4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 static inline int rt_policy(int policy
)
125 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
130 static inline int task_has_rt_policy(struct task_struct
*p
)
132 return rt_policy(p
->policy
);
136 * This is the priority-queue data structure of the RT scheduling class:
138 struct rt_prio_array
{
139 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
140 struct list_head queue
[MAX_RT_PRIO
];
143 struct rt_bandwidth
{
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock
;
148 struct hrtimer rt_period_timer
;
151 static struct rt_bandwidth def_rt_bandwidth
;
153 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
155 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
157 struct rt_bandwidth
*rt_b
=
158 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
164 now
= hrtimer_cb_get_time(timer
);
165 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
170 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
173 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
177 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
179 rt_b
->rt_period
= ns_to_ktime(period
);
180 rt_b
->rt_runtime
= runtime
;
182 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
184 hrtimer_init(&rt_b
->rt_period_timer
,
185 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
186 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
189 static inline int rt_bandwidth_enabled(void)
191 return sysctl_sched_rt_runtime
>= 0;
194 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
198 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
201 if (hrtimer_active(&rt_b
->rt_period_timer
))
204 raw_spin_lock(&rt_b
->rt_runtime_lock
);
209 if (hrtimer_active(&rt_b
->rt_period_timer
))
212 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
213 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
215 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
216 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
217 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
218 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
219 HRTIMER_MODE_ABS_PINNED
, 0);
221 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
227 hrtimer_cancel(&rt_b
->rt_period_timer
);
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
235 static DEFINE_MUTEX(sched_domains_mutex
);
237 #ifdef CONFIG_CGROUP_SCHED
239 #include <linux/cgroup.h>
243 static LIST_HEAD(task_groups
);
245 /* task group related information */
247 struct cgroup_subsys_state css
;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity
**se
;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq
**cfs_rq
;
254 unsigned long shares
;
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity
**rt_se
;
259 struct rt_rq
**rt_rq
;
261 struct rt_bandwidth rt_bandwidth
;
265 struct list_head list
;
267 struct task_group
*parent
;
268 struct list_head siblings
;
269 struct list_head children
;
272 #define root_task_group init_task_group
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
277 static DEFINE_SPINLOCK(task_group_lock
);
279 #ifdef CONFIG_FAIR_GROUP_SCHED
282 static int root_task_group_empty(void)
284 return list_empty(&root_task_group
.children
);
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
299 #define MAX_SHARES (1UL << 18)
301 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
307 struct task_group init_task_group
;
309 /* return group to which a task belongs */
310 static inline struct task_group
*task_group(struct task_struct
*p
)
312 struct task_group
*tg
;
314 #ifdef CONFIG_CGROUP_SCHED
315 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
316 struct task_group
, css
);
318 tg
= &init_task_group
;
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
337 p
->se
.parent
= task_group(p
)->se
[cpu
];
340 #ifdef CONFIG_RT_GROUP_SCHED
341 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
342 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
349 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
350 static inline struct task_group
*task_group(struct task_struct
*p
)
355 #endif /* CONFIG_CGROUP_SCHED */
357 /* CFS-related fields in a runqueue */
359 struct load_weight load
;
360 unsigned long nr_running
;
365 struct rb_root tasks_timeline
;
366 struct rb_node
*rb_leftmost
;
368 struct list_head tasks
;
369 struct list_head
*balance_iterator
;
372 * 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
375 struct sched_entity
*curr
, *next
, *last
;
377 unsigned int nr_spread_over
;
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
390 struct list_head leaf_cfs_rq_list
;
391 struct task_group
*tg
; /* group that "owns" this runqueue */
395 * the part of load.weight contributed by tasks
397 unsigned long task_weight
;
400 * h_load = weight * f(tg)
402 * Where f(tg) is the recursive weight fraction assigned to
405 unsigned long h_load
;
408 * this cpu's part of tg->shares
410 unsigned long shares
;
413 * load.weight at the time we set shares
415 unsigned long rq_weight
;
420 /* Real-Time classes' related field in a runqueue: */
422 struct rt_prio_array active
;
423 unsigned long rt_nr_running
;
424 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
426 int curr
; /* highest queued rt task prio */
428 int next
; /* next highest */
433 unsigned long rt_nr_migratory
;
434 unsigned long rt_nr_total
;
436 struct plist_head pushable_tasks
;
441 /* Nests inside the rq lock: */
442 raw_spinlock_t rt_runtime_lock
;
444 #ifdef CONFIG_RT_GROUP_SCHED
445 unsigned long rt_nr_boosted
;
448 struct list_head leaf_rt_rq_list
;
449 struct task_group
*tg
;
456 * We add the notion of a root-domain which will be used to define per-domain
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
459 * exclusive cpuset is created, we also create and attach a new root-domain
466 cpumask_var_t online
;
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
472 cpumask_var_t rto_mask
;
475 struct cpupri cpupri
;
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
483 static struct root_domain def_root_domain
;
488 * This is the main, per-CPU runqueue data structure.
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
502 unsigned long nr_running
;
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
506 unsigned char in_nohz_recently
;
508 /* capture load from *all* tasks on this cpu: */
509 struct load_weight load
;
510 unsigned long nr_load_updates
;
516 #ifdef CONFIG_FAIR_GROUP_SCHED
517 /* list of leaf cfs_rq on this cpu: */
518 struct list_head leaf_cfs_rq_list
;
520 #ifdef CONFIG_RT_GROUP_SCHED
521 struct list_head leaf_rt_rq_list
;
525 * This is part of a global counter where only the total sum
526 * over all CPUs matters. A task can increase this counter on
527 * one CPU and if it got migrated afterwards it may decrease
528 * it on another CPU. Always updated under the runqueue lock:
530 unsigned long nr_uninterruptible
;
532 struct task_struct
*curr
, *idle
;
533 unsigned long next_balance
;
534 struct mm_struct
*prev_mm
;
541 struct root_domain
*rd
;
542 struct sched_domain
*sd
;
544 unsigned char idle_at_tick
;
545 /* For active balancing */
549 /* cpu of this runqueue: */
553 unsigned long avg_load_per_task
;
555 struct task_struct
*migration_thread
;
556 struct list_head migration_queue
;
564 /* calc_load related fields */
565 unsigned long calc_load_update
;
566 long calc_load_active
;
568 #ifdef CONFIG_SCHED_HRTICK
570 int hrtick_csd_pending
;
571 struct call_single_data hrtick_csd
;
573 struct hrtimer hrtick_timer
;
576 #ifdef CONFIG_SCHEDSTATS
578 struct sched_info rq_sched_info
;
579 unsigned long long rq_cpu_time
;
580 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
582 /* sys_sched_yield() stats */
583 unsigned int yld_count
;
585 /* schedule() stats */
586 unsigned int sched_switch
;
587 unsigned int sched_count
;
588 unsigned int sched_goidle
;
590 /* try_to_wake_up() stats */
591 unsigned int ttwu_count
;
592 unsigned int ttwu_local
;
595 unsigned int bkl_count
;
599 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
602 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
604 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
607 static inline int cpu_of(struct rq
*rq
)
616 #define rcu_dereference_check_sched_domain(p) \
617 rcu_dereference_check((p), \
618 rcu_read_lock_sched_held() || \
619 lockdep_is_held(&sched_domains_mutex))
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623 * See detach_destroy_domains: synchronize_sched for details.
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
628 #define for_each_domain(cpu, __sd) \
629 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
631 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632 #define this_rq() (&__get_cpu_var(runqueues))
633 #define task_rq(p) cpu_rq(task_cpu(p))
634 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
635 #define raw_rq() (&__raw_get_cpu_var(runqueues))
637 inline void update_rq_clock(struct rq
*rq
)
639 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
648 # define const_debug static const
653 * @cpu: the processor in question.
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
659 int runqueue_is_locked(int cpu
)
661 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
665 * Debugging: various feature bits
668 #define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
672 #include "sched_features.h"
677 #define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
680 const_debug
unsigned int sysctl_sched_features
=
681 #include "sched_features.h"
686 #ifdef CONFIG_SCHED_DEBUG
687 #define SCHED_FEAT(name, enabled) \
690 static __read_mostly
char *sched_feat_names
[] = {
691 #include "sched_features.h"
697 static int sched_feat_show(struct seq_file
*m
, void *v
)
701 for (i
= 0; sched_feat_names
[i
]; i
++) {
702 if (!(sysctl_sched_features
& (1UL << i
)))
704 seq_printf(m
, "%s ", sched_feat_names
[i
]);
712 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
713 size_t cnt
, loff_t
*ppos
)
723 if (copy_from_user(&buf
, ubuf
, cnt
))
728 if (strncmp(buf
, "NO_", 3) == 0) {
733 for (i
= 0; sched_feat_names
[i
]; i
++) {
734 int len
= strlen(sched_feat_names
[i
]);
736 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
738 sysctl_sched_features
&= ~(1UL << i
);
740 sysctl_sched_features
|= (1UL << i
);
745 if (!sched_feat_names
[i
])
753 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
755 return single_open(filp
, sched_feat_show
, NULL
);
758 static const struct file_operations sched_feat_fops
= {
759 .open
= sched_feat_open
,
760 .write
= sched_feat_write
,
763 .release
= single_release
,
766 static __init
int sched_init_debug(void)
768 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
773 late_initcall(sched_init_debug
);
777 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
783 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
786 * ratelimit for updating the group shares.
789 unsigned int sysctl_sched_shares_ratelimit
= 250000;
790 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
797 unsigned int sysctl_sched_shares_thresh
= 4;
800 * period over which we average the RT time consumption, measured
805 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
808 * period over which we measure -rt task cpu usage in us.
811 unsigned int sysctl_sched_rt_period
= 1000000;
813 static __read_mostly
int scheduler_running
;
816 * part of the period that we allow rt tasks to run in us.
819 int sysctl_sched_rt_runtime
= 950000;
821 static inline u64
global_rt_period(void)
823 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
826 static inline u64
global_rt_runtime(void)
828 if (sysctl_sched_rt_runtime
< 0)
831 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
841 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
843 return rq
->curr
== p
;
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
849 return task_current(rq
, p
);
852 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
856 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq
->lock
.owner
= current
;
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
867 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
869 raw_spin_unlock_irq(&rq
->lock
);
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
878 return task_current(rq
, p
);
882 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 raw_spin_unlock_irq(&rq
->lock
);
895 raw_spin_unlock(&rq
->lock
);
899 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
920 * We need to make an exception for PF_STARTING tasks because the fork
921 * path might require task_rq_lock() to work, eg. it can call
922 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
924 static inline int task_is_waking(struct task_struct
*p
)
926 return unlikely((p
->state
== TASK_WAKING
) && !(p
->flags
& PF_STARTING
));
930 * __task_rq_lock - lock the runqueue a given task resides on.
931 * Must be called interrupts disabled.
933 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
939 while (task_is_waking(p
))
942 raw_spin_lock(&rq
->lock
);
943 if (likely(rq
== task_rq(p
) && !task_is_waking(p
)))
945 raw_spin_unlock(&rq
->lock
);
950 * task_rq_lock - lock the runqueue a given task resides on and disable
951 * interrupts. Note the ordering: we can safely lookup the task_rq without
952 * explicitly disabling preemption.
954 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
960 while (task_is_waking(p
))
962 local_irq_save(*flags
);
964 raw_spin_lock(&rq
->lock
);
965 if (likely(rq
== task_rq(p
) && !task_is_waking(p
)))
967 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
971 void task_rq_unlock_wait(struct task_struct
*p
)
973 struct rq
*rq
= task_rq(p
);
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976 raw_spin_unlock_wait(&rq
->lock
);
979 static void __task_rq_unlock(struct rq
*rq
)
982 raw_spin_unlock(&rq
->lock
);
985 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
988 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
992 * this_rq_lock - lock this runqueue and disable interrupts.
994 static struct rq
*this_rq_lock(void)
1001 raw_spin_lock(&rq
->lock
);
1006 #ifdef CONFIG_SCHED_HRTICK
1008 * Use HR-timers to deliver accurate preemption points.
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * - enabled by features
1021 * - hrtimer is actually high res
1023 static inline int hrtick_enabled(struct rq
*rq
)
1025 if (!sched_feat(HRTICK
))
1027 if (!cpu_active(cpu_of(rq
)))
1029 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1032 static void hrtick_clear(struct rq
*rq
)
1034 if (hrtimer_active(&rq
->hrtick_timer
))
1035 hrtimer_cancel(&rq
->hrtick_timer
);
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1042 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1044 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1046 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1048 raw_spin_lock(&rq
->lock
);
1049 update_rq_clock(rq
);
1050 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1051 raw_spin_unlock(&rq
->lock
);
1053 return HRTIMER_NORESTART
;
1058 * called from hardirq (IPI) context
1060 static void __hrtick_start(void *arg
)
1062 struct rq
*rq
= arg
;
1064 raw_spin_lock(&rq
->lock
);
1065 hrtimer_restart(&rq
->hrtick_timer
);
1066 rq
->hrtick_csd_pending
= 0;
1067 raw_spin_unlock(&rq
->lock
);
1071 * Called to set the hrtick timer state.
1073 * called with rq->lock held and irqs disabled
1075 static void hrtick_start(struct rq
*rq
, u64 delay
)
1077 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1078 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1080 hrtimer_set_expires(timer
, time
);
1082 if (rq
== this_rq()) {
1083 hrtimer_restart(timer
);
1084 } else if (!rq
->hrtick_csd_pending
) {
1085 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1086 rq
->hrtick_csd_pending
= 1;
1091 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1093 int cpu
= (int)(long)hcpu
;
1096 case CPU_UP_CANCELED
:
1097 case CPU_UP_CANCELED_FROZEN
:
1098 case CPU_DOWN_PREPARE
:
1099 case CPU_DOWN_PREPARE_FROZEN
:
1101 case CPU_DEAD_FROZEN
:
1102 hrtick_clear(cpu_rq(cpu
));
1109 static __init
void init_hrtick(void)
1111 hotcpu_notifier(hotplug_hrtick
, 0);
1115 * Called to set the hrtick timer state.
1117 * called with rq->lock held and irqs disabled
1119 static void hrtick_start(struct rq
*rq
, u64 delay
)
1121 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1122 HRTIMER_MODE_REL_PINNED
, 0);
1125 static inline void init_hrtick(void)
1128 #endif /* CONFIG_SMP */
1130 static void init_rq_hrtick(struct rq
*rq
)
1133 rq
->hrtick_csd_pending
= 0;
1135 rq
->hrtick_csd
.flags
= 0;
1136 rq
->hrtick_csd
.func
= __hrtick_start
;
1137 rq
->hrtick_csd
.info
= rq
;
1140 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1141 rq
->hrtick_timer
.function
= hrtick
;
1143 #else /* CONFIG_SCHED_HRTICK */
1144 static inline void hrtick_clear(struct rq
*rq
)
1148 static inline void init_rq_hrtick(struct rq
*rq
)
1152 static inline void init_hrtick(void)
1155 #endif /* CONFIG_SCHED_HRTICK */
1158 * resched_task - mark a task 'to be rescheduled now'.
1160 * On UP this means the setting of the need_resched flag, on SMP it
1161 * might also involve a cross-CPU call to trigger the scheduler on
1166 #ifndef tsk_is_polling
1167 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1170 static void resched_task(struct task_struct
*p
)
1174 assert_raw_spin_locked(&task_rq(p
)->lock
);
1176 if (test_tsk_need_resched(p
))
1179 set_tsk_need_resched(p
);
1182 if (cpu
== smp_processor_id())
1185 /* NEED_RESCHED must be visible before we test polling */
1187 if (!tsk_is_polling(p
))
1188 smp_send_reschedule(cpu
);
1191 static void resched_cpu(int cpu
)
1193 struct rq
*rq
= cpu_rq(cpu
);
1194 unsigned long flags
;
1196 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1198 resched_task(cpu_curr(cpu
));
1199 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1213 void wake_up_idle_cpu(int cpu
)
1215 struct rq
*rq
= cpu_rq(cpu
);
1217 if (cpu
== smp_processor_id())
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1227 if (rq
->curr
!= rq
->idle
)
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1235 set_tsk_need_resched(rq
->idle
);
1237 /* NEED_RESCHED must be visible before we test polling */
1239 if (!tsk_is_polling(rq
->idle
))
1240 smp_send_reschedule(cpu
);
1242 #endif /* CONFIG_NO_HZ */
1244 static u64
sched_avg_period(void)
1246 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1249 static void sched_avg_update(struct rq
*rq
)
1251 s64 period
= sched_avg_period();
1253 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1254 rq
->age_stamp
+= period
;
1259 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1261 rq
->rt_avg
+= rt_delta
;
1262 sched_avg_update(rq
);
1265 #else /* !CONFIG_SMP */
1266 static void resched_task(struct task_struct
*p
)
1268 assert_raw_spin_locked(&task_rq(p
)->lock
);
1269 set_tsk_need_resched(p
);
1272 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1275 #endif /* CONFIG_SMP */
1277 #if BITS_PER_LONG == 32
1278 # define WMULT_CONST (~0UL)
1280 # define WMULT_CONST (1UL << 32)
1283 #define WMULT_SHIFT 32
1286 * Shift right and round:
1288 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1291 * delta *= weight / lw
1293 static unsigned long
1294 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1295 struct load_weight
*lw
)
1299 if (!lw
->inv_weight
) {
1300 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1303 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1307 tmp
= (u64
)delta_exec
* weight
;
1309 * Check whether we'd overflow the 64-bit multiplication:
1311 if (unlikely(tmp
> WMULT_CONST
))
1312 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1315 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1317 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1320 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1326 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1333 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1334 * of tasks with abnormal "nice" values across CPUs the contribution that
1335 * each task makes to its run queue's load is weighted according to its
1336 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1337 * scaled version of the new time slice allocation that they receive on time
1341 #define WEIGHT_IDLEPRIO 3
1342 #define WMULT_IDLEPRIO 1431655765
1345 * Nice levels are multiplicative, with a gentle 10% change for every
1346 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1347 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1348 * that remained on nice 0.
1350 * The "10% effect" is relative and cumulative: from _any_ nice level,
1351 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1352 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1353 * If a task goes up by ~10% and another task goes down by ~10% then
1354 * the relative distance between them is ~25%.)
1356 static const int prio_to_weight
[40] = {
1357 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1358 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1359 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1360 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1361 /* 0 */ 1024, 820, 655, 526, 423,
1362 /* 5 */ 335, 272, 215, 172, 137,
1363 /* 10 */ 110, 87, 70, 56, 45,
1364 /* 15 */ 36, 29, 23, 18, 15,
1368 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1370 * In cases where the weight does not change often, we can use the
1371 * precalculated inverse to speed up arithmetics by turning divisions
1372 * into multiplications:
1374 static const u32 prio_to_wmult
[40] = {
1375 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1376 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1377 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1378 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1379 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1380 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1381 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1382 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1385 /* Time spent by the tasks of the cpu accounting group executing in ... */
1386 enum cpuacct_stat_index
{
1387 CPUACCT_STAT_USER
, /* ... user mode */
1388 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1390 CPUACCT_STAT_NSTATS
,
1393 #ifdef CONFIG_CGROUP_CPUACCT
1394 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1395 static void cpuacct_update_stats(struct task_struct
*tsk
,
1396 enum cpuacct_stat_index idx
, cputime_t val
);
1398 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1399 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1400 enum cpuacct_stat_index idx
, cputime_t val
) {}
1403 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1405 update_load_add(&rq
->load
, load
);
1408 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1410 update_load_sub(&rq
->load
, load
);
1413 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1414 typedef int (*tg_visitor
)(struct task_group
*, void *);
1417 * Iterate the full tree, calling @down when first entering a node and @up when
1418 * leaving it for the final time.
1420 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1422 struct task_group
*parent
, *child
;
1426 parent
= &root_task_group
;
1428 ret
= (*down
)(parent
, data
);
1431 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1438 ret
= (*up
)(parent
, data
);
1443 parent
= parent
->parent
;
1452 static int tg_nop(struct task_group
*tg
, void *data
)
1459 /* Used instead of source_load when we know the type == 0 */
1460 static unsigned long weighted_cpuload(const int cpu
)
1462 return cpu_rq(cpu
)->load
.weight
;
1466 * Return a low guess at the load of a migration-source cpu weighted
1467 * according to the scheduling class and "nice" value.
1469 * We want to under-estimate the load of migration sources, to
1470 * balance conservatively.
1472 static unsigned long source_load(int cpu
, int type
)
1474 struct rq
*rq
= cpu_rq(cpu
);
1475 unsigned long total
= weighted_cpuload(cpu
);
1477 if (type
== 0 || !sched_feat(LB_BIAS
))
1480 return min(rq
->cpu_load
[type
-1], total
);
1484 * Return a high guess at the load of a migration-target cpu weighted
1485 * according to the scheduling class and "nice" value.
1487 static unsigned long target_load(int cpu
, int type
)
1489 struct rq
*rq
= cpu_rq(cpu
);
1490 unsigned long total
= weighted_cpuload(cpu
);
1492 if (type
== 0 || !sched_feat(LB_BIAS
))
1495 return max(rq
->cpu_load
[type
-1], total
);
1498 static struct sched_group
*group_of(int cpu
)
1500 struct sched_domain
*sd
= rcu_dereference_sched(cpu_rq(cpu
)->sd
);
1508 static unsigned long power_of(int cpu
)
1510 struct sched_group
*group
= group_of(cpu
);
1513 return SCHED_LOAD_SCALE
;
1515 return group
->cpu_power
;
1518 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1520 static unsigned long cpu_avg_load_per_task(int cpu
)
1522 struct rq
*rq
= cpu_rq(cpu
);
1523 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1526 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1528 rq
->avg_load_per_task
= 0;
1530 return rq
->avg_load_per_task
;
1533 #ifdef CONFIG_FAIR_GROUP_SCHED
1535 static __read_mostly
unsigned long __percpu
*update_shares_data
;
1537 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1540 * Calculate and set the cpu's group shares.
1542 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1543 unsigned long sd_shares
,
1544 unsigned long sd_rq_weight
,
1545 unsigned long *usd_rq_weight
)
1547 unsigned long shares
, rq_weight
;
1550 rq_weight
= usd_rq_weight
[cpu
];
1553 rq_weight
= NICE_0_LOAD
;
1557 * \Sum_j shares_j * rq_weight_i
1558 * shares_i = -----------------------------
1559 * \Sum_j rq_weight_j
1561 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1562 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1564 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1565 sysctl_sched_shares_thresh
) {
1566 struct rq
*rq
= cpu_rq(cpu
);
1567 unsigned long flags
;
1569 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1570 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1571 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1572 __set_se_shares(tg
->se
[cpu
], shares
);
1573 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1578 * Re-compute the task group their per cpu shares over the given domain.
1579 * This needs to be done in a bottom-up fashion because the rq weight of a
1580 * parent group depends on the shares of its child groups.
1582 static int tg_shares_up(struct task_group
*tg
, void *data
)
1584 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1585 unsigned long *usd_rq_weight
;
1586 struct sched_domain
*sd
= data
;
1587 unsigned long flags
;
1593 local_irq_save(flags
);
1594 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1596 for_each_cpu(i
, sched_domain_span(sd
)) {
1597 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1598 usd_rq_weight
[i
] = weight
;
1600 rq_weight
+= weight
;
1602 * If there are currently no tasks on the cpu pretend there
1603 * is one of average load so that when a new task gets to
1604 * run here it will not get delayed by group starvation.
1607 weight
= NICE_0_LOAD
;
1609 sum_weight
+= weight
;
1610 shares
+= tg
->cfs_rq
[i
]->shares
;
1614 rq_weight
= sum_weight
;
1616 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1617 shares
= tg
->shares
;
1619 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1620 shares
= tg
->shares
;
1622 for_each_cpu(i
, sched_domain_span(sd
))
1623 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1625 local_irq_restore(flags
);
1631 * Compute the cpu's hierarchical load factor for each task group.
1632 * This needs to be done in a top-down fashion because the load of a child
1633 * group is a fraction of its parents load.
1635 static int tg_load_down(struct task_group
*tg
, void *data
)
1638 long cpu
= (long)data
;
1641 load
= cpu_rq(cpu
)->load
.weight
;
1643 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1644 load
*= tg
->cfs_rq
[cpu
]->shares
;
1645 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1648 tg
->cfs_rq
[cpu
]->h_load
= load
;
1653 static void update_shares(struct sched_domain
*sd
)
1658 if (root_task_group_empty())
1661 now
= cpu_clock(raw_smp_processor_id());
1662 elapsed
= now
- sd
->last_update
;
1664 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1665 sd
->last_update
= now
;
1666 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1670 static void update_h_load(long cpu
)
1672 if (root_task_group_empty())
1675 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1680 static inline void update_shares(struct sched_domain
*sd
)
1686 #ifdef CONFIG_PREEMPT
1688 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1691 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1692 * way at the expense of forcing extra atomic operations in all
1693 * invocations. This assures that the double_lock is acquired using the
1694 * same underlying policy as the spinlock_t on this architecture, which
1695 * reduces latency compared to the unfair variant below. However, it
1696 * also adds more overhead and therefore may reduce throughput.
1698 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1699 __releases(this_rq
->lock
)
1700 __acquires(busiest
->lock
)
1701 __acquires(this_rq
->lock
)
1703 raw_spin_unlock(&this_rq
->lock
);
1704 double_rq_lock(this_rq
, busiest
);
1711 * Unfair double_lock_balance: Optimizes throughput at the expense of
1712 * latency by eliminating extra atomic operations when the locks are
1713 * already in proper order on entry. This favors lower cpu-ids and will
1714 * grant the double lock to lower cpus over higher ids under contention,
1715 * regardless of entry order into the function.
1717 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1718 __releases(this_rq
->lock
)
1719 __acquires(busiest
->lock
)
1720 __acquires(this_rq
->lock
)
1724 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1725 if (busiest
< this_rq
) {
1726 raw_spin_unlock(&this_rq
->lock
);
1727 raw_spin_lock(&busiest
->lock
);
1728 raw_spin_lock_nested(&this_rq
->lock
,
1729 SINGLE_DEPTH_NESTING
);
1732 raw_spin_lock_nested(&busiest
->lock
,
1733 SINGLE_DEPTH_NESTING
);
1738 #endif /* CONFIG_PREEMPT */
1741 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1743 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1745 if (unlikely(!irqs_disabled())) {
1746 /* printk() doesn't work good under rq->lock */
1747 raw_spin_unlock(&this_rq
->lock
);
1751 return _double_lock_balance(this_rq
, busiest
);
1754 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1755 __releases(busiest
->lock
)
1757 raw_spin_unlock(&busiest
->lock
);
1758 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1762 * double_rq_lock - safely lock two runqueues
1764 * Note this does not disable interrupts like task_rq_lock,
1765 * you need to do so manually before calling.
1767 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1768 __acquires(rq1
->lock
)
1769 __acquires(rq2
->lock
)
1771 BUG_ON(!irqs_disabled());
1773 raw_spin_lock(&rq1
->lock
);
1774 __acquire(rq2
->lock
); /* Fake it out ;) */
1777 raw_spin_lock(&rq1
->lock
);
1778 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1780 raw_spin_lock(&rq2
->lock
);
1781 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1784 update_rq_clock(rq1
);
1785 update_rq_clock(rq2
);
1789 * double_rq_unlock - safely unlock two runqueues
1791 * Note this does not restore interrupts like task_rq_unlock,
1792 * you need to do so manually after calling.
1794 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1795 __releases(rq1
->lock
)
1796 __releases(rq2
->lock
)
1798 raw_spin_unlock(&rq1
->lock
);
1800 raw_spin_unlock(&rq2
->lock
);
1802 __release(rq2
->lock
);
1807 #ifdef CONFIG_FAIR_GROUP_SCHED
1808 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1811 cfs_rq
->shares
= shares
;
1816 static void calc_load_account_active(struct rq
*this_rq
);
1817 static void update_sysctl(void);
1818 static int get_update_sysctl_factor(void);
1820 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1822 set_task_rq(p
, cpu
);
1825 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1826 * successfuly executed on another CPU. We must ensure that updates of
1827 * per-task data have been completed by this moment.
1830 task_thread_info(p
)->cpu
= cpu
;
1834 static const struct sched_class rt_sched_class
;
1836 #define sched_class_highest (&rt_sched_class)
1837 #define for_each_class(class) \
1838 for (class = sched_class_highest; class; class = class->next)
1840 #include "sched_stats.h"
1842 static void inc_nr_running(struct rq
*rq
)
1847 static void dec_nr_running(struct rq
*rq
)
1852 static void set_load_weight(struct task_struct
*p
)
1854 if (task_has_rt_policy(p
)) {
1855 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1856 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1861 * SCHED_IDLE tasks get minimal weight:
1863 if (p
->policy
== SCHED_IDLE
) {
1864 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1865 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1869 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1870 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1873 static void update_avg(u64
*avg
, u64 sample
)
1875 s64 diff
= sample
- *avg
;
1880 enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
, bool head
)
1883 p
->se
.start_runtime
= p
->se
.sum_exec_runtime
;
1885 sched_info_queued(p
);
1886 p
->sched_class
->enqueue_task(rq
, p
, wakeup
, head
);
1890 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1893 if (p
->se
.last_wakeup
) {
1894 update_avg(&p
->se
.avg_overlap
,
1895 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1896 p
->se
.last_wakeup
= 0;
1898 update_avg(&p
->se
.avg_wakeup
,
1899 sysctl_sched_wakeup_granularity
);
1903 sched_info_dequeued(p
);
1904 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1909 * activate_task - move a task to the runqueue.
1911 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1913 if (task_contributes_to_load(p
))
1914 rq
->nr_uninterruptible
--;
1916 enqueue_task(rq
, p
, wakeup
, false);
1921 * deactivate_task - remove a task from the runqueue.
1923 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1925 if (task_contributes_to_load(p
))
1926 rq
->nr_uninterruptible
++;
1928 dequeue_task(rq
, p
, sleep
);
1932 #include "sched_idletask.c"
1933 #include "sched_fair.c"
1934 #include "sched_rt.c"
1935 #ifdef CONFIG_SCHED_DEBUG
1936 # include "sched_debug.c"
1940 * __normal_prio - return the priority that is based on the static prio
1942 static inline int __normal_prio(struct task_struct
*p
)
1944 return p
->static_prio
;
1948 * Calculate the expected normal priority: i.e. priority
1949 * without taking RT-inheritance into account. Might be
1950 * boosted by interactivity modifiers. Changes upon fork,
1951 * setprio syscalls, and whenever the interactivity
1952 * estimator recalculates.
1954 static inline int normal_prio(struct task_struct
*p
)
1958 if (task_has_rt_policy(p
))
1959 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1961 prio
= __normal_prio(p
);
1966 * Calculate the current priority, i.e. the priority
1967 * taken into account by the scheduler. This value might
1968 * be boosted by RT tasks, or might be boosted by
1969 * interactivity modifiers. Will be RT if the task got
1970 * RT-boosted. If not then it returns p->normal_prio.
1972 static int effective_prio(struct task_struct
*p
)
1974 p
->normal_prio
= normal_prio(p
);
1976 * If we are RT tasks or we were boosted to RT priority,
1977 * keep the priority unchanged. Otherwise, update priority
1978 * to the normal priority:
1980 if (!rt_prio(p
->prio
))
1981 return p
->normal_prio
;
1986 * task_curr - is this task currently executing on a CPU?
1987 * @p: the task in question.
1989 inline int task_curr(const struct task_struct
*p
)
1991 return cpu_curr(task_cpu(p
)) == p
;
1994 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1995 const struct sched_class
*prev_class
,
1996 int oldprio
, int running
)
1998 if (prev_class
!= p
->sched_class
) {
1999 if (prev_class
->switched_from
)
2000 prev_class
->switched_from(rq
, p
, running
);
2001 p
->sched_class
->switched_to(rq
, p
, running
);
2003 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2008 * Is this task likely cache-hot:
2011 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2015 if (p
->sched_class
!= &fair_sched_class
)
2019 * Buddy candidates are cache hot:
2021 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2022 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2023 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2026 if (sysctl_sched_migration_cost
== -1)
2028 if (sysctl_sched_migration_cost
== 0)
2031 delta
= now
- p
->se
.exec_start
;
2033 return delta
< (s64
)sysctl_sched_migration_cost
;
2036 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2038 #ifdef CONFIG_SCHED_DEBUG
2040 * We should never call set_task_cpu() on a blocked task,
2041 * ttwu() will sort out the placement.
2043 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2044 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2047 trace_sched_migrate_task(p
, new_cpu
);
2049 if (task_cpu(p
) != new_cpu
) {
2050 p
->se
.nr_migrations
++;
2051 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2054 __set_task_cpu(p
, new_cpu
);
2057 struct migration_req
{
2058 struct list_head list
;
2060 struct task_struct
*task
;
2063 struct completion done
;
2067 * The task's runqueue lock must be held.
2068 * Returns true if you have to wait for migration thread.
2071 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2073 struct rq
*rq
= task_rq(p
);
2076 * If the task is not on a runqueue (and not running), then
2077 * the next wake-up will properly place the task.
2079 if (!p
->se
.on_rq
&& !task_running(rq
, p
))
2082 init_completion(&req
->done
);
2084 req
->dest_cpu
= dest_cpu
;
2085 list_add(&req
->list
, &rq
->migration_queue
);
2091 * wait_task_context_switch - wait for a thread to complete at least one
2094 * @p must not be current.
2096 void wait_task_context_switch(struct task_struct
*p
)
2098 unsigned long nvcsw
, nivcsw
, flags
;
2106 * The runqueue is assigned before the actual context
2107 * switch. We need to take the runqueue lock.
2109 * We could check initially without the lock but it is
2110 * very likely that we need to take the lock in every
2113 rq
= task_rq_lock(p
, &flags
);
2114 running
= task_running(rq
, p
);
2115 task_rq_unlock(rq
, &flags
);
2117 if (likely(!running
))
2120 * The switch count is incremented before the actual
2121 * context switch. We thus wait for two switches to be
2122 * sure at least one completed.
2124 if ((p
->nvcsw
- nvcsw
) > 1)
2126 if ((p
->nivcsw
- nivcsw
) > 1)
2134 * wait_task_inactive - wait for a thread to unschedule.
2136 * If @match_state is nonzero, it's the @p->state value just checked and
2137 * not expected to change. If it changes, i.e. @p might have woken up,
2138 * then return zero. When we succeed in waiting for @p to be off its CPU,
2139 * we return a positive number (its total switch count). If a second call
2140 * a short while later returns the same number, the caller can be sure that
2141 * @p has remained unscheduled the whole time.
2143 * The caller must ensure that the task *will* unschedule sometime soon,
2144 * else this function might spin for a *long* time. This function can't
2145 * be called with interrupts off, or it may introduce deadlock with
2146 * smp_call_function() if an IPI is sent by the same process we are
2147 * waiting to become inactive.
2149 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2151 unsigned long flags
;
2158 * We do the initial early heuristics without holding
2159 * any task-queue locks at all. We'll only try to get
2160 * the runqueue lock when things look like they will
2166 * If the task is actively running on another CPU
2167 * still, just relax and busy-wait without holding
2170 * NOTE! Since we don't hold any locks, it's not
2171 * even sure that "rq" stays as the right runqueue!
2172 * But we don't care, since "task_running()" will
2173 * return false if the runqueue has changed and p
2174 * is actually now running somewhere else!
2176 while (task_running(rq
, p
)) {
2177 if (match_state
&& unlikely(p
->state
!= match_state
))
2183 * Ok, time to look more closely! We need the rq
2184 * lock now, to be *sure*. If we're wrong, we'll
2185 * just go back and repeat.
2187 rq
= task_rq_lock(p
, &flags
);
2188 trace_sched_wait_task(rq
, p
);
2189 running
= task_running(rq
, p
);
2190 on_rq
= p
->se
.on_rq
;
2192 if (!match_state
|| p
->state
== match_state
)
2193 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2194 task_rq_unlock(rq
, &flags
);
2197 * If it changed from the expected state, bail out now.
2199 if (unlikely(!ncsw
))
2203 * Was it really running after all now that we
2204 * checked with the proper locks actually held?
2206 * Oops. Go back and try again..
2208 if (unlikely(running
)) {
2214 * It's not enough that it's not actively running,
2215 * it must be off the runqueue _entirely_, and not
2218 * So if it was still runnable (but just not actively
2219 * running right now), it's preempted, and we should
2220 * yield - it could be a while.
2222 if (unlikely(on_rq
)) {
2223 schedule_timeout_uninterruptible(1);
2228 * Ahh, all good. It wasn't running, and it wasn't
2229 * runnable, which means that it will never become
2230 * running in the future either. We're all done!
2239 * kick_process - kick a running thread to enter/exit the kernel
2240 * @p: the to-be-kicked thread
2242 * Cause a process which is running on another CPU to enter
2243 * kernel-mode, without any delay. (to get signals handled.)
2245 * NOTE: this function doesnt have to take the runqueue lock,
2246 * because all it wants to ensure is that the remote task enters
2247 * the kernel. If the IPI races and the task has been migrated
2248 * to another CPU then no harm is done and the purpose has been
2251 void kick_process(struct task_struct
*p
)
2257 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2258 smp_send_reschedule(cpu
);
2261 EXPORT_SYMBOL_GPL(kick_process
);
2262 #endif /* CONFIG_SMP */
2265 * task_oncpu_function_call - call a function on the cpu on which a task runs
2266 * @p: the task to evaluate
2267 * @func: the function to be called
2268 * @info: the function call argument
2270 * Calls the function @func when the task is currently running. This might
2271 * be on the current CPU, which just calls the function directly
2273 void task_oncpu_function_call(struct task_struct
*p
,
2274 void (*func
) (void *info
), void *info
)
2281 smp_call_function_single(cpu
, func
, info
, 1);
2286 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2289 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2291 /* Look for allowed, online CPU in same node. */
2292 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2293 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2296 /* Any allowed, online CPU? */
2297 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2298 if (dest_cpu
< nr_cpu_ids
)
2301 /* No more Mr. Nice Guy. */
2302 if (dest_cpu
>= nr_cpu_ids
) {
2304 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
2306 dest_cpu
= cpumask_any_and(cpu_active_mask
, &p
->cpus_allowed
);
2309 * Don't tell them about moving exiting tasks or
2310 * kernel threads (both mm NULL), since they never
2313 if (p
->mm
&& printk_ratelimit()) {
2314 printk(KERN_INFO
"process %d (%s) no "
2315 "longer affine to cpu%d\n",
2316 task_pid_nr(p
), p
->comm
, cpu
);
2324 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2325 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2328 * exec: is unstable, retry loop
2329 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2332 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2334 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2337 * In order not to call set_task_cpu() on a blocking task we need
2338 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2341 * Since this is common to all placement strategies, this lives here.
2343 * [ this allows ->select_task() to simply return task_cpu(p) and
2344 * not worry about this generic constraint ]
2346 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2348 cpu
= select_fallback_rq(task_cpu(p
), p
);
2355 * try_to_wake_up - wake up a thread
2356 * @p: the to-be-woken-up thread
2357 * @state: the mask of task states that can be woken
2358 * @sync: do a synchronous wakeup?
2360 * Put it on the run-queue if it's not already there. The "current"
2361 * thread is always on the run-queue (except when the actual
2362 * re-schedule is in progress), and as such you're allowed to do
2363 * the simpler "current->state = TASK_RUNNING" to mark yourself
2364 * runnable without the overhead of this.
2366 * returns failure only if the task is already active.
2368 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2371 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2372 unsigned long flags
;
2375 if (!sched_feat(SYNC_WAKEUPS
))
2376 wake_flags
&= ~WF_SYNC
;
2378 this_cpu
= get_cpu();
2381 rq
= task_rq_lock(p
, &flags
);
2382 update_rq_clock(rq
);
2383 if (!(p
->state
& state
))
2393 if (unlikely(task_running(rq
, p
)))
2397 * In order to handle concurrent wakeups and release the rq->lock
2398 * we put the task in TASK_WAKING state.
2400 * First fix up the nr_uninterruptible count:
2402 if (task_contributes_to_load(p
))
2403 rq
->nr_uninterruptible
--;
2404 p
->state
= TASK_WAKING
;
2406 if (p
->sched_class
->task_waking
)
2407 p
->sched_class
->task_waking(rq
, p
);
2409 __task_rq_unlock(rq
);
2411 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2412 if (cpu
!= orig_cpu
) {
2414 * Since we migrate the task without holding any rq->lock,
2415 * we need to be careful with task_rq_lock(), since that
2416 * might end up locking an invalid rq.
2418 set_task_cpu(p
, cpu
);
2422 raw_spin_lock(&rq
->lock
);
2423 update_rq_clock(rq
);
2426 * We migrated the task without holding either rq->lock, however
2427 * since the task is not on the task list itself, nobody else
2428 * will try and migrate the task, hence the rq should match the
2429 * cpu we just moved it to.
2431 WARN_ON(task_cpu(p
) != cpu
);
2432 WARN_ON(p
->state
!= TASK_WAKING
);
2434 #ifdef CONFIG_SCHEDSTATS
2435 schedstat_inc(rq
, ttwu_count
);
2436 if (cpu
== this_cpu
)
2437 schedstat_inc(rq
, ttwu_local
);
2439 struct sched_domain
*sd
;
2440 for_each_domain(this_cpu
, sd
) {
2441 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2442 schedstat_inc(sd
, ttwu_wake_remote
);
2447 #endif /* CONFIG_SCHEDSTATS */
2450 #endif /* CONFIG_SMP */
2451 schedstat_inc(p
, se
.nr_wakeups
);
2452 if (wake_flags
& WF_SYNC
)
2453 schedstat_inc(p
, se
.nr_wakeups_sync
);
2454 if (orig_cpu
!= cpu
)
2455 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2456 if (cpu
== this_cpu
)
2457 schedstat_inc(p
, se
.nr_wakeups_local
);
2459 schedstat_inc(p
, se
.nr_wakeups_remote
);
2460 activate_task(rq
, p
, 1);
2464 * Only attribute actual wakeups done by this task.
2466 if (!in_interrupt()) {
2467 struct sched_entity
*se
= ¤t
->se
;
2468 u64 sample
= se
->sum_exec_runtime
;
2470 if (se
->last_wakeup
)
2471 sample
-= se
->last_wakeup
;
2473 sample
-= se
->start_runtime
;
2474 update_avg(&se
->avg_wakeup
, sample
);
2476 se
->last_wakeup
= se
->sum_exec_runtime
;
2480 trace_sched_wakeup(rq
, p
, success
);
2481 check_preempt_curr(rq
, p
, wake_flags
);
2483 p
->state
= TASK_RUNNING
;
2485 if (p
->sched_class
->task_woken
)
2486 p
->sched_class
->task_woken(rq
, p
);
2488 if (unlikely(rq
->idle_stamp
)) {
2489 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2490 u64 max
= 2*sysctl_sched_migration_cost
;
2495 update_avg(&rq
->avg_idle
, delta
);
2500 task_rq_unlock(rq
, &flags
);
2507 * wake_up_process - Wake up a specific process
2508 * @p: The process to be woken up.
2510 * Attempt to wake up the nominated process and move it to the set of runnable
2511 * processes. Returns 1 if the process was woken up, 0 if it was already
2514 * It may be assumed that this function implies a write memory barrier before
2515 * changing the task state if and only if any tasks are woken up.
2517 int wake_up_process(struct task_struct
*p
)
2519 return try_to_wake_up(p
, TASK_ALL
, 0);
2521 EXPORT_SYMBOL(wake_up_process
);
2523 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2525 return try_to_wake_up(p
, state
, 0);
2529 * Perform scheduler related setup for a newly forked process p.
2530 * p is forked by current.
2532 * __sched_fork() is basic setup used by init_idle() too:
2534 static void __sched_fork(struct task_struct
*p
)
2536 p
->se
.exec_start
= 0;
2537 p
->se
.sum_exec_runtime
= 0;
2538 p
->se
.prev_sum_exec_runtime
= 0;
2539 p
->se
.nr_migrations
= 0;
2540 p
->se
.last_wakeup
= 0;
2541 p
->se
.avg_overlap
= 0;
2542 p
->se
.start_runtime
= 0;
2543 p
->se
.avg_wakeup
= sysctl_sched_wakeup_granularity
;
2545 #ifdef CONFIG_SCHEDSTATS
2546 p
->se
.wait_start
= 0;
2548 p
->se
.wait_count
= 0;
2551 p
->se
.sleep_start
= 0;
2552 p
->se
.sleep_max
= 0;
2553 p
->se
.sum_sleep_runtime
= 0;
2555 p
->se
.block_start
= 0;
2556 p
->se
.block_max
= 0;
2558 p
->se
.slice_max
= 0;
2560 p
->se
.nr_migrations_cold
= 0;
2561 p
->se
.nr_failed_migrations_affine
= 0;
2562 p
->se
.nr_failed_migrations_running
= 0;
2563 p
->se
.nr_failed_migrations_hot
= 0;
2564 p
->se
.nr_forced_migrations
= 0;
2566 p
->se
.nr_wakeups
= 0;
2567 p
->se
.nr_wakeups_sync
= 0;
2568 p
->se
.nr_wakeups_migrate
= 0;
2569 p
->se
.nr_wakeups_local
= 0;
2570 p
->se
.nr_wakeups_remote
= 0;
2571 p
->se
.nr_wakeups_affine
= 0;
2572 p
->se
.nr_wakeups_affine_attempts
= 0;
2573 p
->se
.nr_wakeups_passive
= 0;
2574 p
->se
.nr_wakeups_idle
= 0;
2578 INIT_LIST_HEAD(&p
->rt
.run_list
);
2580 INIT_LIST_HEAD(&p
->se
.group_node
);
2582 #ifdef CONFIG_PREEMPT_NOTIFIERS
2583 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2588 * fork()/clone()-time setup:
2590 void sched_fork(struct task_struct
*p
, int clone_flags
)
2592 int cpu
= get_cpu();
2596 * We mark the process as waking here. This guarantees that
2597 * nobody will actually run it, and a signal or other external
2598 * event cannot wake it up and insert it on the runqueue either.
2600 p
->state
= TASK_WAKING
;
2603 * Revert to default priority/policy on fork if requested.
2605 if (unlikely(p
->sched_reset_on_fork
)) {
2606 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2607 p
->policy
= SCHED_NORMAL
;
2608 p
->normal_prio
= p
->static_prio
;
2611 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2612 p
->static_prio
= NICE_TO_PRIO(0);
2613 p
->normal_prio
= p
->static_prio
;
2618 * We don't need the reset flag anymore after the fork. It has
2619 * fulfilled its duty:
2621 p
->sched_reset_on_fork
= 0;
2625 * Make sure we do not leak PI boosting priority to the child.
2627 p
->prio
= current
->normal_prio
;
2629 if (!rt_prio(p
->prio
))
2630 p
->sched_class
= &fair_sched_class
;
2632 if (p
->sched_class
->task_fork
)
2633 p
->sched_class
->task_fork(p
);
2635 set_task_cpu(p
, cpu
);
2637 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2638 if (likely(sched_info_on()))
2639 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2641 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2644 #ifdef CONFIG_PREEMPT
2645 /* Want to start with kernel preemption disabled. */
2646 task_thread_info(p
)->preempt_count
= 1;
2648 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2654 * wake_up_new_task - wake up a newly created task for the first time.
2656 * This function will do some initial scheduler statistics housekeeping
2657 * that must be done for every newly created context, then puts the task
2658 * on the runqueue and wakes it.
2660 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2662 unsigned long flags
;
2664 int cpu __maybe_unused
= get_cpu();
2668 * Fork balancing, do it here and not earlier because:
2669 * - cpus_allowed can change in the fork path
2670 * - any previously selected cpu might disappear through hotplug
2672 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2673 * ->cpus_allowed is stable, we have preemption disabled, meaning
2674 * cpu_online_mask is stable.
2676 cpu
= select_task_rq(p
, SD_BALANCE_FORK
, 0);
2677 set_task_cpu(p
, cpu
);
2681 * Since the task is not on the rq and we still have TASK_WAKING set
2682 * nobody else will migrate this task.
2685 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2687 BUG_ON(p
->state
!= TASK_WAKING
);
2688 p
->state
= TASK_RUNNING
;
2689 update_rq_clock(rq
);
2690 activate_task(rq
, p
, 0);
2691 trace_sched_wakeup_new(rq
, p
, 1);
2692 check_preempt_curr(rq
, p
, WF_FORK
);
2694 if (p
->sched_class
->task_woken
)
2695 p
->sched_class
->task_woken(rq
, p
);
2697 task_rq_unlock(rq
, &flags
);
2701 #ifdef CONFIG_PREEMPT_NOTIFIERS
2704 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2705 * @notifier: notifier struct to register
2707 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2709 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2711 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2714 * preempt_notifier_unregister - no longer interested in preemption notifications
2715 * @notifier: notifier struct to unregister
2717 * This is safe to call from within a preemption notifier.
2719 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2721 hlist_del(¬ifier
->link
);
2723 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2725 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2727 struct preempt_notifier
*notifier
;
2728 struct hlist_node
*node
;
2730 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2731 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2735 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2736 struct task_struct
*next
)
2738 struct preempt_notifier
*notifier
;
2739 struct hlist_node
*node
;
2741 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2742 notifier
->ops
->sched_out(notifier
, next
);
2745 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2747 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2752 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2753 struct task_struct
*next
)
2757 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2760 * prepare_task_switch - prepare to switch tasks
2761 * @rq: the runqueue preparing to switch
2762 * @prev: the current task that is being switched out
2763 * @next: the task we are going to switch to.
2765 * This is called with the rq lock held and interrupts off. It must
2766 * be paired with a subsequent finish_task_switch after the context
2769 * prepare_task_switch sets up locking and calls architecture specific
2773 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2774 struct task_struct
*next
)
2776 fire_sched_out_preempt_notifiers(prev
, next
);
2777 prepare_lock_switch(rq
, next
);
2778 prepare_arch_switch(next
);
2782 * finish_task_switch - clean up after a task-switch
2783 * @rq: runqueue associated with task-switch
2784 * @prev: the thread we just switched away from.
2786 * finish_task_switch must be called after the context switch, paired
2787 * with a prepare_task_switch call before the context switch.
2788 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2789 * and do any other architecture-specific cleanup actions.
2791 * Note that we may have delayed dropping an mm in context_switch(). If
2792 * so, we finish that here outside of the runqueue lock. (Doing it
2793 * with the lock held can cause deadlocks; see schedule() for
2796 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2797 __releases(rq
->lock
)
2799 struct mm_struct
*mm
= rq
->prev_mm
;
2805 * A task struct has one reference for the use as "current".
2806 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2807 * schedule one last time. The schedule call will never return, and
2808 * the scheduled task must drop that reference.
2809 * The test for TASK_DEAD must occur while the runqueue locks are
2810 * still held, otherwise prev could be scheduled on another cpu, die
2811 * there before we look at prev->state, and then the reference would
2813 * Manfred Spraul <manfred@colorfullife.com>
2815 prev_state
= prev
->state
;
2816 finish_arch_switch(prev
);
2817 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2818 local_irq_disable();
2819 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2820 perf_event_task_sched_in(current
);
2821 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2823 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2824 finish_lock_switch(rq
, prev
);
2826 fire_sched_in_preempt_notifiers(current
);
2829 if (unlikely(prev_state
== TASK_DEAD
)) {
2831 * Remove function-return probe instances associated with this
2832 * task and put them back on the free list.
2834 kprobe_flush_task(prev
);
2835 put_task_struct(prev
);
2841 /* assumes rq->lock is held */
2842 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2844 if (prev
->sched_class
->pre_schedule
)
2845 prev
->sched_class
->pre_schedule(rq
, prev
);
2848 /* rq->lock is NOT held, but preemption is disabled */
2849 static inline void post_schedule(struct rq
*rq
)
2851 if (rq
->post_schedule
) {
2852 unsigned long flags
;
2854 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2855 if (rq
->curr
->sched_class
->post_schedule
)
2856 rq
->curr
->sched_class
->post_schedule(rq
);
2857 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2859 rq
->post_schedule
= 0;
2865 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2869 static inline void post_schedule(struct rq
*rq
)
2876 * schedule_tail - first thing a freshly forked thread must call.
2877 * @prev: the thread we just switched away from.
2879 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2880 __releases(rq
->lock
)
2882 struct rq
*rq
= this_rq();
2884 finish_task_switch(rq
, prev
);
2887 * FIXME: do we need to worry about rq being invalidated by the
2892 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2893 /* In this case, finish_task_switch does not reenable preemption */
2896 if (current
->set_child_tid
)
2897 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2901 * context_switch - switch to the new MM and the new
2902 * thread's register state.
2905 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2906 struct task_struct
*next
)
2908 struct mm_struct
*mm
, *oldmm
;
2910 prepare_task_switch(rq
, prev
, next
);
2911 trace_sched_switch(rq
, prev
, next
);
2913 oldmm
= prev
->active_mm
;
2915 * For paravirt, this is coupled with an exit in switch_to to
2916 * combine the page table reload and the switch backend into
2919 arch_start_context_switch(prev
);
2922 next
->active_mm
= oldmm
;
2923 atomic_inc(&oldmm
->mm_count
);
2924 enter_lazy_tlb(oldmm
, next
);
2926 switch_mm(oldmm
, mm
, next
);
2928 if (likely(!prev
->mm
)) {
2929 prev
->active_mm
= NULL
;
2930 rq
->prev_mm
= oldmm
;
2933 * Since the runqueue lock will be released by the next
2934 * task (which is an invalid locking op but in the case
2935 * of the scheduler it's an obvious special-case), so we
2936 * do an early lockdep release here:
2938 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2939 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2942 /* Here we just switch the register state and the stack. */
2943 switch_to(prev
, next
, prev
);
2947 * this_rq must be evaluated again because prev may have moved
2948 * CPUs since it called schedule(), thus the 'rq' on its stack
2949 * frame will be invalid.
2951 finish_task_switch(this_rq(), prev
);
2955 * nr_running, nr_uninterruptible and nr_context_switches:
2957 * externally visible scheduler statistics: current number of runnable
2958 * threads, current number of uninterruptible-sleeping threads, total
2959 * number of context switches performed since bootup.
2961 unsigned long nr_running(void)
2963 unsigned long i
, sum
= 0;
2965 for_each_online_cpu(i
)
2966 sum
+= cpu_rq(i
)->nr_running
;
2971 unsigned long nr_uninterruptible(void)
2973 unsigned long i
, sum
= 0;
2975 for_each_possible_cpu(i
)
2976 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2979 * Since we read the counters lockless, it might be slightly
2980 * inaccurate. Do not allow it to go below zero though:
2982 if (unlikely((long)sum
< 0))
2988 unsigned long long nr_context_switches(void)
2991 unsigned long long sum
= 0;
2993 for_each_possible_cpu(i
)
2994 sum
+= cpu_rq(i
)->nr_switches
;
2999 unsigned long nr_iowait(void)
3001 unsigned long i
, sum
= 0;
3003 for_each_possible_cpu(i
)
3004 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3009 unsigned long nr_iowait_cpu(void)
3011 struct rq
*this = this_rq();
3012 return atomic_read(&this->nr_iowait
);
3015 unsigned long this_cpu_load(void)
3017 struct rq
*this = this_rq();
3018 return this->cpu_load
[0];
3022 /* Variables and functions for calc_load */
3023 static atomic_long_t calc_load_tasks
;
3024 static unsigned long calc_load_update
;
3025 unsigned long avenrun
[3];
3026 EXPORT_SYMBOL(avenrun
);
3029 * get_avenrun - get the load average array
3030 * @loads: pointer to dest load array
3031 * @offset: offset to add
3032 * @shift: shift count to shift the result left
3034 * These values are estimates at best, so no need for locking.
3036 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3038 loads
[0] = (avenrun
[0] + offset
) << shift
;
3039 loads
[1] = (avenrun
[1] + offset
) << shift
;
3040 loads
[2] = (avenrun
[2] + offset
) << shift
;
3043 static unsigned long
3044 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3047 load
+= active
* (FIXED_1
- exp
);
3048 return load
>> FSHIFT
;
3052 * calc_load - update the avenrun load estimates 10 ticks after the
3053 * CPUs have updated calc_load_tasks.
3055 void calc_global_load(void)
3057 unsigned long upd
= calc_load_update
+ 10;
3060 if (time_before(jiffies
, upd
))
3063 active
= atomic_long_read(&calc_load_tasks
);
3064 active
= active
> 0 ? active
* FIXED_1
: 0;
3066 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3067 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3068 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3070 calc_load_update
+= LOAD_FREQ
;
3074 * Either called from update_cpu_load() or from a cpu going idle
3076 static void calc_load_account_active(struct rq
*this_rq
)
3078 long nr_active
, delta
;
3080 nr_active
= this_rq
->nr_running
;
3081 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3083 if (nr_active
!= this_rq
->calc_load_active
) {
3084 delta
= nr_active
- this_rq
->calc_load_active
;
3085 this_rq
->calc_load_active
= nr_active
;
3086 atomic_long_add(delta
, &calc_load_tasks
);
3091 * Update rq->cpu_load[] statistics. This function is usually called every
3092 * scheduler tick (TICK_NSEC).
3094 static void update_cpu_load(struct rq
*this_rq
)
3096 unsigned long this_load
= this_rq
->load
.weight
;
3099 this_rq
->nr_load_updates
++;
3101 /* Update our load: */
3102 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3103 unsigned long old_load
, new_load
;
3105 /* scale is effectively 1 << i now, and >> i divides by scale */
3107 old_load
= this_rq
->cpu_load
[i
];
3108 new_load
= this_load
;
3110 * Round up the averaging division if load is increasing. This
3111 * prevents us from getting stuck on 9 if the load is 10, for
3114 if (new_load
> old_load
)
3115 new_load
+= scale
-1;
3116 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3119 if (time_after_eq(jiffies
, this_rq
->calc_load_update
)) {
3120 this_rq
->calc_load_update
+= LOAD_FREQ
;
3121 calc_load_account_active(this_rq
);
3128 * sched_exec - execve() is a valuable balancing opportunity, because at
3129 * this point the task has the smallest effective memory and cache footprint.
3131 void sched_exec(void)
3133 struct task_struct
*p
= current
;
3134 struct migration_req req
;
3135 int dest_cpu
, this_cpu
;
3136 unsigned long flags
;
3140 this_cpu
= get_cpu();
3141 dest_cpu
= select_task_rq(p
, SD_BALANCE_EXEC
, 0);
3142 if (dest_cpu
== this_cpu
) {
3147 rq
= task_rq_lock(p
, &flags
);
3151 * select_task_rq() can race against ->cpus_allowed
3153 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
3154 || unlikely(!cpu_active(dest_cpu
))) {
3155 task_rq_unlock(rq
, &flags
);
3159 /* force the process onto the specified CPU */
3160 if (migrate_task(p
, dest_cpu
, &req
)) {
3161 /* Need to wait for migration thread (might exit: take ref). */
3162 struct task_struct
*mt
= rq
->migration_thread
;
3164 get_task_struct(mt
);
3165 task_rq_unlock(rq
, &flags
);
3166 wake_up_process(mt
);
3167 put_task_struct(mt
);
3168 wait_for_completion(&req
.done
);
3172 task_rq_unlock(rq
, &flags
);
3177 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3179 EXPORT_PER_CPU_SYMBOL(kstat
);
3182 * Return any ns on the sched_clock that have not yet been accounted in
3183 * @p in case that task is currently running.
3185 * Called with task_rq_lock() held on @rq.
3187 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3191 if (task_current(rq
, p
)) {
3192 update_rq_clock(rq
);
3193 ns
= rq
->clock
- p
->se
.exec_start
;
3201 unsigned long long task_delta_exec(struct task_struct
*p
)
3203 unsigned long flags
;
3207 rq
= task_rq_lock(p
, &flags
);
3208 ns
= do_task_delta_exec(p
, rq
);
3209 task_rq_unlock(rq
, &flags
);
3215 * Return accounted runtime for the task.
3216 * In case the task is currently running, return the runtime plus current's
3217 * pending runtime that have not been accounted yet.
3219 unsigned long long task_sched_runtime(struct task_struct
*p
)
3221 unsigned long flags
;
3225 rq
= task_rq_lock(p
, &flags
);
3226 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3227 task_rq_unlock(rq
, &flags
);
3233 * Return sum_exec_runtime for the thread group.
3234 * In case the task is currently running, return the sum plus current's
3235 * pending runtime that have not been accounted yet.
3237 * Note that the thread group might have other running tasks as well,
3238 * so the return value not includes other pending runtime that other
3239 * running tasks might have.
3241 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3243 struct task_cputime totals
;
3244 unsigned long flags
;
3248 rq
= task_rq_lock(p
, &flags
);
3249 thread_group_cputime(p
, &totals
);
3250 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3251 task_rq_unlock(rq
, &flags
);
3257 * Account user cpu time to a process.
3258 * @p: the process that the cpu time gets accounted to
3259 * @cputime: the cpu time spent in user space since the last update
3260 * @cputime_scaled: cputime scaled by cpu frequency
3262 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3263 cputime_t cputime_scaled
)
3265 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3268 /* Add user time to process. */
3269 p
->utime
= cputime_add(p
->utime
, cputime
);
3270 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3271 account_group_user_time(p
, cputime
);
3273 /* Add user time to cpustat. */
3274 tmp
= cputime_to_cputime64(cputime
);
3275 if (TASK_NICE(p
) > 0)
3276 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3278 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3280 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3281 /* Account for user time used */
3282 acct_update_integrals(p
);
3286 * Account guest cpu time to a process.
3287 * @p: the process that the cpu time gets accounted to
3288 * @cputime: the cpu time spent in virtual machine since the last update
3289 * @cputime_scaled: cputime scaled by cpu frequency
3291 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3292 cputime_t cputime_scaled
)
3295 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3297 tmp
= cputime_to_cputime64(cputime
);
3299 /* Add guest time to process. */
3300 p
->utime
= cputime_add(p
->utime
, cputime
);
3301 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3302 account_group_user_time(p
, cputime
);
3303 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3305 /* Add guest time to cpustat. */
3306 if (TASK_NICE(p
) > 0) {
3307 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3308 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3310 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3311 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3316 * Account system cpu time to a process.
3317 * @p: the process that the cpu time gets accounted to
3318 * @hardirq_offset: the offset to subtract from hardirq_count()
3319 * @cputime: the cpu time spent in kernel space since the last update
3320 * @cputime_scaled: cputime scaled by cpu frequency
3322 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3323 cputime_t cputime
, cputime_t cputime_scaled
)
3325 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3328 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3329 account_guest_time(p
, cputime
, cputime_scaled
);
3333 /* Add system time to process. */
3334 p
->stime
= cputime_add(p
->stime
, cputime
);
3335 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3336 account_group_system_time(p
, cputime
);
3338 /* Add system time to cpustat. */
3339 tmp
= cputime_to_cputime64(cputime
);
3340 if (hardirq_count() - hardirq_offset
)
3341 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3342 else if (softirq_count())
3343 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3345 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3347 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3349 /* Account for system time used */
3350 acct_update_integrals(p
);
3354 * Account for involuntary wait time.
3355 * @steal: the cpu time spent in involuntary wait
3357 void account_steal_time(cputime_t cputime
)
3359 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3360 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3362 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3366 * Account for idle time.
3367 * @cputime: the cpu time spent in idle wait
3369 void account_idle_time(cputime_t cputime
)
3371 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3372 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3373 struct rq
*rq
= this_rq();
3375 if (atomic_read(&rq
->nr_iowait
) > 0)
3376 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3378 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3381 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3384 * Account a single tick of cpu time.
3385 * @p: the process that the cpu time gets accounted to
3386 * @user_tick: indicates if the tick is a user or a system tick
3388 void account_process_tick(struct task_struct
*p
, int user_tick
)
3390 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3391 struct rq
*rq
= this_rq();
3394 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3395 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3396 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3399 account_idle_time(cputime_one_jiffy
);
3403 * Account multiple ticks of steal time.
3404 * @p: the process from which the cpu time has been stolen
3405 * @ticks: number of stolen ticks
3407 void account_steal_ticks(unsigned long ticks
)
3409 account_steal_time(jiffies_to_cputime(ticks
));
3413 * Account multiple ticks of idle time.
3414 * @ticks: number of stolen ticks
3416 void account_idle_ticks(unsigned long ticks
)
3418 account_idle_time(jiffies_to_cputime(ticks
));
3424 * Use precise platform statistics if available:
3426 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3427 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3433 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3435 struct task_cputime cputime
;
3437 thread_group_cputime(p
, &cputime
);
3439 *ut
= cputime
.utime
;
3440 *st
= cputime
.stime
;
3444 #ifndef nsecs_to_cputime
3445 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3448 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3450 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3453 * Use CFS's precise accounting:
3455 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3460 temp
= (u64
)(rtime
* utime
);
3461 do_div(temp
, total
);
3462 utime
= (cputime_t
)temp
;
3467 * Compare with previous values, to keep monotonicity:
3469 p
->prev_utime
= max(p
->prev_utime
, utime
);
3470 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3472 *ut
= p
->prev_utime
;
3473 *st
= p
->prev_stime
;
3477 * Must be called with siglock held.
3479 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3481 struct signal_struct
*sig
= p
->signal
;
3482 struct task_cputime cputime
;
3483 cputime_t rtime
, utime
, total
;
3485 thread_group_cputime(p
, &cputime
);
3487 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3488 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3493 temp
= (u64
)(rtime
* cputime
.utime
);
3494 do_div(temp
, total
);
3495 utime
= (cputime_t
)temp
;
3499 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3500 sig
->prev_stime
= max(sig
->prev_stime
,
3501 cputime_sub(rtime
, sig
->prev_utime
));
3503 *ut
= sig
->prev_utime
;
3504 *st
= sig
->prev_stime
;
3509 * This function gets called by the timer code, with HZ frequency.
3510 * We call it with interrupts disabled.
3512 * It also gets called by the fork code, when changing the parent's
3515 void scheduler_tick(void)
3517 int cpu
= smp_processor_id();
3518 struct rq
*rq
= cpu_rq(cpu
);
3519 struct task_struct
*curr
= rq
->curr
;
3523 raw_spin_lock(&rq
->lock
);
3524 update_rq_clock(rq
);
3525 update_cpu_load(rq
);
3526 curr
->sched_class
->task_tick(rq
, curr
, 0);
3527 raw_spin_unlock(&rq
->lock
);
3529 perf_event_task_tick(curr
);
3532 rq
->idle_at_tick
= idle_cpu(cpu
);
3533 trigger_load_balance(rq
, cpu
);
3537 notrace
unsigned long get_parent_ip(unsigned long addr
)
3539 if (in_lock_functions(addr
)) {
3540 addr
= CALLER_ADDR2
;
3541 if (in_lock_functions(addr
))
3542 addr
= CALLER_ADDR3
;
3547 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3548 defined(CONFIG_PREEMPT_TRACER))
3550 void __kprobes
add_preempt_count(int val
)
3552 #ifdef CONFIG_DEBUG_PREEMPT
3556 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3559 preempt_count() += val
;
3560 #ifdef CONFIG_DEBUG_PREEMPT
3562 * Spinlock count overflowing soon?
3564 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3567 if (preempt_count() == val
)
3568 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3570 EXPORT_SYMBOL(add_preempt_count
);
3572 void __kprobes
sub_preempt_count(int val
)
3574 #ifdef CONFIG_DEBUG_PREEMPT
3578 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3581 * Is the spinlock portion underflowing?
3583 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3584 !(preempt_count() & PREEMPT_MASK
)))
3588 if (preempt_count() == val
)
3589 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3590 preempt_count() -= val
;
3592 EXPORT_SYMBOL(sub_preempt_count
);
3597 * Print scheduling while atomic bug:
3599 static noinline
void __schedule_bug(struct task_struct
*prev
)
3601 struct pt_regs
*regs
= get_irq_regs();
3603 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3604 prev
->comm
, prev
->pid
, preempt_count());
3606 debug_show_held_locks(prev
);
3608 if (irqs_disabled())
3609 print_irqtrace_events(prev
);
3618 * Various schedule()-time debugging checks and statistics:
3620 static inline void schedule_debug(struct task_struct
*prev
)
3623 * Test if we are atomic. Since do_exit() needs to call into
3624 * schedule() atomically, we ignore that path for now.
3625 * Otherwise, whine if we are scheduling when we should not be.
3627 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
3628 __schedule_bug(prev
);
3630 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3632 schedstat_inc(this_rq(), sched_count
);
3633 #ifdef CONFIG_SCHEDSTATS
3634 if (unlikely(prev
->lock_depth
>= 0)) {
3635 schedstat_inc(this_rq(), bkl_count
);
3636 schedstat_inc(prev
, sched_info
.bkl_count
);
3641 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
3643 if (prev
->state
== TASK_RUNNING
) {
3644 u64 runtime
= prev
->se
.sum_exec_runtime
;
3646 runtime
-= prev
->se
.prev_sum_exec_runtime
;
3647 runtime
= min_t(u64
, runtime
, 2*sysctl_sched_migration_cost
);
3650 * In order to avoid avg_overlap growing stale when we are
3651 * indeed overlapping and hence not getting put to sleep, grow
3652 * the avg_overlap on preemption.
3654 * We use the average preemption runtime because that
3655 * correlates to the amount of cache footprint a task can
3658 update_avg(&prev
->se
.avg_overlap
, runtime
);
3660 prev
->sched_class
->put_prev_task(rq
, prev
);
3664 * Pick up the highest-prio task:
3666 static inline struct task_struct
*
3667 pick_next_task(struct rq
*rq
)
3669 const struct sched_class
*class;
3670 struct task_struct
*p
;
3673 * Optimization: we know that if all tasks are in
3674 * the fair class we can call that function directly:
3676 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3677 p
= fair_sched_class
.pick_next_task(rq
);
3682 class = sched_class_highest
;
3684 p
= class->pick_next_task(rq
);
3688 * Will never be NULL as the idle class always
3689 * returns a non-NULL p:
3691 class = class->next
;
3696 * schedule() is the main scheduler function.
3698 asmlinkage
void __sched
schedule(void)
3700 struct task_struct
*prev
, *next
;
3701 unsigned long *switch_count
;
3707 cpu
= smp_processor_id();
3711 switch_count
= &prev
->nivcsw
;
3713 release_kernel_lock(prev
);
3714 need_resched_nonpreemptible
:
3716 schedule_debug(prev
);
3718 if (sched_feat(HRTICK
))
3721 raw_spin_lock_irq(&rq
->lock
);
3722 update_rq_clock(rq
);
3723 clear_tsk_need_resched(prev
);
3725 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3726 if (unlikely(signal_pending_state(prev
->state
, prev
)))
3727 prev
->state
= TASK_RUNNING
;
3729 deactivate_task(rq
, prev
, 1);
3730 switch_count
= &prev
->nvcsw
;
3733 pre_schedule(rq
, prev
);
3735 if (unlikely(!rq
->nr_running
))
3736 idle_balance(cpu
, rq
);
3738 put_prev_task(rq
, prev
);
3739 next
= pick_next_task(rq
);
3741 if (likely(prev
!= next
)) {
3742 sched_info_switch(prev
, next
);
3743 perf_event_task_sched_out(prev
, next
);
3749 context_switch(rq
, prev
, next
); /* unlocks the rq */
3751 * the context switch might have flipped the stack from under
3752 * us, hence refresh the local variables.
3754 cpu
= smp_processor_id();
3757 raw_spin_unlock_irq(&rq
->lock
);
3761 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3763 switch_count
= &prev
->nivcsw
;
3764 goto need_resched_nonpreemptible
;
3767 preempt_enable_no_resched();
3771 EXPORT_SYMBOL(schedule
);
3773 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3775 * Look out! "owner" is an entirely speculative pointer
3776 * access and not reliable.
3778 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
3783 if (!sched_feat(OWNER_SPIN
))
3786 #ifdef CONFIG_DEBUG_PAGEALLOC
3788 * Need to access the cpu field knowing that
3789 * DEBUG_PAGEALLOC could have unmapped it if
3790 * the mutex owner just released it and exited.
3792 if (probe_kernel_address(&owner
->cpu
, cpu
))
3799 * Even if the access succeeded (likely case),
3800 * the cpu field may no longer be valid.
3802 if (cpu
>= nr_cpumask_bits
)
3806 * We need to validate that we can do a
3807 * get_cpu() and that we have the percpu area.
3809 if (!cpu_online(cpu
))
3816 * Owner changed, break to re-assess state.
3818 if (lock
->owner
!= owner
)
3822 * Is that owner really running on that cpu?
3824 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
3834 #ifdef CONFIG_PREEMPT
3836 * this is the entry point to schedule() from in-kernel preemption
3837 * off of preempt_enable. Kernel preemptions off return from interrupt
3838 * occur there and call schedule directly.
3840 asmlinkage
void __sched
preempt_schedule(void)
3842 struct thread_info
*ti
= current_thread_info();
3845 * If there is a non-zero preempt_count or interrupts are disabled,
3846 * we do not want to preempt the current task. Just return..
3848 if (likely(ti
->preempt_count
|| irqs_disabled()))
3852 add_preempt_count(PREEMPT_ACTIVE
);
3854 sub_preempt_count(PREEMPT_ACTIVE
);
3857 * Check again in case we missed a preemption opportunity
3858 * between schedule and now.
3861 } while (need_resched());
3863 EXPORT_SYMBOL(preempt_schedule
);
3866 * this is the entry point to schedule() from kernel preemption
3867 * off of irq context.
3868 * Note, that this is called and return with irqs disabled. This will
3869 * protect us against recursive calling from irq.
3871 asmlinkage
void __sched
preempt_schedule_irq(void)
3873 struct thread_info
*ti
= current_thread_info();
3875 /* Catch callers which need to be fixed */
3876 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3879 add_preempt_count(PREEMPT_ACTIVE
);
3882 local_irq_disable();
3883 sub_preempt_count(PREEMPT_ACTIVE
);
3886 * Check again in case we missed a preemption opportunity
3887 * between schedule and now.
3890 } while (need_resched());
3893 #endif /* CONFIG_PREEMPT */
3895 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
3898 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3900 EXPORT_SYMBOL(default_wake_function
);
3903 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3904 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3905 * number) then we wake all the non-exclusive tasks and one exclusive task.
3907 * There are circumstances in which we can try to wake a task which has already
3908 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3909 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3911 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3912 int nr_exclusive
, int wake_flags
, void *key
)
3914 wait_queue_t
*curr
, *next
;
3916 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3917 unsigned flags
= curr
->flags
;
3919 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
3920 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3926 * __wake_up - wake up threads blocked on a waitqueue.
3928 * @mode: which threads
3929 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3930 * @key: is directly passed to the wakeup function
3932 * It may be assumed that this function implies a write memory barrier before
3933 * changing the task state if and only if any tasks are woken up.
3935 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3936 int nr_exclusive
, void *key
)
3938 unsigned long flags
;
3940 spin_lock_irqsave(&q
->lock
, flags
);
3941 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3942 spin_unlock_irqrestore(&q
->lock
, flags
);
3944 EXPORT_SYMBOL(__wake_up
);
3947 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3949 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3951 __wake_up_common(q
, mode
, 1, 0, NULL
);
3953 EXPORT_SYMBOL_GPL(__wake_up_locked
);
3955 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
3957 __wake_up_common(q
, mode
, 1, 0, key
);
3961 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3963 * @mode: which threads
3964 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3965 * @key: opaque value to be passed to wakeup targets
3967 * The sync wakeup differs that the waker knows that it will schedule
3968 * away soon, so while the target thread will be woken up, it will not
3969 * be migrated to another CPU - ie. the two threads are 'synchronized'
3970 * with each other. This can prevent needless bouncing between CPUs.
3972 * On UP it can prevent extra preemption.
3974 * It may be assumed that this function implies a write memory barrier before
3975 * changing the task state if and only if any tasks are woken up.
3977 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
3978 int nr_exclusive
, void *key
)
3980 unsigned long flags
;
3981 int wake_flags
= WF_SYNC
;
3986 if (unlikely(!nr_exclusive
))
3989 spin_lock_irqsave(&q
->lock
, flags
);
3990 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
3991 spin_unlock_irqrestore(&q
->lock
, flags
);
3993 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
3996 * __wake_up_sync - see __wake_up_sync_key()
3998 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4000 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4002 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4005 * complete: - signals a single thread waiting on this completion
4006 * @x: holds the state of this particular completion
4008 * This will wake up a single thread waiting on this completion. Threads will be
4009 * awakened in the same order in which they were queued.
4011 * See also complete_all(), wait_for_completion() and related routines.
4013 * It may be assumed that this function implies a write memory barrier before
4014 * changing the task state if and only if any tasks are woken up.
4016 void complete(struct completion
*x
)
4018 unsigned long flags
;
4020 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4022 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4023 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4025 EXPORT_SYMBOL(complete
);
4028 * complete_all: - signals all threads waiting on this completion
4029 * @x: holds the state of this particular completion
4031 * This will wake up all threads waiting on this particular completion event.
4033 * It may be assumed that this function implies a write memory barrier before
4034 * changing the task state if and only if any tasks are woken up.
4036 void complete_all(struct completion
*x
)
4038 unsigned long flags
;
4040 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4041 x
->done
+= UINT_MAX
/2;
4042 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4043 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4045 EXPORT_SYMBOL(complete_all
);
4047 static inline long __sched
4048 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4051 DECLARE_WAITQUEUE(wait
, current
);
4053 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4054 __add_wait_queue_tail(&x
->wait
, &wait
);
4056 if (signal_pending_state(state
, current
)) {
4057 timeout
= -ERESTARTSYS
;
4060 __set_current_state(state
);
4061 spin_unlock_irq(&x
->wait
.lock
);
4062 timeout
= schedule_timeout(timeout
);
4063 spin_lock_irq(&x
->wait
.lock
);
4064 } while (!x
->done
&& timeout
);
4065 __remove_wait_queue(&x
->wait
, &wait
);
4070 return timeout
?: 1;
4074 wait_for_common(struct completion
*x
, long timeout
, int state
)
4078 spin_lock_irq(&x
->wait
.lock
);
4079 timeout
= do_wait_for_common(x
, timeout
, state
);
4080 spin_unlock_irq(&x
->wait
.lock
);
4085 * wait_for_completion: - waits for completion of a task
4086 * @x: holds the state of this particular completion
4088 * This waits to be signaled for completion of a specific task. It is NOT
4089 * interruptible and there is no timeout.
4091 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4092 * and interrupt capability. Also see complete().
4094 void __sched
wait_for_completion(struct completion
*x
)
4096 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4098 EXPORT_SYMBOL(wait_for_completion
);
4101 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4102 * @x: holds the state of this particular completion
4103 * @timeout: timeout value in jiffies
4105 * This waits for either a completion of a specific task to be signaled or for a
4106 * specified timeout to expire. The timeout is in jiffies. It is not
4109 unsigned long __sched
4110 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4112 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4114 EXPORT_SYMBOL(wait_for_completion_timeout
);
4117 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4118 * @x: holds the state of this particular completion
4120 * This waits for completion of a specific task to be signaled. It is
4123 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4125 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4126 if (t
== -ERESTARTSYS
)
4130 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4133 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4134 * @x: holds the state of this particular completion
4135 * @timeout: timeout value in jiffies
4137 * This waits for either a completion of a specific task to be signaled or for a
4138 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4140 unsigned long __sched
4141 wait_for_completion_interruptible_timeout(struct completion
*x
,
4142 unsigned long timeout
)
4144 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4146 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4149 * wait_for_completion_killable: - waits for completion of a task (killable)
4150 * @x: holds the state of this particular completion
4152 * This waits to be signaled for completion of a specific task. It can be
4153 * interrupted by a kill signal.
4155 int __sched
wait_for_completion_killable(struct completion
*x
)
4157 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4158 if (t
== -ERESTARTSYS
)
4162 EXPORT_SYMBOL(wait_for_completion_killable
);
4165 * try_wait_for_completion - try to decrement a completion without blocking
4166 * @x: completion structure
4168 * Returns: 0 if a decrement cannot be done without blocking
4169 * 1 if a decrement succeeded.
4171 * If a completion is being used as a counting completion,
4172 * attempt to decrement the counter without blocking. This
4173 * enables us to avoid waiting if the resource the completion
4174 * is protecting is not available.
4176 bool try_wait_for_completion(struct completion
*x
)
4178 unsigned long flags
;
4181 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4186 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4189 EXPORT_SYMBOL(try_wait_for_completion
);
4192 * completion_done - Test to see if a completion has any waiters
4193 * @x: completion structure
4195 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4196 * 1 if there are no waiters.
4199 bool completion_done(struct completion
*x
)
4201 unsigned long flags
;
4204 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4207 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4210 EXPORT_SYMBOL(completion_done
);
4213 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4215 unsigned long flags
;
4218 init_waitqueue_entry(&wait
, current
);
4220 __set_current_state(state
);
4222 spin_lock_irqsave(&q
->lock
, flags
);
4223 __add_wait_queue(q
, &wait
);
4224 spin_unlock(&q
->lock
);
4225 timeout
= schedule_timeout(timeout
);
4226 spin_lock_irq(&q
->lock
);
4227 __remove_wait_queue(q
, &wait
);
4228 spin_unlock_irqrestore(&q
->lock
, flags
);
4233 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4235 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4237 EXPORT_SYMBOL(interruptible_sleep_on
);
4240 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4242 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4244 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4246 void __sched
sleep_on(wait_queue_head_t
*q
)
4248 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4250 EXPORT_SYMBOL(sleep_on
);
4252 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4254 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4256 EXPORT_SYMBOL(sleep_on_timeout
);
4258 #ifdef CONFIG_RT_MUTEXES
4261 * rt_mutex_setprio - set the current priority of a task
4263 * @prio: prio value (kernel-internal form)
4265 * This function changes the 'effective' priority of a task. It does
4266 * not touch ->normal_prio like __setscheduler().
4268 * Used by the rt_mutex code to implement priority inheritance logic.
4270 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4272 unsigned long flags
;
4273 int oldprio
, on_rq
, running
;
4275 const struct sched_class
*prev_class
;
4277 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4279 rq
= task_rq_lock(p
, &flags
);
4280 update_rq_clock(rq
);
4283 prev_class
= p
->sched_class
;
4284 on_rq
= p
->se
.on_rq
;
4285 running
= task_current(rq
, p
);
4287 dequeue_task(rq
, p
, 0);
4289 p
->sched_class
->put_prev_task(rq
, p
);
4292 p
->sched_class
= &rt_sched_class
;
4294 p
->sched_class
= &fair_sched_class
;
4299 p
->sched_class
->set_curr_task(rq
);
4301 enqueue_task(rq
, p
, 0, oldprio
< prio
);
4303 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4305 task_rq_unlock(rq
, &flags
);
4310 void set_user_nice(struct task_struct
*p
, long nice
)
4312 int old_prio
, delta
, on_rq
;
4313 unsigned long flags
;
4316 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4319 * We have to be careful, if called from sys_setpriority(),
4320 * the task might be in the middle of scheduling on another CPU.
4322 rq
= task_rq_lock(p
, &flags
);
4323 update_rq_clock(rq
);
4325 * The RT priorities are set via sched_setscheduler(), but we still
4326 * allow the 'normal' nice value to be set - but as expected
4327 * it wont have any effect on scheduling until the task is
4328 * SCHED_FIFO/SCHED_RR:
4330 if (task_has_rt_policy(p
)) {
4331 p
->static_prio
= NICE_TO_PRIO(nice
);
4334 on_rq
= p
->se
.on_rq
;
4336 dequeue_task(rq
, p
, 0);
4338 p
->static_prio
= NICE_TO_PRIO(nice
);
4341 p
->prio
= effective_prio(p
);
4342 delta
= p
->prio
- old_prio
;
4345 enqueue_task(rq
, p
, 0, false);
4347 * If the task increased its priority or is running and
4348 * lowered its priority, then reschedule its CPU:
4350 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4351 resched_task(rq
->curr
);
4354 task_rq_unlock(rq
, &flags
);
4356 EXPORT_SYMBOL(set_user_nice
);
4359 * can_nice - check if a task can reduce its nice value
4363 int can_nice(const struct task_struct
*p
, const int nice
)
4365 /* convert nice value [19,-20] to rlimit style value [1,40] */
4366 int nice_rlim
= 20 - nice
;
4368 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4369 capable(CAP_SYS_NICE
));
4372 #ifdef __ARCH_WANT_SYS_NICE
4375 * sys_nice - change the priority of the current process.
4376 * @increment: priority increment
4378 * sys_setpriority is a more generic, but much slower function that
4379 * does similar things.
4381 SYSCALL_DEFINE1(nice
, int, increment
)
4386 * Setpriority might change our priority at the same moment.
4387 * We don't have to worry. Conceptually one call occurs first
4388 * and we have a single winner.
4390 if (increment
< -40)
4395 nice
= TASK_NICE(current
) + increment
;
4401 if (increment
< 0 && !can_nice(current
, nice
))
4404 retval
= security_task_setnice(current
, nice
);
4408 set_user_nice(current
, nice
);
4415 * task_prio - return the priority value of a given task.
4416 * @p: the task in question.
4418 * This is the priority value as seen by users in /proc.
4419 * RT tasks are offset by -200. Normal tasks are centered
4420 * around 0, value goes from -16 to +15.
4422 int task_prio(const struct task_struct
*p
)
4424 return p
->prio
- MAX_RT_PRIO
;
4428 * task_nice - return the nice value of a given task.
4429 * @p: the task in question.
4431 int task_nice(const struct task_struct
*p
)
4433 return TASK_NICE(p
);
4435 EXPORT_SYMBOL(task_nice
);
4438 * idle_cpu - is a given cpu idle currently?
4439 * @cpu: the processor in question.
4441 int idle_cpu(int cpu
)
4443 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4447 * idle_task - return the idle task for a given cpu.
4448 * @cpu: the processor in question.
4450 struct task_struct
*idle_task(int cpu
)
4452 return cpu_rq(cpu
)->idle
;
4456 * find_process_by_pid - find a process with a matching PID value.
4457 * @pid: the pid in question.
4459 static struct task_struct
*find_process_by_pid(pid_t pid
)
4461 return pid
? find_task_by_vpid(pid
) : current
;
4464 /* Actually do priority change: must hold rq lock. */
4466 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4468 BUG_ON(p
->se
.on_rq
);
4471 p
->rt_priority
= prio
;
4472 p
->normal_prio
= normal_prio(p
);
4473 /* we are holding p->pi_lock already */
4474 p
->prio
= rt_mutex_getprio(p
);
4475 if (rt_prio(p
->prio
))
4476 p
->sched_class
= &rt_sched_class
;
4478 p
->sched_class
= &fair_sched_class
;
4483 * check the target process has a UID that matches the current process's
4485 static bool check_same_owner(struct task_struct
*p
)
4487 const struct cred
*cred
= current_cred(), *pcred
;
4491 pcred
= __task_cred(p
);
4492 match
= (cred
->euid
== pcred
->euid
||
4493 cred
->euid
== pcred
->uid
);
4498 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4499 struct sched_param
*param
, bool user
)
4501 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4502 unsigned long flags
;
4503 const struct sched_class
*prev_class
;
4507 /* may grab non-irq protected spin_locks */
4508 BUG_ON(in_interrupt());
4510 /* double check policy once rq lock held */
4512 reset_on_fork
= p
->sched_reset_on_fork
;
4513 policy
= oldpolicy
= p
->policy
;
4515 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4516 policy
&= ~SCHED_RESET_ON_FORK
;
4518 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4519 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4520 policy
!= SCHED_IDLE
)
4525 * Valid priorities for SCHED_FIFO and SCHED_RR are
4526 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4527 * SCHED_BATCH and SCHED_IDLE is 0.
4529 if (param
->sched_priority
< 0 ||
4530 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4531 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4533 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4537 * Allow unprivileged RT tasks to decrease priority:
4539 if (user
&& !capable(CAP_SYS_NICE
)) {
4540 if (rt_policy(policy
)) {
4541 unsigned long rlim_rtprio
;
4543 if (!lock_task_sighand(p
, &flags
))
4545 rlim_rtprio
= task_rlimit(p
, RLIMIT_RTPRIO
);
4546 unlock_task_sighand(p
, &flags
);
4548 /* can't set/change the rt policy */
4549 if (policy
!= p
->policy
&& !rlim_rtprio
)
4552 /* can't increase priority */
4553 if (param
->sched_priority
> p
->rt_priority
&&
4554 param
->sched_priority
> rlim_rtprio
)
4558 * Like positive nice levels, dont allow tasks to
4559 * move out of SCHED_IDLE either:
4561 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4564 /* can't change other user's priorities */
4565 if (!check_same_owner(p
))
4568 /* Normal users shall not reset the sched_reset_on_fork flag */
4569 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4574 #ifdef CONFIG_RT_GROUP_SCHED
4576 * Do not allow realtime tasks into groups that have no runtime
4579 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4580 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
4584 retval
= security_task_setscheduler(p
, policy
, param
);
4590 * make sure no PI-waiters arrive (or leave) while we are
4591 * changing the priority of the task:
4593 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4595 * To be able to change p->policy safely, the apropriate
4596 * runqueue lock must be held.
4598 rq
= __task_rq_lock(p
);
4599 /* recheck policy now with rq lock held */
4600 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4601 policy
= oldpolicy
= -1;
4602 __task_rq_unlock(rq
);
4603 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4606 update_rq_clock(rq
);
4607 on_rq
= p
->se
.on_rq
;
4608 running
= task_current(rq
, p
);
4610 deactivate_task(rq
, p
, 0);
4612 p
->sched_class
->put_prev_task(rq
, p
);
4614 p
->sched_reset_on_fork
= reset_on_fork
;
4617 prev_class
= p
->sched_class
;
4618 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4621 p
->sched_class
->set_curr_task(rq
);
4623 activate_task(rq
, p
, 0);
4625 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4627 __task_rq_unlock(rq
);
4628 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4630 rt_mutex_adjust_pi(p
);
4636 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4637 * @p: the task in question.
4638 * @policy: new policy.
4639 * @param: structure containing the new RT priority.
4641 * NOTE that the task may be already dead.
4643 int sched_setscheduler(struct task_struct
*p
, int policy
,
4644 struct sched_param
*param
)
4646 return __sched_setscheduler(p
, policy
, param
, true);
4648 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4651 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4652 * @p: the task in question.
4653 * @policy: new policy.
4654 * @param: structure containing the new RT priority.
4656 * Just like sched_setscheduler, only don't bother checking if the
4657 * current context has permission. For example, this is needed in
4658 * stop_machine(): we create temporary high priority worker threads,
4659 * but our caller might not have that capability.
4661 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4662 struct sched_param
*param
)
4664 return __sched_setscheduler(p
, policy
, param
, false);
4668 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4670 struct sched_param lparam
;
4671 struct task_struct
*p
;
4674 if (!param
|| pid
< 0)
4676 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4681 p
= find_process_by_pid(pid
);
4683 retval
= sched_setscheduler(p
, policy
, &lparam
);
4690 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4691 * @pid: the pid in question.
4692 * @policy: new policy.
4693 * @param: structure containing the new RT priority.
4695 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4696 struct sched_param __user
*, param
)
4698 /* negative values for policy are not valid */
4702 return do_sched_setscheduler(pid
, policy
, param
);
4706 * sys_sched_setparam - set/change the RT priority of a thread
4707 * @pid: the pid in question.
4708 * @param: structure containing the new RT priority.
4710 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4712 return do_sched_setscheduler(pid
, -1, param
);
4716 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4717 * @pid: the pid in question.
4719 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4721 struct task_struct
*p
;
4729 p
= find_process_by_pid(pid
);
4731 retval
= security_task_getscheduler(p
);
4734 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4741 * sys_sched_getparam - get the RT priority of a thread
4742 * @pid: the pid in question.
4743 * @param: structure containing the RT priority.
4745 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4747 struct sched_param lp
;
4748 struct task_struct
*p
;
4751 if (!param
|| pid
< 0)
4755 p
= find_process_by_pid(pid
);
4760 retval
= security_task_getscheduler(p
);
4764 lp
.sched_priority
= p
->rt_priority
;
4768 * This one might sleep, we cannot do it with a spinlock held ...
4770 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4779 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4781 cpumask_var_t cpus_allowed
, new_mask
;
4782 struct task_struct
*p
;
4788 p
= find_process_by_pid(pid
);
4795 /* Prevent p going away */
4799 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4803 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4805 goto out_free_cpus_allowed
;
4808 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
4811 retval
= security_task_setscheduler(p
, 0, NULL
);
4815 cpuset_cpus_allowed(p
, cpus_allowed
);
4816 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4818 retval
= set_cpus_allowed_ptr(p
, new_mask
);
4821 cpuset_cpus_allowed(p
, cpus_allowed
);
4822 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4824 * We must have raced with a concurrent cpuset
4825 * update. Just reset the cpus_allowed to the
4826 * cpuset's cpus_allowed
4828 cpumask_copy(new_mask
, cpus_allowed
);
4833 free_cpumask_var(new_mask
);
4834 out_free_cpus_allowed
:
4835 free_cpumask_var(cpus_allowed
);
4842 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4843 struct cpumask
*new_mask
)
4845 if (len
< cpumask_size())
4846 cpumask_clear(new_mask
);
4847 else if (len
> cpumask_size())
4848 len
= cpumask_size();
4850 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4854 * sys_sched_setaffinity - set the cpu affinity of a process
4855 * @pid: pid of the process
4856 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4857 * @user_mask_ptr: user-space pointer to the new cpu mask
4859 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4860 unsigned long __user
*, user_mask_ptr
)
4862 cpumask_var_t new_mask
;
4865 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4868 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4870 retval
= sched_setaffinity(pid
, new_mask
);
4871 free_cpumask_var(new_mask
);
4875 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4877 struct task_struct
*p
;
4878 unsigned long flags
;
4886 p
= find_process_by_pid(pid
);
4890 retval
= security_task_getscheduler(p
);
4894 rq
= task_rq_lock(p
, &flags
);
4895 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
4896 task_rq_unlock(rq
, &flags
);
4906 * sys_sched_getaffinity - get the cpu affinity of a process
4907 * @pid: pid of the process
4908 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4909 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4911 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4912 unsigned long __user
*, user_mask_ptr
)
4917 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4919 if (len
& (sizeof(unsigned long)-1))
4922 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4925 ret
= sched_getaffinity(pid
, mask
);
4927 size_t retlen
= min_t(size_t, len
, cpumask_size());
4929 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4934 free_cpumask_var(mask
);
4940 * sys_sched_yield - yield the current processor to other threads.
4942 * This function yields the current CPU to other tasks. If there are no
4943 * other threads running on this CPU then this function will return.
4945 SYSCALL_DEFINE0(sched_yield
)
4947 struct rq
*rq
= this_rq_lock();
4949 schedstat_inc(rq
, yld_count
);
4950 current
->sched_class
->yield_task(rq
);
4953 * Since we are going to call schedule() anyway, there's
4954 * no need to preempt or enable interrupts:
4956 __release(rq
->lock
);
4957 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4958 do_raw_spin_unlock(&rq
->lock
);
4959 preempt_enable_no_resched();
4966 static inline int should_resched(void)
4968 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
4971 static void __cond_resched(void)
4973 add_preempt_count(PREEMPT_ACTIVE
);
4975 sub_preempt_count(PREEMPT_ACTIVE
);
4978 int __sched
_cond_resched(void)
4980 if (should_resched()) {
4986 EXPORT_SYMBOL(_cond_resched
);
4989 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4990 * call schedule, and on return reacquire the lock.
4992 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4993 * operations here to prevent schedule() from being called twice (once via
4994 * spin_unlock(), once by hand).
4996 int __cond_resched_lock(spinlock_t
*lock
)
4998 int resched
= should_resched();
5001 lockdep_assert_held(lock
);
5003 if (spin_needbreak(lock
) || resched
) {
5014 EXPORT_SYMBOL(__cond_resched_lock
);
5016 int __sched
__cond_resched_softirq(void)
5018 BUG_ON(!in_softirq());
5020 if (should_resched()) {
5028 EXPORT_SYMBOL(__cond_resched_softirq
);
5031 * yield - yield the current processor to other threads.
5033 * This is a shortcut for kernel-space yielding - it marks the
5034 * thread runnable and calls sys_sched_yield().
5036 void __sched
yield(void)
5038 set_current_state(TASK_RUNNING
);
5041 EXPORT_SYMBOL(yield
);
5044 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5045 * that process accounting knows that this is a task in IO wait state.
5047 void __sched
io_schedule(void)
5049 struct rq
*rq
= raw_rq();
5051 delayacct_blkio_start();
5052 atomic_inc(&rq
->nr_iowait
);
5053 current
->in_iowait
= 1;
5055 current
->in_iowait
= 0;
5056 atomic_dec(&rq
->nr_iowait
);
5057 delayacct_blkio_end();
5059 EXPORT_SYMBOL(io_schedule
);
5061 long __sched
io_schedule_timeout(long timeout
)
5063 struct rq
*rq
= raw_rq();
5066 delayacct_blkio_start();
5067 atomic_inc(&rq
->nr_iowait
);
5068 current
->in_iowait
= 1;
5069 ret
= schedule_timeout(timeout
);
5070 current
->in_iowait
= 0;
5071 atomic_dec(&rq
->nr_iowait
);
5072 delayacct_blkio_end();
5077 * sys_sched_get_priority_max - return maximum RT priority.
5078 * @policy: scheduling class.
5080 * this syscall returns the maximum rt_priority that can be used
5081 * by a given scheduling class.
5083 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5090 ret
= MAX_USER_RT_PRIO
-1;
5102 * sys_sched_get_priority_min - return minimum RT priority.
5103 * @policy: scheduling class.
5105 * this syscall returns the minimum rt_priority that can be used
5106 * by a given scheduling class.
5108 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5126 * sys_sched_rr_get_interval - return the default timeslice of a process.
5127 * @pid: pid of the process.
5128 * @interval: userspace pointer to the timeslice value.
5130 * this syscall writes the default timeslice value of a given process
5131 * into the user-space timespec buffer. A value of '0' means infinity.
5133 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5134 struct timespec __user
*, interval
)
5136 struct task_struct
*p
;
5137 unsigned int time_slice
;
5138 unsigned long flags
;
5148 p
= find_process_by_pid(pid
);
5152 retval
= security_task_getscheduler(p
);
5156 rq
= task_rq_lock(p
, &flags
);
5157 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5158 task_rq_unlock(rq
, &flags
);
5161 jiffies_to_timespec(time_slice
, &t
);
5162 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5170 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5172 void sched_show_task(struct task_struct
*p
)
5174 unsigned long free
= 0;
5177 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5178 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5179 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5180 #if BITS_PER_LONG == 32
5181 if (state
== TASK_RUNNING
)
5182 printk(KERN_CONT
" running ");
5184 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5186 if (state
== TASK_RUNNING
)
5187 printk(KERN_CONT
" running task ");
5189 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5191 #ifdef CONFIG_DEBUG_STACK_USAGE
5192 free
= stack_not_used(p
);
5194 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5195 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5196 (unsigned long)task_thread_info(p
)->flags
);
5198 show_stack(p
, NULL
);
5201 void show_state_filter(unsigned long state_filter
)
5203 struct task_struct
*g
, *p
;
5205 #if BITS_PER_LONG == 32
5207 " task PC stack pid father\n");
5210 " task PC stack pid father\n");
5212 read_lock(&tasklist_lock
);
5213 do_each_thread(g
, p
) {
5215 * reset the NMI-timeout, listing all files on a slow
5216 * console might take alot of time:
5218 touch_nmi_watchdog();
5219 if (!state_filter
|| (p
->state
& state_filter
))
5221 } while_each_thread(g
, p
);
5223 touch_all_softlockup_watchdogs();
5225 #ifdef CONFIG_SCHED_DEBUG
5226 sysrq_sched_debug_show();
5228 read_unlock(&tasklist_lock
);
5230 * Only show locks if all tasks are dumped:
5233 debug_show_all_locks();
5236 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5238 idle
->sched_class
= &idle_sched_class
;
5242 * init_idle - set up an idle thread for a given CPU
5243 * @idle: task in question
5244 * @cpu: cpu the idle task belongs to
5246 * NOTE: this function does not set the idle thread's NEED_RESCHED
5247 * flag, to make booting more robust.
5249 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5251 struct rq
*rq
= cpu_rq(cpu
);
5252 unsigned long flags
;
5254 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5257 idle
->state
= TASK_RUNNING
;
5258 idle
->se
.exec_start
= sched_clock();
5260 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5261 __set_task_cpu(idle
, cpu
);
5263 rq
->curr
= rq
->idle
= idle
;
5264 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5267 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5269 /* Set the preempt count _outside_ the spinlocks! */
5270 #if defined(CONFIG_PREEMPT)
5271 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5273 task_thread_info(idle
)->preempt_count
= 0;
5276 * The idle tasks have their own, simple scheduling class:
5278 idle
->sched_class
= &idle_sched_class
;
5279 ftrace_graph_init_task(idle
);
5283 * In a system that switches off the HZ timer nohz_cpu_mask
5284 * indicates which cpus entered this state. This is used
5285 * in the rcu update to wait only for active cpus. For system
5286 * which do not switch off the HZ timer nohz_cpu_mask should
5287 * always be CPU_BITS_NONE.
5289 cpumask_var_t nohz_cpu_mask
;
5292 * Increase the granularity value when there are more CPUs,
5293 * because with more CPUs the 'effective latency' as visible
5294 * to users decreases. But the relationship is not linear,
5295 * so pick a second-best guess by going with the log2 of the
5298 * This idea comes from the SD scheduler of Con Kolivas:
5300 static int get_update_sysctl_factor(void)
5302 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5303 unsigned int factor
;
5305 switch (sysctl_sched_tunable_scaling
) {
5306 case SCHED_TUNABLESCALING_NONE
:
5309 case SCHED_TUNABLESCALING_LINEAR
:
5312 case SCHED_TUNABLESCALING_LOG
:
5314 factor
= 1 + ilog2(cpus
);
5321 static void update_sysctl(void)
5323 unsigned int factor
= get_update_sysctl_factor();
5325 #define SET_SYSCTL(name) \
5326 (sysctl_##name = (factor) * normalized_sysctl_##name)
5327 SET_SYSCTL(sched_min_granularity
);
5328 SET_SYSCTL(sched_latency
);
5329 SET_SYSCTL(sched_wakeup_granularity
);
5330 SET_SYSCTL(sched_shares_ratelimit
);
5334 static inline void sched_init_granularity(void)
5341 * This is how migration works:
5343 * 1) we queue a struct migration_req structure in the source CPU's
5344 * runqueue and wake up that CPU's migration thread.
5345 * 2) we down() the locked semaphore => thread blocks.
5346 * 3) migration thread wakes up (implicitly it forces the migrated
5347 * thread off the CPU)
5348 * 4) it gets the migration request and checks whether the migrated
5349 * task is still in the wrong runqueue.
5350 * 5) if it's in the wrong runqueue then the migration thread removes
5351 * it and puts it into the right queue.
5352 * 6) migration thread up()s the semaphore.
5353 * 7) we wake up and the migration is done.
5357 * Change a given task's CPU affinity. Migrate the thread to a
5358 * proper CPU and schedule it away if the CPU it's executing on
5359 * is removed from the allowed bitmask.
5361 * NOTE: the caller must have a valid reference to the task, the
5362 * task must not exit() & deallocate itself prematurely. The
5363 * call is not atomic; no spinlocks may be held.
5365 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5367 struct migration_req req
;
5368 unsigned long flags
;
5372 rq
= task_rq_lock(p
, &flags
);
5374 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5379 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5380 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5385 if (p
->sched_class
->set_cpus_allowed
)
5386 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5388 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5389 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5392 /* Can the task run on the task's current CPU? If so, we're done */
5393 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5396 if (migrate_task(p
, cpumask_any_and(cpu_active_mask
, new_mask
), &req
)) {
5397 /* Need help from migration thread: drop lock and wait. */
5398 struct task_struct
*mt
= rq
->migration_thread
;
5400 get_task_struct(mt
);
5401 task_rq_unlock(rq
, &flags
);
5402 wake_up_process(mt
);
5403 put_task_struct(mt
);
5404 wait_for_completion(&req
.done
);
5405 tlb_migrate_finish(p
->mm
);
5409 task_rq_unlock(rq
, &flags
);
5413 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5416 * Move (not current) task off this cpu, onto dest cpu. We're doing
5417 * this because either it can't run here any more (set_cpus_allowed()
5418 * away from this CPU, or CPU going down), or because we're
5419 * attempting to rebalance this task on exec (sched_exec).
5421 * So we race with normal scheduler movements, but that's OK, as long
5422 * as the task is no longer on this CPU.
5424 * Returns non-zero if task was successfully migrated.
5426 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5428 struct rq
*rq_dest
, *rq_src
;
5431 if (unlikely(!cpu_active(dest_cpu
)))
5434 rq_src
= cpu_rq(src_cpu
);
5435 rq_dest
= cpu_rq(dest_cpu
);
5437 double_rq_lock(rq_src
, rq_dest
);
5438 /* Already moved. */
5439 if (task_cpu(p
) != src_cpu
)
5441 /* Affinity changed (again). */
5442 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5446 * If we're not on a rq, the next wake-up will ensure we're
5450 deactivate_task(rq_src
, p
, 0);
5451 set_task_cpu(p
, dest_cpu
);
5452 activate_task(rq_dest
, p
, 0);
5453 check_preempt_curr(rq_dest
, p
, 0);
5458 double_rq_unlock(rq_src
, rq_dest
);
5462 #define RCU_MIGRATION_IDLE 0
5463 #define RCU_MIGRATION_NEED_QS 1
5464 #define RCU_MIGRATION_GOT_QS 2
5465 #define RCU_MIGRATION_MUST_SYNC 3
5468 * migration_thread - this is a highprio system thread that performs
5469 * thread migration by bumping thread off CPU then 'pushing' onto
5472 static int migration_thread(void *data
)
5475 int cpu
= (long)data
;
5479 BUG_ON(rq
->migration_thread
!= current
);
5481 set_current_state(TASK_INTERRUPTIBLE
);
5482 while (!kthread_should_stop()) {
5483 struct migration_req
*req
;
5484 struct list_head
*head
;
5486 raw_spin_lock_irq(&rq
->lock
);
5488 if (cpu_is_offline(cpu
)) {
5489 raw_spin_unlock_irq(&rq
->lock
);
5493 if (rq
->active_balance
) {
5494 active_load_balance(rq
, cpu
);
5495 rq
->active_balance
= 0;
5498 head
= &rq
->migration_queue
;
5500 if (list_empty(head
)) {
5501 raw_spin_unlock_irq(&rq
->lock
);
5503 set_current_state(TASK_INTERRUPTIBLE
);
5506 req
= list_entry(head
->next
, struct migration_req
, list
);
5507 list_del_init(head
->next
);
5509 if (req
->task
!= NULL
) {
5510 raw_spin_unlock(&rq
->lock
);
5511 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5512 } else if (likely(cpu
== (badcpu
= smp_processor_id()))) {
5513 req
->dest_cpu
= RCU_MIGRATION_GOT_QS
;
5514 raw_spin_unlock(&rq
->lock
);
5516 req
->dest_cpu
= RCU_MIGRATION_MUST_SYNC
;
5517 raw_spin_unlock(&rq
->lock
);
5518 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu
, cpu
);
5522 complete(&req
->done
);
5524 __set_current_state(TASK_RUNNING
);
5529 #ifdef CONFIG_HOTPLUG_CPU
5531 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5535 local_irq_disable();
5536 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5542 * Figure out where task on dead CPU should go, use force if necessary.
5544 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5549 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
5551 /* It can have affinity changed while we were choosing. */
5552 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
5557 * While a dead CPU has no uninterruptible tasks queued at this point,
5558 * it might still have a nonzero ->nr_uninterruptible counter, because
5559 * for performance reasons the counter is not stricly tracking tasks to
5560 * their home CPUs. So we just add the counter to another CPU's counter,
5561 * to keep the global sum constant after CPU-down:
5563 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5565 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5566 unsigned long flags
;
5568 local_irq_save(flags
);
5569 double_rq_lock(rq_src
, rq_dest
);
5570 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5571 rq_src
->nr_uninterruptible
= 0;
5572 double_rq_unlock(rq_src
, rq_dest
);
5573 local_irq_restore(flags
);
5576 /* Run through task list and migrate tasks from the dead cpu. */
5577 static void migrate_live_tasks(int src_cpu
)
5579 struct task_struct
*p
, *t
;
5581 read_lock(&tasklist_lock
);
5583 do_each_thread(t
, p
) {
5587 if (task_cpu(p
) == src_cpu
)
5588 move_task_off_dead_cpu(src_cpu
, p
);
5589 } while_each_thread(t
, p
);
5591 read_unlock(&tasklist_lock
);
5595 * Schedules idle task to be the next runnable task on current CPU.
5596 * It does so by boosting its priority to highest possible.
5597 * Used by CPU offline code.
5599 void sched_idle_next(void)
5601 int this_cpu
= smp_processor_id();
5602 struct rq
*rq
= cpu_rq(this_cpu
);
5603 struct task_struct
*p
= rq
->idle
;
5604 unsigned long flags
;
5606 /* cpu has to be offline */
5607 BUG_ON(cpu_online(this_cpu
));
5610 * Strictly not necessary since rest of the CPUs are stopped by now
5611 * and interrupts disabled on the current cpu.
5613 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5615 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5617 update_rq_clock(rq
);
5618 activate_task(rq
, p
, 0);
5620 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5624 * Ensures that the idle task is using init_mm right before its cpu goes
5627 void idle_task_exit(void)
5629 struct mm_struct
*mm
= current
->active_mm
;
5631 BUG_ON(cpu_online(smp_processor_id()));
5634 switch_mm(mm
, &init_mm
, current
);
5638 /* called under rq->lock with disabled interrupts */
5639 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5641 struct rq
*rq
= cpu_rq(dead_cpu
);
5643 /* Must be exiting, otherwise would be on tasklist. */
5644 BUG_ON(!p
->exit_state
);
5646 /* Cannot have done final schedule yet: would have vanished. */
5647 BUG_ON(p
->state
== TASK_DEAD
);
5652 * Drop lock around migration; if someone else moves it,
5653 * that's OK. No task can be added to this CPU, so iteration is
5656 raw_spin_unlock_irq(&rq
->lock
);
5657 move_task_off_dead_cpu(dead_cpu
, p
);
5658 raw_spin_lock_irq(&rq
->lock
);
5663 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5664 static void migrate_dead_tasks(unsigned int dead_cpu
)
5666 struct rq
*rq
= cpu_rq(dead_cpu
);
5667 struct task_struct
*next
;
5670 if (!rq
->nr_running
)
5672 update_rq_clock(rq
);
5673 next
= pick_next_task(rq
);
5676 next
->sched_class
->put_prev_task(rq
, next
);
5677 migrate_dead(dead_cpu
, next
);
5683 * remove the tasks which were accounted by rq from calc_load_tasks.
5685 static void calc_global_load_remove(struct rq
*rq
)
5687 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
5688 rq
->calc_load_active
= 0;
5690 #endif /* CONFIG_HOTPLUG_CPU */
5692 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5694 static struct ctl_table sd_ctl_dir
[] = {
5696 .procname
= "sched_domain",
5702 static struct ctl_table sd_ctl_root
[] = {
5704 .procname
= "kernel",
5706 .child
= sd_ctl_dir
,
5711 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5713 struct ctl_table
*entry
=
5714 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5719 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5721 struct ctl_table
*entry
;
5724 * In the intermediate directories, both the child directory and
5725 * procname are dynamically allocated and could fail but the mode
5726 * will always be set. In the lowest directory the names are
5727 * static strings and all have proc handlers.
5729 for (entry
= *tablep
; entry
->mode
; entry
++) {
5731 sd_free_ctl_entry(&entry
->child
);
5732 if (entry
->proc_handler
== NULL
)
5733 kfree(entry
->procname
);
5741 set_table_entry(struct ctl_table
*entry
,
5742 const char *procname
, void *data
, int maxlen
,
5743 mode_t mode
, proc_handler
*proc_handler
)
5745 entry
->procname
= procname
;
5747 entry
->maxlen
= maxlen
;
5749 entry
->proc_handler
= proc_handler
;
5752 static struct ctl_table
*
5753 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5755 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
5760 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5761 sizeof(long), 0644, proc_doulongvec_minmax
);
5762 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5763 sizeof(long), 0644, proc_doulongvec_minmax
);
5764 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5765 sizeof(int), 0644, proc_dointvec_minmax
);
5766 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5767 sizeof(int), 0644, proc_dointvec_minmax
);
5768 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5769 sizeof(int), 0644, proc_dointvec_minmax
);
5770 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5771 sizeof(int), 0644, proc_dointvec_minmax
);
5772 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5773 sizeof(int), 0644, proc_dointvec_minmax
);
5774 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5775 sizeof(int), 0644, proc_dointvec_minmax
);
5776 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5777 sizeof(int), 0644, proc_dointvec_minmax
);
5778 set_table_entry(&table
[9], "cache_nice_tries",
5779 &sd
->cache_nice_tries
,
5780 sizeof(int), 0644, proc_dointvec_minmax
);
5781 set_table_entry(&table
[10], "flags", &sd
->flags
,
5782 sizeof(int), 0644, proc_dointvec_minmax
);
5783 set_table_entry(&table
[11], "name", sd
->name
,
5784 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
5785 /* &table[12] is terminator */
5790 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5792 struct ctl_table
*entry
, *table
;
5793 struct sched_domain
*sd
;
5794 int domain_num
= 0, i
;
5797 for_each_domain(cpu
, sd
)
5799 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5804 for_each_domain(cpu
, sd
) {
5805 snprintf(buf
, 32, "domain%d", i
);
5806 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5808 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5815 static struct ctl_table_header
*sd_sysctl_header
;
5816 static void register_sched_domain_sysctl(void)
5818 int i
, cpu_num
= num_possible_cpus();
5819 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5822 WARN_ON(sd_ctl_dir
[0].child
);
5823 sd_ctl_dir
[0].child
= entry
;
5828 for_each_possible_cpu(i
) {
5829 snprintf(buf
, 32, "cpu%d", i
);
5830 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5832 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5836 WARN_ON(sd_sysctl_header
);
5837 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5840 /* may be called multiple times per register */
5841 static void unregister_sched_domain_sysctl(void)
5843 if (sd_sysctl_header
)
5844 unregister_sysctl_table(sd_sysctl_header
);
5845 sd_sysctl_header
= NULL
;
5846 if (sd_ctl_dir
[0].child
)
5847 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5850 static void register_sched_domain_sysctl(void)
5853 static void unregister_sched_domain_sysctl(void)
5858 static void set_rq_online(struct rq
*rq
)
5861 const struct sched_class
*class;
5863 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5866 for_each_class(class) {
5867 if (class->rq_online
)
5868 class->rq_online(rq
);
5873 static void set_rq_offline(struct rq
*rq
)
5876 const struct sched_class
*class;
5878 for_each_class(class) {
5879 if (class->rq_offline
)
5880 class->rq_offline(rq
);
5883 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5889 * migration_call - callback that gets triggered when a CPU is added.
5890 * Here we can start up the necessary migration thread for the new CPU.
5892 static int __cpuinit
5893 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5895 struct task_struct
*p
;
5896 int cpu
= (long)hcpu
;
5897 unsigned long flags
;
5902 case CPU_UP_PREPARE
:
5903 case CPU_UP_PREPARE_FROZEN
:
5904 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5907 kthread_bind(p
, cpu
);
5908 /* Must be high prio: stop_machine expects to yield to it. */
5909 rq
= task_rq_lock(p
, &flags
);
5910 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5911 task_rq_unlock(rq
, &flags
);
5913 cpu_rq(cpu
)->migration_thread
= p
;
5914 rq
->calc_load_update
= calc_load_update
;
5918 case CPU_ONLINE_FROZEN
:
5919 /* Strictly unnecessary, as first user will wake it. */
5920 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5922 /* Update our root-domain */
5924 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5926 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5930 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5933 #ifdef CONFIG_HOTPLUG_CPU
5934 case CPU_UP_CANCELED
:
5935 case CPU_UP_CANCELED_FROZEN
:
5936 if (!cpu_rq(cpu
)->migration_thread
)
5938 /* Unbind it from offline cpu so it can run. Fall thru. */
5939 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5940 cpumask_any(cpu_online_mask
));
5941 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5942 put_task_struct(cpu_rq(cpu
)->migration_thread
);
5943 cpu_rq(cpu
)->migration_thread
= NULL
;
5947 case CPU_DEAD_FROZEN
:
5948 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5949 migrate_live_tasks(cpu
);
5951 kthread_stop(rq
->migration_thread
);
5952 put_task_struct(rq
->migration_thread
);
5953 rq
->migration_thread
= NULL
;
5954 /* Idle task back to normal (off runqueue, low prio) */
5955 raw_spin_lock_irq(&rq
->lock
);
5956 update_rq_clock(rq
);
5957 deactivate_task(rq
, rq
->idle
, 0);
5958 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5959 rq
->idle
->sched_class
= &idle_sched_class
;
5960 migrate_dead_tasks(cpu
);
5961 raw_spin_unlock_irq(&rq
->lock
);
5963 migrate_nr_uninterruptible(rq
);
5964 BUG_ON(rq
->nr_running
!= 0);
5965 calc_global_load_remove(rq
);
5967 * No need to migrate the tasks: it was best-effort if
5968 * they didn't take sched_hotcpu_mutex. Just wake up
5971 raw_spin_lock_irq(&rq
->lock
);
5972 while (!list_empty(&rq
->migration_queue
)) {
5973 struct migration_req
*req
;
5975 req
= list_entry(rq
->migration_queue
.next
,
5976 struct migration_req
, list
);
5977 list_del_init(&req
->list
);
5978 raw_spin_unlock_irq(&rq
->lock
);
5979 complete(&req
->done
);
5980 raw_spin_lock_irq(&rq
->lock
);
5982 raw_spin_unlock_irq(&rq
->lock
);
5986 case CPU_DYING_FROZEN
:
5987 /* Update our root-domain */
5989 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5991 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5994 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6002 * Register at high priority so that task migration (migrate_all_tasks)
6003 * happens before everything else. This has to be lower priority than
6004 * the notifier in the perf_event subsystem, though.
6006 static struct notifier_block __cpuinitdata migration_notifier
= {
6007 .notifier_call
= migration_call
,
6011 static int __init
migration_init(void)
6013 void *cpu
= (void *)(long)smp_processor_id();
6016 /* Start one for the boot CPU: */
6017 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6018 BUG_ON(err
== NOTIFY_BAD
);
6019 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6020 register_cpu_notifier(&migration_notifier
);
6024 early_initcall(migration_init
);
6029 #ifdef CONFIG_SCHED_DEBUG
6031 static __read_mostly
int sched_domain_debug_enabled
;
6033 static int __init
sched_domain_debug_setup(char *str
)
6035 sched_domain_debug_enabled
= 1;
6039 early_param("sched_debug", sched_domain_debug_setup
);
6041 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6042 struct cpumask
*groupmask
)
6044 struct sched_group
*group
= sd
->groups
;
6047 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6048 cpumask_clear(groupmask
);
6050 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6052 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6053 printk("does not load-balance\n");
6055 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6060 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6062 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6063 printk(KERN_ERR
"ERROR: domain->span does not contain "
6066 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6067 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6071 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6075 printk(KERN_ERR
"ERROR: group is NULL\n");
6079 if (!group
->cpu_power
) {
6080 printk(KERN_CONT
"\n");
6081 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6086 if (!cpumask_weight(sched_group_cpus(group
))) {
6087 printk(KERN_CONT
"\n");
6088 printk(KERN_ERR
"ERROR: empty group\n");
6092 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6093 printk(KERN_CONT
"\n");
6094 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6098 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6100 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6102 printk(KERN_CONT
" %s", str
);
6103 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
6104 printk(KERN_CONT
" (cpu_power = %d)",
6108 group
= group
->next
;
6109 } while (group
!= sd
->groups
);
6110 printk(KERN_CONT
"\n");
6112 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6113 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6116 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6117 printk(KERN_ERR
"ERROR: parent span is not a superset "
6118 "of domain->span\n");
6122 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6124 cpumask_var_t groupmask
;
6127 if (!sched_domain_debug_enabled
)
6131 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6135 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6137 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6138 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6143 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6150 free_cpumask_var(groupmask
);
6152 #else /* !CONFIG_SCHED_DEBUG */
6153 # define sched_domain_debug(sd, cpu) do { } while (0)
6154 #endif /* CONFIG_SCHED_DEBUG */
6156 static int sd_degenerate(struct sched_domain
*sd
)
6158 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6161 /* Following flags need at least 2 groups */
6162 if (sd
->flags
& (SD_LOAD_BALANCE
|
6163 SD_BALANCE_NEWIDLE
|
6167 SD_SHARE_PKG_RESOURCES
)) {
6168 if (sd
->groups
!= sd
->groups
->next
)
6172 /* Following flags don't use groups */
6173 if (sd
->flags
& (SD_WAKE_AFFINE
))
6180 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6182 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6184 if (sd_degenerate(parent
))
6187 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6190 /* Flags needing groups don't count if only 1 group in parent */
6191 if (parent
->groups
== parent
->groups
->next
) {
6192 pflags
&= ~(SD_LOAD_BALANCE
|
6193 SD_BALANCE_NEWIDLE
|
6197 SD_SHARE_PKG_RESOURCES
);
6198 if (nr_node_ids
== 1)
6199 pflags
&= ~SD_SERIALIZE
;
6201 if (~cflags
& pflags
)
6207 static void free_rootdomain(struct root_domain
*rd
)
6209 synchronize_sched();
6211 cpupri_cleanup(&rd
->cpupri
);
6213 free_cpumask_var(rd
->rto_mask
);
6214 free_cpumask_var(rd
->online
);
6215 free_cpumask_var(rd
->span
);
6219 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6221 struct root_domain
*old_rd
= NULL
;
6222 unsigned long flags
;
6224 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6229 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6232 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6235 * If we dont want to free the old_rt yet then
6236 * set old_rd to NULL to skip the freeing later
6239 if (!atomic_dec_and_test(&old_rd
->refcount
))
6243 atomic_inc(&rd
->refcount
);
6246 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6247 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6250 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6253 free_rootdomain(old_rd
);
6256 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
6258 gfp_t gfp
= GFP_KERNEL
;
6260 memset(rd
, 0, sizeof(*rd
));
6265 if (!alloc_cpumask_var(&rd
->span
, gfp
))
6267 if (!alloc_cpumask_var(&rd
->online
, gfp
))
6269 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
6272 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
6277 free_cpumask_var(rd
->rto_mask
);
6279 free_cpumask_var(rd
->online
);
6281 free_cpumask_var(rd
->span
);
6286 static void init_defrootdomain(void)
6288 init_rootdomain(&def_root_domain
, true);
6290 atomic_set(&def_root_domain
.refcount
, 1);
6293 static struct root_domain
*alloc_rootdomain(void)
6295 struct root_domain
*rd
;
6297 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6301 if (init_rootdomain(rd
, false) != 0) {
6310 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6311 * hold the hotplug lock.
6314 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6316 struct rq
*rq
= cpu_rq(cpu
);
6317 struct sched_domain
*tmp
;
6319 /* Remove the sched domains which do not contribute to scheduling. */
6320 for (tmp
= sd
; tmp
; ) {
6321 struct sched_domain
*parent
= tmp
->parent
;
6325 if (sd_parent_degenerate(tmp
, parent
)) {
6326 tmp
->parent
= parent
->parent
;
6328 parent
->parent
->child
= tmp
;
6333 if (sd
&& sd_degenerate(sd
)) {
6339 sched_domain_debug(sd
, cpu
);
6341 rq_attach_root(rq
, rd
);
6342 rcu_assign_pointer(rq
->sd
, sd
);
6345 /* cpus with isolated domains */
6346 static cpumask_var_t cpu_isolated_map
;
6348 /* Setup the mask of cpus configured for isolated domains */
6349 static int __init
isolated_cpu_setup(char *str
)
6351 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6352 cpulist_parse(str
, cpu_isolated_map
);
6356 __setup("isolcpus=", isolated_cpu_setup
);
6359 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6360 * to a function which identifies what group(along with sched group) a CPU
6361 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6362 * (due to the fact that we keep track of groups covered with a struct cpumask).
6364 * init_sched_build_groups will build a circular linked list of the groups
6365 * covered by the given span, and will set each group's ->cpumask correctly,
6366 * and ->cpu_power to 0.
6369 init_sched_build_groups(const struct cpumask
*span
,
6370 const struct cpumask
*cpu_map
,
6371 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6372 struct sched_group
**sg
,
6373 struct cpumask
*tmpmask
),
6374 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6376 struct sched_group
*first
= NULL
, *last
= NULL
;
6379 cpumask_clear(covered
);
6381 for_each_cpu(i
, span
) {
6382 struct sched_group
*sg
;
6383 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6386 if (cpumask_test_cpu(i
, covered
))
6389 cpumask_clear(sched_group_cpus(sg
));
6392 for_each_cpu(j
, span
) {
6393 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6396 cpumask_set_cpu(j
, covered
);
6397 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6408 #define SD_NODES_PER_DOMAIN 16
6413 * find_next_best_node - find the next node to include in a sched_domain
6414 * @node: node whose sched_domain we're building
6415 * @used_nodes: nodes already in the sched_domain
6417 * Find the next node to include in a given scheduling domain. Simply
6418 * finds the closest node not already in the @used_nodes map.
6420 * Should use nodemask_t.
6422 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6424 int i
, n
, val
, min_val
, best_node
= 0;
6428 for (i
= 0; i
< nr_node_ids
; i
++) {
6429 /* Start at @node */
6430 n
= (node
+ i
) % nr_node_ids
;
6432 if (!nr_cpus_node(n
))
6435 /* Skip already used nodes */
6436 if (node_isset(n
, *used_nodes
))
6439 /* Simple min distance search */
6440 val
= node_distance(node
, n
);
6442 if (val
< min_val
) {
6448 node_set(best_node
, *used_nodes
);
6453 * sched_domain_node_span - get a cpumask for a node's sched_domain
6454 * @node: node whose cpumask we're constructing
6455 * @span: resulting cpumask
6457 * Given a node, construct a good cpumask for its sched_domain to span. It
6458 * should be one that prevents unnecessary balancing, but also spreads tasks
6461 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6463 nodemask_t used_nodes
;
6466 cpumask_clear(span
);
6467 nodes_clear(used_nodes
);
6469 cpumask_or(span
, span
, cpumask_of_node(node
));
6470 node_set(node
, used_nodes
);
6472 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6473 int next_node
= find_next_best_node(node
, &used_nodes
);
6475 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6478 #endif /* CONFIG_NUMA */
6480 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6483 * The cpus mask in sched_group and sched_domain hangs off the end.
6485 * ( See the the comments in include/linux/sched.h:struct sched_group
6486 * and struct sched_domain. )
6488 struct static_sched_group
{
6489 struct sched_group sg
;
6490 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6493 struct static_sched_domain
{
6494 struct sched_domain sd
;
6495 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6501 cpumask_var_t domainspan
;
6502 cpumask_var_t covered
;
6503 cpumask_var_t notcovered
;
6505 cpumask_var_t nodemask
;
6506 cpumask_var_t this_sibling_map
;
6507 cpumask_var_t this_core_map
;
6508 cpumask_var_t send_covered
;
6509 cpumask_var_t tmpmask
;
6510 struct sched_group
**sched_group_nodes
;
6511 struct root_domain
*rd
;
6515 sa_sched_groups
= 0,
6520 sa_this_sibling_map
,
6522 sa_sched_group_nodes
,
6532 * SMT sched-domains:
6534 #ifdef CONFIG_SCHED_SMT
6535 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6536 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6539 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6540 struct sched_group
**sg
, struct cpumask
*unused
)
6543 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6546 #endif /* CONFIG_SCHED_SMT */
6549 * multi-core sched-domains:
6551 #ifdef CONFIG_SCHED_MC
6552 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6553 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6554 #endif /* CONFIG_SCHED_MC */
6556 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6558 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6559 struct sched_group
**sg
, struct cpumask
*mask
)
6563 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6564 group
= cpumask_first(mask
);
6566 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6569 #elif defined(CONFIG_SCHED_MC)
6571 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6572 struct sched_group
**sg
, struct cpumask
*unused
)
6575 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
6580 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6581 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6584 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6585 struct sched_group
**sg
, struct cpumask
*mask
)
6588 #ifdef CONFIG_SCHED_MC
6589 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6590 group
= cpumask_first(mask
);
6591 #elif defined(CONFIG_SCHED_SMT)
6592 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6593 group
= cpumask_first(mask
);
6598 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6604 * The init_sched_build_groups can't handle what we want to do with node
6605 * groups, so roll our own. Now each node has its own list of groups which
6606 * gets dynamically allocated.
6608 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6609 static struct sched_group
***sched_group_nodes_bycpu
;
6611 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
6612 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
6614 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
6615 struct sched_group
**sg
,
6616 struct cpumask
*nodemask
)
6620 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
6621 group
= cpumask_first(nodemask
);
6624 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
6628 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6630 struct sched_group
*sg
= group_head
;
6636 for_each_cpu(j
, sched_group_cpus(sg
)) {
6637 struct sched_domain
*sd
;
6639 sd
= &per_cpu(phys_domains
, j
).sd
;
6640 if (j
!= group_first_cpu(sd
->groups
)) {
6642 * Only add "power" once for each
6648 sg
->cpu_power
+= sd
->groups
->cpu_power
;
6651 } while (sg
!= group_head
);
6654 static int build_numa_sched_groups(struct s_data
*d
,
6655 const struct cpumask
*cpu_map
, int num
)
6657 struct sched_domain
*sd
;
6658 struct sched_group
*sg
, *prev
;
6661 cpumask_clear(d
->covered
);
6662 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
6663 if (cpumask_empty(d
->nodemask
)) {
6664 d
->sched_group_nodes
[num
] = NULL
;
6668 sched_domain_node_span(num
, d
->domainspan
);
6669 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
6671 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6674 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
6678 d
->sched_group_nodes
[num
] = sg
;
6680 for_each_cpu(j
, d
->nodemask
) {
6681 sd
= &per_cpu(node_domains
, j
).sd
;
6686 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
6688 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
6691 for (j
= 0; j
< nr_node_ids
; j
++) {
6692 n
= (num
+ j
) % nr_node_ids
;
6693 cpumask_complement(d
->notcovered
, d
->covered
);
6694 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
6695 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
6696 if (cpumask_empty(d
->tmpmask
))
6698 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
6699 if (cpumask_empty(d
->tmpmask
))
6701 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6705 "Can not alloc domain group for node %d\n", j
);
6709 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
6710 sg
->next
= prev
->next
;
6711 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
6718 #endif /* CONFIG_NUMA */
6721 /* Free memory allocated for various sched_group structures */
6722 static void free_sched_groups(const struct cpumask
*cpu_map
,
6723 struct cpumask
*nodemask
)
6727 for_each_cpu(cpu
, cpu_map
) {
6728 struct sched_group
**sched_group_nodes
6729 = sched_group_nodes_bycpu
[cpu
];
6731 if (!sched_group_nodes
)
6734 for (i
= 0; i
< nr_node_ids
; i
++) {
6735 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6737 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
6738 if (cpumask_empty(nodemask
))
6748 if (oldsg
!= sched_group_nodes
[i
])
6751 kfree(sched_group_nodes
);
6752 sched_group_nodes_bycpu
[cpu
] = NULL
;
6755 #else /* !CONFIG_NUMA */
6756 static void free_sched_groups(const struct cpumask
*cpu_map
,
6757 struct cpumask
*nodemask
)
6760 #endif /* CONFIG_NUMA */
6763 * Initialize sched groups cpu_power.
6765 * cpu_power indicates the capacity of sched group, which is used while
6766 * distributing the load between different sched groups in a sched domain.
6767 * Typically cpu_power for all the groups in a sched domain will be same unless
6768 * there are asymmetries in the topology. If there are asymmetries, group
6769 * having more cpu_power will pickup more load compared to the group having
6772 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6774 struct sched_domain
*child
;
6775 struct sched_group
*group
;
6779 WARN_ON(!sd
|| !sd
->groups
);
6781 if (cpu
!= group_first_cpu(sd
->groups
))
6786 sd
->groups
->cpu_power
= 0;
6789 power
= SCHED_LOAD_SCALE
;
6790 weight
= cpumask_weight(sched_domain_span(sd
));
6792 * SMT siblings share the power of a single core.
6793 * Usually multiple threads get a better yield out of
6794 * that one core than a single thread would have,
6795 * reflect that in sd->smt_gain.
6797 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
6798 power
*= sd
->smt_gain
;
6800 power
>>= SCHED_LOAD_SHIFT
;
6802 sd
->groups
->cpu_power
+= power
;
6807 * Add cpu_power of each child group to this groups cpu_power.
6809 group
= child
->groups
;
6811 sd
->groups
->cpu_power
+= group
->cpu_power
;
6812 group
= group
->next
;
6813 } while (group
!= child
->groups
);
6817 * Initializers for schedule domains
6818 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6821 #ifdef CONFIG_SCHED_DEBUG
6822 # define SD_INIT_NAME(sd, type) sd->name = #type
6824 # define SD_INIT_NAME(sd, type) do { } while (0)
6827 #define SD_INIT(sd, type) sd_init_##type(sd)
6829 #define SD_INIT_FUNC(type) \
6830 static noinline void sd_init_##type(struct sched_domain *sd) \
6832 memset(sd, 0, sizeof(*sd)); \
6833 *sd = SD_##type##_INIT; \
6834 sd->level = SD_LV_##type; \
6835 SD_INIT_NAME(sd, type); \
6840 SD_INIT_FUNC(ALLNODES
)
6843 #ifdef CONFIG_SCHED_SMT
6844 SD_INIT_FUNC(SIBLING
)
6846 #ifdef CONFIG_SCHED_MC
6850 static int default_relax_domain_level
= -1;
6852 static int __init
setup_relax_domain_level(char *str
)
6856 val
= simple_strtoul(str
, NULL
, 0);
6857 if (val
< SD_LV_MAX
)
6858 default_relax_domain_level
= val
;
6862 __setup("relax_domain_level=", setup_relax_domain_level
);
6864 static void set_domain_attribute(struct sched_domain
*sd
,
6865 struct sched_domain_attr
*attr
)
6869 if (!attr
|| attr
->relax_domain_level
< 0) {
6870 if (default_relax_domain_level
< 0)
6873 request
= default_relax_domain_level
;
6875 request
= attr
->relax_domain_level
;
6876 if (request
< sd
->level
) {
6877 /* turn off idle balance on this domain */
6878 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6880 /* turn on idle balance on this domain */
6881 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6885 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6886 const struct cpumask
*cpu_map
)
6889 case sa_sched_groups
:
6890 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
6891 d
->sched_group_nodes
= NULL
;
6893 free_rootdomain(d
->rd
); /* fall through */
6895 free_cpumask_var(d
->tmpmask
); /* fall through */
6896 case sa_send_covered
:
6897 free_cpumask_var(d
->send_covered
); /* fall through */
6898 case sa_this_core_map
:
6899 free_cpumask_var(d
->this_core_map
); /* fall through */
6900 case sa_this_sibling_map
:
6901 free_cpumask_var(d
->this_sibling_map
); /* fall through */
6903 free_cpumask_var(d
->nodemask
); /* fall through */
6904 case sa_sched_group_nodes
:
6906 kfree(d
->sched_group_nodes
); /* fall through */
6908 free_cpumask_var(d
->notcovered
); /* fall through */
6910 free_cpumask_var(d
->covered
); /* fall through */
6912 free_cpumask_var(d
->domainspan
); /* fall through */
6919 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6920 const struct cpumask
*cpu_map
)
6923 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
6925 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
6926 return sa_domainspan
;
6927 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
6929 /* Allocate the per-node list of sched groups */
6930 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
6931 sizeof(struct sched_group
*), GFP_KERNEL
);
6932 if (!d
->sched_group_nodes
) {
6933 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6934 return sa_notcovered
;
6936 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
6938 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
6939 return sa_sched_group_nodes
;
6940 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
6942 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
6943 return sa_this_sibling_map
;
6944 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
6945 return sa_this_core_map
;
6946 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
6947 return sa_send_covered
;
6948 d
->rd
= alloc_rootdomain();
6950 printk(KERN_WARNING
"Cannot alloc root domain\n");
6953 return sa_rootdomain
;
6956 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
6957 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
6959 struct sched_domain
*sd
= NULL
;
6961 struct sched_domain
*parent
;
6964 if (cpumask_weight(cpu_map
) >
6965 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
6966 sd
= &per_cpu(allnodes_domains
, i
).sd
;
6967 SD_INIT(sd
, ALLNODES
);
6968 set_domain_attribute(sd
, attr
);
6969 cpumask_copy(sched_domain_span(sd
), cpu_map
);
6970 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6975 sd
= &per_cpu(node_domains
, i
).sd
;
6977 set_domain_attribute(sd
, attr
);
6978 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
6979 sd
->parent
= parent
;
6982 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
6987 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
6988 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6989 struct sched_domain
*parent
, int i
)
6991 struct sched_domain
*sd
;
6992 sd
= &per_cpu(phys_domains
, i
).sd
;
6994 set_domain_attribute(sd
, attr
);
6995 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
6996 sd
->parent
= parent
;
6999 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7003 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
7004 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7005 struct sched_domain
*parent
, int i
)
7007 struct sched_domain
*sd
= parent
;
7008 #ifdef CONFIG_SCHED_MC
7009 sd
= &per_cpu(core_domains
, i
).sd
;
7011 set_domain_attribute(sd
, attr
);
7012 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
7013 sd
->parent
= parent
;
7015 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7020 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
7021 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7022 struct sched_domain
*parent
, int i
)
7024 struct sched_domain
*sd
= parent
;
7025 #ifdef CONFIG_SCHED_SMT
7026 sd
= &per_cpu(cpu_domains
, i
).sd
;
7027 SD_INIT(sd
, SIBLING
);
7028 set_domain_attribute(sd
, attr
);
7029 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
7030 sd
->parent
= parent
;
7032 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7037 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
7038 const struct cpumask
*cpu_map
, int cpu
)
7041 #ifdef CONFIG_SCHED_SMT
7042 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
7043 cpumask_and(d
->this_sibling_map
, cpu_map
,
7044 topology_thread_cpumask(cpu
));
7045 if (cpu
== cpumask_first(d
->this_sibling_map
))
7046 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
7048 d
->send_covered
, d
->tmpmask
);
7051 #ifdef CONFIG_SCHED_MC
7052 case SD_LV_MC
: /* set up multi-core groups */
7053 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
7054 if (cpu
== cpumask_first(d
->this_core_map
))
7055 init_sched_build_groups(d
->this_core_map
, cpu_map
,
7057 d
->send_covered
, d
->tmpmask
);
7060 case SD_LV_CPU
: /* set up physical groups */
7061 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
7062 if (!cpumask_empty(d
->nodemask
))
7063 init_sched_build_groups(d
->nodemask
, cpu_map
,
7065 d
->send_covered
, d
->tmpmask
);
7068 case SD_LV_ALLNODES
:
7069 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
7070 d
->send_covered
, d
->tmpmask
);
7079 * Build sched domains for a given set of cpus and attach the sched domains
7080 * to the individual cpus
7082 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7083 struct sched_domain_attr
*attr
)
7085 enum s_alloc alloc_state
= sa_none
;
7087 struct sched_domain
*sd
;
7093 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7094 if (alloc_state
!= sa_rootdomain
)
7096 alloc_state
= sa_sched_groups
;
7099 * Set up domains for cpus specified by the cpu_map.
7101 for_each_cpu(i
, cpu_map
) {
7102 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
7105 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
7106 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7107 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7108 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7111 for_each_cpu(i
, cpu_map
) {
7112 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
7113 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
7116 /* Set up physical groups */
7117 for (i
= 0; i
< nr_node_ids
; i
++)
7118 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
7121 /* Set up node groups */
7123 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
7125 for (i
= 0; i
< nr_node_ids
; i
++)
7126 if (build_numa_sched_groups(&d
, cpu_map
, i
))
7130 /* Calculate CPU power for physical packages and nodes */
7131 #ifdef CONFIG_SCHED_SMT
7132 for_each_cpu(i
, cpu_map
) {
7133 sd
= &per_cpu(cpu_domains
, i
).sd
;
7134 init_sched_groups_power(i
, sd
);
7137 #ifdef CONFIG_SCHED_MC
7138 for_each_cpu(i
, cpu_map
) {
7139 sd
= &per_cpu(core_domains
, i
).sd
;
7140 init_sched_groups_power(i
, sd
);
7144 for_each_cpu(i
, cpu_map
) {
7145 sd
= &per_cpu(phys_domains
, i
).sd
;
7146 init_sched_groups_power(i
, sd
);
7150 for (i
= 0; i
< nr_node_ids
; i
++)
7151 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
7153 if (d
.sd_allnodes
) {
7154 struct sched_group
*sg
;
7156 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7158 init_numa_sched_groups_power(sg
);
7162 /* Attach the domains */
7163 for_each_cpu(i
, cpu_map
) {
7164 #ifdef CONFIG_SCHED_SMT
7165 sd
= &per_cpu(cpu_domains
, i
).sd
;
7166 #elif defined(CONFIG_SCHED_MC)
7167 sd
= &per_cpu(core_domains
, i
).sd
;
7169 sd
= &per_cpu(phys_domains
, i
).sd
;
7171 cpu_attach_domain(sd
, d
.rd
, i
);
7174 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
7175 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
7179 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7183 static int build_sched_domains(const struct cpumask
*cpu_map
)
7185 return __build_sched_domains(cpu_map
, NULL
);
7188 static cpumask_var_t
*doms_cur
; /* current sched domains */
7189 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7190 static struct sched_domain_attr
*dattr_cur
;
7191 /* attribues of custom domains in 'doms_cur' */
7194 * Special case: If a kmalloc of a doms_cur partition (array of
7195 * cpumask) fails, then fallback to a single sched domain,
7196 * as determined by the single cpumask fallback_doms.
7198 static cpumask_var_t fallback_doms
;
7201 * arch_update_cpu_topology lets virtualized architectures update the
7202 * cpu core maps. It is supposed to return 1 if the topology changed
7203 * or 0 if it stayed the same.
7205 int __attribute__((weak
)) arch_update_cpu_topology(void)
7210 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7213 cpumask_var_t
*doms
;
7215 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7218 for (i
= 0; i
< ndoms
; i
++) {
7219 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7220 free_sched_domains(doms
, i
);
7227 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7230 for (i
= 0; i
< ndoms
; i
++)
7231 free_cpumask_var(doms
[i
]);
7236 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7237 * For now this just excludes isolated cpus, but could be used to
7238 * exclude other special cases in the future.
7240 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7244 arch_update_cpu_topology();
7246 doms_cur
= alloc_sched_domains(ndoms_cur
);
7248 doms_cur
= &fallback_doms
;
7249 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7251 err
= build_sched_domains(doms_cur
[0]);
7252 register_sched_domain_sysctl();
7257 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7258 struct cpumask
*tmpmask
)
7260 free_sched_groups(cpu_map
, tmpmask
);
7264 * Detach sched domains from a group of cpus specified in cpu_map
7265 * These cpus will now be attached to the NULL domain
7267 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7269 /* Save because hotplug lock held. */
7270 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7273 for_each_cpu(i
, cpu_map
)
7274 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7275 synchronize_sched();
7276 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7279 /* handle null as "default" */
7280 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7281 struct sched_domain_attr
*new, int idx_new
)
7283 struct sched_domain_attr tmp
;
7290 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7291 new ? (new + idx_new
) : &tmp
,
7292 sizeof(struct sched_domain_attr
));
7296 * Partition sched domains as specified by the 'ndoms_new'
7297 * cpumasks in the array doms_new[] of cpumasks. This compares
7298 * doms_new[] to the current sched domain partitioning, doms_cur[].
7299 * It destroys each deleted domain and builds each new domain.
7301 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7302 * The masks don't intersect (don't overlap.) We should setup one
7303 * sched domain for each mask. CPUs not in any of the cpumasks will
7304 * not be load balanced. If the same cpumask appears both in the
7305 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7308 * The passed in 'doms_new' should be allocated using
7309 * alloc_sched_domains. This routine takes ownership of it and will
7310 * free_sched_domains it when done with it. If the caller failed the
7311 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7312 * and partition_sched_domains() will fallback to the single partition
7313 * 'fallback_doms', it also forces the domains to be rebuilt.
7315 * If doms_new == NULL it will be replaced with cpu_online_mask.
7316 * ndoms_new == 0 is a special case for destroying existing domains,
7317 * and it will not create the default domain.
7319 * Call with hotplug lock held
7321 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7322 struct sched_domain_attr
*dattr_new
)
7327 mutex_lock(&sched_domains_mutex
);
7329 /* always unregister in case we don't destroy any domains */
7330 unregister_sched_domain_sysctl();
7332 /* Let architecture update cpu core mappings. */
7333 new_topology
= arch_update_cpu_topology();
7335 n
= doms_new
? ndoms_new
: 0;
7337 /* Destroy deleted domains */
7338 for (i
= 0; i
< ndoms_cur
; i
++) {
7339 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7340 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7341 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7344 /* no match - a current sched domain not in new doms_new[] */
7345 detach_destroy_domains(doms_cur
[i
]);
7350 if (doms_new
== NULL
) {
7352 doms_new
= &fallback_doms
;
7353 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7354 WARN_ON_ONCE(dattr_new
);
7357 /* Build new domains */
7358 for (i
= 0; i
< ndoms_new
; i
++) {
7359 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7360 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7361 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7364 /* no match - add a new doms_new */
7365 __build_sched_domains(doms_new
[i
],
7366 dattr_new
? dattr_new
+ i
: NULL
);
7371 /* Remember the new sched domains */
7372 if (doms_cur
!= &fallback_doms
)
7373 free_sched_domains(doms_cur
, ndoms_cur
);
7374 kfree(dattr_cur
); /* kfree(NULL) is safe */
7375 doms_cur
= doms_new
;
7376 dattr_cur
= dattr_new
;
7377 ndoms_cur
= ndoms_new
;
7379 register_sched_domain_sysctl();
7381 mutex_unlock(&sched_domains_mutex
);
7384 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7385 static void arch_reinit_sched_domains(void)
7389 /* Destroy domains first to force the rebuild */
7390 partition_sched_domains(0, NULL
, NULL
);
7392 rebuild_sched_domains();
7396 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7398 unsigned int level
= 0;
7400 if (sscanf(buf
, "%u", &level
) != 1)
7404 * level is always be positive so don't check for
7405 * level < POWERSAVINGS_BALANCE_NONE which is 0
7406 * What happens on 0 or 1 byte write,
7407 * need to check for count as well?
7410 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7414 sched_smt_power_savings
= level
;
7416 sched_mc_power_savings
= level
;
7418 arch_reinit_sched_domains();
7423 #ifdef CONFIG_SCHED_MC
7424 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7425 struct sysdev_class_attribute
*attr
,
7428 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7430 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7431 struct sysdev_class_attribute
*attr
,
7432 const char *buf
, size_t count
)
7434 return sched_power_savings_store(buf
, count
, 0);
7436 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7437 sched_mc_power_savings_show
,
7438 sched_mc_power_savings_store
);
7441 #ifdef CONFIG_SCHED_SMT
7442 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7443 struct sysdev_class_attribute
*attr
,
7446 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7448 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7449 struct sysdev_class_attribute
*attr
,
7450 const char *buf
, size_t count
)
7452 return sched_power_savings_store(buf
, count
, 1);
7454 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7455 sched_smt_power_savings_show
,
7456 sched_smt_power_savings_store
);
7459 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7463 #ifdef CONFIG_SCHED_SMT
7465 err
= sysfs_create_file(&cls
->kset
.kobj
,
7466 &attr_sched_smt_power_savings
.attr
);
7468 #ifdef CONFIG_SCHED_MC
7469 if (!err
&& mc_capable())
7470 err
= sysfs_create_file(&cls
->kset
.kobj
,
7471 &attr_sched_mc_power_savings
.attr
);
7475 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7477 #ifndef CONFIG_CPUSETS
7479 * Add online and remove offline CPUs from the scheduler domains.
7480 * When cpusets are enabled they take over this function.
7482 static int update_sched_domains(struct notifier_block
*nfb
,
7483 unsigned long action
, void *hcpu
)
7487 case CPU_ONLINE_FROZEN
:
7488 case CPU_DOWN_PREPARE
:
7489 case CPU_DOWN_PREPARE_FROZEN
:
7490 case CPU_DOWN_FAILED
:
7491 case CPU_DOWN_FAILED_FROZEN
:
7492 partition_sched_domains(1, NULL
, NULL
);
7501 static int update_runtime(struct notifier_block
*nfb
,
7502 unsigned long action
, void *hcpu
)
7504 int cpu
= (int)(long)hcpu
;
7507 case CPU_DOWN_PREPARE
:
7508 case CPU_DOWN_PREPARE_FROZEN
:
7509 disable_runtime(cpu_rq(cpu
));
7512 case CPU_DOWN_FAILED
:
7513 case CPU_DOWN_FAILED_FROZEN
:
7515 case CPU_ONLINE_FROZEN
:
7516 enable_runtime(cpu_rq(cpu
));
7524 void __init
sched_init_smp(void)
7526 cpumask_var_t non_isolated_cpus
;
7528 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7529 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7531 #if defined(CONFIG_NUMA)
7532 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7534 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7537 mutex_lock(&sched_domains_mutex
);
7538 arch_init_sched_domains(cpu_active_mask
);
7539 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7540 if (cpumask_empty(non_isolated_cpus
))
7541 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7542 mutex_unlock(&sched_domains_mutex
);
7545 #ifndef CONFIG_CPUSETS
7546 /* XXX: Theoretical race here - CPU may be hotplugged now */
7547 hotcpu_notifier(update_sched_domains
, 0);
7550 /* RT runtime code needs to handle some hotplug events */
7551 hotcpu_notifier(update_runtime
, 0);
7555 /* Move init over to a non-isolated CPU */
7556 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7558 sched_init_granularity();
7559 free_cpumask_var(non_isolated_cpus
);
7561 init_sched_rt_class();
7564 void __init
sched_init_smp(void)
7566 sched_init_granularity();
7568 #endif /* CONFIG_SMP */
7570 const_debug
unsigned int sysctl_timer_migration
= 1;
7572 int in_sched_functions(unsigned long addr
)
7574 return in_lock_functions(addr
) ||
7575 (addr
>= (unsigned long)__sched_text_start
7576 && addr
< (unsigned long)__sched_text_end
);
7579 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7581 cfs_rq
->tasks_timeline
= RB_ROOT
;
7582 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7583 #ifdef CONFIG_FAIR_GROUP_SCHED
7586 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7589 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7591 struct rt_prio_array
*array
;
7594 array
= &rt_rq
->active
;
7595 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7596 INIT_LIST_HEAD(array
->queue
+ i
);
7597 __clear_bit(i
, array
->bitmap
);
7599 /* delimiter for bitsearch: */
7600 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7602 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7603 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7605 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7609 rt_rq
->rt_nr_migratory
= 0;
7610 rt_rq
->overloaded
= 0;
7611 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7615 rt_rq
->rt_throttled
= 0;
7616 rt_rq
->rt_runtime
= 0;
7617 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7619 #ifdef CONFIG_RT_GROUP_SCHED
7620 rt_rq
->rt_nr_boosted
= 0;
7625 #ifdef CONFIG_FAIR_GROUP_SCHED
7626 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7627 struct sched_entity
*se
, int cpu
, int add
,
7628 struct sched_entity
*parent
)
7630 struct rq
*rq
= cpu_rq(cpu
);
7631 tg
->cfs_rq
[cpu
] = cfs_rq
;
7632 init_cfs_rq(cfs_rq
, rq
);
7635 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7638 /* se could be NULL for init_task_group */
7643 se
->cfs_rq
= &rq
->cfs
;
7645 se
->cfs_rq
= parent
->my_q
;
7648 se
->load
.weight
= tg
->shares
;
7649 se
->load
.inv_weight
= 0;
7650 se
->parent
= parent
;
7654 #ifdef CONFIG_RT_GROUP_SCHED
7655 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7656 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7657 struct sched_rt_entity
*parent
)
7659 struct rq
*rq
= cpu_rq(cpu
);
7661 tg
->rt_rq
[cpu
] = rt_rq
;
7662 init_rt_rq(rt_rq
, rq
);
7664 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7666 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7668 tg
->rt_se
[cpu
] = rt_se
;
7673 rt_se
->rt_rq
= &rq
->rt
;
7675 rt_se
->rt_rq
= parent
->my_q
;
7677 rt_se
->my_q
= rt_rq
;
7678 rt_se
->parent
= parent
;
7679 INIT_LIST_HEAD(&rt_se
->run_list
);
7683 void __init
sched_init(void)
7686 unsigned long alloc_size
= 0, ptr
;
7688 #ifdef CONFIG_FAIR_GROUP_SCHED
7689 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7691 #ifdef CONFIG_RT_GROUP_SCHED
7692 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7694 #ifdef CONFIG_CPUMASK_OFFSTACK
7695 alloc_size
+= num_possible_cpus() * cpumask_size();
7698 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7700 #ifdef CONFIG_FAIR_GROUP_SCHED
7701 init_task_group
.se
= (struct sched_entity
**)ptr
;
7702 ptr
+= nr_cpu_ids
* sizeof(void **);
7704 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7705 ptr
+= nr_cpu_ids
* sizeof(void **);
7707 #endif /* CONFIG_FAIR_GROUP_SCHED */
7708 #ifdef CONFIG_RT_GROUP_SCHED
7709 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7710 ptr
+= nr_cpu_ids
* sizeof(void **);
7712 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7713 ptr
+= nr_cpu_ids
* sizeof(void **);
7715 #endif /* CONFIG_RT_GROUP_SCHED */
7716 #ifdef CONFIG_CPUMASK_OFFSTACK
7717 for_each_possible_cpu(i
) {
7718 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7719 ptr
+= cpumask_size();
7721 #endif /* CONFIG_CPUMASK_OFFSTACK */
7725 init_defrootdomain();
7728 init_rt_bandwidth(&def_rt_bandwidth
,
7729 global_rt_period(), global_rt_runtime());
7731 #ifdef CONFIG_RT_GROUP_SCHED
7732 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7733 global_rt_period(), global_rt_runtime());
7734 #endif /* CONFIG_RT_GROUP_SCHED */
7736 #ifdef CONFIG_CGROUP_SCHED
7737 list_add(&init_task_group
.list
, &task_groups
);
7738 INIT_LIST_HEAD(&init_task_group
.children
);
7740 #endif /* CONFIG_CGROUP_SCHED */
7742 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7743 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
7744 __alignof__(unsigned long));
7746 for_each_possible_cpu(i
) {
7750 raw_spin_lock_init(&rq
->lock
);
7752 rq
->calc_load_active
= 0;
7753 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7754 init_cfs_rq(&rq
->cfs
, rq
);
7755 init_rt_rq(&rq
->rt
, rq
);
7756 #ifdef CONFIG_FAIR_GROUP_SCHED
7757 init_task_group
.shares
= init_task_group_load
;
7758 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7759 #ifdef CONFIG_CGROUP_SCHED
7761 * How much cpu bandwidth does init_task_group get?
7763 * In case of task-groups formed thr' the cgroup filesystem, it
7764 * gets 100% of the cpu resources in the system. This overall
7765 * system cpu resource is divided among the tasks of
7766 * init_task_group and its child task-groups in a fair manner,
7767 * based on each entity's (task or task-group's) weight
7768 * (se->load.weight).
7770 * In other words, if init_task_group has 10 tasks of weight
7771 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7772 * then A0's share of the cpu resource is:
7774 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7776 * We achieve this by letting init_task_group's tasks sit
7777 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7779 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
7781 #endif /* CONFIG_FAIR_GROUP_SCHED */
7783 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7784 #ifdef CONFIG_RT_GROUP_SCHED
7785 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7786 #ifdef CONFIG_CGROUP_SCHED
7787 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
7791 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7792 rq
->cpu_load
[j
] = 0;
7796 rq
->post_schedule
= 0;
7797 rq
->active_balance
= 0;
7798 rq
->next_balance
= jiffies
;
7802 rq
->migration_thread
= NULL
;
7804 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7805 INIT_LIST_HEAD(&rq
->migration_queue
);
7806 rq_attach_root(rq
, &def_root_domain
);
7809 atomic_set(&rq
->nr_iowait
, 0);
7812 set_load_weight(&init_task
);
7814 #ifdef CONFIG_PREEMPT_NOTIFIERS
7815 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7819 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
7822 #ifdef CONFIG_RT_MUTEXES
7823 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7827 * The boot idle thread does lazy MMU switching as well:
7829 atomic_inc(&init_mm
.mm_count
);
7830 enter_lazy_tlb(&init_mm
, current
);
7833 * Make us the idle thread. Technically, schedule() should not be
7834 * called from this thread, however somewhere below it might be,
7835 * but because we are the idle thread, we just pick up running again
7836 * when this runqueue becomes "idle".
7838 init_idle(current
, smp_processor_id());
7840 calc_load_update
= jiffies
+ LOAD_FREQ
;
7843 * During early bootup we pretend to be a normal task:
7845 current
->sched_class
= &fair_sched_class
;
7847 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7848 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
7851 zalloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
7852 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
7854 /* May be allocated at isolcpus cmdline parse time */
7855 if (cpu_isolated_map
== NULL
)
7856 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7861 scheduler_running
= 1;
7864 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7865 static inline int preempt_count_equals(int preempt_offset
)
7867 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7869 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
7872 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7875 static unsigned long prev_jiffy
; /* ratelimiting */
7877 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
7878 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7880 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7882 prev_jiffy
= jiffies
;
7885 "BUG: sleeping function called from invalid context at %s:%d\n",
7888 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7889 in_atomic(), irqs_disabled(),
7890 current
->pid
, current
->comm
);
7892 debug_show_held_locks(current
);
7893 if (irqs_disabled())
7894 print_irqtrace_events(current
);
7898 EXPORT_SYMBOL(__might_sleep
);
7901 #ifdef CONFIG_MAGIC_SYSRQ
7902 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7906 update_rq_clock(rq
);
7907 on_rq
= p
->se
.on_rq
;
7909 deactivate_task(rq
, p
, 0);
7910 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7912 activate_task(rq
, p
, 0);
7913 resched_task(rq
->curr
);
7917 void normalize_rt_tasks(void)
7919 struct task_struct
*g
, *p
;
7920 unsigned long flags
;
7923 read_lock_irqsave(&tasklist_lock
, flags
);
7924 do_each_thread(g
, p
) {
7926 * Only normalize user tasks:
7931 p
->se
.exec_start
= 0;
7932 #ifdef CONFIG_SCHEDSTATS
7933 p
->se
.wait_start
= 0;
7934 p
->se
.sleep_start
= 0;
7935 p
->se
.block_start
= 0;
7940 * Renice negative nice level userspace
7943 if (TASK_NICE(p
) < 0 && p
->mm
)
7944 set_user_nice(p
, 0);
7948 raw_spin_lock(&p
->pi_lock
);
7949 rq
= __task_rq_lock(p
);
7951 normalize_task(rq
, p
);
7953 __task_rq_unlock(rq
);
7954 raw_spin_unlock(&p
->pi_lock
);
7955 } while_each_thread(g
, p
);
7957 read_unlock_irqrestore(&tasklist_lock
, flags
);
7960 #endif /* CONFIG_MAGIC_SYSRQ */
7964 * These functions are only useful for the IA64 MCA handling.
7966 * They can only be called when the whole system has been
7967 * stopped - every CPU needs to be quiescent, and no scheduling
7968 * activity can take place. Using them for anything else would
7969 * be a serious bug, and as a result, they aren't even visible
7970 * under any other configuration.
7974 * curr_task - return the current task for a given cpu.
7975 * @cpu: the processor in question.
7977 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7979 struct task_struct
*curr_task(int cpu
)
7981 return cpu_curr(cpu
);
7985 * set_curr_task - set the current task for a given cpu.
7986 * @cpu: the processor in question.
7987 * @p: the task pointer to set.
7989 * Description: This function must only be used when non-maskable interrupts
7990 * are serviced on a separate stack. It allows the architecture to switch the
7991 * notion of the current task on a cpu in a non-blocking manner. This function
7992 * must be called with all CPU's synchronized, and interrupts disabled, the
7993 * and caller must save the original value of the current task (see
7994 * curr_task() above) and restore that value before reenabling interrupts and
7995 * re-starting the system.
7997 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7999 void set_curr_task(int cpu
, struct task_struct
*p
)
8006 #ifdef CONFIG_FAIR_GROUP_SCHED
8007 static void free_fair_sched_group(struct task_group
*tg
)
8011 for_each_possible_cpu(i
) {
8013 kfree(tg
->cfs_rq
[i
]);
8023 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8025 struct cfs_rq
*cfs_rq
;
8026 struct sched_entity
*se
;
8030 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8033 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8037 tg
->shares
= NICE_0_LOAD
;
8039 for_each_possible_cpu(i
) {
8042 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8043 GFP_KERNEL
, cpu_to_node(i
));
8047 se
= kzalloc_node(sizeof(struct sched_entity
),
8048 GFP_KERNEL
, cpu_to_node(i
));
8052 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8063 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8065 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8066 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8069 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8071 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8073 #else /* !CONFG_FAIR_GROUP_SCHED */
8074 static inline void free_fair_sched_group(struct task_group
*tg
)
8079 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8084 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8088 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8091 #endif /* CONFIG_FAIR_GROUP_SCHED */
8093 #ifdef CONFIG_RT_GROUP_SCHED
8094 static void free_rt_sched_group(struct task_group
*tg
)
8098 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8100 for_each_possible_cpu(i
) {
8102 kfree(tg
->rt_rq
[i
]);
8104 kfree(tg
->rt_se
[i
]);
8112 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8114 struct rt_rq
*rt_rq
;
8115 struct sched_rt_entity
*rt_se
;
8119 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8122 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8126 init_rt_bandwidth(&tg
->rt_bandwidth
,
8127 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8129 for_each_possible_cpu(i
) {
8132 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8133 GFP_KERNEL
, cpu_to_node(i
));
8137 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8138 GFP_KERNEL
, cpu_to_node(i
));
8142 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8153 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8155 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8156 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8159 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8161 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8163 #else /* !CONFIG_RT_GROUP_SCHED */
8164 static inline void free_rt_sched_group(struct task_group
*tg
)
8169 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8174 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8178 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8181 #endif /* CONFIG_RT_GROUP_SCHED */
8183 #ifdef CONFIG_CGROUP_SCHED
8184 static void free_sched_group(struct task_group
*tg
)
8186 free_fair_sched_group(tg
);
8187 free_rt_sched_group(tg
);
8191 /* allocate runqueue etc for a new task group */
8192 struct task_group
*sched_create_group(struct task_group
*parent
)
8194 struct task_group
*tg
;
8195 unsigned long flags
;
8198 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8200 return ERR_PTR(-ENOMEM
);
8202 if (!alloc_fair_sched_group(tg
, parent
))
8205 if (!alloc_rt_sched_group(tg
, parent
))
8208 spin_lock_irqsave(&task_group_lock
, flags
);
8209 for_each_possible_cpu(i
) {
8210 register_fair_sched_group(tg
, i
);
8211 register_rt_sched_group(tg
, i
);
8213 list_add_rcu(&tg
->list
, &task_groups
);
8215 WARN_ON(!parent
); /* root should already exist */
8217 tg
->parent
= parent
;
8218 INIT_LIST_HEAD(&tg
->children
);
8219 list_add_rcu(&tg
->siblings
, &parent
->children
);
8220 spin_unlock_irqrestore(&task_group_lock
, flags
);
8225 free_sched_group(tg
);
8226 return ERR_PTR(-ENOMEM
);
8229 /* rcu callback to free various structures associated with a task group */
8230 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8232 /* now it should be safe to free those cfs_rqs */
8233 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8236 /* Destroy runqueue etc associated with a task group */
8237 void sched_destroy_group(struct task_group
*tg
)
8239 unsigned long flags
;
8242 spin_lock_irqsave(&task_group_lock
, flags
);
8243 for_each_possible_cpu(i
) {
8244 unregister_fair_sched_group(tg
, i
);
8245 unregister_rt_sched_group(tg
, i
);
8247 list_del_rcu(&tg
->list
);
8248 list_del_rcu(&tg
->siblings
);
8249 spin_unlock_irqrestore(&task_group_lock
, flags
);
8251 /* wait for possible concurrent references to cfs_rqs complete */
8252 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8255 /* change task's runqueue when it moves between groups.
8256 * The caller of this function should have put the task in its new group
8257 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8258 * reflect its new group.
8260 void sched_move_task(struct task_struct
*tsk
)
8263 unsigned long flags
;
8266 rq
= task_rq_lock(tsk
, &flags
);
8268 update_rq_clock(rq
);
8270 running
= task_current(rq
, tsk
);
8271 on_rq
= tsk
->se
.on_rq
;
8274 dequeue_task(rq
, tsk
, 0);
8275 if (unlikely(running
))
8276 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8278 set_task_rq(tsk
, task_cpu(tsk
));
8280 #ifdef CONFIG_FAIR_GROUP_SCHED
8281 if (tsk
->sched_class
->moved_group
)
8282 tsk
->sched_class
->moved_group(tsk
, on_rq
);
8285 if (unlikely(running
))
8286 tsk
->sched_class
->set_curr_task(rq
);
8288 enqueue_task(rq
, tsk
, 0, false);
8290 task_rq_unlock(rq
, &flags
);
8292 #endif /* CONFIG_CGROUP_SCHED */
8294 #ifdef CONFIG_FAIR_GROUP_SCHED
8295 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8297 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8302 dequeue_entity(cfs_rq
, se
, 0);
8304 se
->load
.weight
= shares
;
8305 se
->load
.inv_weight
= 0;
8308 enqueue_entity(cfs_rq
, se
, 0);
8311 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8313 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8314 struct rq
*rq
= cfs_rq
->rq
;
8315 unsigned long flags
;
8317 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8318 __set_se_shares(se
, shares
);
8319 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8322 static DEFINE_MUTEX(shares_mutex
);
8324 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8327 unsigned long flags
;
8330 * We can't change the weight of the root cgroup.
8335 if (shares
< MIN_SHARES
)
8336 shares
= MIN_SHARES
;
8337 else if (shares
> MAX_SHARES
)
8338 shares
= MAX_SHARES
;
8340 mutex_lock(&shares_mutex
);
8341 if (tg
->shares
== shares
)
8344 spin_lock_irqsave(&task_group_lock
, flags
);
8345 for_each_possible_cpu(i
)
8346 unregister_fair_sched_group(tg
, i
);
8347 list_del_rcu(&tg
->siblings
);
8348 spin_unlock_irqrestore(&task_group_lock
, flags
);
8350 /* wait for any ongoing reference to this group to finish */
8351 synchronize_sched();
8354 * Now we are free to modify the group's share on each cpu
8355 * w/o tripping rebalance_share or load_balance_fair.
8357 tg
->shares
= shares
;
8358 for_each_possible_cpu(i
) {
8362 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8363 set_se_shares(tg
->se
[i
], shares
);
8367 * Enable load balance activity on this group, by inserting it back on
8368 * each cpu's rq->leaf_cfs_rq_list.
8370 spin_lock_irqsave(&task_group_lock
, flags
);
8371 for_each_possible_cpu(i
)
8372 register_fair_sched_group(tg
, i
);
8373 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8374 spin_unlock_irqrestore(&task_group_lock
, flags
);
8376 mutex_unlock(&shares_mutex
);
8380 unsigned long sched_group_shares(struct task_group
*tg
)
8386 #ifdef CONFIG_RT_GROUP_SCHED
8388 * Ensure that the real time constraints are schedulable.
8390 static DEFINE_MUTEX(rt_constraints_mutex
);
8392 static unsigned long to_ratio(u64 period
, u64 runtime
)
8394 if (runtime
== RUNTIME_INF
)
8397 return div64_u64(runtime
<< 20, period
);
8400 /* Must be called with tasklist_lock held */
8401 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8403 struct task_struct
*g
, *p
;
8405 do_each_thread(g
, p
) {
8406 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8408 } while_each_thread(g
, p
);
8413 struct rt_schedulable_data
{
8414 struct task_group
*tg
;
8419 static int tg_schedulable(struct task_group
*tg
, void *data
)
8421 struct rt_schedulable_data
*d
= data
;
8422 struct task_group
*child
;
8423 unsigned long total
, sum
= 0;
8424 u64 period
, runtime
;
8426 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8427 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8430 period
= d
->rt_period
;
8431 runtime
= d
->rt_runtime
;
8435 * Cannot have more runtime than the period.
8437 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8441 * Ensure we don't starve existing RT tasks.
8443 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8446 total
= to_ratio(period
, runtime
);
8449 * Nobody can have more than the global setting allows.
8451 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8455 * The sum of our children's runtime should not exceed our own.
8457 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8458 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8459 runtime
= child
->rt_bandwidth
.rt_runtime
;
8461 if (child
== d
->tg
) {
8462 period
= d
->rt_period
;
8463 runtime
= d
->rt_runtime
;
8466 sum
+= to_ratio(period
, runtime
);
8475 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8477 struct rt_schedulable_data data
= {
8479 .rt_period
= period
,
8480 .rt_runtime
= runtime
,
8483 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8486 static int tg_set_bandwidth(struct task_group
*tg
,
8487 u64 rt_period
, u64 rt_runtime
)
8491 mutex_lock(&rt_constraints_mutex
);
8492 read_lock(&tasklist_lock
);
8493 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8497 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8498 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8499 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8501 for_each_possible_cpu(i
) {
8502 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8504 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8505 rt_rq
->rt_runtime
= rt_runtime
;
8506 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8508 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8510 read_unlock(&tasklist_lock
);
8511 mutex_unlock(&rt_constraints_mutex
);
8516 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8518 u64 rt_runtime
, rt_period
;
8520 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8521 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8522 if (rt_runtime_us
< 0)
8523 rt_runtime
= RUNTIME_INF
;
8525 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8528 long sched_group_rt_runtime(struct task_group
*tg
)
8532 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8535 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8536 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8537 return rt_runtime_us
;
8540 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8542 u64 rt_runtime
, rt_period
;
8544 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8545 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8550 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8553 long sched_group_rt_period(struct task_group
*tg
)
8557 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8558 do_div(rt_period_us
, NSEC_PER_USEC
);
8559 return rt_period_us
;
8562 static int sched_rt_global_constraints(void)
8564 u64 runtime
, period
;
8567 if (sysctl_sched_rt_period
<= 0)
8570 runtime
= global_rt_runtime();
8571 period
= global_rt_period();
8574 * Sanity check on the sysctl variables.
8576 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8579 mutex_lock(&rt_constraints_mutex
);
8580 read_lock(&tasklist_lock
);
8581 ret
= __rt_schedulable(NULL
, 0, 0);
8582 read_unlock(&tasklist_lock
);
8583 mutex_unlock(&rt_constraints_mutex
);
8588 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8590 /* Don't accept realtime tasks when there is no way for them to run */
8591 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8597 #else /* !CONFIG_RT_GROUP_SCHED */
8598 static int sched_rt_global_constraints(void)
8600 unsigned long flags
;
8603 if (sysctl_sched_rt_period
<= 0)
8607 * There's always some RT tasks in the root group
8608 * -- migration, kstopmachine etc..
8610 if (sysctl_sched_rt_runtime
== 0)
8613 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8614 for_each_possible_cpu(i
) {
8615 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8617 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8618 rt_rq
->rt_runtime
= global_rt_runtime();
8619 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8621 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8625 #endif /* CONFIG_RT_GROUP_SCHED */
8627 int sched_rt_handler(struct ctl_table
*table
, int write
,
8628 void __user
*buffer
, size_t *lenp
,
8632 int old_period
, old_runtime
;
8633 static DEFINE_MUTEX(mutex
);
8636 old_period
= sysctl_sched_rt_period
;
8637 old_runtime
= sysctl_sched_rt_runtime
;
8639 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8641 if (!ret
&& write
) {
8642 ret
= sched_rt_global_constraints();
8644 sysctl_sched_rt_period
= old_period
;
8645 sysctl_sched_rt_runtime
= old_runtime
;
8647 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8648 def_rt_bandwidth
.rt_period
=
8649 ns_to_ktime(global_rt_period());
8652 mutex_unlock(&mutex
);
8657 #ifdef CONFIG_CGROUP_SCHED
8659 /* return corresponding task_group object of a cgroup */
8660 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8662 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8663 struct task_group
, css
);
8666 static struct cgroup_subsys_state
*
8667 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8669 struct task_group
*tg
, *parent
;
8671 if (!cgrp
->parent
) {
8672 /* This is early initialization for the top cgroup */
8673 return &init_task_group
.css
;
8676 parent
= cgroup_tg(cgrp
->parent
);
8677 tg
= sched_create_group(parent
);
8679 return ERR_PTR(-ENOMEM
);
8685 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8687 struct task_group
*tg
= cgroup_tg(cgrp
);
8689 sched_destroy_group(tg
);
8693 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8695 #ifdef CONFIG_RT_GROUP_SCHED
8696 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8699 /* We don't support RT-tasks being in separate groups */
8700 if (tsk
->sched_class
!= &fair_sched_class
)
8707 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8708 struct task_struct
*tsk
, bool threadgroup
)
8710 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
8714 struct task_struct
*c
;
8716 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8717 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
8729 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8730 struct cgroup
*old_cont
, struct task_struct
*tsk
,
8733 sched_move_task(tsk
);
8735 struct task_struct
*c
;
8737 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8744 #ifdef CONFIG_FAIR_GROUP_SCHED
8745 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8748 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8751 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8753 struct task_group
*tg
= cgroup_tg(cgrp
);
8755 return (u64
) tg
->shares
;
8757 #endif /* CONFIG_FAIR_GROUP_SCHED */
8759 #ifdef CONFIG_RT_GROUP_SCHED
8760 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8763 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8766 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8768 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8771 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8774 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8777 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8779 return sched_group_rt_period(cgroup_tg(cgrp
));
8781 #endif /* CONFIG_RT_GROUP_SCHED */
8783 static struct cftype cpu_files
[] = {
8784 #ifdef CONFIG_FAIR_GROUP_SCHED
8787 .read_u64
= cpu_shares_read_u64
,
8788 .write_u64
= cpu_shares_write_u64
,
8791 #ifdef CONFIG_RT_GROUP_SCHED
8793 .name
= "rt_runtime_us",
8794 .read_s64
= cpu_rt_runtime_read
,
8795 .write_s64
= cpu_rt_runtime_write
,
8798 .name
= "rt_period_us",
8799 .read_u64
= cpu_rt_period_read_uint
,
8800 .write_u64
= cpu_rt_period_write_uint
,
8805 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8807 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8810 struct cgroup_subsys cpu_cgroup_subsys
= {
8812 .create
= cpu_cgroup_create
,
8813 .destroy
= cpu_cgroup_destroy
,
8814 .can_attach
= cpu_cgroup_can_attach
,
8815 .attach
= cpu_cgroup_attach
,
8816 .populate
= cpu_cgroup_populate
,
8817 .subsys_id
= cpu_cgroup_subsys_id
,
8821 #endif /* CONFIG_CGROUP_SCHED */
8823 #ifdef CONFIG_CGROUP_CPUACCT
8826 * CPU accounting code for task groups.
8828 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8829 * (balbir@in.ibm.com).
8832 /* track cpu usage of a group of tasks and its child groups */
8834 struct cgroup_subsys_state css
;
8835 /* cpuusage holds pointer to a u64-type object on every cpu */
8836 u64 __percpu
*cpuusage
;
8837 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
8838 struct cpuacct
*parent
;
8841 struct cgroup_subsys cpuacct_subsys
;
8843 /* return cpu accounting group corresponding to this container */
8844 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8846 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8847 struct cpuacct
, css
);
8850 /* return cpu accounting group to which this task belongs */
8851 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8853 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8854 struct cpuacct
, css
);
8857 /* create a new cpu accounting group */
8858 static struct cgroup_subsys_state
*cpuacct_create(
8859 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8861 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8867 ca
->cpuusage
= alloc_percpu(u64
);
8871 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8872 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
8873 goto out_free_counters
;
8876 ca
->parent
= cgroup_ca(cgrp
->parent
);
8882 percpu_counter_destroy(&ca
->cpustat
[i
]);
8883 free_percpu(ca
->cpuusage
);
8887 return ERR_PTR(-ENOMEM
);
8890 /* destroy an existing cpu accounting group */
8892 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8894 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8897 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8898 percpu_counter_destroy(&ca
->cpustat
[i
]);
8899 free_percpu(ca
->cpuusage
);
8903 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
8905 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8908 #ifndef CONFIG_64BIT
8910 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8912 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8914 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8922 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
8924 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8926 #ifndef CONFIG_64BIT
8928 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8930 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8932 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8938 /* return total cpu usage (in nanoseconds) of a group */
8939 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8941 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8942 u64 totalcpuusage
= 0;
8945 for_each_present_cpu(i
)
8946 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
8948 return totalcpuusage
;
8951 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
8954 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8963 for_each_present_cpu(i
)
8964 cpuacct_cpuusage_write(ca
, i
, 0);
8970 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
8973 struct cpuacct
*ca
= cgroup_ca(cgroup
);
8977 for_each_present_cpu(i
) {
8978 percpu
= cpuacct_cpuusage_read(ca
, i
);
8979 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
8981 seq_printf(m
, "\n");
8985 static const char *cpuacct_stat_desc
[] = {
8986 [CPUACCT_STAT_USER
] = "user",
8987 [CPUACCT_STAT_SYSTEM
] = "system",
8990 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
8991 struct cgroup_map_cb
*cb
)
8993 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8996 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
8997 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
8998 val
= cputime64_to_clock_t(val
);
8999 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9004 static struct cftype files
[] = {
9007 .read_u64
= cpuusage_read
,
9008 .write_u64
= cpuusage_write
,
9011 .name
= "usage_percpu",
9012 .read_seq_string
= cpuacct_percpu_seq_read
,
9016 .read_map
= cpuacct_stats_show
,
9020 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9022 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9026 * charge this task's execution time to its accounting group.
9028 * called with rq->lock held.
9030 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9035 if (unlikely(!cpuacct_subsys
.active
))
9038 cpu
= task_cpu(tsk
);
9044 for (; ca
; ca
= ca
->parent
) {
9045 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9046 *cpuusage
+= cputime
;
9053 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9054 * in cputime_t units. As a result, cpuacct_update_stats calls
9055 * percpu_counter_add with values large enough to always overflow the
9056 * per cpu batch limit causing bad SMP scalability.
9058 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9059 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9060 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9063 #define CPUACCT_BATCH \
9064 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9066 #define CPUACCT_BATCH 0
9070 * Charge the system/user time to the task's accounting group.
9072 static void cpuacct_update_stats(struct task_struct
*tsk
,
9073 enum cpuacct_stat_index idx
, cputime_t val
)
9076 int batch
= CPUACCT_BATCH
;
9078 if (unlikely(!cpuacct_subsys
.active
))
9085 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9091 struct cgroup_subsys cpuacct_subsys
= {
9093 .create
= cpuacct_create
,
9094 .destroy
= cpuacct_destroy
,
9095 .populate
= cpuacct_populate
,
9096 .subsys_id
= cpuacct_subsys_id
,
9098 #endif /* CONFIG_CGROUP_CPUACCT */
9102 int rcu_expedited_torture_stats(char *page
)
9106 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
9108 void synchronize_sched_expedited(void)
9111 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9113 #else /* #ifndef CONFIG_SMP */
9115 static DEFINE_PER_CPU(struct migration_req
, rcu_migration_req
);
9116 static DEFINE_MUTEX(rcu_sched_expedited_mutex
);
9118 #define RCU_EXPEDITED_STATE_POST -2
9119 #define RCU_EXPEDITED_STATE_IDLE -1
9121 static int rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
9123 int rcu_expedited_torture_stats(char *page
)
9128 cnt
+= sprintf(&page
[cnt
], "state: %d /", rcu_expedited_state
);
9129 for_each_online_cpu(cpu
) {
9130 cnt
+= sprintf(&page
[cnt
], " %d:%d",
9131 cpu
, per_cpu(rcu_migration_req
, cpu
).dest_cpu
);
9133 cnt
+= sprintf(&page
[cnt
], "\n");
9136 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
9138 static long synchronize_sched_expedited_count
;
9141 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9142 * approach to force grace period to end quickly. This consumes
9143 * significant time on all CPUs, and is thus not recommended for
9144 * any sort of common-case code.
9146 * Note that it is illegal to call this function while holding any
9147 * lock that is acquired by a CPU-hotplug notifier. Failing to
9148 * observe this restriction will result in deadlock.
9150 void synchronize_sched_expedited(void)
9153 unsigned long flags
;
9154 bool need_full_sync
= 0;
9156 struct migration_req
*req
;
9160 smp_mb(); /* ensure prior mod happens before capturing snap. */
9161 snap
= ACCESS_ONCE(synchronize_sched_expedited_count
) + 1;
9163 while (!mutex_trylock(&rcu_sched_expedited_mutex
)) {
9165 if (trycount
++ < 10)
9166 udelay(trycount
* num_online_cpus());
9168 synchronize_sched();
9171 if (ACCESS_ONCE(synchronize_sched_expedited_count
) - snap
> 0) {
9172 smp_mb(); /* ensure test happens before caller kfree */
9177 rcu_expedited_state
= RCU_EXPEDITED_STATE_POST
;
9178 for_each_online_cpu(cpu
) {
9180 req
= &per_cpu(rcu_migration_req
, cpu
);
9181 init_completion(&req
->done
);
9183 req
->dest_cpu
= RCU_MIGRATION_NEED_QS
;
9184 raw_spin_lock_irqsave(&rq
->lock
, flags
);
9185 list_add(&req
->list
, &rq
->migration_queue
);
9186 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
9187 wake_up_process(rq
->migration_thread
);
9189 for_each_online_cpu(cpu
) {
9190 rcu_expedited_state
= cpu
;
9191 req
= &per_cpu(rcu_migration_req
, cpu
);
9193 wait_for_completion(&req
->done
);
9194 raw_spin_lock_irqsave(&rq
->lock
, flags
);
9195 if (unlikely(req
->dest_cpu
== RCU_MIGRATION_MUST_SYNC
))
9197 req
->dest_cpu
= RCU_MIGRATION_IDLE
;
9198 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
9200 rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
9201 synchronize_sched_expedited_count
++;
9202 mutex_unlock(&rcu_sched_expedited_mutex
);
9205 synchronize_sched();
9207 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9209 #endif /* #else #ifndef CONFIG_SMP */