 000a 0b 00 text is 11 bytes long
177 * 000c 1f 00 dictionary is 23 bytes long
178 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
179 * 0010 69 74 27 73 20 61 20 6c "it's a l"
180 * 69 6e 65 "ine"
181 * 001b 44 45 56 49 43 "DEVIC"
182 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
183 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
184 * 67 "g"
185 * 0032 00 00 00 padding to next message header
187 * The 'struct log' buffer header must never be directly exported to
188 * userspace, it is a kernel-private implementation detail that might
189 * need to be changed in the future, when the requirements change.
191 * /dev/kmsg exports the structured data in the following line format:
192 * "level,sequnum,timestamp;<message text>\n"
194 * The optional key/value pairs are attached as continuation lines starting
195 * with a space character and terminated by a newline. All possible
196 * non-prinatable characters are escaped in the "\xff" notation.
198 * Users of the export format should ignore possible additional values
199 * separated by ',', and find the message after the ';' character.
202 enum log_flags {
203 LOG_NOCONS = 1, /* already flushed, do not print to console */
204 LOG_NEWLINE = 2, /* text ended with a newline */
205 LOG_PREFIX = 4, /* text started with a prefix */
206 LOG_CONT = 8, /* text is a fragment of a continuation line */
209 struct log {
210 u64 ts_nsec; /* timestamp in nanoseconds */
211 u16 len; /* length of entire record */
212 u16 text_len; /* length of text buffer */
213 u16 dict_len; /* length of dictionary buffer */
214 u8 facility; /* syslog facility */
215 u8 flags:5; /* internal record flags */
216 u8 level:3; /* syslog level */
220 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
221 * used in interesting ways to provide interlocking in console_unlock();
223 static DEFINE_RAW_SPINLOCK(logbuf_lock);
225 #ifdef CONFIG_PRINTK
226 /* the next printk record to read by syslog(READ) or /proc/kmsg */
227 static u64 syslog_seq;
228 static u32 syslog_idx;
229 static enum log_flags syslog_prev;
230 static size_t syslog_partial;
232 /* index and sequence number of the first record stored in the buffer */
233 static u64 log_first_seq;
234 static u32 log_first_idx;
236 /* index and sequence number of the next record to store in the buffer */
237 static u64 log_next_seq;
238 static u32 log_next_idx;
240 /* the next printk record to write to the console */
241 static u64 console_seq;
242 static u32 console_idx;
243 static enum log_flags console_prev;
245 /* the next printk record to read after the last 'clear' command */
246 static u64 clear_seq;
247 static u32 clear_idx;
249 #define PREFIX_MAX 32
250 #define LOG_LINE_MAX 1024 - PREFIX_MAX
252 /* record buffer */
253 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
254 #define LOG_ALIGN 4
255 #else
256 #define LOG_ALIGN __alignof__(struct log)
257 #endif
258 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
259 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
260 static char *log_buf = __log_buf;
261 static u32 log_buf_len = __LOG_BUF_LEN;
263 /* cpu currently holding logbuf_lock */
264 static volatile unsigned int logbuf_cpu = UINT_MAX;
266 /* human readable text of the record */
267 static char *log_text(const struct log *msg)
269 return (char *)msg + sizeof(struct log);
272 /* optional key/value pair dictionary attached to the record */
273 static char *log_dict(const struct log *msg)
275 return (char *)msg + sizeof(struct log) + msg->text_len;
278 /* get record by index; idx must point to valid msg */
279 static struct log *log_from_idx(u32 idx)
281 struct log *msg = (struct log *)(log_buf + idx);
284 * A length == 0 record is the end of buffer marker. Wrap around and
285 * read the message at the start of the buffer.
287 if (!msg->len)
288 return (struct log *)log_buf;
289 return msg;
292 /* get next record; idx must point to valid msg */
293 static u32 log_next(u32 idx)
295 struct log *msg = (struct log *)(log_buf + idx);
297 /* length == 0 indicates the end of the buffer; wrap */
299 * A length == 0 record is the end of buffer marker. Wrap around and
300 * read the message at the start of the buffer as *this* one, and
301 * return the one after that.
303 if (!msg->len) {
304 msg = (struct log *)log_buf;
305 return msg->len;
307 return idx + msg->len;
310 /* insert record into the buffer, discard old ones, update heads */
311 static void log_store(int facility, int level,
312 enum log_flags flags, u64 ts_nsec,
313 const char *dict, u16 dict_len,
314 const char *text, u16 text_len)
316 struct log *msg;
317 u32 size, pad_len;
319 /* number of '\0' padding bytes to next message */
320 size = sizeof(struct log) + text_len + dict_len;
321 pad_len = (-size) & (LOG_ALIGN - 1);
322 size += pad_len;
324 while (log_first_seq < log_next_seq) {
325 u32 free;
327 if (log_next_idx > log_first_idx)
328 free = max(log_buf_len - log_next_idx, log_first_idx);
329 else
330 free = log_first_idx - log_next_idx;
332 if (free > size + sizeof(struct log))
333 break;
335 /* drop old messages until we have enough contiuous space */
336 log_first_idx = log_next(log_first_idx);
337 log_first_seq++;
340 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
342 * This message + an additional empty header does not fit
343 * at the end of the buffer. Add an empty header with len == 0
344 * to signify a wrap around.
346 memset(log_buf + log_next_idx, 0, sizeof(struct log));
347 log_next_idx = 0;
350 /* fill message */
351 msg = (struct log *)(log_buf + log_next_idx);
352 memcpy(log_text(msg), text, text_len);
353 msg->text_len = text_len;
354 memcpy(log_dict(msg), dict, dict_len);
355 msg->dict_len = dict_len;
356 msg->facility = facility;
357 msg->level = level & 7;
358 msg->flags = flags & 0x1f;
359 if (ts_nsec > 0)
360 msg->ts_nsec = ts_nsec;
361 else
362 msg->ts_nsec = local_clock();
363 memset(log_dict(msg) + dict_len, 0, pad_len);
364 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
366 /* insert message */
367 log_next_idx += msg->len;
368 log_next_seq++;
371 /* /dev/kmsg - userspace message inject/listen interface */
372 struct devkmsg_user {
373 u64 seq;
374 u32 idx;
375 enum log_flags prev;
376 struct mutex lock;
377 char buf[8192];
380 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
381 unsigned long count, loff_t pos)
383 char *buf, *line;
384 int i;
385 int level = default_message_loglevel;
386 int facility = 1; /* LOG_USER */
387 size_t len = iov_length(iv, count);
388 ssize_t ret = len;
390 if (len > LOG_LINE_MAX)
391 return -EINVAL;
392 buf = kmalloc(len+1, GFP_KERNEL);
393 if (buf == NULL)
394 return -ENOMEM;
396 line = buf;
397 for (i = 0; i < count; i++) {
398 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
399 ret = -EFAULT;
400 goto out;
402 line += iv[i].iov_len;
406 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
407 * the decimal value represents 32bit, the lower 3 bit are the log
408 * level, the rest are the log facility.
410 * If no prefix or no userspace facility is specified, we
411 * enforce LOG_USER, to be able to reliably distinguish
412 * kernel-generated messages from userspace-injected ones.
414 line = buf;
415 if (line[0] == '<') {
416 char *endp = NULL;
418 i = simple_strtoul(line+1, &endp, 10);
419 if (endp && endp[0] == '>') {
420 level = i & 7;
421 if (i >> 3)
422 facility = i >> 3;
423 endp++;
424 len -= endp - line;
425 line = endp;
428 line[len] = '\0';
430 printk_emit(facility, level, NULL, 0, "%s", line);
431 out:
432 kfree(buf);
433 return ret;
436 static ssize_t devkmsg_read(struct file *file, char __user *buf,
437 size_t count, loff_t *ppos)
439 struct devkmsg_user *user = file->private_data;
440 struct log *msg;
441 u64 ts_usec;
442 size_t i;
443 char cont = '-';
444 size_t len;
445 ssize_t ret;
447 if (!user)
448 return -EBADF;
450 ret = mutex_lock_interruptible(&user->lock);
451 if (ret)
452 return ret;
453 raw_spin_lock_irq(&logbuf_lock);
454 while (user->seq == log_next_seq) {
455 if (file->f_flags & O_NONBLOCK) {
456 ret = -EAGAIN;
457 raw_spin_unlock_irq(&logbuf_lock);
458 goto out;
461 raw_spin_unlock_irq(&logbuf_lock);
462 ret = wait_event_interruptible(log_wait,
463 user->seq != log_next_seq);
464 if (ret)
465 goto out;
466 raw_spin_lock_irq(&logbuf_lock);
469 if (user->seq < log_first_seq) {
470 /* our last seen message is gone, return error and reset */
471 user->idx = log_first_idx;
472 user->seq = log_first_seq;
473 ret = -EPIPE;
474 raw_spin_unlock_irq(&logbuf_lock);
475 goto out;
478 msg = log_from_idx(user->idx);
479 ts_usec = msg->ts_nsec;
480 do_div(ts_usec, 1000);
483 * If we couldn't merge continuation line fragments during the print,
484 * export the stored flags to allow an optional external merge of the
485 * records. Merging the records isn't always neccessarily correct, like
486 * when we hit a race during printing. In most cases though, it produces
487 * better readable output. 'c' in the record flags mark the first
488 * fragment of a line, '+' the following.
490 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
491 cont = 'c';
492 else if ((msg->flags & LOG_CONT) ||
493 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
494 cont = '+';
496 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
497 (msg->facility << 3) | msg->level,
498 user->seq, ts_usec, cont);
499 user->prev = msg->flags;
501 /* escape non-printable characters */
502 for (i = 0; i < msg->text_len; i++) {
503 unsigned char c = log_text(msg)[i];
505 if (c < ' ' || c >= 127 || c == '\\')
506 len += sprintf(user->buf + len, "\\x%02x", c);
507 else
508 user->buf[len++] = c;
510 user->buf[len++] = '\n';
512 if (msg->dict_len) {
513 bool line = true;
515 for (i = 0; i < msg->dict_len; i++) {
516 unsigned char c = log_dict(msg)[i];
518 if (line) {
519 user->buf[len++] = ' ';
520 line = false;
523 if (c == '\0') {
524 user->buf[len++] = '\n';
525 line = true;
526 continue;
529 if (c < ' ' || c >= 127 || c == '\\') {
530 len += sprintf(user->buf + len, "\\x%02x", c);
531 continue;
534 user->buf[len++] = c;
536 user->buf[len++] = '\n';
539 user->idx = log_next(user->idx);
540 user->seq++;
541 raw_spin_unlock_irq(&logbuf_lock);
543 if (len > count) {
544 ret = -EINVAL;
545 goto out;
548 if (copy_to_user(buf, user->buf, len)) {
549 ret = -EFAULT;
550 goto out;
552 ret = len;
553 out:
554 mutex_unlock(&user->lock);
555 return ret;
558 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
560 struct devkmsg_user *user = file->private_data;
561 loff_t ret = 0;
563 if (!user)
564 return -EBADF;
565 if (offset)
566 return -ESPIPE;
568 raw_spin_lock_irq(&logbuf_lock);
569 switch (whence) {
570 case SEEK_SET:
571 /* the first record */
572 user->idx = log_first_idx;
573 user->seq = log_first_seq;
574 break;
575 case SEEK_DATA:
577 * The first record after the last SYSLOG_ACTION_CLEAR,
578 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
579 * changes no global state, and does not clear anything.
581 user->idx = clear_idx;
582 user->seq = clear_seq;
583 break;
584 case SEEK_END:
585 /* after the last record */
586 user->idx = log_next_idx;
587 user->seq = log_next_seq;
588 break;
589 default:
590 ret = -EINVAL;
592 raw_spin_unlock_irq(&logbuf_lock);
593 return ret;
596 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
598 struct devkmsg_user *user = file->private_data;
599 int ret = 0;
601 if (!user)
602 return POLLERR|POLLNVAL;
604 poll_wait(file, &log_wait, wait);
606 raw_spin_lock_irq(&logbuf_lock);
607 if (user->seq < log_next_seq) {
608 /* return error when data has vanished underneath us */
609 if (user->seq < log_first_seq)
610 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
611 ret = POLLIN|POLLRDNORM;
613 raw_spin_unlock_irq(&logbuf_lock);
615 return ret;
618 static int devkmsg_open(struct inode *inode, struct file *file)
620 struct devkmsg_user *user;
621 int err;
623 /* write-only does not need any file context */
624 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
625 return 0;
627 err = security_syslog(SYSLOG_ACTION_READ_ALL);
628 if (err)
629 return err;
631 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
632 if (!user)
633 return -ENOMEM;
635 mutex_init(&user->lock);
637 raw_spin_lock_irq(&logbuf_lock);
638 user->idx = log_first_idx;
639 user->seq = log_first_seq;
640 raw_spin_unlock_irq(&logbuf_lock);
642 file->private_data = user;
643 return 0;
646 static int devkmsg_release(struct inode *inode, struct file *file)
648 struct devkmsg_user *user = file->private_data;
650 if (!user)
651 return 0;
653 mutex_destroy(&user->lock);
654 kfree(user);
655 return 0;
658 const struct file_operations kmsg_fops = {
659 .open = devkmsg_open,
660 .read = devkmsg_read,
661 .aio_write = devkmsg_writev,
662 .llseek = devkmsg_llseek,
663 .poll = devkmsg_poll,
664 .release = devkmsg_release,
667 #ifdef CONFIG_KEXEC
669 * This appends the listed symbols to /proc/vmcoreinfo
671 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
672 * obtain access to symbols that are otherwise very difficult to locate. These
673 * symbols are specifically used so that utilities can access and extract the
674 * dmesg log from a vmcore file after a crash.
676 void log_buf_kexec_setup(void)
678 VMCOREINFO_SYMBOL(log_buf);
679 VMCOREINFO_SYMBOL(log_buf_len);
680 VMCOREINFO_SYMBOL(log_first_idx);
681 VMCOREINFO_SYMBOL(log_next_idx);
683 * Export struct log size and field offsets. User space tools can
684 * parse it and detect any changes to structure down the line.
686 VMCOREINFO_STRUCT_SIZE(log);
687 VMCOREINFO_OFFSET(log, ts_nsec);
688 VMCOREINFO_OFFSET(log, len);
689 VMCOREINFO_OFFSET(log, text_len);
690 VMCOREINFO_OFFSET(log, dict_len);
692 #endif
694 /* requested log_buf_len from kernel cmdline */
695 static unsigned long __initdata new_log_buf_len;
697 /* save requested log_buf_len since it's too early to process it */
698 static int __init log_buf_len_setup(char *str)
700 unsigned size = memparse(str, &str);
702 if (size)
703 size = roundup_pow_of_two(size);
704 if (size > log_buf_len)
705 new_log_buf_len = size;
707 return 0;
709 early_param("log_buf_len", log_buf_len_setup);
711 void __init setup_log_buf(int early)
713 unsigned long flags;
714 char *new_log_buf;
715 int free;
717 if (!new_log_buf_len)
718 return;
720 if (early) {
721 unsigned long mem;
723 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
724 if (!mem)
725 return;
726 new_log_buf = __va(mem);
727 } else {
728 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
731 if (unlikely(!new_log_buf)) {
732 pr_err("log_buf_len: %ld bytes not available\n",
733 new_log_buf_len);
734 return;
737 raw_spin_lock_irqsave(&logbuf_lock, flags);
738 log_buf_len = new_log_buf_len;
739 log_buf = new_log_buf;
740 new_log_buf_len = 0;
741 free = __LOG_BUF_LEN - log_next_idx;
742 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
743 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
745 pr_info("log_buf_len: %d\n", log_buf_len);
746 pr_info("early log buf free: %d(%d%%)\n",
747 free, (free * 100) / __LOG_BUF_LEN);
750 static bool __read_mostly ignore_loglevel;
752 static int __init ignore_loglevel_setup(char *str)
754 ignore_loglevel = 1;
755 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
757 return 0;
760 early_param("ignore_loglevel", ignore_loglevel_setup);
761 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
762 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
763 "print all kernel messages to the console.");
765 #ifdef CONFIG_BOOT_PRINTK_DELAY
767 static int boot_delay; /* msecs delay after each printk during bootup */
768 static unsigned long long loops_per_msec; /* based on boot_delay */
770 static int __init boot_delay_setup(char *str)
772 unsigned long lpj;
774 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
775 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
777 get_option(&str, &boot_delay);
778 if (boot_delay > 10 * 1000)
779 boot_delay = 0;
781 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
782 "HZ: %d, loops_per_msec: %llu\n",
783 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
784 return 1;
786 __setup("boot_delay=", boot_delay_setup);
788 static void boot_delay_msec(int level)
790 unsigned long long k;
791 unsigned long timeout;
793 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
794 || (level >= console_loglevel && !ignore_loglevel)) {
795 return;
798 k = (unsigned long long)loops_per_msec * boot_delay;
800 timeout = jiffies + msecs_to_jiffies(boot_delay);
801 while (k) {
802 k--;
803 cpu_relax();
805 * use (volatile) jiffies to prevent
806 * compiler reduction; loop termination via jiffies
807 * is secondary and may or may not happen.
809 if (time_after(jiffies, timeout))
810 break;
811 touch_nmi_watchdog();
814 #else
815 static inline void boot_delay_msec(int level)
818 #endif
820 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
821 int dmesg_restrict = 1;
822 #else
823 int dmesg_restrict;
824 #endif
826 static int syslog_action_restricted(int type)
828 if (dmesg_restrict)
829 return 1;
830 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
831 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
834 static int check_syslog_permissions(int type, bool from_file)
837 * If this is from /proc/kmsg and we've already opened it, then we've
838 * already done the capabilities checks at open time.
840 if (from_file && type != SYSLOG_ACTION_OPEN)
841 return 0;
843 if (syslog_action_restricted(type)) {
844 if (capable(CAP_SYSLOG))
845 return 0;
846 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
847 if (capable(CAP_SYS_ADMIN)) {
848 printk_once(KERN_WARNING "%s (%d): "
849 "Attempt to access syslog with CAP_SYS_ADMIN "
850 "but no CAP_SYSLOG (deprecated).\n",
851 current->comm, task_pid_nr(current));
852 return 0;
854 return -EPERM;
856 return 0;
859 #if defined(CONFIG_PRINTK_TIME)
860 static bool printk_time = 1;
861 #else
862 static bool printk_time;
863 #endif
864 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
866 static size_t print_time(u64 ts, char *buf)
868 unsigned long rem_nsec;
870 if (!printk_time)
871 return 0;
873 if (!buf)
874 return 15;
876 rem_nsec = do_div(ts, 1000000000);
877 return sprintf(buf, "[%5lu.%06lu] ",
878 (unsigned long)ts, rem_nsec / 1000);
881 static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
883 size_t len = 0;
884 unsigned int prefix = (msg->facility << 3) | msg->level;
886 if (syslog) {
887 if (buf) {
888 len += sprintf(buf, "<%u>", prefix);
889 } else {
890 len += 3;
891 if (prefix > 999)
892 len += 3;
893 else if (prefix > 99)
894 len += 2;
895 else if (prefix > 9)
896 len++;
900 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
901 return len;
904 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
905 bool syslog, char *buf, size_t size)
907 const char *text = log_text(msg);
908 size_t text_size = msg->text_len;
909 bool prefix = true;
910 bool newline = true;
911 size_t len = 0;
913 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
914 prefix = false;
916 if (msg->flags & LOG_CONT) {
917 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
918 prefix = false;
920 if (!(msg->flags & LOG_NEWLINE))
921 newline = false;
924 do {
925 const char *next = memchr(text, '\n', text_size);
926 size_t text_len;
928 if (next) {
929 text_len = next - text;
930 next++;
931 text_size -= next - text;
932 } else {
933 text_len = text_size;
936 if (buf) {
937 if (print_prefix(msg, syslog, NULL) +
938 text_len + 1 >= size - len)
939 break;
941 if (prefix)
942 len += print_prefix(msg, syslog, buf + len);
943 memcpy(buf + len, text, text_len);
944 len += text_len;
945 if (next || newline)
946 buf[len++] = '\n';
947 } else {
948 /* SYSLOG_ACTION_* buffer size only calculation */
949 if (prefix)
950 len += print_prefix(msg, syslog, NULL);
951 len += text_len;
952 if (next || newline)
953 len++;
956 prefix = true;
957 text = next;
958 } while (text);
960 return len;
963 static int syslog_print(char __user *buf, int size)
965 char *text;
966 struct log *msg;
967 int len = 0;
969 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
970 if (!text)
971 return -ENOMEM;
973 while (size > 0) {
974 size_t n;
975 size_t skip;
977 raw_spin_lock_irq(&logbuf_lock);
978 if (syslog_seq < log_first_seq) {
979 /* messages are gone, move to first one */
980 syslog_seq = log_first_seq;
981 syslog_idx = log_first_idx;
982 syslog_prev = 0;
983 syslog_partial = 0;
985 if (syslog_seq == log_next_seq) {
986 raw_spin_unlock_irq(&logbuf_lock);
987 break;
990 skip = syslog_partial;
991 msg = log_from_idx(syslog_idx);
992 n = msg_print_text(msg, syslog_prev, true, text,
993 LOG_LINE_MAX + PREFIX_MAX);
994 if (n - syslog_partial <= size) {
995 /* message fits into buffer, move forward */
996 syslog_idx = log_next(syslog_idx);
997 syslog_seq++;
998 syslog_prev = msg->flags;
999 n -= syslog_partial;
1000 syslog_partial = 0;
1001 } else if (!len){
1002 /* partial read(), remember position */
1003 n = size;
1004 syslog_partial += n;
1005 } else
1006 n = 0;
1007 raw_spin_unlock_irq(&logbuf_lock);
1009 if (!n)
1010 break;
1012 if (copy_to_user(buf, text + skip, n)) {
1013 if (!len)
1014 len = -EFAULT;
1015 break;
1018 len += n;
1019 size -= n;
1020 buf += n;
1023 kfree(text);
1024 return len;
1027 static int syslog_print_all(char __user *buf, int size, bool clear)
1029 char *text;
1030 int len = 0;
1032 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1033 if (!text)
1034 return -ENOMEM;
1036 raw_spin_lock_irq(&logbuf_lock);
1037 if (buf) {
1038 u64 next_seq;
1039 u64 seq;
1040 u32 idx;
1041 enum log_flags prev;
1043 if (clear_seq < log_first_seq) {
1044 /* messages are gone, move to first available one */
1045 clear_seq = log_first_seq;
1046 clear_idx = log_first_idx;
1050 * Find first record that fits, including all following records,
1051 * into the user-provided buffer for this dump.
1053 seq = clear_seq;
1054 idx = clear_idx;
1055 prev = 0;
1056 while (seq < log_next_seq) {
1057 struct log *msg = log_from_idx(idx);
1059 len += msg_print_text(msg, prev, true, NULL, 0);
1060 prev = msg->flags;
1061 idx = log_next(idx);
1062 seq++;
1065 /* move first record forward until length fits into the buffer */
1066 seq = clear_seq;
1067 idx = clear_idx;
1068 prev = 0;
1069 while (len > size && seq < log_next_seq) {
1070 struct log *msg = log_from_idx(idx);
1072 len -= msg_print_text(msg, prev, true, NULL, 0);
1073 prev = msg->flags;
1074 idx = log_next(idx);
1075 seq++;
1078 /* last message fitting into this dump */
1079 next_seq = log_next_seq;
1081 len = 0;
1082 prev = 0;
1083 while (len >= 0 && seq < next_seq) {
1084 struct log *msg = log_from_idx(idx);
1085 int textlen;
1087 textlen = msg_print_text(msg, prev, true, text,
1088 LOG_LINE_MAX + PREFIX_MAX);
1089 if (textlen < 0) {
1090 len = textlen;
1091 break;
1093 idx = log_next(idx);
1094 seq++;
1095 prev = msg->flags;
1097 raw_spin_unlock_irq(&logbuf_lock);
1098 if (copy_to_user(buf + len, text, textlen))
1099 len = -EFAULT;
1100 else
1101 len += textlen;
1102 raw_spin_lock_irq(&logbuf_lock);
1104 if (seq < log_first_seq) {
1105 /* messages are gone, move to next one */
1106 seq = log_first_seq;
1107 idx = log_first_idx;
1108 prev = 0;
1113 if (clear) {
1114 clear_seq = log_next_seq;
1115 clear_idx = log_next_idx;
1117 raw_spin_unlock_irq(&logbuf_lock);
1119 kfree(text);
1120 return len;
1123 int do_syslog(int type, char __user *buf, int len, bool from_file)
1125 bool clear = false;
1126 static int saved_console_loglevel = -1;
1127 int error;
1129 error = check_syslog_permissions(type, from_file);
1130 if (error)
1131 goto out;
1133 error = security_syslog(type);
1134 if (error)
1135 return error;
1137 switch (type) {
1138 case SYSLOG_ACTION_CLOSE: /* Close log */
1139 break;
1140 case SYSLOG_ACTION_OPEN: /* Open log */
1141 break;
1142 case SYSLOG_ACTION_READ: /* Read from log */
1143 error = -EINVAL;
1144 if (!buf || len < 0)
1145 goto out;
1146 error = 0;
1147 if (!len)
1148 goto out;
1149 if (!access_ok(VERIFY_WRITE, buf, len)) {
1150 error = -EFAULT;
1151 goto out;
1153 error = wait_event_interruptible(log_wait,
1154 syslog_seq != log_next_seq);
1155 if (error)
1156 goto out;
1157 error = syslog_print(buf, len);
1158 break;
1159 /* Read/clear last kernel messages */
1160 case SYSLOG_ACTION_READ_CLEAR:
1161 clear = true;
1162 /* FALL THRU */
1163 /* Read last kernel messages */
1164 case SYSLOG_ACTION_READ_ALL:
1165 error = -EINVAL;
1166 if (!buf || len < 0)
1167 goto out;
1168 error = 0;
1169 if (!len)
1170 goto out;
1171 if (!access_ok(VERIFY_WRITE, buf, len)) {
1172 error = -EFAULT;
1173 goto out;
1175 error = syslog_print_all(buf, len, clear);
1176 break;
1177 /* Clear ring buffer */
1178 case SYSLOG_ACTION_CLEAR:
1179 syslog_print_all(NULL, 0, true);
1180 break;
1181 /* Disable logging to console */
1182 case SYSLOG_ACTION_CONSOLE_OFF:
1183 if (saved_console_loglevel == -1)
1184 saved_console_loglevel = console_loglevel;
1185 console_loglevel = minimum_console_loglevel;
1186 break;
1187 /* Enable logging to console */
1188 case SYSLOG_ACTION_CONSOLE_ON:
1189 if (saved_console_loglevel != -1) {
1190 console_loglevel = saved_console_loglevel;
1191 saved_console_loglevel = -1;
1193 break;
1194 /* Set level of messages printed to console */
1195 case SYSLOG_ACTION_CONSOLE_LEVEL:
1196 error = -EINVAL;
1197 if (len < 1 || len > 8)
1198 goto out;
1199 if (len < minimum_console_loglevel)
1200 len = minimum_console_loglevel;
1201 console_loglevel = len;
1202 /* Implicitly re-enable logging to console */
1203 saved_console_loglevel = -1;
1204 error = 0;
1205 break;
1206 /* Number of chars in the log buffer */
1207 case SYSLOG_ACTION_SIZE_UNREAD:
1208 raw_spin_lock_irq(&logbuf_lock);
1209 if (syslog_seq < log_first_seq) {
1210 /* messages are gone, move to first one */
1211 syslog_seq = log_first_seq;
1212 syslog_idx = log_first_idx;
1213 syslog_prev = 0;
1214 syslog_partial = 0;
1216 if (from_file) {
1218 * Short-cut for poll(/"proc/kmsg") which simply checks
1219 * for pending data, not the size; return the count of
1220 * records, not the length.
1222 error = log_next_idx - syslog_idx;
1223 } else {
1224 u64 seq = syslog_seq;
1225 u32 idx = syslog_idx;
1226 enum log_flags prev = syslog_prev;
1228 error = 0;
1229 while (seq < log_next_seq) {
1230 struct log *msg = log_from_idx(idx);
1232 error += msg_print_text(msg, prev, true, NULL, 0);
1233 idx = log_next(idx);
1234 seq++;
1235 prev = msg->flags;
1237 error -= syslog_partial;
1239 raw_spin_unlock_irq(&logbuf_lock);
1240 break;
1241 /* Size of the log buffer */
1242 case SYSLOG_ACTION_SIZE_BUFFER:
1243 error = log_buf_len;
1244 break;
1245 default:
1246 error = -EINVAL;
1247 break;
1249 out:
1250 return error;
1253 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1255 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1259 * Call the console drivers, asking them to write out
1260 * log_buf[start] to log_buf[end - 1].
1261 * The console_lock must be held.
1263 static void call_console_drivers(int level, const char *text, size_t len)
1265 struct console *con;
1267 trace_console(text, 0, len, len);
1269 if (level >= console_loglevel && !ignore_loglevel)
1270 return;
1271 if (!console_drivers)
1272 return;
1274 for_each_console(con) {
1275 if (exclusive_console && con != exclusive_console)
1276 continue;
1277 if (!(con->flags & CON_ENABLED))
1278 continue;
1279 if (!con->write)
1280 continue;
1281 if (!cpu_online(smp_processor_id()) &&
1282 !(con->flags & CON_ANYTIME))
1283 continue;
1284 con->write(con, text, len);
1289 * Zap console related locks when oopsing. Only zap at most once
1290 * every 10 seconds, to leave time for slow consoles to print a
1291 * full oops.
1293 static void zap_locks(void)
1295 static unsigned long oops_timestamp;
1297 if (time_after_eq(jiffies, oops_timestamp) &&
1298 !time_after(jiffies, oops_timestamp + 30 * HZ))
1299 return;
1301 oops_timestamp = jiffies;
1303 debug_locks_off();
1304 /* If a crash is occurring, make sure we can't deadlock */
1305 raw_spin_lock_init(&logbuf_lock);
1306 /* And make sure that we print immediately */
1307 sema_init(&console_sem, 1);
1310 /* Check if we have any console registered that can be called early in boot. */
1311 static int have_callable_console(void)
1313 struct console *con;
1315 for_each_console(con)
1316 if (con->flags & CON_ANYTIME)
1317 return 1;
1319 return 0;
1323 * Can we actually use the console at this time on this cpu?
1325 * Console drivers may assume that per-cpu resources have
1326 * been allocated. So unless they're explicitly marked as
1327 * being able to cope (CON_ANYTIME) don't call them until
1328 * this CPU is officially up.
1330 static inline int can_use_console(unsigned int cpu)
1332 return cpu_online(cpu) || have_callable_console();
1336 * Try to get console ownership to actually show the kernel
1337 * messages from a 'printk'. Return true (and with the
1338 * console_lock held, and 'console_locked' set) if it
1339 * is successful, false otherwise.
1341 * This gets called with the 'logbuf_lock' spinlock held and
1342 * interrupts disabled. It should return with 'lockbuf_lock'
1343 * released but interrupts still disabled.
1345 static int console_trylock_for_printk(unsigned int cpu)
1346 __releases(&logbuf_lock)
1348 int retval = 0, wake = 0;
1350 if (console_trylock()) {
1351 retval = 1;
1354 * If we can't use the console, we need to release
1355 * the console semaphore by hand to avoid flushing
1356 * the buffer. We need to hold the console semaphore
1357 * in order to do this test safely.
1359 if (!can_use_console(cpu)) {
1360 console_locked = 0;
1361 wake = 1;
1362 retval = 0;
1365 logbuf_cpu = UINT_MAX;
1366 if (wake)
1367 up(&console_sem);
1368 raw_spin_unlock(&logbuf_lock);
1369 return retval;
1372 int printk_delay_msec __read_mostly;
1374 static inline void printk_delay(void)
1376 if (unlikely(printk_delay_msec)) {
1377 int m = printk_delay_msec;
1379 while (m--) {
1380 mdelay(1);
1381 touch_nmi_watchdog();
1387 * Continuation lines are buffered, and not committed to the record buffer
1388 * until the line is complete, or a race forces it. The line fragments
1389 * though, are printed immediately to the consoles to ensure everything has
1390 * reached the console in case of a kernel crash.
1392 static struct cont {
1393 char buf[LOG_LINE_MAX];
1394 size_t len; /* length == 0 means unused buffer */
1395 size_t cons; /* bytes written to console */
1396 struct task_struct *owner; /* task of first print*/
1397 u64 ts_nsec; /* time of first print */
1398 u8 level; /* log level of first message */
1399 u8 facility; /* log level of first message */
1400 enum log_flags flags; /* prefix, newline flags */
1401 bool flushed:1; /* buffer sealed and committed */
1402 } cont;
1404 static void cont_flush(enum log_flags flags)
1406 if (cont.flushed)
1407 return;
1408 if (cont.len == 0)
1409 return;
1411 if (cont.cons) {
1413 * If a fragment of this line was directly flushed to the
1414 * console; wait for the console to pick up the rest of the
1415 * line. LOG_NOCONS suppresses a duplicated output.
1417 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1418 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1419 cont.flags = flags;
1420 cont.flushed = true;
1421 } else {
1423 * If no fragment of this line ever reached the console,
1424 * just submit it to the store and free the buffer.
1426 log_store(cont.facility, cont.level, flags, 0,
1427 NULL, 0, cont.buf, cont.len);
1428 cont.len = 0;
1432 static bool cont_add(int facility, int level, const char *text, size_t len)
1434 if (cont.len && cont.flushed)
1435 return false;
1437 if (cont.len + len > sizeof(cont.buf)) {
1438 /* the line gets too long, split it up in separate records */
1439 cont_flush(LOG_CONT);
1440 return false;
1443 if (!cont.len) {
1444 cont.facility = facility;
1445 cont.level = level;
1446 cont.owner = current;
1447 cont.ts_nsec = local_clock();
1448 cont.flags = 0;
1449 cont.cons = 0;
1450 cont.flushed = false;
1453 memcpy(cont.buf + cont.len, text, len);
1454 cont.len += len;
1456 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1457 cont_flush(LOG_CONT);
1459 return true;
1462 static size_t cont_print_text(char *text, size_t size)
1464 size_t textlen = 0;
1465 size_t len;
1467 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1468 textlen += print_time(cont.ts_nsec, text);
1469 size -= textlen;
1472 len = cont.len - cont.cons;
1473 if (len > 0) {
1474 if (len+1 > size)
1475 len = size-1;
1476 memcpy(text + textlen, cont.buf + cont.cons, len);
1477 textlen += len;
1478 cont.cons = cont.len;
1481 if (cont.flushed) {
1482 if (cont.flags & LOG_NEWLINE)
1483 text[textlen++] = '\n';
1484 /* got everything, release buffer */
1485 cont.len = 0;
1487 return textlen;
1490 asmlinkage int vprintk_emit(int facility, int level,
1491 const char *dict, size_t dictlen,
1492 const char *fmt, va_list args)
1494 static int recursion_bug;
1495 static char textbuf[LOG_LINE_MAX];
1496 char *text = textbuf;
1497 size_t text_len;
1498 enum log_flags lflags = 0;
1499 unsigned long flags;
1500 int this_cpu;
1501 int printed_len = 0;
1503 boot_delay_msec(level);
1504 printk_delay();
1506 /* This stops the holder of console_sem just where we want him */
1507 local_irq_save(flags);
1508 this_cpu = smp_processor_id();
1511 * Ouch, printk recursed into itself!
1513 if (unlikely(logbuf_cpu == this_cpu)) {
1515 * If a crash is occurring during printk() on this CPU,
1516 * then try to get the crash message out but make sure
1517 * we can't deadlock. Otherwise just return to avoid the
1518 * recursion and return - but flag the recursion so that
1519 * it can be printed at the next appropriate moment:
1521 if (!oops_in_progress && !lockdep_recursing(current)) {
1522 recursion_bug = 1;
1523 goto out_restore_irqs;
1525 zap_locks();
1528 lockdep_off();
1529 raw_spin_lock(&logbuf_lock);
1530 logbuf_cpu = this_cpu;
1532 if (recursion_bug) {
1533 static const char recursion_msg[] =
1534 "BUG: recent printk recursion!";
1536 recursion_bug = 0;
1537 printed_len += strlen(recursion_msg);
1538 /* emit KERN_CRIT message */
1539 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1540 NULL, 0, recursion_msg, printed_len);
1544 * The printf needs to come first; we need the syslog
1545 * prefix which might be passed-in as a parameter.
1547 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1549 /* mark and strip a trailing newline */
1550 if (text_len && text[text_len-1] == '\n') {
1551 text_len--;
1552 lflags |= LOG_NEWLINE;
1555 /* strip kernel syslog prefix and extract log level or control flags */
1556 if (facility == 0) {
1557 int kern_level = printk_get_level(text);
1559 if (kern_level) {
1560 const char *end_of_header = printk_skip_level(text);
1561 switch (kern_level) {
1562 case '0' ... '7':
1563 if (level == -1)
1564 level = kern_level - '0';
1565 case 'd': /* KERN_DEFAULT */
1566 lflags |= LOG_PREFIX;
1567 case 'c': /* KERN_CONT */
1568 break;
1570 text_len -= end_of_header - text;
1571 text = (char *)end_of_header;
1575 if (level == -1)
1576 level = default_message_loglevel;
1578 if (dict)
1579 lflags |= LOG_PREFIX|LOG_NEWLINE;
1581 if (!(lflags & LOG_NEWLINE)) {
1583 * Flush the conflicting buffer. An earlier newline was missing,
1584 * or another task also prints continuation lines.
1586 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1587 cont_flush(LOG_NEWLINE);
1589 /* buffer line if possible, otherwise store it right away */
1590 if (!cont_add(facility, level, text, text_len))
1591 log_store(facility, level, lflags | LOG_CONT, 0,
1592 dict, dictlen, text, text_len);
1593 } else {
1594 bool stored = false;
1597 * If an earlier newline was missing and it was the same task,
1598 * either merge it with the current buffer and flush, or if
1599 * there was a race with interrupts (prefix == true) then just
1600 * flush it out and store this line separately.
1602 if (cont.len && cont.owner == current) {
1603 if (!(lflags & LOG_PREFIX))
1604 stored = cont_add(facility, level, text, text_len);
1605 cont_flush(LOG_NEWLINE);
1608 if (!stored)
1609 log_store(facility, level, lflags, 0,
1610 dict, dictlen, text, text_len);
1612 printed_len += text_len;
1615 * Try to acquire and then immediately release the console semaphore.
1616 * The release will print out buffers and wake up /dev/kmsg and syslog()
1617 * users.
1619 * The console_trylock_for_printk() function will release 'logbuf_lock'
1620 * regardless of whether it actually gets the console semaphore or not.
1622 if (console_trylock_for_printk(this_cpu))
1623 console_unlock();
1625 lockdep_on();
1626 out_restore_irqs:
1627 local_irq_restore(flags);
1629 return printed_len;
1631 EXPORT_SYMBOL(vprintk_emit);
1633 asmlinkage int vprintk(const char *fmt, va_list args)
1635 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1637 EXPORT_SYMBOL(vprintk);
1639 asmlinkage int printk_emit(int facility, int level,
1640 const char *dict, size_t dictlen,
1641 const char *fmt, ...)
1643 va_list args;
1644 int r;
1646 va_start(args, fmt);
1647 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1648 va_end(args);
1650 return r;
1652 EXPORT_SYMBOL(printk_emit);
1655 * printk - print a kernel message
1656 * @fmt: format string
1658 * This is printk(). It can be called from any context. We want it to work.
1660 * We try to grab the console_lock. If we succeed, it's easy - we log the
1661 * output and call the console drivers. If we fail to get the semaphore, we
1662 * place the output into the log buffer and return. The current holder of
1663 * the console_sem will notice the new output in console_unlock(); and will
1664 * send it to the consoles before releasing the lock.
1666 * One effect of this deferred printing is that code which calls printk() and
1667 * then changes console_loglevel may break. This is because console_loglevel
1668 * is inspected when the actual printing occurs.
1670 * See also:
1671 * printf(3)
1673 * See the vsnprintf() documentation for format string extensions over C99.
1675 asmlinkage int printk(const char *fmt, ...)
1677 va_list args;
1678 int r;
1680 #ifdef CONFIG_KGDB_KDB
1681 if (unlikely(kdb_trap_printk)) {
1682 va_start(args, fmt);
1683 r = vkdb_printf(fmt, args);
1684 va_end(args);
1685 return r;
1687 #endif
1688 va_start(args, fmt);
1689 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1690 va_end(args);
1692 return r;
1694 EXPORT_SYMBOL(printk);
1696 #else /* CONFIG_PRINTK */
1698 #define LOG_LINE_MAX 0
1699 #define PREFIX_MAX 0
1700 #define LOG_LINE_MAX 0
1701 static u64 syslog_seq;
1702 static u32 syslog_idx;
1703 static u64 console_seq;
1704 static u32 console_idx;
1705 static enum log_flags syslog_prev;
1706 static u64 log_first_seq;
1707 static u32 log_first_idx;
1708 static u64 log_next_seq;
1709 static enum log_flags console_prev;
1710 static struct cont {
1711 size_t len;
1712 size_t cons;
1713 u8 level;
1714 bool flushed:1;
1715 } cont;
1716 static struct log *log_from_idx(u32 idx) { return NULL; }
1717 static u32 log_next(u32 idx) { return 0; }
1718 static void call_console_drivers(int level, const char *text, size_t len) {}
1719 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
1720 bool syslog, char *buf, size_t size) { return 0; }
1721 static size_t cont_print_text(char *text, size_t size) { return 0; }
1723 #endif /* CONFIG_PRINTK */
1725 static int __add_preferred_console(char *name, int idx, char *options,
1726 char *brl_options)
1728 struct console_cmdline *c;
1729 int i;
1732 * See if this tty is not yet registered, and
1733 * if we have a slot free.
1735 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1736 if (strcmp(console_cmdline[i].name, name) == 0 &&
1737 console_cmdline[i].index == idx) {
1738 if (!brl_options)
1739 selected_console = i;
1740 return 0;
1742 if (i == MAX_CMDLINECONSOLES)
1743 return -E2BIG;
1744 if (!brl_options)
1745 selected_console = i;
1746 c = &console_cmdline[i];
1747 strlcpy(c->name, name, sizeof(c->name));
1748 c->options = options;
1749 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1750 c->brl_options = brl_options;
1751 #endif
1752 c->index = idx;
1753 return 0;
1756 * Set up a list of consoles. Called from init/main.c
1758 static int __init console_setup(char *str)
1760 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1761 char *s, *options, *brl_options = NULL;
1762 int idx;
1764 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1765 if (!memcmp(str, "brl,", 4)) {
1766 brl_options = "";
1767 str += 4;
1768 } else if (!memcmp(str, "brl=", 4)) {
1769 brl_options = str + 4;
1770 str = strchr(brl_options, ',');
1771 if (!str) {
1772 printk(KERN_ERR "need port name after brl=\n");
1773 return 1;
1775 *(str++) = 0;
1777 #endif
1780 * Decode str into name, index, options.
1782 if (str[0] >= '0' && str[0] <= '9') {
1783 strcpy(buf, "ttyS");
1784 strncpy(buf + 4, str, sizeof(buf) - 5);
1785 } else {
1786 strncpy(buf, str, sizeof(buf) - 1);
1788 buf[sizeof(buf) - 1] = 0;
1789 if ((options = strchr(str, ',')) != NULL)
1790 *(options++) = 0;
1791 #ifdef __sparc__
1792 if (!strcmp(str, "ttya"))
1793 strcpy(buf, "ttyS0");
1794 if (!strcmp(str, "ttyb"))
1795 strcpy(buf, "ttyS1");
1796 #endif
1797 for (s = buf; *s; s++)
1798 if ((*s >= '0' && *s <= '9') || *s == ',')
1799 break;
1800 idx = simple_strtoul(s, NULL, 10);
1801 *s = 0;
1803 __add_preferred_console(buf, idx, options, brl_options);
1804 console_set_on_cmdline = 1;
1805 return 1;
1807 __setup("console=", console_setup);
1810 * add_preferred_console - add a device to the list of preferred consoles.
1811 * @name: device name
1812 * @idx: device index
1813 * @options: options for this console
1815 * The last preferred console added will be used for kernel messages
1816 * and stdin/out/err for init. Normally this is used by console_setup
1817 * above to handle user-supplied console arguments; however it can also
1818 * be used by arch-specific code either to override the user or more
1819 * commonly to provide a default console (ie from PROM variables) when
1820 * the user has not supplied one.
1822 int add_preferred_console(char *name, int idx, char *options)
1824 return __add_preferred_console(name, idx, options, NULL);
1827 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1829 struct console_cmdline *c;
1830 int i;
1832 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1833 if (strcmp(console_cmdline[i].name, name) == 0 &&
1834 console_cmdline[i].index == idx) {
1835 c = &console_cmdline[i];
1836 strlcpy(c->name, name_new, sizeof(c->name));
1837 c->name[sizeof(c->name) - 1] = 0;
1838 c->options = options;
1839 c->index = idx_new;
1840 return i;
1842 /* not found */
1843 return -1;
1846 bool console_suspend_enabled = 1;
1847 EXPORT_SYMBOL(console_suspend_enabled);
1849 static int __init console_suspend_disable(char *str)
1851 console_suspend_enabled = 0;
1852 return 1;
1854 __setup("no_console_suspend", console_suspend_disable);
1855 module_param_named(console_suspend, console_suspend_enabled,
1856 bool, S_IRUGO | S_IWUSR);
1857 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1858 " and hibernate operations");
1861 * suspend_console - suspend the console subsystem
1863 * This disables printk() while we go into suspend states
1865 void suspend_console(void)
1867 if (!console_suspend_enabled)
1868 return;
1869 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1870 console_lock();
1871 console_suspended = 1;
1872 up(&console_sem);
1875 void resume_console(void)
1877 if (!console_suspend_enabled)
1878 return;
1879 down(&console_sem);
1880 console_suspended = 0;
1881 console_unlock();
1885 * console_cpu_notify - print deferred console messages after CPU hotplug
1886 * @self: notifier struct
1887 * @action: CPU hotplug event
1888 * @hcpu: unused
1890 * If printk() is called from a CPU that is not online yet, the messages
1891 * will be spooled but will not show up on the console. This function is
1892 * called when a new CPU comes online (or fails to come up), and ensures
1893 * that any such output gets printed.
1895 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1896 unsigned long action, void *hcpu)
1898 switch (action) {
1899 case CPU_ONLINE:
1900 case CPU_DEAD:
1901 case CPU_DOWN_FAILED:
1902 case CPU_UP_CANCELED:
1903 console_lock();
1904 console_unlock();
1906 return NOTIFY_OK;
1910 * console_lock - lock the console system for exclusive use.
1912 * Acquires a lock which guarantees that the caller has
1913 * exclusive access to the console system and the console_drivers list.
1915 * Can sleep, returns nothing.
1917 void console_lock(void)
1919 might_sleep();
1921 down(&console_sem);
1922 if (console_suspended)
1923 return;
1924 console_locked = 1;
1925 console_may_schedule = 1;
1926 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1928 EXPORT_SYMBOL(console_lock);
1931 * console_trylock - try to lock the console system for exclusive use.
1933 * Tried to acquire a lock which guarantees that the caller has
1934 * exclusive access to the console system and the console_drivers list.
1936 * returns 1 on success, and 0 on failure to acquire the lock.
1938 int console_trylock(void)
1940 if (down_trylock(&console_sem))
1941 return 0;
1942 if (console_suspended) {
1943 up(&console_sem);
1944 return 0;
1946 console_locked = 1;
1947 console_may_schedule = 0;
1948 mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1949 return 1;
1951 EXPORT_SYMBOL(console_trylock);
1953 int is_console_locked(void)
1955 return console_locked;
1959 * Delayed printk version, for scheduler-internal messages:
1961 #define PRINTK_BUF_SIZE 512
1963 #define PRINTK_PENDING_WAKEUP 0x01
1964 #define PRINTK_PENDING_SCHED 0x02
1966 static DEFINE_PER_CPU(int, printk_pending);
1967 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
1969 void printk_tick(void)
1971 if (__this_cpu_read(printk_pending)) {
1972 int pending = __this_cpu_xchg(printk_pending, 0);
1973 if (pending & PRINTK_PENDING_SCHED) {
1974 char *buf = __get_cpu_var(printk_sched_buf);
1975 printk(KERN_WARNING "[sched_delayed] %s", buf);
1977 if (pending & PRINTK_PENDING_WAKEUP)
1978 wake_up_interruptible(&log_wait);
1982 int printk_needs_cpu(int cpu)
1984 if (cpu_is_offline(cpu))
1985 printk_tick();
1986 return __this_cpu_read(printk_pending);
1989 void wake_up_klogd(void)
1991 if (waitqueue_active(&log_wait))
1992 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
1995 static void console_cont_flush(char *text, size_t size)
1997 unsigned long flags;
1998 size_t len;
2000 raw_spin_lock_irqsave(&logbuf_lock, flags);
2002 if (!cont.len)
2003 goto out;
2006 * We still queue earlier records, likely because the console was
2007 * busy. The earlier ones need to be printed before this one, we
2008 * did not flush any fragment so far, so just let it queue up.
2010 if (console_seq < log_next_seq && !cont.cons)
2011 goto out;
2013 len = cont_print_text(text, size);
2014 raw_spin_unlock(&logbuf_lock);
2015 stop_critical_timings();
2016 call_console_drivers(cont.level, text, len);
2017 start_critical_timings();
2018 local_irq_restore(flags);
2019 return;
2020 out:
2021 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2025 * console_unlock - unlock the console system
2027 * Releases the console_lock which the caller holds on the console system
2028 * and the console driver list.
2030 * While the console_lock was held, console output may have been buffered
2031 * by printk(). If this is the case, console_unlock(); emits
2032 * the output prior to releasing the lock.
2034 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2036 * console_unlock(); may be called from any context.
2038 void console_unlock(void)
2040 static char text[LOG_LINE_MAX + PREFIX_MAX];
2041 static u64 seen_seq;
2042 unsigned long flags;
2043 bool wake_klogd = false;
2044 bool retry;
2046 if (console_suspended) {
2047 up(&console_sem);
2048 return;
2051 console_may_schedule = 0;
2053 /* flush buffered message fragment immediately to console */
2054 console_cont_flush(text, sizeof(text));
2055 again:
2056 for (;;) {
2057 struct log *msg;
2058 size_t len;
2059 int level;
2061 raw_spin_lock_irqsave(&logbuf_lock, flags);
2062 if (seen_seq != log_next_seq) {
2063 wake_klogd = true;
2064 seen_seq = log_next_seq;
2067 if (console_seq < log_first_seq) {
2068 /* messages are gone, move to first one */
2069 console_seq = log_first_seq;
2070 console_idx = log_first_idx;
2071 console_prev = 0;
2073 skip:
2074 if (console_seq == log_next_seq)
2075 break;
2077 msg = log_from_idx(console_idx);
2078 if (msg->flags & LOG_NOCONS) {
2080 * Skip record we have buffered and already printed
2081 * directly to the console when we received it.
2083 console_idx = log_next(console_idx);
2084 console_seq++;
2086 * We will get here again when we register a new
2087 * CON_PRINTBUFFER console. Clear the flag so we
2088 * will properly dump everything later.
2090 msg->flags &= ~LOG_NOCONS;
2091 console_prev = msg->flags;
2092 goto skip;
2095 level = msg->level;
2096 len = msg_print_text(msg, console_prev, false,
2097 text, sizeof(text));
2098 console_idx = log_next(console_idx);
2099 console_seq++;
2100 console_prev = msg->flags;
2101 raw_spin_unlock(&logbuf_lock);
2103 stop_critical_timings(); /* don't trace print latency */
2104 call_console_drivers(level, text, len);
2105 start_critical_timings();
2106 local_irq_restore(flags);
2108 console_locked = 0;
2109 mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2111 /* Release the exclusive_console once it is used */
2112 if (unlikely(exclusive_console))
2113 exclusive_console = NULL;
2115 raw_spin_unlock(&logbuf_lock);
2117 up(&console_sem);
2120 * Someone could have filled up the buffer again, so re-check if there's
2121 * something to flush. In case we cannot trylock the console_sem again,
2122 * there's a new owner and the console_unlock() from them will do the
2123 * flush, no worries.
2125 raw_spin_lock(&logbuf_lock);
2126 retry = console_seq != log_next_seq;
2127 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2129 if (retry && console_trylock())
2130 goto again;
2132 if (wake_klogd)
2133 wake_up_klogd();
2135 EXPORT_SYMBOL(console_unlock);
2138 * console_conditional_schedule - yield the CPU if required
2140 * If the console code is currently allowed to sleep, and
2141 * if this CPU should yield the CPU to another task, do
2142 * so here.
2144 * Must be called within console_lock();.
2146 void __sched console_conditional_schedule(void)
2148 if (console_may_schedule)
2149 cond_resched();
2151 EXPORT_SYMBOL(console_conditional_schedule);
2153 void console_unblank(void)
2155 struct console *c;
2158 * console_unblank can no longer be called in interrupt context unless
2159 * oops_in_progress is set to 1..
2161 if (oops_in_progress) {
2162 if (down_trylock(&console_sem) != 0)
2163 return;
2164 } else
2165 console_lock();
2167 console_locked = 1;
2168 console_may_schedule = 0;
2169 for_each_console(c)
2170 if ((c->flags & CON_ENABLED) && c->unblank)
2171 c->unblank();
2172 console_unlock();
2176 * Return the console tty driver structure and its associated index
2178 struct tty_driver *console_device(int *index)
2180 struct console *c;
2181 struct tty_driver *driver = NULL;
2183 console_lock();
2184 for_each_console(c) {
2185 if (!c->device)
2186 continue;
2187 driver = c->device(c, index);
2188 if (driver)
2189 break;
2191 console_unlock();
2192 return driver;
2196 * Prevent further output on the passed console device so that (for example)
2197 * serial drivers can disable console output before suspending a port, and can
2198 * re-enable output afterwards.
2200 void console_stop(struct console *console)
2202 console_lock();
2203 console->flags &= ~CON_ENABLED;
2204 console_unlock();
2206 EXPORT_SYMBOL(console_stop);
2208 void console_start(struct console *console)
2210 console_lock();
2211 console->flags |= CON_ENABLED;
2212 console_unlock();
2214 EXPORT_SYMBOL(console_start);
2216 static int __read_mostly keep_bootcon;
2218 static int __init keep_bootcon_setup(char *str)
2220 keep_bootcon = 1;
2221 printk(KERN_INFO "debug: skip boot console de-registration.\n");
2223 return 0;
2226 early_param("keep_bootcon", keep_bootcon_setup);
2229 * The console driver calls this routine during kernel initialization
2230 * to register the console printing procedure with printk() and to
2231 * print any messages that were printed by the kernel before the
2232 * console driver was initialized.
2234 * This can happen pretty early during the boot process (because of
2235 * early_printk) - sometimes before setup_arch() completes - be careful
2236 * of what kernel features are used - they may not be initialised yet.
2238 * There are two types of consoles - bootconsoles (early_printk) and
2239 * "real" consoles (everything which is not a bootconsole) which are
2240 * handled differently.
2241 * - Any number of bootconsoles can be registered at any time.
2242 * - As soon as a "real" console is registered, all bootconsoles
2243 * will be unregistered automatically.
2244 * - Once a "real" console is registered, any attempt to register a
2245 * bootconsoles will be rejected
2247 void register_console(struct console *newcon)
2249 int i;
2250 unsigned long flags;
2251 struct console *bcon = NULL;
2254 * before we register a new CON_BOOT console, make sure we don't
2255 * already have a valid console
2257 if (console_drivers && newcon->flags & CON_BOOT) {
2258 /* find the last or real console */
2259 for_each_console(bcon) {
2260 if (!(bcon->flags & CON_BOOT)) {
2261 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
2262 newcon->name, newcon->index);
2263 return;
2268 if (console_drivers && console_drivers->flags & CON_BOOT)
2269 bcon = console_drivers;
2271 if (preferred_console < 0 || bcon || !console_drivers)
2272 preferred_console = selected_console;
2274 if (newcon->early_setup)
2275 newcon->early_setup();
2278 * See if we want to use this console driver. If we
2279 * didn't select a console we take the first one
2280 * that registers here.
2282 if (preferred_console < 0) {
2283 if (newcon->index < 0)
2284 newcon->index = 0;
2285 if (newcon->setup == NULL ||
2286 newcon->setup(newcon, NULL) == 0) {
2287 newcon->flags |= CON_ENABLED;
2288 if (newcon->device) {
2289 newcon->flags |= CON_CONSDEV;
2290 preferred_console = 0;
2296 * See if this console matches one we selected on
2297 * the command line.
2299 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2300 i++) {
2301 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2302 continue;
2303 if (newcon->index >= 0 &&
2304 newcon->index != console_cmdline[i].index)
2305 continue;
2306 if (newcon->index < 0)
2307 newcon->index = console_cmdline[i].index;
2308 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2309 if (console_cmdline[i].brl_options) {
2310 newcon->flags |= CON_BRL;
2311 braille_register_console(newcon,
2312 console_cmdline[i].index,
2313 console_cmdline[i].options,
2314 console_cmdline[i].brl_options);
2315 return;
2317 #endif
2318 if (newcon->setup &&
2319 newcon->setup(newcon, console_cmdline[i].options) != 0)
2320 break;
2321 newcon->flags |= CON_ENABLED;
2322 newcon->index = console_cmdline[i].index;
2323 if (i == selected_console) {
2324 newcon->flags |= CON_CONSDEV;
2325 preferred_console = selected_console;
2327 break;
2330 if (!(newcon->flags & CON_ENABLED))
2331 return;
2334 * If we have a bootconsole, and are switching to a real console,
2335 * don't print everything out again, since when the boot console, and
2336 * the real console are the same physical device, it's annoying to
2337 * see the beginning boot messages twice
2339 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2340 newcon->flags &= ~CON_PRINTBUFFER;
2343 * Put this console in the list - keep the
2344 * preferred driver at the head of the list.
2346 console_lock();
2347 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2348 newcon->next = console_drivers;
2349 console_drivers = newcon;
2350 if (newcon->next)
2351 newcon->next->flags &= ~CON_CONSDEV;
2352 } else {
2353 newcon->next = console_drivers->next;
2354 console_drivers->next = newcon;
2356 if (newcon->flags & CON_PRINTBUFFER) {
2358 * console_unlock(); will print out the buffered messages
2359 * for us.
2361 raw_spin_lock_irqsave(&logbuf_lock, flags);
2362 console_seq = syslog_seq;
2363 console_idx = syslog_idx;
2364 console_prev = syslog_prev;
2365 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2367 * We're about to replay the log buffer. Only do this to the
2368 * just-registered console to avoid excessive message spam to
2369 * the already-registered consoles.
2371 exclusive_console = newcon;
2373 console_unlock();
2374 console_sysfs_notify();
2377 * By unregistering the bootconsoles after we enable the real console
2378 * we get the "console xxx enabled" message on all the consoles -
2379 * boot consoles, real consoles, etc - this is to ensure that end
2380 * users know there might be something in the kernel's log buffer that
2381 * went to the bootconsole (that they do not see on the real console)
2383 if (bcon &&
2384 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2385 !keep_bootcon) {
2386 /* we need to iterate through twice, to make sure we print
2387 * everything out, before we unregister the console(s)
2389 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2390 newcon->name, newcon->index);
2391 for_each_console(bcon)
2392 if (bcon->flags & CON_BOOT)
2393 unregister_console(bcon);
2394 } else {
2395 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2396 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2397 newcon->name, newcon->index);
2400 EXPORT_SYMBOL(register_console);
2402 int unregister_console(struct console *console)
2404 struct console *a, *b;
2405 int res = 1;
2407 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2408 if (console->flags & CON_BRL)
2409 return braille_unregister_console(console);
2410 #endif
2412 console_lock();
2413 if (console_drivers == console) {
2414 console_drivers=console->next;
2415 res = 0;
2416 } else if (console_drivers) {
2417 for (a=console_drivers->next, b=console_drivers ;
2418 a; b=a, a=b->next) {
2419 if (a == console) {
2420 b->next = a->next;
2421 res = 0;
2422 break;
2428 * If this isn't the last console and it has CON_CONSDEV set, we
2429 * need to set it on the next preferred console.
2431 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2432 console_drivers->flags |= CON_CONSDEV;
2434 console_unlock();
2435 console_sysfs_notify();
2436 return res;
2438 EXPORT_SYMBOL(unregister_console);
2440 static int __init printk_late_init(void)
2442 struct console *con;
2444 for_each_console(con) {
2445 if (!keep_bootcon && con->flags & CON_BOOT) {
2446 printk(KERN_INFO "turn off boot console %s%d\n",
2447 con->name, con->index);
2448 unregister_console(con);
2451 hotcpu_notifier(console_cpu_notify, 0);
2452 return 0;
2454 late_initcall(printk_late_init);
2456 #if defined CONFIG_PRINTK
2458 int printk_sched(const char *fmt, ...)
2460 unsigned long flags;
2461 va_list args;
2462 char *buf;
2463 int r;
2465 local_irq_save(flags);
2466 buf = __get_cpu_var(printk_sched_buf);
2468 va_start(args, fmt);
2469 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2470 va_end(args);
2472 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2473 local_irq_restore(flags);
2475 return r;
2479 * printk rate limiting, lifted from the networking subsystem.
2481 * This enforces a rate limit: not more than 10 kernel messages
2482 * every 5s to make a denial-of-service attack impossible.
2484 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2486 int __printk_ratelimit(const char *func)
2488 return ___ratelimit(&printk_ratelimit_state, func);
2490 EXPORT_SYMBOL(__printk_ratelimit);
2493 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2494 * @caller_jiffies: pointer to caller's state
2495 * @interval_msecs: minimum interval between prints
2497 * printk_timed_ratelimit() returns true if more than @interval_msecs
2498 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2499 * returned true.
2501 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2502 unsigned int interval_msecs)
2504 if (*caller_jiffies == 0
2505 || !time_in_range(jiffies, *caller_jiffies,
2506 *caller_jiffies
2507 + msecs_to_jiffies(interval_msecs))) {
2508 *caller_jiffies = jiffies;
2509 return true;
2511 return false;
2513 EXPORT_SYMBOL(printk_timed_ratelimit);
2515 static DEFINE_SPINLOCK(dump_list_lock);
2516 static LIST_HEAD(dump_list);
2519 * kmsg_dump_register - register a kernel log dumper.
2520 * @dumper: pointer to the kmsg_dumper structure
2522 * Adds a kernel log dumper to the system. The dump callback in the
2523 * structure will be called when the kernel oopses or panics and must be
2524 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2526 int kmsg_dump_register(struct kmsg_dumper *dumper)
2528 unsigned long flags;
2529 int err = -EBUSY;
2531 /* The dump callback needs to be set */
2532 if (!dumper->dump)
2533 return -EINVAL;
2535 spin_lock_irqsave(&dump_list_lock, flags);
2536 /* Don't allow registering multiple times */
2537 if (!dumper->registered) {
2538 dumper->registered = 1;
2539 list_add_tail_rcu(&dumper->list, &dump_list);
2540 err = 0;
2542 spin_unlock_irqrestore(&dump_list_lock, flags);
2544 return err;
2546 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2549 * kmsg_dump_unregister - unregister a kmsg dumper.
2550 * @dumper: pointer to the kmsg_dumper structure
2552 * Removes a dump device from the system. Returns zero on success and
2553 * %-EINVAL otherwise.
2555 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2557 unsigned long flags;
2558 int err = -EINVAL;
2560 spin_lock_irqsave(&dump_list_lock, flags);
2561 if (dumper->registered) {
2562 dumper->registered = 0;
2563 list_del_rcu(&dumper->list);
2564 err = 0;
2566 spin_unlock_irqrestore(&dump_list_lock, flags);
2567 synchronize_rcu();
2569 return err;
2571 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2573 static bool always_kmsg_dump;
2574 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2577 * kmsg_dump - dump kernel log to kernel message dumpers.
2578 * @reason: the reason (oops, panic etc) for dumping
2580 * Call each of the registered dumper's dump() callback, which can
2581 * retrieve the kmsg records with kmsg_dump_get_line() or
2582 * kmsg_dump_get_buffer().
2584 void kmsg_dump(enum kmsg_dump_reason reason)
2586 struct kmsg_dumper *dumper;
2587 unsigned long flags;
2589 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2590 return;
2592 rcu_read_lock();
2593 list_for_each_entry_rcu(dumper, &dump_list, list) {
2594 if (dumper->max_reason && reason > dumper->max_reason)
2595 continue;
2597 /* initialize iterator with data about the stored records */
2598 dumper->active = true;
2600 raw_spin_lock_irqsave(&logbuf_lock, flags);
2601 dumper->cur_seq = clear_seq;
2602 dumper->cur_idx = clear_idx;
2603 dumper->next_seq = log_next_seq;
2604 dumper->next_idx = log_next_idx;
2605 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2607 /* invoke dumper which will iterate over records */
2608 dumper->dump(dumper, reason);
2610 /* reset iterator */
2611 dumper->active = false;
2613 rcu_read_unlock();
2617 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2618 * @dumper: registered kmsg dumper
2619 * @syslog: include the "<4>" prefixes
2620 * @line: buffer to copy the line to
2621 * @size: maximum size of the buffer
2622 * @len: length of line placed into buffer
2624 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2625 * record, and copy one record into the provided buffer.
2627 * Consecutive calls will return the next available record moving
2628 * towards the end of the buffer with the youngest messages.
2630 * A return value of FALSE indicates that there are no more records to
2631 * read.
2633 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2635 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2636 char *line, size_t size, size_t *len)
2638 struct log *msg;
2639 size_t l = 0;
2640 bool ret = false;
2642 if (!dumper->active)
2643 goto out;
2645 if (dumper->cur_seq < log_first_seq) {
2646 /* messages are gone, move to first available one */
2647 dumper->cur_seq = log_first_seq;
2648 dumper->cur_idx = log_first_idx;
2651 /* last entry */
2652 if (dumper->cur_seq >= log_next_seq)
2653 goto out;
2655 msg = log_from_idx(dumper->cur_idx);
2656 l = msg_print_text(msg, 0, syslog, line, size);
2658 dumper->cur_idx = log_next(dumper->cur_idx);
2659 dumper->cur_seq++;
2660 ret = true;
2661 out:
2662 if (len)
2663 *len = l;
2664 return ret;
2668 * kmsg_dump_get_line - retrieve one kmsg log line
2669 * @dumper: registered kmsg dumper
2670 * @syslog: include the "<4>" prefixes
2671 * @line: buffer to copy the line to
2672 * @size: maximum size of the buffer
2673 * @len: length of line placed into buffer
2675 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2676 * record, and copy one record into the provided buffer.
2678 * Consecutive calls will return the next available record moving
2679 * towards the end of the buffer with the youngest messages.
2681 * A return value of FALSE indicates that there are no more records to
2682 * read.
2684 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2685 char *line, size_t size, size_t *len)
2687 unsigned long flags;
2688 bool ret;
2690 raw_spin_lock_irqsave(&logbuf_lock, flags);
2691 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2692 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2694 return ret;
2696 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2699 * kmsg_dump_get_buffer - copy kmsg log lines
2700 * @dumper: registered kmsg dumper
2701 * @syslog: include the "<4>" prefixes
2702 * @buf: buffer to copy the line to
2703 * @size: maximum size of the buffer
2704 * @len: length of line placed into buffer
2706 * Start at the end of the kmsg buffer and fill the provided buffer
2707 * with as many of the the *youngest* kmsg records that fit into it.
2708 * If the buffer is large enough, all available kmsg records will be
2709 * copied with a single call.
2711 * Consecutive calls will fill the buffer with the next block of
2712 * available older records, not including the earlier retrieved ones.
2714 * A return value of FALSE indicates that there are no more records to
2715 * read.
2717 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2718 char *buf, size_t size, size_t *len)
2720 unsigned long flags;
2721 u64 seq;
2722 u32 idx;
2723 u64 next_seq;
2724 u32 next_idx;
2725 enum log_flags prev;
2726 size_t l = 0;
2727 bool ret = false;
2729 if (!dumper->active)
2730 goto out;
2732 raw_spin_lock_irqsave(&logbuf_lock, flags);
2733 if (dumper->cur_seq < log_first_seq) {
2734 /* messages are gone, move to first available one */
2735 dumper->cur_seq = log_first_seq;
2736 dumper->cur_idx = log_first_idx;
2739 /* last entry */
2740 if (dumper->cur_seq >= dumper->next_seq) {
2741 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2742 goto out;
2745 /* calculate length of entire buffer */
2746 seq = dumper->cur_seq;
2747 idx = dumper->cur_idx;
2748 prev = 0;
2749 while (seq < dumper->next_seq) {
2750 struct log *msg = log_from_idx(idx);
2752 l += msg_print_text(msg, prev, true, NULL, 0);
2753 idx = log_next(idx);
2754 seq++;
2755 prev = msg->flags;
2758 /* move first record forward until length fits into the buffer */
2759 seq = dumper->cur_seq;
2760 idx = dumper->cur_idx;
2761 prev = 0;
2762 while (l > size && seq < dumper->next_seq) {
2763 struct log *msg = log_from_idx(idx);
2765 l -= msg_print_text(msg, prev, true, NULL, 0);
2766 idx = log_next(idx);
2767 seq++;
2768 prev = msg->flags;
2771 /* last message in next interation */
2772 next_seq = seq;
2773 next_idx = idx;
2775 l = 0;
2776 prev = 0;
2777 while (seq < dumper->next_seq) {
2778 struct log *msg = log_from_idx(idx);
2780 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2781 idx = log_next(idx);
2782 seq++;
2783 prev = msg->flags;
2786 dumper->next_seq = next_seq;
2787 dumper->next_idx = next_idx;
2788 ret = true;
2789 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2790 out:
2791 if (len)
2792 *len = l;
2793 return ret;
2795 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2798 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2799 * @dumper: registered kmsg dumper
2801 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2802 * kmsg_dump_get_buffer() can be called again and used multiple
2803 * times within the same dumper.dump() callback.
2805 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2807 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2809 dumper->cur_seq = clear_seq;
2810 dumper->cur_idx = clear_idx;
2811 dumper->next_seq = log_next_seq;
2812 dumper->next_idx = log_next_idx;
2816 * kmsg_dump_rewind - reset the interator
2817 * @dumper: registered kmsg dumper
2819 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2820 * kmsg_dump_get_buffer() can be called again and used multiple
2821 * times within the same dumper.dump() callback.
2823 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2825 unsigned long flags;
2827 raw_spin_lock_irqsave(&logbuf_lock, flags);
2828 kmsg_dump_rewind_nolock(dumper);
2829 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2831 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2832 #endif