thp: transparent hugepage core
[linux-2.6.git] / include / linux / mm.h
blob78adec4ba9f4466bfc3b0aa92a8455ff20ee8424
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/errno.h>
6 #ifdef __KERNEL__
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/range.h>
16 #include <linux/pfn.h>
17 #include <linux/bit_spinlock.h>
19 struct mempolicy;
20 struct anon_vma;
21 struct file_ra_state;
22 struct user_struct;
23 struct writeback_control;
25 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
26 extern unsigned long max_mapnr;
27 #endif
29 extern unsigned long num_physpages;
30 extern unsigned long totalram_pages;
31 extern void * high_memory;
32 extern int page_cluster;
34 #ifdef CONFIG_SYSCTL
35 extern int sysctl_legacy_va_layout;
36 #else
37 #define sysctl_legacy_va_layout 0
38 #endif
40 #include <asm/page.h>
41 #include <asm/pgtable.h>
42 #include <asm/processor.h>
44 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
46 /* to align the pointer to the (next) page boundary */
47 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
50 * Linux kernel virtual memory manager primitives.
51 * The idea being to have a "virtual" mm in the same way
52 * we have a virtual fs - giving a cleaner interface to the
53 * mm details, and allowing different kinds of memory mappings
54 * (from shared memory to executable loading to arbitrary
55 * mmap() functions).
58 extern struct kmem_cache *vm_area_cachep;
60 #ifndef CONFIG_MMU
61 extern struct rb_root nommu_region_tree;
62 extern struct rw_semaphore nommu_region_sem;
64 extern unsigned int kobjsize(const void *objp);
65 #endif
68 * vm_flags in vm_area_struct, see mm_types.h.
70 #define VM_READ 0x00000001 /* currently active flags */
71 #define VM_WRITE 0x00000002
72 #define VM_EXEC 0x00000004
73 #define VM_SHARED 0x00000008
75 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
76 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
77 #define VM_MAYWRITE 0x00000020
78 #define VM_MAYEXEC 0x00000040
79 #define VM_MAYSHARE 0x00000080
81 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
82 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
83 #define VM_GROWSUP 0x00000200
84 #else
85 #define VM_GROWSUP 0x00000000
86 #endif
87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
90 #define VM_EXECUTABLE 0x00001000
91 #define VM_LOCKED 0x00002000
92 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
94 /* Used by sys_madvise() */
95 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
96 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
98 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
99 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
100 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
101 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
102 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
103 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
104 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
105 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
106 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
107 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
109 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
110 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
111 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
112 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
113 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
114 #if BITS_PER_LONG > 32
115 #define VM_HUGEPAGE 0x100000000UL /* MADV_HUGEPAGE marked this vma */
116 #endif
118 /* Bits set in the VMA until the stack is in its final location */
119 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
121 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
122 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
123 #endif
125 #ifdef CONFIG_STACK_GROWSUP
126 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
127 #else
128 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
129 #endif
131 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
132 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
133 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
134 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
135 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
138 * special vmas that are non-mergable, non-mlock()able
140 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
143 * mapping from the currently active vm_flags protection bits (the
144 * low four bits) to a page protection mask..
146 extern pgprot_t protection_map[16];
148 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
149 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
150 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
151 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
154 * This interface is used by x86 PAT code to identify a pfn mapping that is
155 * linear over entire vma. This is to optimize PAT code that deals with
156 * marking the physical region with a particular prot. This is not for generic
157 * mm use. Note also that this check will not work if the pfn mapping is
158 * linear for a vma starting at physical address 0. In which case PAT code
159 * falls back to slow path of reserving physical range page by page.
161 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
163 return (vma->vm_flags & VM_PFN_AT_MMAP);
166 static inline int is_pfn_mapping(struct vm_area_struct *vma)
168 return (vma->vm_flags & VM_PFNMAP);
172 * vm_fault is filled by the the pagefault handler and passed to the vma's
173 * ->fault function. The vma's ->fault is responsible for returning a bitmask
174 * of VM_FAULT_xxx flags that give details about how the fault was handled.
176 * pgoff should be used in favour of virtual_address, if possible. If pgoff
177 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
178 * mapping support.
180 struct vm_fault {
181 unsigned int flags; /* FAULT_FLAG_xxx flags */
182 pgoff_t pgoff; /* Logical page offset based on vma */
183 void __user *virtual_address; /* Faulting virtual address */
185 struct page *page; /* ->fault handlers should return a
186 * page here, unless VM_FAULT_NOPAGE
187 * is set (which is also implied by
188 * VM_FAULT_ERROR).
193 * These are the virtual MM functions - opening of an area, closing and
194 * unmapping it (needed to keep files on disk up-to-date etc), pointer
195 * to the functions called when a no-page or a wp-page exception occurs.
197 struct vm_operations_struct {
198 void (*open)(struct vm_area_struct * area);
199 void (*close)(struct vm_area_struct * area);
200 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
202 /* notification that a previously read-only page is about to become
203 * writable, if an error is returned it will cause a SIGBUS */
204 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
206 /* called by access_process_vm when get_user_pages() fails, typically
207 * for use by special VMAs that can switch between memory and hardware
209 int (*access)(struct vm_area_struct *vma, unsigned long addr,
210 void *buf, int len, int write);
211 #ifdef CONFIG_NUMA
213 * set_policy() op must add a reference to any non-NULL @new mempolicy
214 * to hold the policy upon return. Caller should pass NULL @new to
215 * remove a policy and fall back to surrounding context--i.e. do not
216 * install a MPOL_DEFAULT policy, nor the task or system default
217 * mempolicy.
219 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
222 * get_policy() op must add reference [mpol_get()] to any policy at
223 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
224 * in mm/mempolicy.c will do this automatically.
225 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
226 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
227 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
228 * must return NULL--i.e., do not "fallback" to task or system default
229 * policy.
231 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
232 unsigned long addr);
233 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
234 const nodemask_t *to, unsigned long flags);
235 #endif
238 struct mmu_gather;
239 struct inode;
241 #define page_private(page) ((page)->private)
242 #define set_page_private(page, v) ((page)->private = (v))
245 * FIXME: take this include out, include page-flags.h in
246 * files which need it (119 of them)
248 #include <linux/page-flags.h>
249 #include <linux/huge_mm.h>
252 * Methods to modify the page usage count.
254 * What counts for a page usage:
255 * - cache mapping (page->mapping)
256 * - private data (page->private)
257 * - page mapped in a task's page tables, each mapping
258 * is counted separately
260 * Also, many kernel routines increase the page count before a critical
261 * routine so they can be sure the page doesn't go away from under them.
265 * Drop a ref, return true if the refcount fell to zero (the page has no users)
267 static inline int put_page_testzero(struct page *page)
269 VM_BUG_ON(atomic_read(&page->_count) == 0);
270 return atomic_dec_and_test(&page->_count);
274 * Try to grab a ref unless the page has a refcount of zero, return false if
275 * that is the case.
277 static inline int get_page_unless_zero(struct page *page)
279 return atomic_inc_not_zero(&page->_count);
282 extern int page_is_ram(unsigned long pfn);
284 /* Support for virtually mapped pages */
285 struct page *vmalloc_to_page(const void *addr);
286 unsigned long vmalloc_to_pfn(const void *addr);
289 * Determine if an address is within the vmalloc range
291 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
292 * is no special casing required.
294 static inline int is_vmalloc_addr(const void *x)
296 #ifdef CONFIG_MMU
297 unsigned long addr = (unsigned long)x;
299 return addr >= VMALLOC_START && addr < VMALLOC_END;
300 #else
301 return 0;
302 #endif
304 #ifdef CONFIG_MMU
305 extern int is_vmalloc_or_module_addr(const void *x);
306 #else
307 static inline int is_vmalloc_or_module_addr(const void *x)
309 return 0;
311 #endif
313 static inline void compound_lock(struct page *page)
315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
316 bit_spin_lock(PG_compound_lock, &page->flags);
317 #endif
320 static inline void compound_unlock(struct page *page)
322 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
323 bit_spin_unlock(PG_compound_lock, &page->flags);
324 #endif
327 static inline unsigned long compound_lock_irqsave(struct page *page)
329 unsigned long uninitialized_var(flags);
330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
331 local_irq_save(flags);
332 compound_lock(page);
333 #endif
334 return flags;
337 static inline void compound_unlock_irqrestore(struct page *page,
338 unsigned long flags)
340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 compound_unlock(page);
342 local_irq_restore(flags);
343 #endif
346 static inline struct page *compound_head(struct page *page)
348 if (unlikely(PageTail(page)))
349 return page->first_page;
350 return page;
353 static inline int page_count(struct page *page)
355 return atomic_read(&compound_head(page)->_count);
358 static inline void get_page(struct page *page)
361 * Getting a normal page or the head of a compound page
362 * requires to already have an elevated page->_count. Only if
363 * we're getting a tail page, the elevated page->_count is
364 * required only in the head page, so for tail pages the
365 * bugcheck only verifies that the page->_count isn't
366 * negative.
368 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
369 atomic_inc(&page->_count);
371 * Getting a tail page will elevate both the head and tail
372 * page->_count(s).
374 if (unlikely(PageTail(page))) {
376 * This is safe only because
377 * __split_huge_page_refcount can't run under
378 * get_page().
380 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
381 atomic_inc(&page->first_page->_count);
385 static inline struct page *virt_to_head_page(const void *x)
387 struct page *page = virt_to_page(x);
388 return compound_head(page);
392 * Setup the page count before being freed into the page allocator for
393 * the first time (boot or memory hotplug)
395 static inline void init_page_count(struct page *page)
397 atomic_set(&page->_count, 1);
400 void put_page(struct page *page);
401 void put_pages_list(struct list_head *pages);
403 void split_page(struct page *page, unsigned int order);
404 int split_free_page(struct page *page);
407 * Compound pages have a destructor function. Provide a
408 * prototype for that function and accessor functions.
409 * These are _only_ valid on the head of a PG_compound page.
411 typedef void compound_page_dtor(struct page *);
413 static inline void set_compound_page_dtor(struct page *page,
414 compound_page_dtor *dtor)
416 page[1].lru.next = (void *)dtor;
419 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
421 return (compound_page_dtor *)page[1].lru.next;
424 static inline int compound_order(struct page *page)
426 if (!PageHead(page))
427 return 0;
428 return (unsigned long)page[1].lru.prev;
431 static inline void set_compound_order(struct page *page, unsigned long order)
433 page[1].lru.prev = (void *)order;
437 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
438 * servicing faults for write access. In the normal case, do always want
439 * pte_mkwrite. But get_user_pages can cause write faults for mappings
440 * that do not have writing enabled, when used by access_process_vm.
442 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
444 if (likely(vma->vm_flags & VM_WRITE))
445 pte = pte_mkwrite(pte);
446 return pte;
450 * Multiple processes may "see" the same page. E.g. for untouched
451 * mappings of /dev/null, all processes see the same page full of
452 * zeroes, and text pages of executables and shared libraries have
453 * only one copy in memory, at most, normally.
455 * For the non-reserved pages, page_count(page) denotes a reference count.
456 * page_count() == 0 means the page is free. page->lru is then used for
457 * freelist management in the buddy allocator.
458 * page_count() > 0 means the page has been allocated.
460 * Pages are allocated by the slab allocator in order to provide memory
461 * to kmalloc and kmem_cache_alloc. In this case, the management of the
462 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
463 * unless a particular usage is carefully commented. (the responsibility of
464 * freeing the kmalloc memory is the caller's, of course).
466 * A page may be used by anyone else who does a __get_free_page().
467 * In this case, page_count still tracks the references, and should only
468 * be used through the normal accessor functions. The top bits of page->flags
469 * and page->virtual store page management information, but all other fields
470 * are unused and could be used privately, carefully. The management of this
471 * page is the responsibility of the one who allocated it, and those who have
472 * subsequently been given references to it.
474 * The other pages (we may call them "pagecache pages") are completely
475 * managed by the Linux memory manager: I/O, buffers, swapping etc.
476 * The following discussion applies only to them.
478 * A pagecache page contains an opaque `private' member, which belongs to the
479 * page's address_space. Usually, this is the address of a circular list of
480 * the page's disk buffers. PG_private must be set to tell the VM to call
481 * into the filesystem to release these pages.
483 * A page may belong to an inode's memory mapping. In this case, page->mapping
484 * is the pointer to the inode, and page->index is the file offset of the page,
485 * in units of PAGE_CACHE_SIZE.
487 * If pagecache pages are not associated with an inode, they are said to be
488 * anonymous pages. These may become associated with the swapcache, and in that
489 * case PG_swapcache is set, and page->private is an offset into the swapcache.
491 * In either case (swapcache or inode backed), the pagecache itself holds one
492 * reference to the page. Setting PG_private should also increment the
493 * refcount. The each user mapping also has a reference to the page.
495 * The pagecache pages are stored in a per-mapping radix tree, which is
496 * rooted at mapping->page_tree, and indexed by offset.
497 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
498 * lists, we instead now tag pages as dirty/writeback in the radix tree.
500 * All pagecache pages may be subject to I/O:
501 * - inode pages may need to be read from disk,
502 * - inode pages which have been modified and are MAP_SHARED may need
503 * to be written back to the inode on disk,
504 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
505 * modified may need to be swapped out to swap space and (later) to be read
506 * back into memory.
510 * The zone field is never updated after free_area_init_core()
511 * sets it, so none of the operations on it need to be atomic.
516 * page->flags layout:
518 * There are three possibilities for how page->flags get
519 * laid out. The first is for the normal case, without
520 * sparsemem. The second is for sparsemem when there is
521 * plenty of space for node and section. The last is when
522 * we have run out of space and have to fall back to an
523 * alternate (slower) way of determining the node.
525 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
526 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
527 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
529 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
530 #define SECTIONS_WIDTH SECTIONS_SHIFT
531 #else
532 #define SECTIONS_WIDTH 0
533 #endif
535 #define ZONES_WIDTH ZONES_SHIFT
537 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
538 #define NODES_WIDTH NODES_SHIFT
539 #else
540 #ifdef CONFIG_SPARSEMEM_VMEMMAP
541 #error "Vmemmap: No space for nodes field in page flags"
542 #endif
543 #define NODES_WIDTH 0
544 #endif
546 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
547 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
548 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
549 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
552 * We are going to use the flags for the page to node mapping if its in
553 * there. This includes the case where there is no node, so it is implicit.
555 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
556 #define NODE_NOT_IN_PAGE_FLAGS
557 #endif
559 #ifndef PFN_SECTION_SHIFT
560 #define PFN_SECTION_SHIFT 0
561 #endif
564 * Define the bit shifts to access each section. For non-existant
565 * sections we define the shift as 0; that plus a 0 mask ensures
566 * the compiler will optimise away reference to them.
568 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
569 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
570 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
572 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
573 #ifdef NODE_NOT_IN_PAGE_FLAGS
574 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
575 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
576 SECTIONS_PGOFF : ZONES_PGOFF)
577 #else
578 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
579 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
580 NODES_PGOFF : ZONES_PGOFF)
581 #endif
583 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
585 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
586 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
587 #endif
589 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
590 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
591 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
592 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
594 static inline enum zone_type page_zonenum(struct page *page)
596 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
600 * The identification function is only used by the buddy allocator for
601 * determining if two pages could be buddies. We are not really
602 * identifying a zone since we could be using a the section number
603 * id if we have not node id available in page flags.
604 * We guarantee only that it will return the same value for two
605 * combinable pages in a zone.
607 static inline int page_zone_id(struct page *page)
609 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
612 static inline int zone_to_nid(struct zone *zone)
614 #ifdef CONFIG_NUMA
615 return zone->node;
616 #else
617 return 0;
618 #endif
621 #ifdef NODE_NOT_IN_PAGE_FLAGS
622 extern int page_to_nid(struct page *page);
623 #else
624 static inline int page_to_nid(struct page *page)
626 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
628 #endif
630 static inline struct zone *page_zone(struct page *page)
632 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
635 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
636 static inline unsigned long page_to_section(struct page *page)
638 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
640 #endif
642 static inline void set_page_zone(struct page *page, enum zone_type zone)
644 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
645 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
648 static inline void set_page_node(struct page *page, unsigned long node)
650 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
651 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
654 static inline void set_page_section(struct page *page, unsigned long section)
656 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
657 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
660 static inline void set_page_links(struct page *page, enum zone_type zone,
661 unsigned long node, unsigned long pfn)
663 set_page_zone(page, zone);
664 set_page_node(page, node);
665 set_page_section(page, pfn_to_section_nr(pfn));
669 * Some inline functions in vmstat.h depend on page_zone()
671 #include <linux/vmstat.h>
673 static __always_inline void *lowmem_page_address(struct page *page)
675 return __va(PFN_PHYS(page_to_pfn(page)));
678 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
679 #define HASHED_PAGE_VIRTUAL
680 #endif
682 #if defined(WANT_PAGE_VIRTUAL)
683 #define page_address(page) ((page)->virtual)
684 #define set_page_address(page, address) \
685 do { \
686 (page)->virtual = (address); \
687 } while(0)
688 #define page_address_init() do { } while(0)
689 #endif
691 #if defined(HASHED_PAGE_VIRTUAL)
692 void *page_address(struct page *page);
693 void set_page_address(struct page *page, void *virtual);
694 void page_address_init(void);
695 #endif
697 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
698 #define page_address(page) lowmem_page_address(page)
699 #define set_page_address(page, address) do { } while(0)
700 #define page_address_init() do { } while(0)
701 #endif
704 * On an anonymous page mapped into a user virtual memory area,
705 * page->mapping points to its anon_vma, not to a struct address_space;
706 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
708 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
709 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
710 * and then page->mapping points, not to an anon_vma, but to a private
711 * structure which KSM associates with that merged page. See ksm.h.
713 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
715 * Please note that, confusingly, "page_mapping" refers to the inode
716 * address_space which maps the page from disk; whereas "page_mapped"
717 * refers to user virtual address space into which the page is mapped.
719 #define PAGE_MAPPING_ANON 1
720 #define PAGE_MAPPING_KSM 2
721 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
723 extern struct address_space swapper_space;
724 static inline struct address_space *page_mapping(struct page *page)
726 struct address_space *mapping = page->mapping;
728 VM_BUG_ON(PageSlab(page));
729 if (unlikely(PageSwapCache(page)))
730 mapping = &swapper_space;
731 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
732 mapping = NULL;
733 return mapping;
736 /* Neutral page->mapping pointer to address_space or anon_vma or other */
737 static inline void *page_rmapping(struct page *page)
739 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
742 static inline int PageAnon(struct page *page)
744 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
748 * Return the pagecache index of the passed page. Regular pagecache pages
749 * use ->index whereas swapcache pages use ->private
751 static inline pgoff_t page_index(struct page *page)
753 if (unlikely(PageSwapCache(page)))
754 return page_private(page);
755 return page->index;
759 * The atomic page->_mapcount, like _count, starts from -1:
760 * so that transitions both from it and to it can be tracked,
761 * using atomic_inc_and_test and atomic_add_negative(-1).
763 static inline void reset_page_mapcount(struct page *page)
765 atomic_set(&(page)->_mapcount, -1);
768 static inline int page_mapcount(struct page *page)
770 return atomic_read(&(page)->_mapcount) + 1;
774 * Return true if this page is mapped into pagetables.
776 static inline int page_mapped(struct page *page)
778 return atomic_read(&(page)->_mapcount) >= 0;
782 * Different kinds of faults, as returned by handle_mm_fault().
783 * Used to decide whether a process gets delivered SIGBUS or
784 * just gets major/minor fault counters bumped up.
787 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
789 #define VM_FAULT_OOM 0x0001
790 #define VM_FAULT_SIGBUS 0x0002
791 #define VM_FAULT_MAJOR 0x0004
792 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
793 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
794 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
796 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
797 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
798 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
800 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
802 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
803 VM_FAULT_HWPOISON_LARGE)
805 /* Encode hstate index for a hwpoisoned large page */
806 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
807 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
810 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
812 extern void pagefault_out_of_memory(void);
814 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
816 extern void show_free_areas(void);
818 int shmem_lock(struct file *file, int lock, struct user_struct *user);
819 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
820 int shmem_zero_setup(struct vm_area_struct *);
822 #ifndef CONFIG_MMU
823 extern unsigned long shmem_get_unmapped_area(struct file *file,
824 unsigned long addr,
825 unsigned long len,
826 unsigned long pgoff,
827 unsigned long flags);
828 #endif
830 extern int can_do_mlock(void);
831 extern int user_shm_lock(size_t, struct user_struct *);
832 extern void user_shm_unlock(size_t, struct user_struct *);
835 * Parameter block passed down to zap_pte_range in exceptional cases.
837 struct zap_details {
838 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
839 struct address_space *check_mapping; /* Check page->mapping if set */
840 pgoff_t first_index; /* Lowest page->index to unmap */
841 pgoff_t last_index; /* Highest page->index to unmap */
842 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
843 unsigned long truncate_count; /* Compare vm_truncate_count */
846 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
847 pte_t pte);
849 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
850 unsigned long size);
851 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
852 unsigned long size, struct zap_details *);
853 unsigned long unmap_vmas(struct mmu_gather **tlb,
854 struct vm_area_struct *start_vma, unsigned long start_addr,
855 unsigned long end_addr, unsigned long *nr_accounted,
856 struct zap_details *);
859 * mm_walk - callbacks for walk_page_range
860 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
861 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
862 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
863 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
864 * @pte_hole: if set, called for each hole at all levels
865 * @hugetlb_entry: if set, called for each hugetlb entry
867 * (see walk_page_range for more details)
869 struct mm_walk {
870 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
871 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
872 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
873 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
874 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
875 int (*hugetlb_entry)(pte_t *, unsigned long,
876 unsigned long, unsigned long, struct mm_walk *);
877 struct mm_struct *mm;
878 void *private;
881 int walk_page_range(unsigned long addr, unsigned long end,
882 struct mm_walk *walk);
883 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
884 unsigned long end, unsigned long floor, unsigned long ceiling);
885 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
886 struct vm_area_struct *vma);
887 void unmap_mapping_range(struct address_space *mapping,
888 loff_t const holebegin, loff_t const holelen, int even_cows);
889 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
890 unsigned long *pfn);
891 int follow_phys(struct vm_area_struct *vma, unsigned long address,
892 unsigned int flags, unsigned long *prot, resource_size_t *phys);
893 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
894 void *buf, int len, int write);
896 static inline void unmap_shared_mapping_range(struct address_space *mapping,
897 loff_t const holebegin, loff_t const holelen)
899 unmap_mapping_range(mapping, holebegin, holelen, 0);
902 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
903 extern void truncate_setsize(struct inode *inode, loff_t newsize);
904 extern int vmtruncate(struct inode *inode, loff_t offset);
905 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
907 int truncate_inode_page(struct address_space *mapping, struct page *page);
908 int generic_error_remove_page(struct address_space *mapping, struct page *page);
910 int invalidate_inode_page(struct page *page);
912 #ifdef CONFIG_MMU
913 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
914 unsigned long address, unsigned int flags);
915 #else
916 static inline int handle_mm_fault(struct mm_struct *mm,
917 struct vm_area_struct *vma, unsigned long address,
918 unsigned int flags)
920 /* should never happen if there's no MMU */
921 BUG();
922 return VM_FAULT_SIGBUS;
924 #endif
926 extern int make_pages_present(unsigned long addr, unsigned long end);
927 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
929 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
930 unsigned long start, int nr_pages, int write, int force,
931 struct page **pages, struct vm_area_struct **vmas);
932 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
933 struct page **pages);
934 struct page *get_dump_page(unsigned long addr);
936 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
937 extern void do_invalidatepage(struct page *page, unsigned long offset);
939 int __set_page_dirty_nobuffers(struct page *page);
940 int __set_page_dirty_no_writeback(struct page *page);
941 int redirty_page_for_writepage(struct writeback_control *wbc,
942 struct page *page);
943 void account_page_dirtied(struct page *page, struct address_space *mapping);
944 void account_page_writeback(struct page *page);
945 int set_page_dirty(struct page *page);
946 int set_page_dirty_lock(struct page *page);
947 int clear_page_dirty_for_io(struct page *page);
949 /* Is the vma a continuation of the stack vma above it? */
950 static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
952 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
955 extern unsigned long move_page_tables(struct vm_area_struct *vma,
956 unsigned long old_addr, struct vm_area_struct *new_vma,
957 unsigned long new_addr, unsigned long len);
958 extern unsigned long do_mremap(unsigned long addr,
959 unsigned long old_len, unsigned long new_len,
960 unsigned long flags, unsigned long new_addr);
961 extern int mprotect_fixup(struct vm_area_struct *vma,
962 struct vm_area_struct **pprev, unsigned long start,
963 unsigned long end, unsigned long newflags);
966 * doesn't attempt to fault and will return short.
968 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
969 struct page **pages);
971 * per-process(per-mm_struct) statistics.
973 #if defined(SPLIT_RSS_COUNTING)
975 * The mm counters are not protected by its page_table_lock,
976 * so must be incremented atomically.
978 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
980 atomic_long_set(&mm->rss_stat.count[member], value);
983 unsigned long get_mm_counter(struct mm_struct *mm, int member);
985 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
987 atomic_long_add(value, &mm->rss_stat.count[member]);
990 static inline void inc_mm_counter(struct mm_struct *mm, int member)
992 atomic_long_inc(&mm->rss_stat.count[member]);
995 static inline void dec_mm_counter(struct mm_struct *mm, int member)
997 atomic_long_dec(&mm->rss_stat.count[member]);
1000 #else /* !USE_SPLIT_PTLOCKS */
1002 * The mm counters are protected by its page_table_lock,
1003 * so can be incremented directly.
1005 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1007 mm->rss_stat.count[member] = value;
1010 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1012 return mm->rss_stat.count[member];
1015 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1017 mm->rss_stat.count[member] += value;
1020 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1022 mm->rss_stat.count[member]++;
1025 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1027 mm->rss_stat.count[member]--;
1030 #endif /* !USE_SPLIT_PTLOCKS */
1032 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1034 return get_mm_counter(mm, MM_FILEPAGES) +
1035 get_mm_counter(mm, MM_ANONPAGES);
1038 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1040 return max(mm->hiwater_rss, get_mm_rss(mm));
1043 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1045 return max(mm->hiwater_vm, mm->total_vm);
1048 static inline void update_hiwater_rss(struct mm_struct *mm)
1050 unsigned long _rss = get_mm_rss(mm);
1052 if ((mm)->hiwater_rss < _rss)
1053 (mm)->hiwater_rss = _rss;
1056 static inline void update_hiwater_vm(struct mm_struct *mm)
1058 if (mm->hiwater_vm < mm->total_vm)
1059 mm->hiwater_vm = mm->total_vm;
1062 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1063 struct mm_struct *mm)
1065 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1067 if (*maxrss < hiwater_rss)
1068 *maxrss = hiwater_rss;
1071 #if defined(SPLIT_RSS_COUNTING)
1072 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
1073 #else
1074 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1077 #endif
1080 * A callback you can register to apply pressure to ageable caches.
1082 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
1083 * look through the least-recently-used 'nr_to_scan' entries and
1084 * attempt to free them up. It should return the number of objects
1085 * which remain in the cache. If it returns -1, it means it cannot do
1086 * any scanning at this time (eg. there is a risk of deadlock).
1088 * The 'gfpmask' refers to the allocation we are currently trying to
1089 * fulfil.
1091 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1092 * querying the cache size, so a fastpath for that case is appropriate.
1094 struct shrinker {
1095 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
1096 int seeks; /* seeks to recreate an obj */
1098 /* These are for internal use */
1099 struct list_head list;
1100 long nr; /* objs pending delete */
1102 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1103 extern void register_shrinker(struct shrinker *);
1104 extern void unregister_shrinker(struct shrinker *);
1106 int vma_wants_writenotify(struct vm_area_struct *vma);
1108 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1109 spinlock_t **ptl);
1110 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1111 spinlock_t **ptl)
1113 pte_t *ptep;
1114 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1115 return ptep;
1118 #ifdef __PAGETABLE_PUD_FOLDED
1119 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1120 unsigned long address)
1122 return 0;
1124 #else
1125 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1126 #endif
1128 #ifdef __PAGETABLE_PMD_FOLDED
1129 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1130 unsigned long address)
1132 return 0;
1134 #else
1135 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1136 #endif
1138 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1139 pmd_t *pmd, unsigned long address);
1140 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1143 * The following ifdef needed to get the 4level-fixup.h header to work.
1144 * Remove it when 4level-fixup.h has been removed.
1146 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1147 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1149 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1150 NULL: pud_offset(pgd, address);
1153 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1155 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1156 NULL: pmd_offset(pud, address);
1158 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1160 #if USE_SPLIT_PTLOCKS
1162 * We tuck a spinlock to guard each pagetable page into its struct page,
1163 * at page->private, with BUILD_BUG_ON to make sure that this will not
1164 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1165 * When freeing, reset page->mapping so free_pages_check won't complain.
1167 #define __pte_lockptr(page) &((page)->ptl)
1168 #define pte_lock_init(_page) do { \
1169 spin_lock_init(__pte_lockptr(_page)); \
1170 } while (0)
1171 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1172 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1173 #else /* !USE_SPLIT_PTLOCKS */
1175 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1177 #define pte_lock_init(page) do {} while (0)
1178 #define pte_lock_deinit(page) do {} while (0)
1179 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1180 #endif /* USE_SPLIT_PTLOCKS */
1182 static inline void pgtable_page_ctor(struct page *page)
1184 pte_lock_init(page);
1185 inc_zone_page_state(page, NR_PAGETABLE);
1188 static inline void pgtable_page_dtor(struct page *page)
1190 pte_lock_deinit(page);
1191 dec_zone_page_state(page, NR_PAGETABLE);
1194 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1195 ({ \
1196 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1197 pte_t *__pte = pte_offset_map(pmd, address); \
1198 *(ptlp) = __ptl; \
1199 spin_lock(__ptl); \
1200 __pte; \
1203 #define pte_unmap_unlock(pte, ptl) do { \
1204 spin_unlock(ptl); \
1205 pte_unmap(pte); \
1206 } while (0)
1208 #define pte_alloc_map(mm, vma, pmd, address) \
1209 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1210 pmd, address))? \
1211 NULL: pte_offset_map(pmd, address))
1213 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1214 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1215 pmd, address))? \
1216 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1218 #define pte_alloc_kernel(pmd, address) \
1219 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1220 NULL: pte_offset_kernel(pmd, address))
1222 extern void free_area_init(unsigned long * zones_size);
1223 extern void free_area_init_node(int nid, unsigned long * zones_size,
1224 unsigned long zone_start_pfn, unsigned long *zholes_size);
1225 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1227 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1228 * zones, allocate the backing mem_map and account for memory holes in a more
1229 * architecture independent manner. This is a substitute for creating the
1230 * zone_sizes[] and zholes_size[] arrays and passing them to
1231 * free_area_init_node()
1233 * An architecture is expected to register range of page frames backed by
1234 * physical memory with add_active_range() before calling
1235 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1236 * usage, an architecture is expected to do something like
1238 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1239 * max_highmem_pfn};
1240 * for_each_valid_physical_page_range()
1241 * add_active_range(node_id, start_pfn, end_pfn)
1242 * free_area_init_nodes(max_zone_pfns);
1244 * If the architecture guarantees that there are no holes in the ranges
1245 * registered with add_active_range(), free_bootmem_active_regions()
1246 * will call free_bootmem_node() for each registered physical page range.
1247 * Similarly sparse_memory_present_with_active_regions() calls
1248 * memory_present() for each range when SPARSEMEM is enabled.
1250 * See mm/page_alloc.c for more information on each function exposed by
1251 * CONFIG_ARCH_POPULATES_NODE_MAP
1253 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1254 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1255 unsigned long end_pfn);
1256 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1257 unsigned long end_pfn);
1258 extern void remove_all_active_ranges(void);
1259 void sort_node_map(void);
1260 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1261 unsigned long end_pfn);
1262 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1263 unsigned long end_pfn);
1264 extern void get_pfn_range_for_nid(unsigned int nid,
1265 unsigned long *start_pfn, unsigned long *end_pfn);
1266 extern unsigned long find_min_pfn_with_active_regions(void);
1267 extern void free_bootmem_with_active_regions(int nid,
1268 unsigned long max_low_pfn);
1269 int add_from_early_node_map(struct range *range, int az,
1270 int nr_range, int nid);
1271 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1272 u64 goal, u64 limit);
1273 void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
1274 u64 goal, u64 limit);
1275 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1276 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1277 extern void sparse_memory_present_with_active_regions(int nid);
1278 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1280 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1281 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1282 static inline int __early_pfn_to_nid(unsigned long pfn)
1284 return 0;
1286 #else
1287 /* please see mm/page_alloc.c */
1288 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1289 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1290 /* there is a per-arch backend function. */
1291 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1292 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1293 #endif
1295 extern void set_dma_reserve(unsigned long new_dma_reserve);
1296 extern void memmap_init_zone(unsigned long, int, unsigned long,
1297 unsigned long, enum memmap_context);
1298 extern void setup_per_zone_wmarks(void);
1299 extern void calculate_zone_inactive_ratio(struct zone *zone);
1300 extern void mem_init(void);
1301 extern void __init mmap_init(void);
1302 extern void show_mem(void);
1303 extern void si_meminfo(struct sysinfo * val);
1304 extern void si_meminfo_node(struct sysinfo *val, int nid);
1305 extern int after_bootmem;
1307 extern void setup_per_cpu_pageset(void);
1309 extern void zone_pcp_update(struct zone *zone);
1311 /* nommu.c */
1312 extern atomic_long_t mmap_pages_allocated;
1313 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1315 /* prio_tree.c */
1316 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1317 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1318 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1319 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1320 struct prio_tree_iter *iter);
1322 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1323 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1324 (vma = vma_prio_tree_next(vma, iter)); )
1326 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1327 struct list_head *list)
1329 vma->shared.vm_set.parent = NULL;
1330 list_add_tail(&vma->shared.vm_set.list, list);
1333 /* mmap.c */
1334 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1335 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1336 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1337 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1338 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1339 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1340 struct mempolicy *);
1341 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1342 extern int split_vma(struct mm_struct *,
1343 struct vm_area_struct *, unsigned long addr, int new_below);
1344 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1345 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1346 struct rb_node **, struct rb_node *);
1347 extern void unlink_file_vma(struct vm_area_struct *);
1348 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1349 unsigned long addr, unsigned long len, pgoff_t pgoff);
1350 extern void exit_mmap(struct mm_struct *);
1352 extern int mm_take_all_locks(struct mm_struct *mm);
1353 extern void mm_drop_all_locks(struct mm_struct *mm);
1355 #ifdef CONFIG_PROC_FS
1356 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1357 extern void added_exe_file_vma(struct mm_struct *mm);
1358 extern void removed_exe_file_vma(struct mm_struct *mm);
1359 #else
1360 static inline void added_exe_file_vma(struct mm_struct *mm)
1363 static inline void removed_exe_file_vma(struct mm_struct *mm)
1365 #endif /* CONFIG_PROC_FS */
1367 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1368 extern int install_special_mapping(struct mm_struct *mm,
1369 unsigned long addr, unsigned long len,
1370 unsigned long flags, struct page **pages);
1372 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1374 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1375 unsigned long len, unsigned long prot,
1376 unsigned long flag, unsigned long pgoff);
1377 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1378 unsigned long len, unsigned long flags,
1379 unsigned int vm_flags, unsigned long pgoff);
1381 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1382 unsigned long len, unsigned long prot,
1383 unsigned long flag, unsigned long offset)
1385 unsigned long ret = -EINVAL;
1386 if ((offset + PAGE_ALIGN(len)) < offset)
1387 goto out;
1388 if (!(offset & ~PAGE_MASK))
1389 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1390 out:
1391 return ret;
1394 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1396 extern unsigned long do_brk(unsigned long, unsigned long);
1398 /* filemap.c */
1399 extern unsigned long page_unuse(struct page *);
1400 extern void truncate_inode_pages(struct address_space *, loff_t);
1401 extern void truncate_inode_pages_range(struct address_space *,
1402 loff_t lstart, loff_t lend);
1404 /* generic vm_area_ops exported for stackable file systems */
1405 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1407 /* mm/page-writeback.c */
1408 int write_one_page(struct page *page, int wait);
1409 void task_dirty_inc(struct task_struct *tsk);
1411 /* readahead.c */
1412 #define VM_MAX_READAHEAD 128 /* kbytes */
1413 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1415 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1416 pgoff_t offset, unsigned long nr_to_read);
1418 void page_cache_sync_readahead(struct address_space *mapping,
1419 struct file_ra_state *ra,
1420 struct file *filp,
1421 pgoff_t offset,
1422 unsigned long size);
1424 void page_cache_async_readahead(struct address_space *mapping,
1425 struct file_ra_state *ra,
1426 struct file *filp,
1427 struct page *pg,
1428 pgoff_t offset,
1429 unsigned long size);
1431 unsigned long max_sane_readahead(unsigned long nr);
1432 unsigned long ra_submit(struct file_ra_state *ra,
1433 struct address_space *mapping,
1434 struct file *filp);
1436 /* Do stack extension */
1437 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1438 #if VM_GROWSUP
1439 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1440 #else
1441 #define expand_upwards(vma, address) do { } while (0)
1442 #endif
1443 extern int expand_stack_downwards(struct vm_area_struct *vma,
1444 unsigned long address);
1446 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1447 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1448 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1449 struct vm_area_struct **pprev);
1451 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1452 NULL if none. Assume start_addr < end_addr. */
1453 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1455 struct vm_area_struct * vma = find_vma(mm,start_addr);
1457 if (vma && end_addr <= vma->vm_start)
1458 vma = NULL;
1459 return vma;
1462 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1464 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1467 #ifdef CONFIG_MMU
1468 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1469 #else
1470 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1472 return __pgprot(0);
1474 #endif
1476 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1477 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1478 unsigned long pfn, unsigned long size, pgprot_t);
1479 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1480 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1481 unsigned long pfn);
1482 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1483 unsigned long pfn);
1485 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1486 unsigned int foll_flags);
1487 #define FOLL_WRITE 0x01 /* check pte is writable */
1488 #define FOLL_TOUCH 0x02 /* mark page accessed */
1489 #define FOLL_GET 0x04 /* do get_page on page */
1490 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1491 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1492 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1494 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1495 void *data);
1496 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1497 unsigned long size, pte_fn_t fn, void *data);
1499 #ifdef CONFIG_PROC_FS
1500 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1501 #else
1502 static inline void vm_stat_account(struct mm_struct *mm,
1503 unsigned long flags, struct file *file, long pages)
1506 #endif /* CONFIG_PROC_FS */
1508 #ifdef CONFIG_DEBUG_PAGEALLOC
1509 extern int debug_pagealloc_enabled;
1511 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1513 static inline void enable_debug_pagealloc(void)
1515 debug_pagealloc_enabled = 1;
1517 #ifdef CONFIG_HIBERNATION
1518 extern bool kernel_page_present(struct page *page);
1519 #endif /* CONFIG_HIBERNATION */
1520 #else
1521 static inline void
1522 kernel_map_pages(struct page *page, int numpages, int enable) {}
1523 static inline void enable_debug_pagealloc(void)
1526 #ifdef CONFIG_HIBERNATION
1527 static inline bool kernel_page_present(struct page *page) { return true; }
1528 #endif /* CONFIG_HIBERNATION */
1529 #endif
1531 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1532 #ifdef __HAVE_ARCH_GATE_AREA
1533 int in_gate_area_no_task(unsigned long addr);
1534 int in_gate_area(struct task_struct *task, unsigned long addr);
1535 #else
1536 int in_gate_area_no_task(unsigned long addr);
1537 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1538 #endif /* __HAVE_ARCH_GATE_AREA */
1540 int drop_caches_sysctl_handler(struct ctl_table *, int,
1541 void __user *, size_t *, loff_t *);
1542 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1543 unsigned long lru_pages);
1545 #ifndef CONFIG_MMU
1546 #define randomize_va_space 0
1547 #else
1548 extern int randomize_va_space;
1549 #endif
1551 const char * arch_vma_name(struct vm_area_struct *vma);
1552 void print_vma_addr(char *prefix, unsigned long rip);
1554 void sparse_mem_maps_populate_node(struct page **map_map,
1555 unsigned long pnum_begin,
1556 unsigned long pnum_end,
1557 unsigned long map_count,
1558 int nodeid);
1560 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1561 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1562 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1563 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1564 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1565 void *vmemmap_alloc_block(unsigned long size, int node);
1566 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1567 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1568 int vmemmap_populate_basepages(struct page *start_page,
1569 unsigned long pages, int node);
1570 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1571 void vmemmap_populate_print_last(void);
1574 enum mf_flags {
1575 MF_COUNT_INCREASED = 1 << 0,
1577 extern void memory_failure(unsigned long pfn, int trapno);
1578 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1579 extern int unpoison_memory(unsigned long pfn);
1580 extern int sysctl_memory_failure_early_kill;
1581 extern int sysctl_memory_failure_recovery;
1582 extern void shake_page(struct page *p, int access);
1583 extern atomic_long_t mce_bad_pages;
1584 extern int soft_offline_page(struct page *page, int flags);
1585 #ifdef CONFIG_MEMORY_FAILURE
1586 int is_hwpoison_address(unsigned long addr);
1587 #else
1588 static inline int is_hwpoison_address(unsigned long addr)
1590 return 0;
1592 #endif
1594 extern void dump_page(struct page *page);
1596 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1597 extern void clear_huge_page(struct page *page,
1598 unsigned long addr,
1599 unsigned int pages_per_huge_page);
1600 extern void copy_user_huge_page(struct page *dst, struct page *src,
1601 unsigned long addr, struct vm_area_struct *vma,
1602 unsigned int pages_per_huge_page);
1603 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1605 #endif /* __KERNEL__ */
1606 #endif /* _LINUX_MM_H */