2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
36 * fill ring buffer with silence
37 * runtime->silence_start: starting pointer to silence area
38 * runtime->silence_filled: size filled with silence
39 * runtime->silence_threshold: threshold from application
40 * runtime->silence_size: maximal size from application
42 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44 void snd_pcm_playback_silence(struct snd_pcm_substream
*substream
, snd_pcm_uframes_t new_hw_ptr
)
46 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
47 snd_pcm_uframes_t frames
, ofs
, transfer
;
49 if (runtime
->silence_size
< runtime
->boundary
) {
50 snd_pcm_sframes_t noise_dist
, n
;
51 if (runtime
->silence_start
!= runtime
->control
->appl_ptr
) {
52 n
= runtime
->control
->appl_ptr
- runtime
->silence_start
;
54 n
+= runtime
->boundary
;
55 if ((snd_pcm_uframes_t
)n
< runtime
->silence_filled
)
56 runtime
->silence_filled
-= n
;
58 runtime
->silence_filled
= 0;
59 runtime
->silence_start
= runtime
->control
->appl_ptr
;
61 if (runtime
->silence_filled
>= runtime
->buffer_size
)
63 noise_dist
= snd_pcm_playback_hw_avail(runtime
) + runtime
->silence_filled
;
64 if (noise_dist
>= (snd_pcm_sframes_t
) runtime
->silence_threshold
)
66 frames
= runtime
->silence_threshold
- noise_dist
;
67 if (frames
> runtime
->silence_size
)
68 frames
= runtime
->silence_size
;
70 if (new_hw_ptr
== ULONG_MAX
) { /* initialization */
71 snd_pcm_sframes_t avail
= snd_pcm_playback_hw_avail(runtime
);
72 if (avail
> runtime
->buffer_size
)
73 avail
= runtime
->buffer_size
;
74 runtime
->silence_filled
= avail
> 0 ? avail
: 0;
75 runtime
->silence_start
= (runtime
->status
->hw_ptr
+
76 runtime
->silence_filled
) %
79 ofs
= runtime
->status
->hw_ptr
;
80 frames
= new_hw_ptr
- ofs
;
81 if ((snd_pcm_sframes_t
)frames
< 0)
82 frames
+= runtime
->boundary
;
83 runtime
->silence_filled
-= frames
;
84 if ((snd_pcm_sframes_t
)runtime
->silence_filled
< 0) {
85 runtime
->silence_filled
= 0;
86 runtime
->silence_start
= new_hw_ptr
;
88 runtime
->silence_start
= ofs
;
91 frames
= runtime
->buffer_size
- runtime
->silence_filled
;
93 if (snd_BUG_ON(frames
> runtime
->buffer_size
))
97 ofs
= runtime
->silence_start
% runtime
->buffer_size
;
99 transfer
= ofs
+ frames
> runtime
->buffer_size
? runtime
->buffer_size
- ofs
: frames
;
100 if (runtime
->access
== SNDRV_PCM_ACCESS_RW_INTERLEAVED
||
101 runtime
->access
== SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
) {
102 if (substream
->ops
->silence
) {
104 err
= substream
->ops
->silence(substream
, -1, ofs
, transfer
);
107 char *hwbuf
= runtime
->dma_area
+ frames_to_bytes(runtime
, ofs
);
108 snd_pcm_format_set_silence(runtime
->format
, hwbuf
, transfer
* runtime
->channels
);
112 unsigned int channels
= runtime
->channels
;
113 if (substream
->ops
->silence
) {
114 for (c
= 0; c
< channels
; ++c
) {
116 err
= substream
->ops
->silence(substream
, c
, ofs
, transfer
);
120 size_t dma_csize
= runtime
->dma_bytes
/ channels
;
121 for (c
= 0; c
< channels
; ++c
) {
122 char *hwbuf
= runtime
->dma_area
+ (c
* dma_csize
) + samples_to_bytes(runtime
, ofs
);
123 snd_pcm_format_set_silence(runtime
->format
, hwbuf
, transfer
);
127 runtime
->silence_filled
+= transfer
;
133 #ifdef CONFIG_SND_DEBUG
134 void snd_pcm_debug_name(struct snd_pcm_substream
*substream
,
135 char *name
, size_t len
)
137 snprintf(name
, len
, "pcmC%dD%d%c:%d",
138 substream
->pcm
->card
->number
,
139 substream
->pcm
->device
,
140 substream
->stream
? 'c' : 'p',
143 EXPORT_SYMBOL(snd_pcm_debug_name
);
146 #define XRUN_DEBUG_BASIC (1<<0)
147 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
151 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
156 #define xrun_debug(substream, mask) \
157 ((substream)->pstr->xrun_debug & (mask))
159 #define xrun_debug(substream, mask) 0
162 #define dump_stack_on_xrun(substream) do { \
163 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
167 static void xrun(struct snd_pcm_substream
*substream
)
169 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
171 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
)
172 snd_pcm_gettime(runtime
, (struct timespec
*)&runtime
->status
->tstamp
);
173 snd_pcm_stop(substream
, SNDRV_PCM_STATE_XRUN
);
174 if (xrun_debug(substream
, XRUN_DEBUG_BASIC
)) {
176 snd_pcm_debug_name(substream
, name
, sizeof(name
));
177 snd_printd(KERN_DEBUG
"XRUN: %s\n", name
);
178 dump_stack_on_xrun(substream
);
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...) \
185 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
186 xrun_log_show(substream); \
187 if (snd_printd_ratelimit()) { \
188 snd_printd("PCM: " fmt, ##args); \
190 dump_stack_on_xrun(substream); \
194 #define XRUN_LOG_CNT 10
196 struct hwptr_log_entry
{
197 unsigned int in_interrupt
;
198 unsigned long jiffies
;
199 snd_pcm_uframes_t pos
;
200 snd_pcm_uframes_t period_size
;
201 snd_pcm_uframes_t buffer_size
;
202 snd_pcm_uframes_t old_hw_ptr
;
203 snd_pcm_uframes_t hw_ptr_base
;
206 struct snd_pcm_hwptr_log
{
209 struct hwptr_log_entry entries
[XRUN_LOG_CNT
];
212 static void xrun_log(struct snd_pcm_substream
*substream
,
213 snd_pcm_uframes_t pos
, int in_interrupt
)
215 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
216 struct snd_pcm_hwptr_log
*log
= runtime
->hwptr_log
;
217 struct hwptr_log_entry
*entry
;
220 log
= kzalloc(sizeof(*log
), GFP_ATOMIC
);
223 runtime
->hwptr_log
= log
;
225 if (xrun_debug(substream
, XRUN_DEBUG_LOGONCE
) && log
->hit
)
228 entry
= &log
->entries
[log
->idx
];
229 entry
->in_interrupt
= in_interrupt
;
230 entry
->jiffies
= jiffies
;
232 entry
->period_size
= runtime
->period_size
;
233 entry
->buffer_size
= runtime
->buffer_size
;
234 entry
->old_hw_ptr
= runtime
->status
->hw_ptr
;
235 entry
->hw_ptr_base
= runtime
->hw_ptr_base
;
236 log
->idx
= (log
->idx
+ 1) % XRUN_LOG_CNT
;
239 static void xrun_log_show(struct snd_pcm_substream
*substream
)
241 struct snd_pcm_hwptr_log
*log
= substream
->runtime
->hwptr_log
;
242 struct hwptr_log_entry
*entry
;
249 if (xrun_debug(substream
, XRUN_DEBUG_LOGONCE
) && log
->hit
)
251 snd_pcm_debug_name(substream
, name
, sizeof(name
));
252 for (cnt
= 0, idx
= log
->idx
; cnt
< XRUN_LOG_CNT
; cnt
++) {
253 entry
= &log
->entries
[idx
];
254 if (entry
->period_size
== 0)
256 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
258 name
, entry
->in_interrupt
? "[Q] " : "",
260 (unsigned long)entry
->pos
,
261 (unsigned long)entry
->period_size
,
262 (unsigned long)entry
->buffer_size
,
263 (unsigned long)entry
->old_hw_ptr
,
264 (unsigned long)entry
->hw_ptr_base
);
271 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
273 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
274 #define xrun_log(substream, pos, in_interrupt) do { } while (0)
275 #define xrun_log_show(substream) do { } while (0)
279 int snd_pcm_update_state(struct snd_pcm_substream
*substream
,
280 struct snd_pcm_runtime
*runtime
)
282 snd_pcm_uframes_t avail
;
284 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
285 avail
= snd_pcm_playback_avail(runtime
);
287 avail
= snd_pcm_capture_avail(runtime
);
288 if (avail
> runtime
->avail_max
)
289 runtime
->avail_max
= avail
;
290 if (runtime
->status
->state
== SNDRV_PCM_STATE_DRAINING
) {
291 if (avail
>= runtime
->buffer_size
) {
292 snd_pcm_drain_done(substream
);
296 if (avail
>= runtime
->stop_threshold
) {
301 if (runtime
->twake
) {
302 if (avail
>= runtime
->twake
)
303 wake_up(&runtime
->tsleep
);
304 } else if (avail
>= runtime
->control
->avail_min
)
305 wake_up(&runtime
->sleep
);
309 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream
*substream
,
310 unsigned int in_interrupt
)
312 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
313 snd_pcm_uframes_t pos
;
314 snd_pcm_uframes_t old_hw_ptr
, new_hw_ptr
, hw_base
;
315 snd_pcm_sframes_t hdelta
, delta
;
316 unsigned long jdelta
;
317 unsigned long curr_jiffies
;
318 struct timespec curr_tstamp
;
319 struct timespec audio_tstamp
;
320 int crossed_boundary
= 0;
322 old_hw_ptr
= runtime
->status
->hw_ptr
;
325 * group pointer, time and jiffies reads to allow for more
326 * accurate correlations/corrections.
327 * The values are stored at the end of this routine after
328 * corrections for hw_ptr position
330 pos
= substream
->ops
->pointer(substream
);
331 curr_jiffies
= jiffies
;
332 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
) {
333 snd_pcm_gettime(runtime
, (struct timespec
*)&curr_tstamp
);
335 if ((runtime
->hw
.info
& SNDRV_PCM_INFO_HAS_WALL_CLOCK
) &&
336 (substream
->ops
->wall_clock
))
337 substream
->ops
->wall_clock(substream
, &audio_tstamp
);
340 if (pos
== SNDRV_PCM_POS_XRUN
) {
344 if (pos
>= runtime
->buffer_size
) {
345 if (snd_printd_ratelimit()) {
347 snd_pcm_debug_name(substream
, name
, sizeof(name
));
348 xrun_log_show(substream
);
349 snd_printd(KERN_ERR
"BUG: %s, pos = %ld, "
350 "buffer size = %ld, period size = %ld\n",
351 name
, pos
, runtime
->buffer_size
,
352 runtime
->period_size
);
356 pos
-= pos
% runtime
->min_align
;
357 if (xrun_debug(substream
, XRUN_DEBUG_LOG
))
358 xrun_log(substream
, pos
, in_interrupt
);
359 hw_base
= runtime
->hw_ptr_base
;
360 new_hw_ptr
= hw_base
+ pos
;
362 /* we know that one period was processed */
363 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
364 delta
= runtime
->hw_ptr_interrupt
+ runtime
->period_size
;
365 if (delta
> new_hw_ptr
) {
366 /* check for double acknowledged interrupts */
367 hdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
368 if (hdelta
> runtime
->hw_ptr_buffer_jiffies
/2) {
369 hw_base
+= runtime
->buffer_size
;
370 if (hw_base
>= runtime
->boundary
) {
374 new_hw_ptr
= hw_base
+ pos
;
379 /* new_hw_ptr might be lower than old_hw_ptr in case when */
380 /* pointer crosses the end of the ring buffer */
381 if (new_hw_ptr
< old_hw_ptr
) {
382 hw_base
+= runtime
->buffer_size
;
383 if (hw_base
>= runtime
->boundary
) {
387 new_hw_ptr
= hw_base
+ pos
;
390 delta
= new_hw_ptr
- old_hw_ptr
;
392 delta
+= runtime
->boundary
;
393 if (xrun_debug(substream
, in_interrupt
?
394 XRUN_DEBUG_PERIODUPDATE
: XRUN_DEBUG_HWPTRUPDATE
)) {
396 snd_pcm_debug_name(substream
, name
, sizeof(name
));
397 snd_printd("%s_update: %s: pos=%u/%u/%u, "
398 "hwptr=%ld/%ld/%ld/%ld\n",
399 in_interrupt
? "period" : "hwptr",
402 (unsigned int)runtime
->period_size
,
403 (unsigned int)runtime
->buffer_size
,
404 (unsigned long)delta
,
405 (unsigned long)old_hw_ptr
,
406 (unsigned long)new_hw_ptr
,
407 (unsigned long)runtime
->hw_ptr_base
);
410 if (runtime
->no_period_wakeup
) {
411 snd_pcm_sframes_t xrun_threshold
;
413 * Without regular period interrupts, we have to check
414 * the elapsed time to detect xruns.
416 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
417 if (jdelta
< runtime
->hw_ptr_buffer_jiffies
/ 2)
419 hdelta
= jdelta
- delta
* HZ
/ runtime
->rate
;
420 xrun_threshold
= runtime
->hw_ptr_buffer_jiffies
/ 2 + 1;
421 while (hdelta
> xrun_threshold
) {
422 delta
+= runtime
->buffer_size
;
423 hw_base
+= runtime
->buffer_size
;
424 if (hw_base
>= runtime
->boundary
) {
428 new_hw_ptr
= hw_base
+ pos
;
429 hdelta
-= runtime
->hw_ptr_buffer_jiffies
;
434 /* something must be really wrong */
435 if (delta
>= runtime
->buffer_size
+ runtime
->period_size
) {
436 hw_ptr_error(substream
,
437 "Unexpected hw_pointer value %s"
438 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
440 in_interrupt
? "[Q] " : "[P]",
441 substream
->stream
, (long)pos
,
442 (long)new_hw_ptr
, (long)old_hw_ptr
);
446 /* Do jiffies check only in xrun_debug mode */
447 if (!xrun_debug(substream
, XRUN_DEBUG_JIFFIESCHECK
))
448 goto no_jiffies_check
;
450 /* Skip the jiffies check for hardwares with BATCH flag.
451 * Such hardware usually just increases the position at each IRQ,
452 * thus it can't give any strange position.
454 if (runtime
->hw
.info
& SNDRV_PCM_INFO_BATCH
)
455 goto no_jiffies_check
;
457 if (hdelta
< runtime
->delay
)
458 goto no_jiffies_check
;
459 hdelta
-= runtime
->delay
;
460 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
461 if (((hdelta
* HZ
) / runtime
->rate
) > jdelta
+ HZ
/100) {
463 (((runtime
->period_size
* HZ
) / runtime
->rate
)
465 /* move new_hw_ptr according jiffies not pos variable */
466 new_hw_ptr
= old_hw_ptr
;
468 /* use loop to avoid checks for delta overflows */
469 /* the delta value is small or zero in most cases */
471 new_hw_ptr
+= runtime
->period_size
;
472 if (new_hw_ptr
>= runtime
->boundary
) {
473 new_hw_ptr
-= runtime
->boundary
;
478 /* align hw_base to buffer_size */
479 hw_ptr_error(substream
,
480 "hw_ptr skipping! %s"
481 "(pos=%ld, delta=%ld, period=%ld, "
482 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
483 in_interrupt
? "[Q] " : "",
484 (long)pos
, (long)hdelta
,
485 (long)runtime
->period_size
, jdelta
,
486 ((hdelta
* HZ
) / runtime
->rate
), hw_base
,
487 (unsigned long)old_hw_ptr
,
488 (unsigned long)new_hw_ptr
);
489 /* reset values to proper state */
491 hw_base
= new_hw_ptr
- (new_hw_ptr
% runtime
->buffer_size
);
494 if (delta
> runtime
->period_size
+ runtime
->period_size
/ 2) {
495 hw_ptr_error(substream
,
496 "Lost interrupts? %s"
497 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
499 in_interrupt
? "[Q] " : "",
500 substream
->stream
, (long)delta
,
506 if (runtime
->status
->hw_ptr
== new_hw_ptr
)
509 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
&&
510 runtime
->silence_size
> 0)
511 snd_pcm_playback_silence(substream
, new_hw_ptr
);
514 delta
= new_hw_ptr
- runtime
->hw_ptr_interrupt
;
516 delta
+= runtime
->boundary
;
517 delta
-= (snd_pcm_uframes_t
)delta
% runtime
->period_size
;
518 runtime
->hw_ptr_interrupt
+= delta
;
519 if (runtime
->hw_ptr_interrupt
>= runtime
->boundary
)
520 runtime
->hw_ptr_interrupt
-= runtime
->boundary
;
522 runtime
->hw_ptr_base
= hw_base
;
523 runtime
->status
->hw_ptr
= new_hw_ptr
;
524 runtime
->hw_ptr_jiffies
= curr_jiffies
;
525 if (crossed_boundary
) {
526 snd_BUG_ON(crossed_boundary
!= 1);
527 runtime
->hw_ptr_wrap
+= runtime
->boundary
;
529 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
) {
530 runtime
->status
->tstamp
= curr_tstamp
;
532 if (!(runtime
->hw
.info
& SNDRV_PCM_INFO_HAS_WALL_CLOCK
)) {
534 * no wall clock available, provide audio timestamp
535 * derived from pointer position+delay
537 u64 audio_frames
, audio_nsecs
;
539 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
540 audio_frames
= runtime
->hw_ptr_wrap
541 + runtime
->status
->hw_ptr
544 audio_frames
= runtime
->hw_ptr_wrap
545 + runtime
->status
->hw_ptr
547 audio_nsecs
= div_u64(audio_frames
* 1000000000LL,
549 audio_tstamp
= ns_to_timespec(audio_nsecs
);
551 runtime
->status
->audio_tstamp
= audio_tstamp
;
554 return snd_pcm_update_state(substream
, runtime
);
557 /* CAUTION: call it with irq disabled */
558 int snd_pcm_update_hw_ptr(struct snd_pcm_substream
*substream
)
560 return snd_pcm_update_hw_ptr0(substream
, 0);
564 * snd_pcm_set_ops - set the PCM operators
565 * @pcm: the pcm instance
566 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
567 * @ops: the operator table
569 * Sets the given PCM operators to the pcm instance.
571 void snd_pcm_set_ops(struct snd_pcm
*pcm
, int direction
,
572 const struct snd_pcm_ops
*ops
)
574 struct snd_pcm_str
*stream
= &pcm
->streams
[direction
];
575 struct snd_pcm_substream
*substream
;
577 for (substream
= stream
->substream
; substream
!= NULL
; substream
= substream
->next
)
578 substream
->ops
= ops
;
581 EXPORT_SYMBOL(snd_pcm_set_ops
);
584 * snd_pcm_sync - set the PCM sync id
585 * @substream: the pcm substream
587 * Sets the PCM sync identifier for the card.
589 void snd_pcm_set_sync(struct snd_pcm_substream
*substream
)
591 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
593 runtime
->sync
.id32
[0] = substream
->pcm
->card
->number
;
594 runtime
->sync
.id32
[1] = -1;
595 runtime
->sync
.id32
[2] = -1;
596 runtime
->sync
.id32
[3] = -1;
599 EXPORT_SYMBOL(snd_pcm_set_sync
);
602 * Standard ioctl routine
605 static inline unsigned int div32(unsigned int a
, unsigned int b
,
616 static inline unsigned int div_down(unsigned int a
, unsigned int b
)
623 static inline unsigned int div_up(unsigned int a
, unsigned int b
)
635 static inline unsigned int mul(unsigned int a
, unsigned int b
)
639 if (div_down(UINT_MAX
, a
) < b
)
644 static inline unsigned int muldiv32(unsigned int a
, unsigned int b
,
645 unsigned int c
, unsigned int *r
)
647 u_int64_t n
= (u_int64_t
) a
* b
;
653 n
= div_u64_rem(n
, c
, r
);
662 * snd_interval_refine - refine the interval value of configurator
663 * @i: the interval value to refine
664 * @v: the interval value to refer to
666 * Refines the interval value with the reference value.
667 * The interval is changed to the range satisfying both intervals.
668 * The interval status (min, max, integer, etc.) are evaluated.
670 * Return: Positive if the value is changed, zero if it's not changed, or a
671 * negative error code.
673 int snd_interval_refine(struct snd_interval
*i
, const struct snd_interval
*v
)
676 if (snd_BUG_ON(snd_interval_empty(i
)))
678 if (i
->min
< v
->min
) {
680 i
->openmin
= v
->openmin
;
682 } else if (i
->min
== v
->min
&& !i
->openmin
&& v
->openmin
) {
686 if (i
->max
> v
->max
) {
688 i
->openmax
= v
->openmax
;
690 } else if (i
->max
== v
->max
&& !i
->openmax
&& v
->openmax
) {
694 if (!i
->integer
&& v
->integer
) {
707 } else if (!i
->openmin
&& !i
->openmax
&& i
->min
== i
->max
)
709 if (snd_interval_checkempty(i
)) {
710 snd_interval_none(i
);
716 EXPORT_SYMBOL(snd_interval_refine
);
718 static int snd_interval_refine_first(struct snd_interval
*i
)
720 if (snd_BUG_ON(snd_interval_empty(i
)))
722 if (snd_interval_single(i
))
725 i
->openmax
= i
->openmin
;
731 static int snd_interval_refine_last(struct snd_interval
*i
)
733 if (snd_BUG_ON(snd_interval_empty(i
)))
735 if (snd_interval_single(i
))
738 i
->openmin
= i
->openmax
;
744 void snd_interval_mul(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
746 if (a
->empty
|| b
->empty
) {
747 snd_interval_none(c
);
751 c
->min
= mul(a
->min
, b
->min
);
752 c
->openmin
= (a
->openmin
|| b
->openmin
);
753 c
->max
= mul(a
->max
, b
->max
);
754 c
->openmax
= (a
->openmax
|| b
->openmax
);
755 c
->integer
= (a
->integer
&& b
->integer
);
759 * snd_interval_div - refine the interval value with division
766 * Returns non-zero if the value is changed, zero if not changed.
768 void snd_interval_div(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
771 if (a
->empty
|| b
->empty
) {
772 snd_interval_none(c
);
776 c
->min
= div32(a
->min
, b
->max
, &r
);
777 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
779 c
->max
= div32(a
->max
, b
->min
, &r
);
784 c
->openmax
= (a
->openmax
|| b
->openmin
);
793 * snd_interval_muldivk - refine the interval value
796 * @k: divisor (as integer)
801 * Returns non-zero if the value is changed, zero if not changed.
803 void snd_interval_muldivk(const struct snd_interval
*a
, const struct snd_interval
*b
,
804 unsigned int k
, struct snd_interval
*c
)
807 if (a
->empty
|| b
->empty
) {
808 snd_interval_none(c
);
812 c
->min
= muldiv32(a
->min
, b
->min
, k
, &r
);
813 c
->openmin
= (r
|| a
->openmin
|| b
->openmin
);
814 c
->max
= muldiv32(a
->max
, b
->max
, k
, &r
);
819 c
->openmax
= (a
->openmax
|| b
->openmax
);
824 * snd_interval_mulkdiv - refine the interval value
826 * @k: dividend 2 (as integer)
832 * Returns non-zero if the value is changed, zero if not changed.
834 void snd_interval_mulkdiv(const struct snd_interval
*a
, unsigned int k
,
835 const struct snd_interval
*b
, struct snd_interval
*c
)
838 if (a
->empty
|| b
->empty
) {
839 snd_interval_none(c
);
843 c
->min
= muldiv32(a
->min
, k
, b
->max
, &r
);
844 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
846 c
->max
= muldiv32(a
->max
, k
, b
->min
, &r
);
851 c
->openmax
= (a
->openmax
|| b
->openmin
);
863 * snd_interval_ratnum - refine the interval value
864 * @i: interval to refine
865 * @rats_count: number of ratnum_t
866 * @rats: ratnum_t array
867 * @nump: pointer to store the resultant numerator
868 * @denp: pointer to store the resultant denominator
870 * Return: Positive if the value is changed, zero if it's not changed, or a
871 * negative error code.
873 int snd_interval_ratnum(struct snd_interval
*i
,
874 unsigned int rats_count
, struct snd_ratnum
*rats
,
875 unsigned int *nump
, unsigned int *denp
)
877 unsigned int best_num
, best_den
;
880 struct snd_interval t
;
882 unsigned int result_num
, result_den
;
885 best_num
= best_den
= best_diff
= 0;
886 for (k
= 0; k
< rats_count
; ++k
) {
887 unsigned int num
= rats
[k
].num
;
889 unsigned int q
= i
->min
;
893 den
= div_up(num
, q
);
894 if (den
< rats
[k
].den_min
)
896 if (den
> rats
[k
].den_max
)
897 den
= rats
[k
].den_max
;
900 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
904 diff
= num
- q
* den
;
908 diff
* best_den
< best_diff
* den
) {
918 t
.min
= div_down(best_num
, best_den
);
919 t
.openmin
= !!(best_num
% best_den
);
921 result_num
= best_num
;
922 result_diff
= best_diff
;
923 result_den
= best_den
;
924 best_num
= best_den
= best_diff
= 0;
925 for (k
= 0; k
< rats_count
; ++k
) {
926 unsigned int num
= rats
[k
].num
;
928 unsigned int q
= i
->max
;
934 den
= div_down(num
, q
);
935 if (den
> rats
[k
].den_max
)
937 if (den
< rats
[k
].den_min
)
938 den
= rats
[k
].den_min
;
941 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
943 den
+= rats
[k
].den_step
- r
;
945 diff
= q
* den
- num
;
949 diff
* best_den
< best_diff
* den
) {
959 t
.max
= div_up(best_num
, best_den
);
960 t
.openmax
= !!(best_num
% best_den
);
962 err
= snd_interval_refine(i
, &t
);
966 if (snd_interval_single(i
)) {
967 if (best_diff
* result_den
< result_diff
* best_den
) {
968 result_num
= best_num
;
969 result_den
= best_den
;
979 EXPORT_SYMBOL(snd_interval_ratnum
);
982 * snd_interval_ratden - refine the interval value
983 * @i: interval to refine
984 * @rats_count: number of struct ratden
985 * @rats: struct ratden array
986 * @nump: pointer to store the resultant numerator
987 * @denp: pointer to store the resultant denominator
989 * Return: Positive if the value is changed, zero if it's not changed, or a
990 * negative error code.
992 static int snd_interval_ratden(struct snd_interval
*i
,
993 unsigned int rats_count
, struct snd_ratden
*rats
,
994 unsigned int *nump
, unsigned int *denp
)
996 unsigned int best_num
, best_diff
, best_den
;
998 struct snd_interval t
;
1001 best_num
= best_den
= best_diff
= 0;
1002 for (k
= 0; k
< rats_count
; ++k
) {
1004 unsigned int den
= rats
[k
].den
;
1005 unsigned int q
= i
->min
;
1008 if (num
> rats
[k
].num_max
)
1010 if (num
< rats
[k
].num_min
)
1011 num
= rats
[k
].num_max
;
1014 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
1016 num
+= rats
[k
].num_step
- r
;
1018 diff
= num
- q
* den
;
1019 if (best_num
== 0 ||
1020 diff
* best_den
< best_diff
* den
) {
1026 if (best_den
== 0) {
1030 t
.min
= div_down(best_num
, best_den
);
1031 t
.openmin
= !!(best_num
% best_den
);
1033 best_num
= best_den
= best_diff
= 0;
1034 for (k
= 0; k
< rats_count
; ++k
) {
1036 unsigned int den
= rats
[k
].den
;
1037 unsigned int q
= i
->max
;
1040 if (num
< rats
[k
].num_min
)
1042 if (num
> rats
[k
].num_max
)
1043 num
= rats
[k
].num_max
;
1046 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
1050 diff
= q
* den
- num
;
1051 if (best_num
== 0 ||
1052 diff
* best_den
< best_diff
* den
) {
1058 if (best_den
== 0) {
1062 t
.max
= div_up(best_num
, best_den
);
1063 t
.openmax
= !!(best_num
% best_den
);
1065 err
= snd_interval_refine(i
, &t
);
1069 if (snd_interval_single(i
)) {
1079 * snd_interval_list - refine the interval value from the list
1080 * @i: the interval value to refine
1081 * @count: the number of elements in the list
1082 * @list: the value list
1083 * @mask: the bit-mask to evaluate
1085 * Refines the interval value from the list.
1086 * When mask is non-zero, only the elements corresponding to bit 1 are
1089 * Return: Positive if the value is changed, zero if it's not changed, or a
1090 * negative error code.
1092 int snd_interval_list(struct snd_interval
*i
, unsigned int count
,
1093 const unsigned int *list
, unsigned int mask
)
1096 struct snd_interval list_range
;
1102 snd_interval_any(&list_range
);
1103 list_range
.min
= UINT_MAX
;
1105 for (k
= 0; k
< count
; k
++) {
1106 if (mask
&& !(mask
& (1 << k
)))
1108 if (!snd_interval_test(i
, list
[k
]))
1110 list_range
.min
= min(list_range
.min
, list
[k
]);
1111 list_range
.max
= max(list_range
.max
, list
[k
]);
1113 return snd_interval_refine(i
, &list_range
);
1116 EXPORT_SYMBOL(snd_interval_list
);
1118 static int snd_interval_step(struct snd_interval
*i
, unsigned int min
, unsigned int step
)
1122 n
= (i
->min
- min
) % step
;
1123 if (n
!= 0 || i
->openmin
) {
1127 n
= (i
->max
- min
) % step
;
1128 if (n
!= 0 || i
->openmax
) {
1132 if (snd_interval_checkempty(i
)) {
1139 /* Info constraints helpers */
1142 * snd_pcm_hw_rule_add - add the hw-constraint rule
1143 * @runtime: the pcm runtime instance
1144 * @cond: condition bits
1145 * @var: the variable to evaluate
1146 * @func: the evaluation function
1147 * @private: the private data pointer passed to function
1148 * @dep: the dependent variables
1150 * Return: Zero if successful, or a negative error code on failure.
1152 int snd_pcm_hw_rule_add(struct snd_pcm_runtime
*runtime
, unsigned int cond
,
1154 snd_pcm_hw_rule_func_t func
, void *private,
1157 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1158 struct snd_pcm_hw_rule
*c
;
1161 va_start(args
, dep
);
1162 if (constrs
->rules_num
>= constrs
->rules_all
) {
1163 struct snd_pcm_hw_rule
*new;
1164 unsigned int new_rules
= constrs
->rules_all
+ 16;
1165 new = kcalloc(new_rules
, sizeof(*c
), GFP_KERNEL
);
1170 if (constrs
->rules
) {
1171 memcpy(new, constrs
->rules
,
1172 constrs
->rules_num
* sizeof(*c
));
1173 kfree(constrs
->rules
);
1175 constrs
->rules
= new;
1176 constrs
->rules_all
= new_rules
;
1178 c
= &constrs
->rules
[constrs
->rules_num
];
1182 c
->private = private;
1185 if (snd_BUG_ON(k
>= ARRAY_SIZE(c
->deps
))) {
1192 dep
= va_arg(args
, int);
1194 constrs
->rules_num
++;
1199 EXPORT_SYMBOL(snd_pcm_hw_rule_add
);
1202 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1203 * @runtime: PCM runtime instance
1204 * @var: hw_params variable to apply the mask
1205 * @mask: the bitmap mask
1207 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1209 * Return: Zero if successful, or a negative error code on failure.
1211 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1214 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1215 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1216 *maskp
->bits
&= mask
;
1217 memset(maskp
->bits
+ 1, 0, (SNDRV_MASK_MAX
-32) / 8); /* clear rest */
1218 if (*maskp
->bits
== 0)
1224 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1225 * @runtime: PCM runtime instance
1226 * @var: hw_params variable to apply the mask
1227 * @mask: the 64bit bitmap mask
1229 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1231 * Return: Zero if successful, or a negative error code on failure.
1233 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1236 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1237 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1238 maskp
->bits
[0] &= (u_int32_t
)mask
;
1239 maskp
->bits
[1] &= (u_int32_t
)(mask
>> 32);
1240 memset(maskp
->bits
+ 2, 0, (SNDRV_MASK_MAX
-64) / 8); /* clear rest */
1241 if (! maskp
->bits
[0] && ! maskp
->bits
[1])
1247 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1248 * @runtime: PCM runtime instance
1249 * @var: hw_params variable to apply the integer constraint
1251 * Apply the constraint of integer to an interval parameter.
1253 * Return: Positive if the value is changed, zero if it's not changed, or a
1254 * negative error code.
1256 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
)
1258 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1259 return snd_interval_setinteger(constrs_interval(constrs
, var
));
1262 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer
);
1265 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1266 * @runtime: PCM runtime instance
1267 * @var: hw_params variable to apply the range
1268 * @min: the minimal value
1269 * @max: the maximal value
1271 * Apply the min/max range constraint to an interval parameter.
1273 * Return: Positive if the value is changed, zero if it's not changed, or a
1274 * negative error code.
1276 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1277 unsigned int min
, unsigned int max
)
1279 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1280 struct snd_interval t
;
1283 t
.openmin
= t
.openmax
= 0;
1285 return snd_interval_refine(constrs_interval(constrs
, var
), &t
);
1288 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax
);
1290 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params
*params
,
1291 struct snd_pcm_hw_rule
*rule
)
1293 struct snd_pcm_hw_constraint_list
*list
= rule
->private;
1294 return snd_interval_list(hw_param_interval(params
, rule
->var
), list
->count
, list
->list
, list
->mask
);
1299 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1300 * @runtime: PCM runtime instance
1301 * @cond: condition bits
1302 * @var: hw_params variable to apply the list constraint
1305 * Apply the list of constraints to an interval parameter.
1307 * Return: Zero if successful, or a negative error code on failure.
1309 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime
*runtime
,
1311 snd_pcm_hw_param_t var
,
1312 const struct snd_pcm_hw_constraint_list
*l
)
1314 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1315 snd_pcm_hw_rule_list
, (void *)l
,
1319 EXPORT_SYMBOL(snd_pcm_hw_constraint_list
);
1321 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params
*params
,
1322 struct snd_pcm_hw_rule
*rule
)
1324 struct snd_pcm_hw_constraint_ratnums
*r
= rule
->private;
1325 unsigned int num
= 0, den
= 0;
1327 err
= snd_interval_ratnum(hw_param_interval(params
, rule
->var
),
1328 r
->nrats
, r
->rats
, &num
, &den
);
1329 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1330 params
->rate_num
= num
;
1331 params
->rate_den
= den
;
1337 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1338 * @runtime: PCM runtime instance
1339 * @cond: condition bits
1340 * @var: hw_params variable to apply the ratnums constraint
1341 * @r: struct snd_ratnums constriants
1343 * Return: Zero if successful, or a negative error code on failure.
1345 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime
*runtime
,
1347 snd_pcm_hw_param_t var
,
1348 struct snd_pcm_hw_constraint_ratnums
*r
)
1350 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1351 snd_pcm_hw_rule_ratnums
, r
,
1355 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums
);
1357 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params
*params
,
1358 struct snd_pcm_hw_rule
*rule
)
1360 struct snd_pcm_hw_constraint_ratdens
*r
= rule
->private;
1361 unsigned int num
= 0, den
= 0;
1362 int err
= snd_interval_ratden(hw_param_interval(params
, rule
->var
),
1363 r
->nrats
, r
->rats
, &num
, &den
);
1364 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1365 params
->rate_num
= num
;
1366 params
->rate_den
= den
;
1372 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1373 * @runtime: PCM runtime instance
1374 * @cond: condition bits
1375 * @var: hw_params variable to apply the ratdens constraint
1376 * @r: struct snd_ratdens constriants
1378 * Return: Zero if successful, or a negative error code on failure.
1380 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime
*runtime
,
1382 snd_pcm_hw_param_t var
,
1383 struct snd_pcm_hw_constraint_ratdens
*r
)
1385 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1386 snd_pcm_hw_rule_ratdens
, r
,
1390 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens
);
1392 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params
*params
,
1393 struct snd_pcm_hw_rule
*rule
)
1395 unsigned int l
= (unsigned long) rule
->private;
1396 int width
= l
& 0xffff;
1397 unsigned int msbits
= l
>> 16;
1398 struct snd_interval
*i
= hw_param_interval(params
, SNDRV_PCM_HW_PARAM_SAMPLE_BITS
);
1399 if (snd_interval_single(i
) && snd_interval_value(i
) == width
)
1400 params
->msbits
= msbits
;
1405 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1406 * @runtime: PCM runtime instance
1407 * @cond: condition bits
1408 * @width: sample bits width
1409 * @msbits: msbits width
1411 * Return: Zero if successful, or a negative error code on failure.
1413 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime
*runtime
,
1416 unsigned int msbits
)
1418 unsigned long l
= (msbits
<< 16) | width
;
1419 return snd_pcm_hw_rule_add(runtime
, cond
, -1,
1420 snd_pcm_hw_rule_msbits
,
1422 SNDRV_PCM_HW_PARAM_SAMPLE_BITS
, -1);
1425 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits
);
1427 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params
*params
,
1428 struct snd_pcm_hw_rule
*rule
)
1430 unsigned long step
= (unsigned long) rule
->private;
1431 return snd_interval_step(hw_param_interval(params
, rule
->var
), 0, step
);
1435 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1436 * @runtime: PCM runtime instance
1437 * @cond: condition bits
1438 * @var: hw_params variable to apply the step constraint
1441 * Return: Zero if successful, or a negative error code on failure.
1443 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime
*runtime
,
1445 snd_pcm_hw_param_t var
,
1448 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1449 snd_pcm_hw_rule_step
, (void *) step
,
1453 EXPORT_SYMBOL(snd_pcm_hw_constraint_step
);
1455 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params
*params
, struct snd_pcm_hw_rule
*rule
)
1457 static unsigned int pow2_sizes
[] = {
1458 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1459 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1460 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1461 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1463 return snd_interval_list(hw_param_interval(params
, rule
->var
),
1464 ARRAY_SIZE(pow2_sizes
), pow2_sizes
, 0);
1468 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1469 * @runtime: PCM runtime instance
1470 * @cond: condition bits
1471 * @var: hw_params variable to apply the power-of-2 constraint
1473 * Return: Zero if successful, or a negative error code on failure.
1475 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime
*runtime
,
1477 snd_pcm_hw_param_t var
)
1479 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1480 snd_pcm_hw_rule_pow2
, NULL
,
1484 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2
);
1486 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params
*params
,
1487 struct snd_pcm_hw_rule
*rule
)
1489 unsigned int base_rate
= (unsigned int)(uintptr_t)rule
->private;
1490 struct snd_interval
*rate
;
1492 rate
= hw_param_interval(params
, SNDRV_PCM_HW_PARAM_RATE
);
1493 return snd_interval_list(rate
, 1, &base_rate
, 0);
1497 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1498 * @runtime: PCM runtime instance
1499 * @base_rate: the rate at which the hardware does not resample
1501 * Return: Zero if successful, or a negative error code on failure.
1503 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime
*runtime
,
1504 unsigned int base_rate
)
1506 return snd_pcm_hw_rule_add(runtime
, SNDRV_PCM_HW_PARAMS_NORESAMPLE
,
1507 SNDRV_PCM_HW_PARAM_RATE
,
1508 snd_pcm_hw_rule_noresample_func
,
1509 (void *)(uintptr_t)base_rate
,
1510 SNDRV_PCM_HW_PARAM_RATE
, -1);
1512 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample
);
1514 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params
*params
,
1515 snd_pcm_hw_param_t var
)
1517 if (hw_is_mask(var
)) {
1518 snd_mask_any(hw_param_mask(params
, var
));
1519 params
->cmask
|= 1 << var
;
1520 params
->rmask
|= 1 << var
;
1523 if (hw_is_interval(var
)) {
1524 snd_interval_any(hw_param_interval(params
, var
));
1525 params
->cmask
|= 1 << var
;
1526 params
->rmask
|= 1 << var
;
1532 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params
*params
)
1535 memset(params
, 0, sizeof(*params
));
1536 for (k
= SNDRV_PCM_HW_PARAM_FIRST_MASK
; k
<= SNDRV_PCM_HW_PARAM_LAST_MASK
; k
++)
1537 _snd_pcm_hw_param_any(params
, k
);
1538 for (k
= SNDRV_PCM_HW_PARAM_FIRST_INTERVAL
; k
<= SNDRV_PCM_HW_PARAM_LAST_INTERVAL
; k
++)
1539 _snd_pcm_hw_param_any(params
, k
);
1543 EXPORT_SYMBOL(_snd_pcm_hw_params_any
);
1546 * snd_pcm_hw_param_value - return @params field @var value
1547 * @params: the hw_params instance
1548 * @var: parameter to retrieve
1549 * @dir: pointer to the direction (-1,0,1) or %NULL
1551 * Return: The value for field @var if it's fixed in configuration space
1552 * defined by @params. -%EINVAL otherwise.
1554 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params
*params
,
1555 snd_pcm_hw_param_t var
, int *dir
)
1557 if (hw_is_mask(var
)) {
1558 const struct snd_mask
*mask
= hw_param_mask_c(params
, var
);
1559 if (!snd_mask_single(mask
))
1563 return snd_mask_value(mask
);
1565 if (hw_is_interval(var
)) {
1566 const struct snd_interval
*i
= hw_param_interval_c(params
, var
);
1567 if (!snd_interval_single(i
))
1571 return snd_interval_value(i
);
1576 EXPORT_SYMBOL(snd_pcm_hw_param_value
);
1578 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params
*params
,
1579 snd_pcm_hw_param_t var
)
1581 if (hw_is_mask(var
)) {
1582 snd_mask_none(hw_param_mask(params
, var
));
1583 params
->cmask
|= 1 << var
;
1584 params
->rmask
|= 1 << var
;
1585 } else if (hw_is_interval(var
)) {
1586 snd_interval_none(hw_param_interval(params
, var
));
1587 params
->cmask
|= 1 << var
;
1588 params
->rmask
|= 1 << var
;
1594 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty
);
1596 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params
*params
,
1597 snd_pcm_hw_param_t var
)
1600 if (hw_is_mask(var
))
1601 changed
= snd_mask_refine_first(hw_param_mask(params
, var
));
1602 else if (hw_is_interval(var
))
1603 changed
= snd_interval_refine_first(hw_param_interval(params
, var
));
1607 params
->cmask
|= 1 << var
;
1608 params
->rmask
|= 1 << var
;
1615 * snd_pcm_hw_param_first - refine config space and return minimum value
1616 * @pcm: PCM instance
1617 * @params: the hw_params instance
1618 * @var: parameter to retrieve
1619 * @dir: pointer to the direction (-1,0,1) or %NULL
1621 * Inside configuration space defined by @params remove from @var all
1622 * values > minimum. Reduce configuration space accordingly.
1624 * Return: The minimum, or a negative error code on failure.
1626 int snd_pcm_hw_param_first(struct snd_pcm_substream
*pcm
,
1627 struct snd_pcm_hw_params
*params
,
1628 snd_pcm_hw_param_t var
, int *dir
)
1630 int changed
= _snd_pcm_hw_param_first(params
, var
);
1633 if (params
->rmask
) {
1634 int err
= snd_pcm_hw_refine(pcm
, params
);
1635 if (snd_BUG_ON(err
< 0))
1638 return snd_pcm_hw_param_value(params
, var
, dir
);
1641 EXPORT_SYMBOL(snd_pcm_hw_param_first
);
1643 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params
*params
,
1644 snd_pcm_hw_param_t var
)
1647 if (hw_is_mask(var
))
1648 changed
= snd_mask_refine_last(hw_param_mask(params
, var
));
1649 else if (hw_is_interval(var
))
1650 changed
= snd_interval_refine_last(hw_param_interval(params
, var
));
1654 params
->cmask
|= 1 << var
;
1655 params
->rmask
|= 1 << var
;
1662 * snd_pcm_hw_param_last - refine config space and return maximum value
1663 * @pcm: PCM instance
1664 * @params: the hw_params instance
1665 * @var: parameter to retrieve
1666 * @dir: pointer to the direction (-1,0,1) or %NULL
1668 * Inside configuration space defined by @params remove from @var all
1669 * values < maximum. Reduce configuration space accordingly.
1671 * Return: The maximum, or a negative error code on failure.
1673 int snd_pcm_hw_param_last(struct snd_pcm_substream
*pcm
,
1674 struct snd_pcm_hw_params
*params
,
1675 snd_pcm_hw_param_t var
, int *dir
)
1677 int changed
= _snd_pcm_hw_param_last(params
, var
);
1680 if (params
->rmask
) {
1681 int err
= snd_pcm_hw_refine(pcm
, params
);
1682 if (snd_BUG_ON(err
< 0))
1685 return snd_pcm_hw_param_value(params
, var
, dir
);
1688 EXPORT_SYMBOL(snd_pcm_hw_param_last
);
1691 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1692 * @pcm: PCM instance
1693 * @params: the hw_params instance
1695 * Choose one configuration from configuration space defined by @params.
1696 * The configuration chosen is that obtained fixing in this order:
1697 * first access, first format, first subformat, min channels,
1698 * min rate, min period time, max buffer size, min tick time
1700 * Return: Zero if successful, or a negative error code on failure.
1702 int snd_pcm_hw_params_choose(struct snd_pcm_substream
*pcm
,
1703 struct snd_pcm_hw_params
*params
)
1705 static int vars
[] = {
1706 SNDRV_PCM_HW_PARAM_ACCESS
,
1707 SNDRV_PCM_HW_PARAM_FORMAT
,
1708 SNDRV_PCM_HW_PARAM_SUBFORMAT
,
1709 SNDRV_PCM_HW_PARAM_CHANNELS
,
1710 SNDRV_PCM_HW_PARAM_RATE
,
1711 SNDRV_PCM_HW_PARAM_PERIOD_TIME
,
1712 SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
1713 SNDRV_PCM_HW_PARAM_TICK_TIME
,
1718 for (v
= vars
; *v
!= -1; v
++) {
1719 if (*v
!= SNDRV_PCM_HW_PARAM_BUFFER_SIZE
)
1720 err
= snd_pcm_hw_param_first(pcm
, params
, *v
, NULL
);
1722 err
= snd_pcm_hw_param_last(pcm
, params
, *v
, NULL
);
1723 if (snd_BUG_ON(err
< 0))
1729 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream
*substream
,
1732 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1733 unsigned long flags
;
1734 snd_pcm_stream_lock_irqsave(substream
, flags
);
1735 if (snd_pcm_running(substream
) &&
1736 snd_pcm_update_hw_ptr(substream
) >= 0)
1737 runtime
->status
->hw_ptr
%= runtime
->buffer_size
;
1739 runtime
->status
->hw_ptr
= 0;
1740 runtime
->hw_ptr_wrap
= 0;
1742 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1746 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream
*substream
,
1749 struct snd_pcm_channel_info
*info
= arg
;
1750 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1752 if (!(runtime
->info
& SNDRV_PCM_INFO_MMAP
)) {
1756 width
= snd_pcm_format_physical_width(runtime
->format
);
1760 switch (runtime
->access
) {
1761 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
:
1762 case SNDRV_PCM_ACCESS_RW_INTERLEAVED
:
1763 info
->first
= info
->channel
* width
;
1764 info
->step
= runtime
->channels
* width
;
1766 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED
:
1767 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
:
1769 size_t size
= runtime
->dma_bytes
/ runtime
->channels
;
1770 info
->first
= info
->channel
* size
* 8;
1781 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream
*substream
,
1784 struct snd_pcm_hw_params
*params
= arg
;
1785 snd_pcm_format_t format
;
1786 int channels
, width
;
1788 params
->fifo_size
= substream
->runtime
->hw
.fifo_size
;
1789 if (!(substream
->runtime
->hw
.info
& SNDRV_PCM_INFO_FIFO_IN_FRAMES
)) {
1790 format
= params_format(params
);
1791 channels
= params_channels(params
);
1792 width
= snd_pcm_format_physical_width(format
);
1793 params
->fifo_size
/= width
* channels
;
1799 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1800 * @substream: the pcm substream instance
1801 * @cmd: ioctl command
1802 * @arg: ioctl argument
1804 * Processes the generic ioctl commands for PCM.
1805 * Can be passed as the ioctl callback for PCM ops.
1807 * Return: Zero if successful, or a negative error code on failure.
1809 int snd_pcm_lib_ioctl(struct snd_pcm_substream
*substream
,
1810 unsigned int cmd
, void *arg
)
1813 case SNDRV_PCM_IOCTL1_INFO
:
1815 case SNDRV_PCM_IOCTL1_RESET
:
1816 return snd_pcm_lib_ioctl_reset(substream
, arg
);
1817 case SNDRV_PCM_IOCTL1_CHANNEL_INFO
:
1818 return snd_pcm_lib_ioctl_channel_info(substream
, arg
);
1819 case SNDRV_PCM_IOCTL1_FIFO_SIZE
:
1820 return snd_pcm_lib_ioctl_fifo_size(substream
, arg
);
1825 EXPORT_SYMBOL(snd_pcm_lib_ioctl
);
1828 * snd_pcm_period_elapsed - update the pcm status for the next period
1829 * @substream: the pcm substream instance
1831 * This function is called from the interrupt handler when the
1832 * PCM has processed the period size. It will update the current
1833 * pointer, wake up sleepers, etc.
1835 * Even if more than one periods have elapsed since the last call, you
1836 * have to call this only once.
1838 void snd_pcm_period_elapsed(struct snd_pcm_substream
*substream
)
1840 struct snd_pcm_runtime
*runtime
;
1841 unsigned long flags
;
1843 if (PCM_RUNTIME_CHECK(substream
))
1845 runtime
= substream
->runtime
;
1847 if (runtime
->transfer_ack_begin
)
1848 runtime
->transfer_ack_begin(substream
);
1850 snd_pcm_stream_lock_irqsave(substream
, flags
);
1851 if (!snd_pcm_running(substream
) ||
1852 snd_pcm_update_hw_ptr0(substream
, 1) < 0)
1855 if (substream
->timer_running
)
1856 snd_timer_interrupt(substream
->timer
, 1);
1858 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1859 if (runtime
->transfer_ack_end
)
1860 runtime
->transfer_ack_end(substream
);
1861 kill_fasync(&runtime
->fasync
, SIGIO
, POLL_IN
);
1864 EXPORT_SYMBOL(snd_pcm_period_elapsed
);
1867 * Wait until avail_min data becomes available
1868 * Returns a negative error code if any error occurs during operation.
1869 * The available space is stored on availp. When err = 0 and avail = 0
1870 * on the capture stream, it indicates the stream is in DRAINING state.
1872 static int wait_for_avail(struct snd_pcm_substream
*substream
,
1873 snd_pcm_uframes_t
*availp
)
1875 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1876 int is_playback
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
;
1879 snd_pcm_uframes_t avail
= 0;
1880 long wait_time
, tout
;
1882 init_waitqueue_entry(&wait
, current
);
1883 set_current_state(TASK_INTERRUPTIBLE
);
1884 add_wait_queue(&runtime
->tsleep
, &wait
);
1886 if (runtime
->no_period_wakeup
)
1887 wait_time
= MAX_SCHEDULE_TIMEOUT
;
1890 if (runtime
->rate
) {
1891 long t
= runtime
->period_size
* 2 / runtime
->rate
;
1892 wait_time
= max(t
, wait_time
);
1894 wait_time
= msecs_to_jiffies(wait_time
* 1000);
1898 if (signal_pending(current
)) {
1904 * We need to check if space became available already
1905 * (and thus the wakeup happened already) first to close
1906 * the race of space already having become available.
1907 * This check must happen after been added to the waitqueue
1908 * and having current state be INTERRUPTIBLE.
1911 avail
= snd_pcm_playback_avail(runtime
);
1913 avail
= snd_pcm_capture_avail(runtime
);
1914 if (avail
>= runtime
->twake
)
1916 snd_pcm_stream_unlock_irq(substream
);
1918 tout
= schedule_timeout(wait_time
);
1920 snd_pcm_stream_lock_irq(substream
);
1921 set_current_state(TASK_INTERRUPTIBLE
);
1922 switch (runtime
->status
->state
) {
1923 case SNDRV_PCM_STATE_SUSPENDED
:
1926 case SNDRV_PCM_STATE_XRUN
:
1929 case SNDRV_PCM_STATE_DRAINING
:
1933 avail
= 0; /* indicate draining */
1935 case SNDRV_PCM_STATE_OPEN
:
1936 case SNDRV_PCM_STATE_SETUP
:
1937 case SNDRV_PCM_STATE_DISCONNECTED
:
1942 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1943 is_playback
? "playback" : "capture");
1949 set_current_state(TASK_RUNNING
);
1950 remove_wait_queue(&runtime
->tsleep
, &wait
);
1955 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream
*substream
,
1957 unsigned long data
, unsigned int off
,
1958 snd_pcm_uframes_t frames
)
1960 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1962 char __user
*buf
= (char __user
*) data
+ frames_to_bytes(runtime
, off
);
1963 if (substream
->ops
->copy
) {
1964 if ((err
= substream
->ops
->copy(substream
, -1, hwoff
, buf
, frames
)) < 0)
1967 char *hwbuf
= runtime
->dma_area
+ frames_to_bytes(runtime
, hwoff
);
1968 if (copy_from_user(hwbuf
, buf
, frames_to_bytes(runtime
, frames
)))
1974 typedef int (*transfer_f
)(struct snd_pcm_substream
*substream
, unsigned int hwoff
,
1975 unsigned long data
, unsigned int off
,
1976 snd_pcm_uframes_t size
);
1978 static snd_pcm_sframes_t
snd_pcm_lib_write1(struct snd_pcm_substream
*substream
,
1980 snd_pcm_uframes_t size
,
1982 transfer_f transfer
)
1984 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1985 snd_pcm_uframes_t xfer
= 0;
1986 snd_pcm_uframes_t offset
= 0;
1987 snd_pcm_uframes_t avail
;
1993 snd_pcm_stream_lock_irq(substream
);
1994 switch (runtime
->status
->state
) {
1995 case SNDRV_PCM_STATE_PREPARED
:
1996 case SNDRV_PCM_STATE_RUNNING
:
1997 case SNDRV_PCM_STATE_PAUSED
:
1999 case SNDRV_PCM_STATE_XRUN
:
2002 case SNDRV_PCM_STATE_SUSPENDED
:
2010 runtime
->twake
= runtime
->control
->avail_min
? : 1;
2011 if (runtime
->status
->state
== SNDRV_PCM_STATE_RUNNING
)
2012 snd_pcm_update_hw_ptr(substream
);
2013 avail
= snd_pcm_playback_avail(runtime
);
2015 snd_pcm_uframes_t frames
, appl_ptr
, appl_ofs
;
2016 snd_pcm_uframes_t cont
;
2022 runtime
->twake
= min_t(snd_pcm_uframes_t
, size
,
2023 runtime
->control
->avail_min
? : 1);
2024 err
= wait_for_avail(substream
, &avail
);
2028 frames
= size
> avail
? avail
: size
;
2029 cont
= runtime
->buffer_size
- runtime
->control
->appl_ptr
% runtime
->buffer_size
;
2032 if (snd_BUG_ON(!frames
)) {
2034 snd_pcm_stream_unlock_irq(substream
);
2037 appl_ptr
= runtime
->control
->appl_ptr
;
2038 appl_ofs
= appl_ptr
% runtime
->buffer_size
;
2039 snd_pcm_stream_unlock_irq(substream
);
2040 err
= transfer(substream
, appl_ofs
, data
, offset
, frames
);
2041 snd_pcm_stream_lock_irq(substream
);
2044 switch (runtime
->status
->state
) {
2045 case SNDRV_PCM_STATE_XRUN
:
2048 case SNDRV_PCM_STATE_SUSPENDED
:
2055 if (appl_ptr
>= runtime
->boundary
)
2056 appl_ptr
-= runtime
->boundary
;
2057 runtime
->control
->appl_ptr
= appl_ptr
;
2058 if (substream
->ops
->ack
)
2059 substream
->ops
->ack(substream
);
2065 if (runtime
->status
->state
== SNDRV_PCM_STATE_PREPARED
&&
2066 snd_pcm_playback_hw_avail(runtime
) >= (snd_pcm_sframes_t
)runtime
->start_threshold
) {
2067 err
= snd_pcm_start(substream
);
2074 if (xfer
> 0 && err
>= 0)
2075 snd_pcm_update_state(substream
, runtime
);
2076 snd_pcm_stream_unlock_irq(substream
);
2077 return xfer
> 0 ? (snd_pcm_sframes_t
)xfer
: err
;
2080 /* sanity-check for read/write methods */
2081 static int pcm_sanity_check(struct snd_pcm_substream
*substream
)
2083 struct snd_pcm_runtime
*runtime
;
2084 if (PCM_RUNTIME_CHECK(substream
))
2086 runtime
= substream
->runtime
;
2087 if (snd_BUG_ON(!substream
->ops
->copy
&& !runtime
->dma_area
))
2089 if (runtime
->status
->state
== SNDRV_PCM_STATE_OPEN
)
2094 snd_pcm_sframes_t
snd_pcm_lib_write(struct snd_pcm_substream
*substream
, const void __user
*buf
, snd_pcm_uframes_t size
)
2096 struct snd_pcm_runtime
*runtime
;
2100 err
= pcm_sanity_check(substream
);
2103 runtime
= substream
->runtime
;
2104 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2106 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_INTERLEAVED
&&
2107 runtime
->channels
> 1)
2109 return snd_pcm_lib_write1(substream
, (unsigned long)buf
, size
, nonblock
,
2110 snd_pcm_lib_write_transfer
);
2113 EXPORT_SYMBOL(snd_pcm_lib_write
);
2115 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream
*substream
,
2117 unsigned long data
, unsigned int off
,
2118 snd_pcm_uframes_t frames
)
2120 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2122 void __user
**bufs
= (void __user
**)data
;
2123 int channels
= runtime
->channels
;
2125 if (substream
->ops
->copy
) {
2126 if (snd_BUG_ON(!substream
->ops
->silence
))
2128 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2129 if (*bufs
== NULL
) {
2130 if ((err
= substream
->ops
->silence(substream
, c
, hwoff
, frames
)) < 0)
2133 char __user
*buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2134 if ((err
= substream
->ops
->copy(substream
, c
, hwoff
, buf
, frames
)) < 0)
2139 /* default transfer behaviour */
2140 size_t dma_csize
= runtime
->dma_bytes
/ channels
;
2141 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2142 char *hwbuf
= runtime
->dma_area
+ (c
* dma_csize
) + samples_to_bytes(runtime
, hwoff
);
2143 if (*bufs
== NULL
) {
2144 snd_pcm_format_set_silence(runtime
->format
, hwbuf
, frames
);
2146 char __user
*buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2147 if (copy_from_user(hwbuf
, buf
, samples_to_bytes(runtime
, frames
)))
2155 snd_pcm_sframes_t
snd_pcm_lib_writev(struct snd_pcm_substream
*substream
,
2157 snd_pcm_uframes_t frames
)
2159 struct snd_pcm_runtime
*runtime
;
2163 err
= pcm_sanity_check(substream
);
2166 runtime
= substream
->runtime
;
2167 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2169 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
)
2171 return snd_pcm_lib_write1(substream
, (unsigned long)bufs
, frames
,
2172 nonblock
, snd_pcm_lib_writev_transfer
);
2175 EXPORT_SYMBOL(snd_pcm_lib_writev
);
2177 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream
*substream
,
2179 unsigned long data
, unsigned int off
,
2180 snd_pcm_uframes_t frames
)
2182 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2184 char __user
*buf
= (char __user
*) data
+ frames_to_bytes(runtime
, off
);
2185 if (substream
->ops
->copy
) {
2186 if ((err
= substream
->ops
->copy(substream
, -1, hwoff
, buf
, frames
)) < 0)
2189 char *hwbuf
= runtime
->dma_area
+ frames_to_bytes(runtime
, hwoff
);
2190 if (copy_to_user(buf
, hwbuf
, frames_to_bytes(runtime
, frames
)))
2196 static snd_pcm_sframes_t
snd_pcm_lib_read1(struct snd_pcm_substream
*substream
,
2198 snd_pcm_uframes_t size
,
2200 transfer_f transfer
)
2202 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2203 snd_pcm_uframes_t xfer
= 0;
2204 snd_pcm_uframes_t offset
= 0;
2205 snd_pcm_uframes_t avail
;
2211 snd_pcm_stream_lock_irq(substream
);
2212 switch (runtime
->status
->state
) {
2213 case SNDRV_PCM_STATE_PREPARED
:
2214 if (size
>= runtime
->start_threshold
) {
2215 err
= snd_pcm_start(substream
);
2220 case SNDRV_PCM_STATE_DRAINING
:
2221 case SNDRV_PCM_STATE_RUNNING
:
2222 case SNDRV_PCM_STATE_PAUSED
:
2224 case SNDRV_PCM_STATE_XRUN
:
2227 case SNDRV_PCM_STATE_SUSPENDED
:
2235 runtime
->twake
= runtime
->control
->avail_min
? : 1;
2236 if (runtime
->status
->state
== SNDRV_PCM_STATE_RUNNING
)
2237 snd_pcm_update_hw_ptr(substream
);
2238 avail
= snd_pcm_capture_avail(runtime
);
2240 snd_pcm_uframes_t frames
, appl_ptr
, appl_ofs
;
2241 snd_pcm_uframes_t cont
;
2243 if (runtime
->status
->state
==
2244 SNDRV_PCM_STATE_DRAINING
) {
2245 snd_pcm_stop(substream
, SNDRV_PCM_STATE_SETUP
);
2252 runtime
->twake
= min_t(snd_pcm_uframes_t
, size
,
2253 runtime
->control
->avail_min
? : 1);
2254 err
= wait_for_avail(substream
, &avail
);
2258 continue; /* draining */
2260 frames
= size
> avail
? avail
: size
;
2261 cont
= runtime
->buffer_size
- runtime
->control
->appl_ptr
% runtime
->buffer_size
;
2264 if (snd_BUG_ON(!frames
)) {
2266 snd_pcm_stream_unlock_irq(substream
);
2269 appl_ptr
= runtime
->control
->appl_ptr
;
2270 appl_ofs
= appl_ptr
% runtime
->buffer_size
;
2271 snd_pcm_stream_unlock_irq(substream
);
2272 err
= transfer(substream
, appl_ofs
, data
, offset
, frames
);
2273 snd_pcm_stream_lock_irq(substream
);
2276 switch (runtime
->status
->state
) {
2277 case SNDRV_PCM_STATE_XRUN
:
2280 case SNDRV_PCM_STATE_SUSPENDED
:
2287 if (appl_ptr
>= runtime
->boundary
)
2288 appl_ptr
-= runtime
->boundary
;
2289 runtime
->control
->appl_ptr
= appl_ptr
;
2290 if (substream
->ops
->ack
)
2291 substream
->ops
->ack(substream
);
2300 if (xfer
> 0 && err
>= 0)
2301 snd_pcm_update_state(substream
, runtime
);
2302 snd_pcm_stream_unlock_irq(substream
);
2303 return xfer
> 0 ? (snd_pcm_sframes_t
)xfer
: err
;
2306 snd_pcm_sframes_t
snd_pcm_lib_read(struct snd_pcm_substream
*substream
, void __user
*buf
, snd_pcm_uframes_t size
)
2308 struct snd_pcm_runtime
*runtime
;
2312 err
= pcm_sanity_check(substream
);
2315 runtime
= substream
->runtime
;
2316 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2317 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_INTERLEAVED
)
2319 return snd_pcm_lib_read1(substream
, (unsigned long)buf
, size
, nonblock
, snd_pcm_lib_read_transfer
);
2322 EXPORT_SYMBOL(snd_pcm_lib_read
);
2324 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream
*substream
,
2326 unsigned long data
, unsigned int off
,
2327 snd_pcm_uframes_t frames
)
2329 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2331 void __user
**bufs
= (void __user
**)data
;
2332 int channels
= runtime
->channels
;
2334 if (substream
->ops
->copy
) {
2335 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2339 buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2340 if ((err
= substream
->ops
->copy(substream
, c
, hwoff
, buf
, frames
)) < 0)
2344 snd_pcm_uframes_t dma_csize
= runtime
->dma_bytes
/ channels
;
2345 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2351 hwbuf
= runtime
->dma_area
+ (c
* dma_csize
) + samples_to_bytes(runtime
, hwoff
);
2352 buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2353 if (copy_to_user(buf
, hwbuf
, samples_to_bytes(runtime
, frames
)))
2360 snd_pcm_sframes_t
snd_pcm_lib_readv(struct snd_pcm_substream
*substream
,
2362 snd_pcm_uframes_t frames
)
2364 struct snd_pcm_runtime
*runtime
;
2368 err
= pcm_sanity_check(substream
);
2371 runtime
= substream
->runtime
;
2372 if (runtime
->status
->state
== SNDRV_PCM_STATE_OPEN
)
2375 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2376 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
)
2378 return snd_pcm_lib_read1(substream
, (unsigned long)bufs
, frames
, nonblock
, snd_pcm_lib_readv_transfer
);
2381 EXPORT_SYMBOL(snd_pcm_lib_readv
);
2384 * standard channel mapping helpers
2387 /* default channel maps for multi-channel playbacks, up to 8 channels */
2388 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps
[] = {
2390 .map
= { SNDRV_CHMAP_MONO
} },
2392 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2394 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2395 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2397 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2398 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2399 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
} },
2401 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2402 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2403 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2404 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2407 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps
);
2409 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2410 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps
[] = {
2412 .map
= { SNDRV_CHMAP_MONO
} },
2414 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2416 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2417 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2419 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2420 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2421 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2423 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2424 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2425 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2426 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2429 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps
);
2431 static bool valid_chmap_channels(const struct snd_pcm_chmap
*info
, int ch
)
2433 if (ch
> info
->max_channels
)
2435 return !info
->channel_mask
|| (info
->channel_mask
& (1U << ch
));
2438 static int pcm_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
2439 struct snd_ctl_elem_info
*uinfo
)
2441 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2443 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
2445 uinfo
->count
= info
->max_channels
;
2446 uinfo
->value
.integer
.min
= 0;
2447 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
2451 /* get callback for channel map ctl element
2452 * stores the channel position firstly matching with the current channels
2454 static int pcm_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
2455 struct snd_ctl_elem_value
*ucontrol
)
2457 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2458 unsigned int idx
= snd_ctl_get_ioffidx(kcontrol
, &ucontrol
->id
);
2459 struct snd_pcm_substream
*substream
;
2460 const struct snd_pcm_chmap_elem
*map
;
2462 if (snd_BUG_ON(!info
->chmap
))
2464 substream
= snd_pcm_chmap_substream(info
, idx
);
2467 memset(ucontrol
->value
.integer
.value
, 0,
2468 sizeof(ucontrol
->value
.integer
.value
));
2469 if (!substream
->runtime
)
2470 return 0; /* no channels set */
2471 for (map
= info
->chmap
; map
->channels
; map
++) {
2473 if (map
->channels
== substream
->runtime
->channels
&&
2474 valid_chmap_channels(info
, map
->channels
)) {
2475 for (i
= 0; i
< map
->channels
; i
++)
2476 ucontrol
->value
.integer
.value
[i
] = map
->map
[i
];
2483 /* tlv callback for channel map ctl element
2484 * expands the pre-defined channel maps in a form of TLV
2486 static int pcm_chmap_ctl_tlv(struct snd_kcontrol
*kcontrol
, int op_flag
,
2487 unsigned int size
, unsigned int __user
*tlv
)
2489 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2490 const struct snd_pcm_chmap_elem
*map
;
2491 unsigned int __user
*dst
;
2494 if (snd_BUG_ON(!info
->chmap
))
2498 if (put_user(SNDRV_CTL_TLVT_CONTAINER
, tlv
))
2502 for (map
= info
->chmap
; map
->channels
; map
++) {
2503 int chs_bytes
= map
->channels
* 4;
2504 if (!valid_chmap_channels(info
, map
->channels
))
2508 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED
, dst
) ||
2509 put_user(chs_bytes
, dst
+ 1))
2514 if (size
< chs_bytes
)
2518 for (c
= 0; c
< map
->channels
; c
++) {
2519 if (put_user(map
->map
[c
], dst
))
2524 if (put_user(count
, tlv
+ 1))
2529 static void pcm_chmap_ctl_private_free(struct snd_kcontrol
*kcontrol
)
2531 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2532 info
->pcm
->streams
[info
->stream
].chmap_kctl
= NULL
;
2537 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2538 * @pcm: the assigned PCM instance
2539 * @stream: stream direction
2540 * @chmap: channel map elements (for query)
2541 * @max_channels: the max number of channels for the stream
2542 * @private_value: the value passed to each kcontrol's private_value field
2543 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2545 * Create channel-mapping control elements assigned to the given PCM stream(s).
2546 * Return: Zero if successful, or a negative error value.
2548 int snd_pcm_add_chmap_ctls(struct snd_pcm
*pcm
, int stream
,
2549 const struct snd_pcm_chmap_elem
*chmap
,
2551 unsigned long private_value
,
2552 struct snd_pcm_chmap
**info_ret
)
2554 struct snd_pcm_chmap
*info
;
2555 struct snd_kcontrol_new knew
= {
2556 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
2557 .access
= SNDRV_CTL_ELEM_ACCESS_READ
|
2558 SNDRV_CTL_ELEM_ACCESS_TLV_READ
|
2559 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK
,
2560 .info
= pcm_chmap_ctl_info
,
2561 .get
= pcm_chmap_ctl_get
,
2562 .tlv
.c
= pcm_chmap_ctl_tlv
,
2566 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2570 info
->stream
= stream
;
2571 info
->chmap
= chmap
;
2572 info
->max_channels
= max_channels
;
2573 if (stream
== SNDRV_PCM_STREAM_PLAYBACK
)
2574 knew
.name
= "Playback Channel Map";
2576 knew
.name
= "Capture Channel Map";
2577 knew
.device
= pcm
->device
;
2578 knew
.count
= pcm
->streams
[stream
].substream_count
;
2579 knew
.private_value
= private_value
;
2580 info
->kctl
= snd_ctl_new1(&knew
, info
);
2585 info
->kctl
->private_free
= pcm_chmap_ctl_private_free
;
2586 err
= snd_ctl_add(pcm
->card
, info
->kctl
);
2589 pcm
->streams
[stream
].chmap_kctl
= info
->kctl
;
2594 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls
);