5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/compatmac.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
51 #ifdef CONFIG_MTD_PARTITIONS
52 #include <linux/mtd/partitions.h>
55 /* Define default oob placement schemes for large and small page devices */
56 static struct nand_ecclayout nand_oob_8
= {
66 static struct nand_ecclayout nand_oob_16
= {
68 .eccpos
= {0, 1, 2, 3, 6, 7},
74 static struct nand_ecclayout nand_oob_64
= {
77 40, 41, 42, 43, 44, 45, 46, 47,
78 48, 49, 50, 51, 52, 53, 54, 55,
79 56, 57, 58, 59, 60, 61, 62, 63},
85 static int nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
,
88 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
89 struct mtd_oob_ops
*ops
);
92 * For devices which display every fart in the system on a separate LED. Is
93 * compiled away when LED support is disabled.
95 DEFINE_LED_TRIGGER(nand_led_trigger
);
98 * nand_release_device - [GENERIC] release chip
99 * @mtd: MTD device structure
101 * Deselect, release chip lock and wake up anyone waiting on the device
103 static void nand_release_device(struct mtd_info
*mtd
)
105 struct nand_chip
*chip
= mtd
->priv
;
107 /* De-select the NAND device */
108 chip
->select_chip(mtd
, -1);
110 /* Release the controller and the chip */
111 spin_lock(&chip
->controller
->lock
);
112 chip
->controller
->active
= NULL
;
113 chip
->state
= FL_READY
;
114 wake_up(&chip
->controller
->wq
);
115 spin_unlock(&chip
->controller
->lock
);
119 * nand_read_byte - [DEFAULT] read one byte from the chip
120 * @mtd: MTD device structure
122 * Default read function for 8bit buswith
124 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
126 struct nand_chip
*chip
= mtd
->priv
;
127 return readb(chip
->IO_ADDR_R
);
131 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
132 * @mtd: MTD device structure
134 * Default read function for 16bit buswith with
135 * endianess conversion
137 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
139 struct nand_chip
*chip
= mtd
->priv
;
140 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
144 * nand_read_word - [DEFAULT] read one word from the chip
145 * @mtd: MTD device structure
147 * Default read function for 16bit buswith without
148 * endianess conversion
150 static u16
nand_read_word(struct mtd_info
*mtd
)
152 struct nand_chip
*chip
= mtd
->priv
;
153 return readw(chip
->IO_ADDR_R
);
157 * nand_select_chip - [DEFAULT] control CE line
158 * @mtd: MTD device structure
159 * @chipnr: chipnumber to select, -1 for deselect
161 * Default select function for 1 chip devices.
163 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
165 struct nand_chip
*chip
= mtd
->priv
;
169 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
180 * nand_write_buf - [DEFAULT] write buffer to chip
181 * @mtd: MTD device structure
183 * @len: number of bytes to write
185 * Default write function for 8bit buswith
187 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
190 struct nand_chip
*chip
= mtd
->priv
;
192 for (i
= 0; i
< len
; i
++)
193 writeb(buf
[i
], chip
->IO_ADDR_W
);
197 * nand_read_buf - [DEFAULT] read chip data into buffer
198 * @mtd: MTD device structure
199 * @buf: buffer to store date
200 * @len: number of bytes to read
202 * Default read function for 8bit buswith
204 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
207 struct nand_chip
*chip
= mtd
->priv
;
209 for (i
= 0; i
< len
; i
++)
210 buf
[i
] = readb(chip
->IO_ADDR_R
);
214 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
215 * @mtd: MTD device structure
216 * @buf: buffer containing the data to compare
217 * @len: number of bytes to compare
219 * Default verify function for 8bit buswith
221 static int nand_verify_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
224 struct nand_chip
*chip
= mtd
->priv
;
226 for (i
= 0; i
< len
; i
++)
227 if (buf
[i
] != readb(chip
->IO_ADDR_R
))
233 * nand_write_buf16 - [DEFAULT] write buffer to chip
234 * @mtd: MTD device structure
236 * @len: number of bytes to write
238 * Default write function for 16bit buswith
240 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
243 struct nand_chip
*chip
= mtd
->priv
;
244 u16
*p
= (u16
*) buf
;
247 for (i
= 0; i
< len
; i
++)
248 writew(p
[i
], chip
->IO_ADDR_W
);
253 * nand_read_buf16 - [DEFAULT] read chip data into buffer
254 * @mtd: MTD device structure
255 * @buf: buffer to store date
256 * @len: number of bytes to read
258 * Default read function for 16bit buswith
260 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
263 struct nand_chip
*chip
= mtd
->priv
;
264 u16
*p
= (u16
*) buf
;
267 for (i
= 0; i
< len
; i
++)
268 p
[i
] = readw(chip
->IO_ADDR_R
);
272 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
273 * @mtd: MTD device structure
274 * @buf: buffer containing the data to compare
275 * @len: number of bytes to compare
277 * Default verify function for 16bit buswith
279 static int nand_verify_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
282 struct nand_chip
*chip
= mtd
->priv
;
283 u16
*p
= (u16
*) buf
;
286 for (i
= 0; i
< len
; i
++)
287 if (p
[i
] != readw(chip
->IO_ADDR_R
))
294 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
295 * @mtd: MTD device structure
296 * @ofs: offset from device start
297 * @getchip: 0, if the chip is already selected
299 * Check, if the block is bad.
301 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
303 int page
, chipnr
, res
= 0;
304 struct nand_chip
*chip
= mtd
->priv
;
307 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
310 chipnr
= (int)(ofs
>> chip
->chip_shift
);
312 nand_get_device(chip
, mtd
, FL_READING
);
314 /* Select the NAND device */
315 chip
->select_chip(mtd
, chipnr
);
318 if (chip
->options
& NAND_BUSWIDTH_16
) {
319 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
& 0xFE,
321 bad
= cpu_to_le16(chip
->read_word(mtd
));
322 if (chip
->badblockpos
& 0x1)
324 if ((bad
& 0xFF) != 0xff)
327 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
, page
);
328 if (chip
->read_byte(mtd
) != 0xff)
333 nand_release_device(mtd
);
339 * nand_default_block_markbad - [DEFAULT] mark a block bad
340 * @mtd: MTD device structure
341 * @ofs: offset from device start
343 * This is the default implementation, which can be overridden by
344 * a hardware specific driver.
346 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
348 struct nand_chip
*chip
= mtd
->priv
;
349 uint8_t buf
[2] = { 0, 0 };
352 /* Get block number */
353 block
= (int)(ofs
>> chip
->bbt_erase_shift
);
355 chip
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
357 /* Do we have a flash based bad block table ? */
358 if (chip
->options
& NAND_USE_FLASH_BBT
)
359 ret
= nand_update_bbt(mtd
, ofs
);
361 /* We write two bytes, so we dont have to mess with 16 bit
364 nand_get_device(chip
, mtd
, FL_WRITING
);
366 chip
->ops
.len
= chip
->ops
.ooblen
= 2;
367 chip
->ops
.datbuf
= NULL
;
368 chip
->ops
.oobbuf
= buf
;
369 chip
->ops
.ooboffs
= chip
->badblockpos
& ~0x01;
371 ret
= nand_do_write_oob(mtd
, ofs
, &chip
->ops
);
372 nand_release_device(mtd
);
375 mtd
->ecc_stats
.badblocks
++;
381 * nand_check_wp - [GENERIC] check if the chip is write protected
382 * @mtd: MTD device structure
383 * Check, if the device is write protected
385 * The function expects, that the device is already selected
387 static int nand_check_wp(struct mtd_info
*mtd
)
389 struct nand_chip
*chip
= mtd
->priv
;
390 /* Check the WP bit */
391 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
392 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
396 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
397 * @mtd: MTD device structure
398 * @ofs: offset from device start
399 * @getchip: 0, if the chip is already selected
400 * @allowbbt: 1, if its allowed to access the bbt area
402 * Check, if the block is bad. Either by reading the bad block table or
403 * calling of the scan function.
405 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
,
408 struct nand_chip
*chip
= mtd
->priv
;
411 return chip
->block_bad(mtd
, ofs
, getchip
);
413 /* Return info from the table */
414 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
418 * Wait for the ready pin, after a command
419 * The timeout is catched later.
421 void nand_wait_ready(struct mtd_info
*mtd
)
423 struct nand_chip
*chip
= mtd
->priv
;
424 unsigned long timeo
= jiffies
+ 2;
426 led_trigger_event(nand_led_trigger
, LED_FULL
);
427 /* wait until command is processed or timeout occures */
429 if (chip
->dev_ready(mtd
))
431 touch_softlockup_watchdog();
432 } while (time_before(jiffies
, timeo
));
433 led_trigger_event(nand_led_trigger
, LED_OFF
);
435 EXPORT_SYMBOL_GPL(nand_wait_ready
);
438 * nand_command - [DEFAULT] Send command to NAND device
439 * @mtd: MTD device structure
440 * @command: the command to be sent
441 * @column: the column address for this command, -1 if none
442 * @page_addr: the page address for this command, -1 if none
444 * Send command to NAND device. This function is used for small page
445 * devices (256/512 Bytes per page)
447 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
448 int column
, int page_addr
)
450 register struct nand_chip
*chip
= mtd
->priv
;
451 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
454 * Write out the command to the device.
456 if (command
== NAND_CMD_SEQIN
) {
459 if (column
>= mtd
->writesize
) {
461 column
-= mtd
->writesize
;
462 readcmd
= NAND_CMD_READOOB
;
463 } else if (column
< 256) {
464 /* First 256 bytes --> READ0 */
465 readcmd
= NAND_CMD_READ0
;
468 readcmd
= NAND_CMD_READ1
;
470 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
471 ctrl
&= ~NAND_CTRL_CHANGE
;
473 chip
->cmd_ctrl(mtd
, command
, ctrl
);
476 * Address cycle, when necessary
478 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
479 /* Serially input address */
481 /* Adjust columns for 16 bit buswidth */
482 if (chip
->options
& NAND_BUSWIDTH_16
)
484 chip
->cmd_ctrl(mtd
, column
, ctrl
);
485 ctrl
&= ~NAND_CTRL_CHANGE
;
487 if (page_addr
!= -1) {
488 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
489 ctrl
&= ~NAND_CTRL_CHANGE
;
490 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
491 /* One more address cycle for devices > 32MiB */
492 if (chip
->chipsize
> (32 << 20))
493 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
495 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
498 * program and erase have their own busy handlers
499 * status and sequential in needs no delay
503 case NAND_CMD_PAGEPROG
:
504 case NAND_CMD_ERASE1
:
505 case NAND_CMD_ERASE2
:
507 case NAND_CMD_STATUS
:
513 udelay(chip
->chip_delay
);
514 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
515 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
517 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
518 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) ;
521 /* This applies to read commands */
524 * If we don't have access to the busy pin, we apply the given
527 if (!chip
->dev_ready
) {
528 udelay(chip
->chip_delay
);
532 /* Apply this short delay always to ensure that we do wait tWB in
533 * any case on any machine. */
536 nand_wait_ready(mtd
);
540 * nand_command_lp - [DEFAULT] Send command to NAND large page device
541 * @mtd: MTD device structure
542 * @command: the command to be sent
543 * @column: the column address for this command, -1 if none
544 * @page_addr: the page address for this command, -1 if none
546 * Send command to NAND device. This is the version for the new large page
547 * devices We dont have the separate regions as we have in the small page
548 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
550 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
551 int column
, int page_addr
)
553 register struct nand_chip
*chip
= mtd
->priv
;
555 /* Emulate NAND_CMD_READOOB */
556 if (command
== NAND_CMD_READOOB
) {
557 column
+= mtd
->writesize
;
558 command
= NAND_CMD_READ0
;
561 /* Command latch cycle */
562 chip
->cmd_ctrl(mtd
, command
& 0xff,
563 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
565 if (column
!= -1 || page_addr
!= -1) {
566 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
568 /* Serially input address */
570 /* Adjust columns for 16 bit buswidth */
571 if (chip
->options
& NAND_BUSWIDTH_16
)
573 chip
->cmd_ctrl(mtd
, column
, ctrl
);
574 ctrl
&= ~NAND_CTRL_CHANGE
;
575 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
577 if (page_addr
!= -1) {
578 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
579 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
580 NAND_NCE
| NAND_ALE
);
581 /* One more address cycle for devices > 128MiB */
582 if (chip
->chipsize
> (128 << 20))
583 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
584 NAND_NCE
| NAND_ALE
);
587 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
590 * program and erase have their own busy handlers
591 * status, sequential in, and deplete1 need no delay
595 case NAND_CMD_CACHEDPROG
:
596 case NAND_CMD_PAGEPROG
:
597 case NAND_CMD_ERASE1
:
598 case NAND_CMD_ERASE2
:
601 case NAND_CMD_STATUS
:
602 case NAND_CMD_DEPLETE1
:
606 * read error status commands require only a short delay
608 case NAND_CMD_STATUS_ERROR
:
609 case NAND_CMD_STATUS_ERROR0
:
610 case NAND_CMD_STATUS_ERROR1
:
611 case NAND_CMD_STATUS_ERROR2
:
612 case NAND_CMD_STATUS_ERROR3
:
613 udelay(chip
->chip_delay
);
619 udelay(chip
->chip_delay
);
620 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
621 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
622 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
623 NAND_NCE
| NAND_CTRL_CHANGE
);
624 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) ;
627 case NAND_CMD_RNDOUT
:
628 /* No ready / busy check necessary */
629 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
630 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
631 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
632 NAND_NCE
| NAND_CTRL_CHANGE
);
636 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
637 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
638 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
639 NAND_NCE
| NAND_CTRL_CHANGE
);
641 /* This applies to read commands */
644 * If we don't have access to the busy pin, we apply the given
647 if (!chip
->dev_ready
) {
648 udelay(chip
->chip_delay
);
653 /* Apply this short delay always to ensure that we do wait tWB in
654 * any case on any machine. */
657 nand_wait_ready(mtd
);
661 * nand_get_device - [GENERIC] Get chip for selected access
662 * @chip: the nand chip descriptor
663 * @mtd: MTD device structure
664 * @new_state: the state which is requested
666 * Get the device and lock it for exclusive access
669 nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
, int new_state
)
671 spinlock_t
*lock
= &chip
->controller
->lock
;
672 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
673 DECLARE_WAITQUEUE(wait
, current
);
677 /* Hardware controller shared among independend devices */
678 /* Hardware controller shared among independend devices */
679 if (!chip
->controller
->active
)
680 chip
->controller
->active
= chip
;
682 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
683 chip
->state
= new_state
;
687 if (new_state
== FL_PM_SUSPENDED
) {
689 return (chip
->state
== FL_PM_SUSPENDED
) ? 0 : -EAGAIN
;
691 set_current_state(TASK_UNINTERRUPTIBLE
);
692 add_wait_queue(wq
, &wait
);
695 remove_wait_queue(wq
, &wait
);
700 * nand_wait - [DEFAULT] wait until the command is done
701 * @mtd: MTD device structure
702 * @chip: NAND chip structure
704 * Wait for command done. This applies to erase and program only
705 * Erase can take up to 400ms and program up to 20ms according to
706 * general NAND and SmartMedia specs
708 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
711 unsigned long timeo
= jiffies
;
712 int status
, state
= chip
->state
;
714 if (state
== FL_ERASING
)
715 timeo
+= (HZ
* 400) / 1000;
717 timeo
+= (HZ
* 20) / 1000;
719 led_trigger_event(nand_led_trigger
, LED_FULL
);
721 /* Apply this short delay always to ensure that we do wait tWB in
722 * any case on any machine. */
725 if ((state
== FL_ERASING
) && (chip
->options
& NAND_IS_AND
))
726 chip
->cmdfunc(mtd
, NAND_CMD_STATUS_MULTI
, -1, -1);
728 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
730 while (time_before(jiffies
, timeo
)) {
731 if (chip
->dev_ready
) {
732 if (chip
->dev_ready(mtd
))
735 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
740 led_trigger_event(nand_led_trigger
, LED_OFF
);
742 status
= (int)chip
->read_byte(mtd
);
747 * nand_read_page_raw - [Intern] read raw page data without ecc
748 * @mtd: mtd info structure
749 * @chip: nand chip info structure
750 * @buf: buffer to store read data
752 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
755 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
756 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
761 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
762 * @mtd: mtd info structure
763 * @chip: nand chip info structure
764 * @buf: buffer to store read data
766 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
769 int i
, eccsize
= chip
->ecc
.size
;
770 int eccbytes
= chip
->ecc
.bytes
;
771 int eccsteps
= chip
->ecc
.steps
;
773 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
774 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
775 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
777 chip
->ecc
.read_page_raw(mtd
, chip
, buf
);
779 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
780 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
782 for (i
= 0; i
< chip
->ecc
.total
; i
++)
783 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
785 eccsteps
= chip
->ecc
.steps
;
788 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
791 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
793 mtd
->ecc_stats
.failed
++;
795 mtd
->ecc_stats
.corrected
+= stat
;
801 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
802 * @mtd: mtd info structure
803 * @chip: nand chip info structure
804 * @data_offs: offset of requested data within the page
805 * @readlen: data length
806 * @bufpoi: buffer to store read data
808 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
, uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
)
810 int start_step
, end_step
, num_steps
;
811 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
813 int data_col_addr
, i
, gaps
= 0;
814 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
815 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
817 /* Column address wihin the page aligned to ECC size (256bytes). */
818 start_step
= data_offs
/ chip
->ecc
.size
;
819 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
820 num_steps
= end_step
- start_step
+ 1;
822 /* Data size aligned to ECC ecc.size*/
823 datafrag_len
= num_steps
* chip
->ecc
.size
;
824 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
826 data_col_addr
= start_step
* chip
->ecc
.size
;
827 /* If we read not a page aligned data */
828 if (data_col_addr
!= 0)
829 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
831 p
= bufpoi
+ data_col_addr
;
832 chip
->read_buf(mtd
, p
, datafrag_len
);
835 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
836 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
838 /* The performance is faster if to position offsets
839 according to ecc.pos. Let make sure here that
840 there are no gaps in ecc positions */
841 for (i
= 0; i
< eccfrag_len
- 1; i
++) {
842 if (eccpos
[i
+ start_step
* chip
->ecc
.bytes
] + 1 !=
843 eccpos
[i
+ start_step
* chip
->ecc
.bytes
+ 1]) {
849 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
850 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
852 /* send the command to read the particular ecc bytes */
853 /* take care about buswidth alignment in read_buf */
854 aligned_pos
= eccpos
[start_step
* chip
->ecc
.bytes
] & ~(busw
- 1);
855 aligned_len
= eccfrag_len
;
856 if (eccpos
[start_step
* chip
->ecc
.bytes
] & (busw
- 1))
858 if (eccpos
[(start_step
+ num_steps
) * chip
->ecc
.bytes
] & (busw
- 1))
861 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
+ aligned_pos
, -1);
862 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
865 for (i
= 0; i
< eccfrag_len
; i
++)
866 chip
->buffers
->ecccode
[i
] = chip
->oob_poi
[eccpos
[i
+ start_step
* chip
->ecc
.bytes
]];
868 p
= bufpoi
+ data_col_addr
;
869 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
872 stat
= chip
->ecc
.correct(mtd
, p
, &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
874 mtd
->ecc_stats
.failed
++;
876 mtd
->ecc_stats
.corrected
+= stat
;
882 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
883 * @mtd: mtd info structure
884 * @chip: nand chip info structure
885 * @buf: buffer to store read data
887 * Not for syndrome calculating ecc controllers which need a special oob layout
889 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
892 int i
, eccsize
= chip
->ecc
.size
;
893 int eccbytes
= chip
->ecc
.bytes
;
894 int eccsteps
= chip
->ecc
.steps
;
896 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
897 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
898 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
900 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
901 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
902 chip
->read_buf(mtd
, p
, eccsize
);
903 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
905 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
907 for (i
= 0; i
< chip
->ecc
.total
; i
++)
908 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
910 eccsteps
= chip
->ecc
.steps
;
913 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
916 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
918 mtd
->ecc_stats
.failed
++;
920 mtd
->ecc_stats
.corrected
+= stat
;
926 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
927 * @mtd: mtd info structure
928 * @chip: nand chip info structure
929 * @buf: buffer to store read data
931 * The hw generator calculates the error syndrome automatically. Therefor
932 * we need a special oob layout and handling.
934 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
937 int i
, eccsize
= chip
->ecc
.size
;
938 int eccbytes
= chip
->ecc
.bytes
;
939 int eccsteps
= chip
->ecc
.steps
;
941 uint8_t *oob
= chip
->oob_poi
;
943 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
946 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
947 chip
->read_buf(mtd
, p
, eccsize
);
949 if (chip
->ecc
.prepad
) {
950 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
951 oob
+= chip
->ecc
.prepad
;
954 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
955 chip
->read_buf(mtd
, oob
, eccbytes
);
956 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
959 mtd
->ecc_stats
.failed
++;
961 mtd
->ecc_stats
.corrected
+= stat
;
965 if (chip
->ecc
.postpad
) {
966 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
967 oob
+= chip
->ecc
.postpad
;
971 /* Calculate remaining oob bytes */
972 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
974 chip
->read_buf(mtd
, oob
, i
);
980 * nand_transfer_oob - [Internal] Transfer oob to client buffer
981 * @chip: nand chip structure
982 * @oob: oob destination address
983 * @ops: oob ops structure
984 * @len: size of oob to transfer
986 static uint8_t *nand_transfer_oob(struct nand_chip
*chip
, uint8_t *oob
,
987 struct mtd_oob_ops
*ops
, size_t len
)
993 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
997 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
998 uint32_t boffs
= 0, roffs
= ops
->ooboffs
;
1001 for(; free
->length
&& len
; free
++, len
-= bytes
) {
1002 /* Read request not from offset 0 ? */
1003 if (unlikely(roffs
)) {
1004 if (roffs
>= free
->length
) {
1005 roffs
-= free
->length
;
1008 boffs
= free
->offset
+ roffs
;
1009 bytes
= min_t(size_t, len
,
1010 (free
->length
- roffs
));
1013 bytes
= min_t(size_t, len
, free
->length
);
1014 boffs
= free
->offset
;
1016 memcpy(oob
, chip
->oob_poi
+ boffs
, bytes
);
1028 * nand_do_read_ops - [Internal] Read data with ECC
1030 * @mtd: MTD device structure
1031 * @from: offset to read from
1032 * @ops: oob ops structure
1034 * Internal function. Called with chip held.
1036 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1037 struct mtd_oob_ops
*ops
)
1039 int chipnr
, page
, realpage
, col
, bytes
, aligned
;
1040 struct nand_chip
*chip
= mtd
->priv
;
1041 struct mtd_ecc_stats stats
;
1042 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1045 uint32_t readlen
= ops
->len
;
1046 uint32_t oobreadlen
= ops
->ooblen
;
1047 uint8_t *bufpoi
, *oob
, *buf
;
1049 stats
= mtd
->ecc_stats
;
1051 chipnr
= (int)(from
>> chip
->chip_shift
);
1052 chip
->select_chip(mtd
, chipnr
);
1054 realpage
= (int)(from
>> chip
->page_shift
);
1055 page
= realpage
& chip
->pagemask
;
1057 col
= (int)(from
& (mtd
->writesize
- 1));
1063 bytes
= min(mtd
->writesize
- col
, readlen
);
1064 aligned
= (bytes
== mtd
->writesize
);
1066 /* Is the current page in the buffer ? */
1067 if (realpage
!= chip
->pagebuf
|| oob
) {
1068 bufpoi
= aligned
? buf
: chip
->buffers
->databuf
;
1070 if (likely(sndcmd
)) {
1071 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1075 /* Now read the page into the buffer */
1076 if (unlikely(ops
->mode
== MTD_OOB_RAW
))
1077 ret
= chip
->ecc
.read_page_raw(mtd
, chip
, bufpoi
);
1078 else if (!aligned
&& NAND_SUBPAGE_READ(chip
) && !oob
)
1079 ret
= chip
->ecc
.read_subpage(mtd
, chip
, col
, bytes
, bufpoi
);
1081 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
);
1085 /* Transfer not aligned data */
1087 if (!NAND_SUBPAGE_READ(chip
) && !oob
)
1088 chip
->pagebuf
= realpage
;
1089 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1094 if (unlikely(oob
)) {
1095 /* Raw mode does data:oob:data:oob */
1096 if (ops
->mode
!= MTD_OOB_RAW
) {
1097 int toread
= min(oobreadlen
,
1098 chip
->ecc
.layout
->oobavail
);
1100 oob
= nand_transfer_oob(chip
,
1102 oobreadlen
-= toread
;
1105 buf
= nand_transfer_oob(chip
,
1106 buf
, ops
, mtd
->oobsize
);
1109 if (!(chip
->options
& NAND_NO_READRDY
)) {
1111 * Apply delay or wait for ready/busy pin. Do
1112 * this before the AUTOINCR check, so no
1113 * problems arise if a chip which does auto
1114 * increment is marked as NOAUTOINCR by the
1117 if (!chip
->dev_ready
)
1118 udelay(chip
->chip_delay
);
1120 nand_wait_ready(mtd
);
1123 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1132 /* For subsequent reads align to page boundary. */
1134 /* Increment page address */
1137 page
= realpage
& chip
->pagemask
;
1138 /* Check, if we cross a chip boundary */
1141 chip
->select_chip(mtd
, -1);
1142 chip
->select_chip(mtd
, chipnr
);
1145 /* Check, if the chip supports auto page increment
1146 * or if we have hit a block boundary.
1148 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1152 ops
->retlen
= ops
->len
- (size_t) readlen
;
1154 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1159 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1162 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1166 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1167 * @mtd: MTD device structure
1168 * @from: offset to read from
1169 * @len: number of bytes to read
1170 * @retlen: pointer to variable to store the number of read bytes
1171 * @buf: the databuffer to put data
1173 * Get hold of the chip and call nand_do_read
1175 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1176 size_t *retlen
, uint8_t *buf
)
1178 struct nand_chip
*chip
= mtd
->priv
;
1181 /* Do not allow reads past end of device */
1182 if ((from
+ len
) > mtd
->size
)
1187 nand_get_device(chip
, mtd
, FL_READING
);
1189 chip
->ops
.len
= len
;
1190 chip
->ops
.datbuf
= buf
;
1191 chip
->ops
.oobbuf
= NULL
;
1193 ret
= nand_do_read_ops(mtd
, from
, &chip
->ops
);
1195 *retlen
= chip
->ops
.retlen
;
1197 nand_release_device(mtd
);
1203 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1204 * @mtd: mtd info structure
1205 * @chip: nand chip info structure
1206 * @page: page number to read
1207 * @sndcmd: flag whether to issue read command or not
1209 static int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1210 int page
, int sndcmd
)
1213 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1216 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1221 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1223 * @mtd: mtd info structure
1224 * @chip: nand chip info structure
1225 * @page: page number to read
1226 * @sndcmd: flag whether to issue read command or not
1228 static int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1229 int page
, int sndcmd
)
1231 uint8_t *buf
= chip
->oob_poi
;
1232 int length
= mtd
->oobsize
;
1233 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1234 int eccsize
= chip
->ecc
.size
;
1235 uint8_t *bufpoi
= buf
;
1236 int i
, toread
, sndrnd
= 0, pos
;
1238 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1239 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1241 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1242 if (mtd
->writesize
> 512)
1243 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1245 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1248 toread
= min_t(int, length
, chunk
);
1249 chip
->read_buf(mtd
, bufpoi
, toread
);
1254 chip
->read_buf(mtd
, bufpoi
, length
);
1260 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1261 * @mtd: mtd info structure
1262 * @chip: nand chip info structure
1263 * @page: page number to write
1265 static int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1269 const uint8_t *buf
= chip
->oob_poi
;
1270 int length
= mtd
->oobsize
;
1272 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1273 chip
->write_buf(mtd
, buf
, length
);
1274 /* Send command to program the OOB data */
1275 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1277 status
= chip
->waitfunc(mtd
, chip
);
1279 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1283 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1284 * with syndrome - only for large page flash !
1285 * @mtd: mtd info structure
1286 * @chip: nand chip info structure
1287 * @page: page number to write
1289 static int nand_write_oob_syndrome(struct mtd_info
*mtd
,
1290 struct nand_chip
*chip
, int page
)
1292 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1293 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
1294 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
1295 const uint8_t *bufpoi
= chip
->oob_poi
;
1298 * data-ecc-data-ecc ... ecc-oob
1300 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1302 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
1303 pos
= steps
* (eccsize
+ chunk
);
1308 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
1309 for (i
= 0; i
< steps
; i
++) {
1311 if (mtd
->writesize
<= 512) {
1312 uint32_t fill
= 0xFFFFFFFF;
1316 int num
= min_t(int, len
, 4);
1317 chip
->write_buf(mtd
, (uint8_t *)&fill
,
1322 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1323 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
1327 len
= min_t(int, length
, chunk
);
1328 chip
->write_buf(mtd
, bufpoi
, len
);
1333 chip
->write_buf(mtd
, bufpoi
, length
);
1335 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1336 status
= chip
->waitfunc(mtd
, chip
);
1338 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1342 * nand_do_read_oob - [Intern] NAND read out-of-band
1343 * @mtd: MTD device structure
1344 * @from: offset to read from
1345 * @ops: oob operations description structure
1347 * NAND read out-of-band data from the spare area
1349 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
1350 struct mtd_oob_ops
*ops
)
1352 int page
, realpage
, chipnr
, sndcmd
= 1;
1353 struct nand_chip
*chip
= mtd
->priv
;
1354 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1355 int readlen
= ops
->ooblen
;
1357 uint8_t *buf
= ops
->oobbuf
;
1359 DEBUG(MTD_DEBUG_LEVEL3
, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1360 (unsigned long long)from
, readlen
);
1362 if (ops
->mode
== MTD_OOB_AUTO
)
1363 len
= chip
->ecc
.layout
->oobavail
;
1367 if (unlikely(ops
->ooboffs
>= len
)) {
1368 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_oob: "
1369 "Attempt to start read outside oob\n");
1373 /* Do not allow reads past end of device */
1374 if (unlikely(from
>= mtd
->size
||
1375 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
1376 (from
>> chip
->page_shift
)) * len
)) {
1377 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_oob: "
1378 "Attempt read beyond end of device\n");
1382 chipnr
= (int)(from
>> chip
->chip_shift
);
1383 chip
->select_chip(mtd
, chipnr
);
1385 /* Shift to get page */
1386 realpage
= (int)(from
>> chip
->page_shift
);
1387 page
= realpage
& chip
->pagemask
;
1390 sndcmd
= chip
->ecc
.read_oob(mtd
, chip
, page
, sndcmd
);
1392 len
= min(len
, readlen
);
1393 buf
= nand_transfer_oob(chip
, buf
, ops
, len
);
1395 if (!(chip
->options
& NAND_NO_READRDY
)) {
1397 * Apply delay or wait for ready/busy pin. Do this
1398 * before the AUTOINCR check, so no problems arise if a
1399 * chip which does auto increment is marked as
1400 * NOAUTOINCR by the board driver.
1402 if (!chip
->dev_ready
)
1403 udelay(chip
->chip_delay
);
1405 nand_wait_ready(mtd
);
1412 /* Increment page address */
1415 page
= realpage
& chip
->pagemask
;
1416 /* Check, if we cross a chip boundary */
1419 chip
->select_chip(mtd
, -1);
1420 chip
->select_chip(mtd
, chipnr
);
1423 /* Check, if the chip supports auto page increment
1424 * or if we have hit a block boundary.
1426 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1430 ops
->oobretlen
= ops
->ooblen
;
1435 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1436 * @mtd: MTD device structure
1437 * @from: offset to read from
1438 * @ops: oob operation description structure
1440 * NAND read data and/or out-of-band data
1442 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1443 struct mtd_oob_ops
*ops
)
1445 struct nand_chip
*chip
= mtd
->priv
;
1446 int ret
= -ENOTSUPP
;
1450 /* Do not allow reads past end of device */
1451 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
1452 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_oob: "
1453 "Attempt read beyond end of device\n");
1457 nand_get_device(chip
, mtd
, FL_READING
);
1470 ret
= nand_do_read_oob(mtd
, from
, ops
);
1472 ret
= nand_do_read_ops(mtd
, from
, ops
);
1475 nand_release_device(mtd
);
1481 * nand_write_page_raw - [Intern] raw page write function
1482 * @mtd: mtd info structure
1483 * @chip: nand chip info structure
1486 static void nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1489 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1490 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1494 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1495 * @mtd: mtd info structure
1496 * @chip: nand chip info structure
1499 static void nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1502 int i
, eccsize
= chip
->ecc
.size
;
1503 int eccbytes
= chip
->ecc
.bytes
;
1504 int eccsteps
= chip
->ecc
.steps
;
1505 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1506 const uint8_t *p
= buf
;
1507 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1509 /* Software ecc calculation */
1510 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1511 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1513 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1514 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1516 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1520 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1521 * @mtd: mtd info structure
1522 * @chip: nand chip info structure
1525 static void nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1528 int i
, eccsize
= chip
->ecc
.size
;
1529 int eccbytes
= chip
->ecc
.bytes
;
1530 int eccsteps
= chip
->ecc
.steps
;
1531 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1532 const uint8_t *p
= buf
;
1533 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1535 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1536 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1537 chip
->write_buf(mtd
, p
, eccsize
);
1538 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1541 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1542 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1544 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1548 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1549 * @mtd: mtd info structure
1550 * @chip: nand chip info structure
1553 * The hw generator calculates the error syndrome automatically. Therefor
1554 * we need a special oob layout and handling.
1556 static void nand_write_page_syndrome(struct mtd_info
*mtd
,
1557 struct nand_chip
*chip
, const uint8_t *buf
)
1559 int i
, eccsize
= chip
->ecc
.size
;
1560 int eccbytes
= chip
->ecc
.bytes
;
1561 int eccsteps
= chip
->ecc
.steps
;
1562 const uint8_t *p
= buf
;
1563 uint8_t *oob
= chip
->oob_poi
;
1565 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1567 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1568 chip
->write_buf(mtd
, p
, eccsize
);
1570 if (chip
->ecc
.prepad
) {
1571 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1572 oob
+= chip
->ecc
.prepad
;
1575 chip
->ecc
.calculate(mtd
, p
, oob
);
1576 chip
->write_buf(mtd
, oob
, eccbytes
);
1579 if (chip
->ecc
.postpad
) {
1580 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1581 oob
+= chip
->ecc
.postpad
;
1585 /* Calculate remaining oob bytes */
1586 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1588 chip
->write_buf(mtd
, oob
, i
);
1592 * nand_write_page - [REPLACEABLE] write one page
1593 * @mtd: MTD device structure
1594 * @chip: NAND chip descriptor
1595 * @buf: the data to write
1596 * @page: page number to write
1597 * @cached: cached programming
1598 * @raw: use _raw version of write_page
1600 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1601 const uint8_t *buf
, int page
, int cached
, int raw
)
1605 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
1608 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1610 chip
->ecc
.write_page(mtd
, chip
, buf
);
1613 * Cached progamming disabled for now, Not sure if its worth the
1614 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1618 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
1620 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1621 status
= chip
->waitfunc(mtd
, chip
);
1623 * See if operation failed and additional status checks are
1626 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
1627 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
1630 if (status
& NAND_STATUS_FAIL
)
1633 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
1634 status
= chip
->waitfunc(mtd
, chip
);
1637 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1638 /* Send command to read back the data */
1639 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1641 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
1648 * nand_fill_oob - [Internal] Transfer client buffer to oob
1649 * @chip: nand chip structure
1650 * @oob: oob data buffer
1651 * @ops: oob ops structure
1653 static uint8_t *nand_fill_oob(struct nand_chip
*chip
, uint8_t *oob
,
1654 struct mtd_oob_ops
*ops
)
1656 size_t len
= ops
->ooblen
;
1662 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
1665 case MTD_OOB_AUTO
: {
1666 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1667 uint32_t boffs
= 0, woffs
= ops
->ooboffs
;
1670 for(; free
->length
&& len
; free
++, len
-= bytes
) {
1671 /* Write request not from offset 0 ? */
1672 if (unlikely(woffs
)) {
1673 if (woffs
>= free
->length
) {
1674 woffs
-= free
->length
;
1677 boffs
= free
->offset
+ woffs
;
1678 bytes
= min_t(size_t, len
,
1679 (free
->length
- woffs
));
1682 bytes
= min_t(size_t, len
, free
->length
);
1683 boffs
= free
->offset
;
1685 memcpy(chip
->oob_poi
+ boffs
, oob
, bytes
);
1696 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1699 * nand_do_write_ops - [Internal] NAND write with ECC
1700 * @mtd: MTD device structure
1701 * @to: offset to write to
1702 * @ops: oob operations description structure
1704 * NAND write with ECC
1706 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
1707 struct mtd_oob_ops
*ops
)
1709 int chipnr
, realpage
, page
, blockmask
, column
;
1710 struct nand_chip
*chip
= mtd
->priv
;
1711 uint32_t writelen
= ops
->len
;
1712 uint8_t *oob
= ops
->oobbuf
;
1713 uint8_t *buf
= ops
->datbuf
;
1720 /* reject writes, which are not page aligned */
1721 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
1722 printk(KERN_NOTICE
"nand_write: "
1723 "Attempt to write not page aligned data\n");
1727 column
= to
& (mtd
->writesize
- 1);
1728 subpage
= column
|| (writelen
& (mtd
->writesize
- 1));
1733 chipnr
= (int)(to
>> chip
->chip_shift
);
1734 chip
->select_chip(mtd
, chipnr
);
1736 /* Check, if it is write protected */
1737 if (nand_check_wp(mtd
))
1740 realpage
= (int)(to
>> chip
->page_shift
);
1741 page
= realpage
& chip
->pagemask
;
1742 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1744 /* Invalidate the page cache, when we write to the cached page */
1745 if (to
<= (chip
->pagebuf
<< chip
->page_shift
) &&
1746 (chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
1749 /* If we're not given explicit OOB data, let it be 0xFF */
1751 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
1754 int bytes
= mtd
->writesize
;
1755 int cached
= writelen
> bytes
&& page
!= blockmask
;
1756 uint8_t *wbuf
= buf
;
1758 /* Partial page write ? */
1759 if (unlikely(column
|| writelen
< (mtd
->writesize
- 1))) {
1761 bytes
= min_t(int, bytes
- column
, (int) writelen
);
1763 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
1764 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
1765 wbuf
= chip
->buffers
->databuf
;
1769 oob
= nand_fill_oob(chip
, oob
, ops
);
1771 ret
= chip
->write_page(mtd
, chip
, wbuf
, page
, cached
,
1772 (ops
->mode
== MTD_OOB_RAW
));
1784 page
= realpage
& chip
->pagemask
;
1785 /* Check, if we cross a chip boundary */
1788 chip
->select_chip(mtd
, -1);
1789 chip
->select_chip(mtd
, chipnr
);
1793 ops
->retlen
= ops
->len
- writelen
;
1795 ops
->oobretlen
= ops
->ooblen
;
1800 * nand_write - [MTD Interface] NAND write with ECC
1801 * @mtd: MTD device structure
1802 * @to: offset to write to
1803 * @len: number of bytes to write
1804 * @retlen: pointer to variable to store the number of written bytes
1805 * @buf: the data to write
1807 * NAND write with ECC
1809 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1810 size_t *retlen
, const uint8_t *buf
)
1812 struct nand_chip
*chip
= mtd
->priv
;
1815 /* Do not allow reads past end of device */
1816 if ((to
+ len
) > mtd
->size
)
1821 nand_get_device(chip
, mtd
, FL_WRITING
);
1823 chip
->ops
.len
= len
;
1824 chip
->ops
.datbuf
= (uint8_t *)buf
;
1825 chip
->ops
.oobbuf
= NULL
;
1827 ret
= nand_do_write_ops(mtd
, to
, &chip
->ops
);
1829 *retlen
= chip
->ops
.retlen
;
1831 nand_release_device(mtd
);
1837 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1838 * @mtd: MTD device structure
1839 * @to: offset to write to
1840 * @ops: oob operation description structure
1842 * NAND write out-of-band
1844 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
1845 struct mtd_oob_ops
*ops
)
1847 int chipnr
, page
, status
, len
;
1848 struct nand_chip
*chip
= mtd
->priv
;
1850 DEBUG(MTD_DEBUG_LEVEL3
, "nand_write_oob: to = 0x%08x, len = %i\n",
1851 (unsigned int)to
, (int)ops
->ooblen
);
1853 if (ops
->mode
== MTD_OOB_AUTO
)
1854 len
= chip
->ecc
.layout
->oobavail
;
1858 /* Do not allow write past end of page */
1859 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
1860 DEBUG(MTD_DEBUG_LEVEL0
, "nand_write_oob: "
1861 "Attempt to write past end of page\n");
1865 if (unlikely(ops
->ooboffs
>= len
)) {
1866 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_oob: "
1867 "Attempt to start write outside oob\n");
1871 /* Do not allow reads past end of device */
1872 if (unlikely(to
>= mtd
->size
||
1873 ops
->ooboffs
+ ops
->ooblen
>
1874 ((mtd
->size
>> chip
->page_shift
) -
1875 (to
>> chip
->page_shift
)) * len
)) {
1876 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_oob: "
1877 "Attempt write beyond end of device\n");
1881 chipnr
= (int)(to
>> chip
->chip_shift
);
1882 chip
->select_chip(mtd
, chipnr
);
1884 /* Shift to get page */
1885 page
= (int)(to
>> chip
->page_shift
);
1888 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1889 * of my DiskOnChip 2000 test units) will clear the whole data page too
1890 * if we don't do this. I have no clue why, but I seem to have 'fixed'
1891 * it in the doc2000 driver in August 1999. dwmw2.
1893 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
1895 /* Check, if it is write protected */
1896 if (nand_check_wp(mtd
))
1899 /* Invalidate the page cache, if we write to the cached page */
1900 if (page
== chip
->pagebuf
)
1903 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
1904 nand_fill_oob(chip
, ops
->oobbuf
, ops
);
1905 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
1906 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
1911 ops
->oobretlen
= ops
->ooblen
;
1917 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1918 * @mtd: MTD device structure
1919 * @to: offset to write to
1920 * @ops: oob operation description structure
1922 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
1923 struct mtd_oob_ops
*ops
)
1925 struct nand_chip
*chip
= mtd
->priv
;
1926 int ret
= -ENOTSUPP
;
1930 /* Do not allow writes past end of device */
1931 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
1932 DEBUG(MTD_DEBUG_LEVEL0
, "nand_read_oob: "
1933 "Attempt read beyond end of device\n");
1937 nand_get_device(chip
, mtd
, FL_WRITING
);
1950 ret
= nand_do_write_oob(mtd
, to
, ops
);
1952 ret
= nand_do_write_ops(mtd
, to
, ops
);
1955 nand_release_device(mtd
);
1960 * single_erease_cmd - [GENERIC] NAND standard block erase command function
1961 * @mtd: MTD device structure
1962 * @page: the page address of the block which will be erased
1964 * Standard erase command for NAND chips
1966 static void single_erase_cmd(struct mtd_info
*mtd
, int page
)
1968 struct nand_chip
*chip
= mtd
->priv
;
1969 /* Send commands to erase a block */
1970 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
1971 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
1975 * multi_erease_cmd - [GENERIC] AND specific block erase command function
1976 * @mtd: MTD device structure
1977 * @page: the page address of the block which will be erased
1979 * AND multi block erase command function
1980 * Erase 4 consecutive blocks
1982 static void multi_erase_cmd(struct mtd_info
*mtd
, int page
)
1984 struct nand_chip
*chip
= mtd
->priv
;
1985 /* Send commands to erase a block */
1986 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
1987 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
1988 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
1989 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
1990 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
1994 * nand_erase - [MTD Interface] erase block(s)
1995 * @mtd: MTD device structure
1996 * @instr: erase instruction
1998 * Erase one ore more blocks
2000 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2002 return nand_erase_nand(mtd
, instr
, 0);
2005 #define BBT_PAGE_MASK 0xffffff3f
2007 * nand_erase_nand - [Internal] erase block(s)
2008 * @mtd: MTD device structure
2009 * @instr: erase instruction
2010 * @allowbbt: allow erasing the bbt area
2012 * Erase one ore more blocks
2014 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2017 int page
, status
, pages_per_block
, ret
, chipnr
;
2018 struct nand_chip
*chip
= mtd
->priv
;
2019 loff_t rewrite_bbt
[NAND_MAX_CHIPS
]={0};
2020 unsigned int bbt_masked_page
= 0xffffffff;
2023 DEBUG(MTD_DEBUG_LEVEL3
, "nand_erase: start = 0x%012llx, len = %llu\n",
2024 (unsigned long long)instr
->addr
, (unsigned long long)instr
->len
);
2026 /* Start address must align on block boundary */
2027 if (instr
->addr
& ((1 << chip
->phys_erase_shift
) - 1)) {
2028 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: Unaligned address\n");
2032 /* Length must align on block boundary */
2033 if (instr
->len
& ((1 << chip
->phys_erase_shift
) - 1)) {
2034 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: "
2035 "Length not block aligned\n");
2039 /* Do not allow erase past end of device */
2040 if ((instr
->len
+ instr
->addr
) > mtd
->size
) {
2041 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: "
2042 "Erase past end of device\n");
2046 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2048 /* Grab the lock and see if the device is available */
2049 nand_get_device(chip
, mtd
, FL_ERASING
);
2051 /* Shift to get first page */
2052 page
= (int)(instr
->addr
>> chip
->page_shift
);
2053 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2055 /* Calculate pages in each block */
2056 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2058 /* Select the NAND device */
2059 chip
->select_chip(mtd
, chipnr
);
2061 /* Check, if it is write protected */
2062 if (nand_check_wp(mtd
)) {
2063 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: "
2064 "Device is write protected!!!\n");
2065 instr
->state
= MTD_ERASE_FAILED
;
2070 * If BBT requires refresh, set the BBT page mask to see if the BBT
2071 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2072 * can not be matched. This is also done when the bbt is actually
2073 * erased to avoid recusrsive updates
2075 if (chip
->options
& BBT_AUTO_REFRESH
&& !allowbbt
)
2076 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] & BBT_PAGE_MASK
;
2078 /* Loop through the pages */
2081 instr
->state
= MTD_ERASING
;
2085 * heck if we have a bad block, we do not erase bad blocks !
2087 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2088 chip
->page_shift
, 0, allowbbt
)) {
2089 printk(KERN_WARNING
"nand_erase: attempt to erase a "
2090 "bad block at page 0x%08x\n", page
);
2091 instr
->state
= MTD_ERASE_FAILED
;
2096 * Invalidate the page cache, if we erase the block which
2097 * contains the current cached page
2099 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2100 (page
+ pages_per_block
))
2103 chip
->erase_cmd(mtd
, page
& chip
->pagemask
);
2105 status
= chip
->waitfunc(mtd
, chip
);
2108 * See if operation failed and additional status checks are
2111 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2112 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2115 /* See if block erase succeeded */
2116 if (status
& NAND_STATUS_FAIL
) {
2117 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase: "
2118 "Failed erase, page 0x%08x\n", page
);
2119 instr
->state
= MTD_ERASE_FAILED
;
2121 ((loff_t
)page
<< chip
->page_shift
);
2126 * If BBT requires refresh, set the BBT rewrite flag to the
2129 if (bbt_masked_page
!= 0xffffffff &&
2130 (page
& BBT_PAGE_MASK
) == bbt_masked_page
)
2131 rewrite_bbt
[chipnr
] =
2132 ((loff_t
)page
<< chip
->page_shift
);
2134 /* Increment page address and decrement length */
2135 len
-= (1 << chip
->phys_erase_shift
);
2136 page
+= pages_per_block
;
2138 /* Check, if we cross a chip boundary */
2139 if (len
&& !(page
& chip
->pagemask
)) {
2141 chip
->select_chip(mtd
, -1);
2142 chip
->select_chip(mtd
, chipnr
);
2145 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2146 * page mask to see if this BBT should be rewritten
2148 if (bbt_masked_page
!= 0xffffffff &&
2149 (chip
->bbt_td
->options
& NAND_BBT_PERCHIP
))
2150 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] &
2154 instr
->state
= MTD_ERASE_DONE
;
2158 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2160 /* Deselect and wake up anyone waiting on the device */
2161 nand_release_device(mtd
);
2163 /* Do call back function */
2165 mtd_erase_callback(instr
);
2168 * If BBT requires refresh and erase was successful, rewrite any
2169 * selected bad block tables
2171 if (bbt_masked_page
== 0xffffffff || ret
)
2174 for (chipnr
= 0; chipnr
< chip
->numchips
; chipnr
++) {
2175 if (!rewrite_bbt
[chipnr
])
2177 /* update the BBT for chip */
2178 DEBUG(MTD_DEBUG_LEVEL0
, "nand_erase_nand: nand_update_bbt "
2179 "(%d:0x%0llx 0x%0x)\n", chipnr
, rewrite_bbt
[chipnr
],
2180 chip
->bbt_td
->pages
[chipnr
]);
2181 nand_update_bbt(mtd
, rewrite_bbt
[chipnr
]);
2184 /* Return more or less happy */
2189 * nand_sync - [MTD Interface] sync
2190 * @mtd: MTD device structure
2192 * Sync is actually a wait for chip ready function
2194 static void nand_sync(struct mtd_info
*mtd
)
2196 struct nand_chip
*chip
= mtd
->priv
;
2198 DEBUG(MTD_DEBUG_LEVEL3
, "nand_sync: called\n");
2200 /* Grab the lock and see if the device is available */
2201 nand_get_device(chip
, mtd
, FL_SYNCING
);
2202 /* Release it and go back */
2203 nand_release_device(mtd
);
2207 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2208 * @mtd: MTD device structure
2209 * @offs: offset relative to mtd start
2211 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
2213 /* Check for invalid offset */
2214 if (offs
> mtd
->size
)
2217 return nand_block_checkbad(mtd
, offs
, 1, 0);
2221 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2222 * @mtd: MTD device structure
2223 * @ofs: offset relative to mtd start
2225 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2227 struct nand_chip
*chip
= mtd
->priv
;
2230 if ((ret
= nand_block_isbad(mtd
, ofs
))) {
2231 /* If it was bad already, return success and do nothing. */
2237 return chip
->block_markbad(mtd
, ofs
);
2241 * nand_suspend - [MTD Interface] Suspend the NAND flash
2242 * @mtd: MTD device structure
2244 static int nand_suspend(struct mtd_info
*mtd
)
2246 struct nand_chip
*chip
= mtd
->priv
;
2248 return nand_get_device(chip
, mtd
, FL_PM_SUSPENDED
);
2252 * nand_resume - [MTD Interface] Resume the NAND flash
2253 * @mtd: MTD device structure
2255 static void nand_resume(struct mtd_info
*mtd
)
2257 struct nand_chip
*chip
= mtd
->priv
;
2259 if (chip
->state
== FL_PM_SUSPENDED
)
2260 nand_release_device(mtd
);
2262 printk(KERN_ERR
"nand_resume() called for a chip which is not "
2263 "in suspended state\n");
2267 * Set default functions
2269 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
2271 /* check for proper chip_delay setup, set 20us if not */
2272 if (!chip
->chip_delay
)
2273 chip
->chip_delay
= 20;
2275 /* check, if a user supplied command function given */
2276 if (chip
->cmdfunc
== NULL
)
2277 chip
->cmdfunc
= nand_command
;
2279 /* check, if a user supplied wait function given */
2280 if (chip
->waitfunc
== NULL
)
2281 chip
->waitfunc
= nand_wait
;
2283 if (!chip
->select_chip
)
2284 chip
->select_chip
= nand_select_chip
;
2285 if (!chip
->read_byte
)
2286 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2287 if (!chip
->read_word
)
2288 chip
->read_word
= nand_read_word
;
2289 if (!chip
->block_bad
)
2290 chip
->block_bad
= nand_block_bad
;
2291 if (!chip
->block_markbad
)
2292 chip
->block_markbad
= nand_default_block_markbad
;
2293 if (!chip
->write_buf
)
2294 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2295 if (!chip
->read_buf
)
2296 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2297 if (!chip
->verify_buf
)
2298 chip
->verify_buf
= busw
? nand_verify_buf16
: nand_verify_buf
;
2299 if (!chip
->scan_bbt
)
2300 chip
->scan_bbt
= nand_default_bbt
;
2302 if (!chip
->controller
) {
2303 chip
->controller
= &chip
->hwcontrol
;
2304 spin_lock_init(&chip
->controller
->lock
);
2305 init_waitqueue_head(&chip
->controller
->wq
);
2311 * Get the flash and manufacturer id and lookup if the type is supported
2313 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
2314 struct nand_chip
*chip
,
2315 int busw
, int *maf_id
)
2317 struct nand_flash_dev
*type
= NULL
;
2318 int i
, dev_id
, maf_idx
;
2319 int tmp_id
, tmp_manf
;
2321 /* Select the device */
2322 chip
->select_chip(mtd
, 0);
2325 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2328 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2330 /* Send the command for reading device ID */
2331 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2333 /* Read manufacturer and device IDs */
2334 *maf_id
= chip
->read_byte(mtd
);
2335 dev_id
= chip
->read_byte(mtd
);
2337 /* Try again to make sure, as some systems the bus-hold or other
2338 * interface concerns can cause random data which looks like a
2339 * possibly credible NAND flash to appear. If the two results do
2340 * not match, ignore the device completely.
2343 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2345 /* Read manufacturer and device IDs */
2347 tmp_manf
= chip
->read_byte(mtd
);
2348 tmp_id
= chip
->read_byte(mtd
);
2350 if (tmp_manf
!= *maf_id
|| tmp_id
!= dev_id
) {
2351 printk(KERN_INFO
"%s: second ID read did not match "
2352 "%02x,%02x against %02x,%02x\n", __func__
,
2353 *maf_id
, dev_id
, tmp_manf
, tmp_id
);
2354 return ERR_PTR(-ENODEV
);
2357 /* Lookup the flash id */
2358 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
2359 if (dev_id
== nand_flash_ids
[i
].id
) {
2360 type
= &nand_flash_ids
[i
];
2366 return ERR_PTR(-ENODEV
);
2369 mtd
->name
= type
->name
;
2371 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
2373 /* Newer devices have all the information in additional id bytes */
2374 if (!type
->pagesize
) {
2376 /* The 3rd id byte holds MLC / multichip data */
2377 chip
->cellinfo
= chip
->read_byte(mtd
);
2378 /* The 4th id byte is the important one */
2379 extid
= chip
->read_byte(mtd
);
2381 mtd
->writesize
= 1024 << (extid
& 0x3);
2384 mtd
->oobsize
= (8 << (extid
& 0x01)) * (mtd
->writesize
>> 9);
2386 /* Calc blocksize. Blocksize is multiples of 64KiB */
2387 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
2389 /* Get buswidth information */
2390 busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
2394 * Old devices have chip data hardcoded in the device id table
2396 mtd
->erasesize
= type
->erasesize
;
2397 mtd
->writesize
= type
->pagesize
;
2398 mtd
->oobsize
= mtd
->writesize
/ 32;
2399 busw
= type
->options
& NAND_BUSWIDTH_16
;
2402 /* Try to identify manufacturer */
2403 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
2404 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
2409 * Check, if buswidth is correct. Hardware drivers should set
2412 if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
2413 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2414 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
,
2415 dev_id
, nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
2416 printk(KERN_WARNING
"NAND bus width %d instead %d bit\n",
2417 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
2419 return ERR_PTR(-EINVAL
);
2422 /* Calculate the address shift from the page size */
2423 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
2424 /* Convert chipsize to number of pages per chip -1. */
2425 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
2427 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
2428 ffs(mtd
->erasesize
) - 1;
2429 if (chip
->chipsize
& 0xffffffff)
2430 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
2432 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32)) + 32 - 1;
2434 /* Set the bad block position */
2435 chip
->badblockpos
= mtd
->writesize
> 512 ?
2436 NAND_LARGE_BADBLOCK_POS
: NAND_SMALL_BADBLOCK_POS
;
2438 /* Get chip options, preserve non chip based options */
2439 chip
->options
&= ~NAND_CHIPOPTIONS_MSK
;
2440 chip
->options
|= type
->options
& NAND_CHIPOPTIONS_MSK
;
2443 * Set chip as a default. Board drivers can override it, if necessary
2445 chip
->options
|= NAND_NO_AUTOINCR
;
2447 /* Check if chip is a not a samsung device. Do not clear the
2448 * options for chips which are not having an extended id.
2450 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
2451 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
2453 /* Check for AND chips with 4 page planes */
2454 if (chip
->options
& NAND_4PAGE_ARRAY
)
2455 chip
->erase_cmd
= multi_erase_cmd
;
2457 chip
->erase_cmd
= single_erase_cmd
;
2459 /* Do not replace user supplied command function ! */
2460 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
2461 chip
->cmdfunc
= nand_command_lp
;
2463 printk(KERN_INFO
"NAND device: Manufacturer ID:"
2464 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
, dev_id
,
2465 nand_manuf_ids
[maf_idx
].name
, type
->name
);
2471 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2472 * @mtd: MTD device structure
2473 * @maxchips: Number of chips to scan for
2475 * This is the first phase of the normal nand_scan() function. It
2476 * reads the flash ID and sets up MTD fields accordingly.
2478 * The mtd->owner field must be set to the module of the caller.
2480 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
)
2482 int i
, busw
, nand_maf_id
;
2483 struct nand_chip
*chip
= mtd
->priv
;
2484 struct nand_flash_dev
*type
;
2486 /* Get buswidth to select the correct functions */
2487 busw
= chip
->options
& NAND_BUSWIDTH_16
;
2488 /* Set the default functions */
2489 nand_set_defaults(chip
, busw
);
2491 /* Read the flash type */
2492 type
= nand_get_flash_type(mtd
, chip
, busw
, &nand_maf_id
);
2495 printk(KERN_WARNING
"No NAND device found!!!\n");
2496 chip
->select_chip(mtd
, -1);
2497 return PTR_ERR(type
);
2500 /* Check for a chip array */
2501 for (i
= 1; i
< maxchips
; i
++) {
2502 chip
->select_chip(mtd
, i
);
2503 /* See comment in nand_get_flash_type for reset */
2504 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2505 /* Send the command for reading device ID */
2506 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2507 /* Read manufacturer and device IDs */
2508 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
2509 type
->id
!= chip
->read_byte(mtd
))
2513 printk(KERN_INFO
"%d NAND chips detected\n", i
);
2515 /* Store the number of chips and calc total size for mtd */
2517 mtd
->size
= i
* chip
->chipsize
;
2524 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2525 * @mtd: MTD device structure
2527 * This is the second phase of the normal nand_scan() function. It
2528 * fills out all the uninitialized function pointers with the defaults
2529 * and scans for a bad block table if appropriate.
2531 int nand_scan_tail(struct mtd_info
*mtd
)
2534 struct nand_chip
*chip
= mtd
->priv
;
2536 if (!(chip
->options
& NAND_OWN_BUFFERS
))
2537 chip
->buffers
= kmalloc(sizeof(*chip
->buffers
), GFP_KERNEL
);
2541 /* Set the internal oob buffer location, just after the page data */
2542 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
2545 * If no default placement scheme is given, select an appropriate one
2547 if (!chip
->ecc
.layout
) {
2548 switch (mtd
->oobsize
) {
2550 chip
->ecc
.layout
= &nand_oob_8
;
2553 chip
->ecc
.layout
= &nand_oob_16
;
2556 chip
->ecc
.layout
= &nand_oob_64
;
2559 printk(KERN_WARNING
"No oob scheme defined for "
2560 "oobsize %d\n", mtd
->oobsize
);
2565 if (!chip
->write_page
)
2566 chip
->write_page
= nand_write_page
;
2569 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2570 * selected and we have 256 byte pagesize fallback to software ECC
2572 if (!chip
->ecc
.read_page_raw
)
2573 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
2574 if (!chip
->ecc
.write_page_raw
)
2575 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
2577 switch (chip
->ecc
.mode
) {
2579 /* Use standard hwecc read page function ? */
2580 if (!chip
->ecc
.read_page
)
2581 chip
->ecc
.read_page
= nand_read_page_hwecc
;
2582 if (!chip
->ecc
.write_page
)
2583 chip
->ecc
.write_page
= nand_write_page_hwecc
;
2584 if (!chip
->ecc
.read_oob
)
2585 chip
->ecc
.read_oob
= nand_read_oob_std
;
2586 if (!chip
->ecc
.write_oob
)
2587 chip
->ecc
.write_oob
= nand_write_oob_std
;
2589 case NAND_ECC_HW_SYNDROME
:
2590 if ((!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
2591 !chip
->ecc
.hwctl
) &&
2592 (!chip
->ecc
.read_page
||
2593 chip
->ecc
.read_page
== nand_read_page_hwecc
||
2594 !chip
->ecc
.write_page
||
2595 chip
->ecc
.write_page
== nand_write_page_hwecc
)) {
2596 printk(KERN_WARNING
"No ECC functions supplied, "
2597 "Hardware ECC not possible\n");
2600 /* Use standard syndrome read/write page function ? */
2601 if (!chip
->ecc
.read_page
)
2602 chip
->ecc
.read_page
= nand_read_page_syndrome
;
2603 if (!chip
->ecc
.write_page
)
2604 chip
->ecc
.write_page
= nand_write_page_syndrome
;
2605 if (!chip
->ecc
.read_oob
)
2606 chip
->ecc
.read_oob
= nand_read_oob_syndrome
;
2607 if (!chip
->ecc
.write_oob
)
2608 chip
->ecc
.write_oob
= nand_write_oob_syndrome
;
2610 if (mtd
->writesize
>= chip
->ecc
.size
)
2612 printk(KERN_WARNING
"%d byte HW ECC not possible on "
2613 "%d byte page size, fallback to SW ECC\n",
2614 chip
->ecc
.size
, mtd
->writesize
);
2615 chip
->ecc
.mode
= NAND_ECC_SOFT
;
2618 chip
->ecc
.calculate
= nand_calculate_ecc
;
2619 chip
->ecc
.correct
= nand_correct_data
;
2620 chip
->ecc
.read_page
= nand_read_page_swecc
;
2621 chip
->ecc
.read_subpage
= nand_read_subpage
;
2622 chip
->ecc
.write_page
= nand_write_page_swecc
;
2623 chip
->ecc
.read_oob
= nand_read_oob_std
;
2624 chip
->ecc
.write_oob
= nand_write_oob_std
;
2625 chip
->ecc
.size
= 256;
2626 chip
->ecc
.bytes
= 3;
2630 printk(KERN_WARNING
"NAND_ECC_NONE selected by board driver. "
2631 "This is not recommended !!\n");
2632 chip
->ecc
.read_page
= nand_read_page_raw
;
2633 chip
->ecc
.write_page
= nand_write_page_raw
;
2634 chip
->ecc
.read_oob
= nand_read_oob_std
;
2635 chip
->ecc
.write_oob
= nand_write_oob_std
;
2636 chip
->ecc
.size
= mtd
->writesize
;
2637 chip
->ecc
.bytes
= 0;
2641 printk(KERN_WARNING
"Invalid NAND_ECC_MODE %d\n",
2647 * The number of bytes available for a client to place data into
2648 * the out of band area
2650 chip
->ecc
.layout
->oobavail
= 0;
2651 for (i
= 0; chip
->ecc
.layout
->oobfree
[i
].length
; i
++)
2652 chip
->ecc
.layout
->oobavail
+=
2653 chip
->ecc
.layout
->oobfree
[i
].length
;
2654 mtd
->oobavail
= chip
->ecc
.layout
->oobavail
;
2657 * Set the number of read / write steps for one page depending on ECC
2660 chip
->ecc
.steps
= mtd
->writesize
/ chip
->ecc
.size
;
2661 if(chip
->ecc
.steps
* chip
->ecc
.size
!= mtd
->writesize
) {
2662 printk(KERN_WARNING
"Invalid ecc parameters\n");
2665 chip
->ecc
.total
= chip
->ecc
.steps
* chip
->ecc
.bytes
;
2668 * Allow subpage writes up to ecc.steps. Not possible for MLC
2671 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
2672 !(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
)) {
2673 switch(chip
->ecc
.steps
) {
2675 mtd
->subpage_sft
= 1;
2679 mtd
->subpage_sft
= 2;
2683 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
2685 /* Initialize state */
2686 chip
->state
= FL_READY
;
2688 /* De-select the device */
2689 chip
->select_chip(mtd
, -1);
2691 /* Invalidate the pagebuffer reference */
2694 /* Fill in remaining MTD driver data */
2695 mtd
->type
= MTD_NANDFLASH
;
2696 mtd
->flags
= MTD_CAP_NANDFLASH
;
2697 mtd
->erase
= nand_erase
;
2699 mtd
->unpoint
= NULL
;
2700 mtd
->read
= nand_read
;
2701 mtd
->write
= nand_write
;
2702 mtd
->read_oob
= nand_read_oob
;
2703 mtd
->write_oob
= nand_write_oob
;
2704 mtd
->sync
= nand_sync
;
2707 mtd
->suspend
= nand_suspend
;
2708 mtd
->resume
= nand_resume
;
2709 mtd
->block_isbad
= nand_block_isbad
;
2710 mtd
->block_markbad
= nand_block_markbad
;
2712 /* propagate ecc.layout to mtd_info */
2713 mtd
->ecclayout
= chip
->ecc
.layout
;
2715 /* Check, if we should skip the bad block table scan */
2716 if (chip
->options
& NAND_SKIP_BBTSCAN
)
2719 /* Build bad block table */
2720 return chip
->scan_bbt(mtd
);
2723 /* module_text_address() isn't exported, and it's mostly a pointless
2724 test if this is a module _anyway_ -- they'd have to try _really_ hard
2725 to call us from in-kernel code if the core NAND support is modular. */
2727 #define caller_is_module() (1)
2729 #define caller_is_module() \
2730 module_text_address((unsigned long)__builtin_return_address(0))
2734 * nand_scan - [NAND Interface] Scan for the NAND device
2735 * @mtd: MTD device structure
2736 * @maxchips: Number of chips to scan for
2738 * This fills out all the uninitialized function pointers
2739 * with the defaults.
2740 * The flash ID is read and the mtd/chip structures are
2741 * filled with the appropriate values.
2742 * The mtd->owner field must be set to the module of the caller
2745 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
2749 /* Many callers got this wrong, so check for it for a while... */
2750 if (!mtd
->owner
&& caller_is_module()) {
2751 printk(KERN_CRIT
"nand_scan() called with NULL mtd->owner!\n");
2755 ret
= nand_scan_ident(mtd
, maxchips
);
2757 ret
= nand_scan_tail(mtd
);
2762 * nand_release - [NAND Interface] Free resources held by the NAND device
2763 * @mtd: MTD device structure
2765 void nand_release(struct mtd_info
*mtd
)
2767 struct nand_chip
*chip
= mtd
->priv
;
2769 #ifdef CONFIG_MTD_PARTITIONS
2770 /* Deregister partitions */
2771 del_mtd_partitions(mtd
);
2773 /* Deregister the device */
2774 del_mtd_device(mtd
);
2776 /* Free bad block table memory */
2778 if (!(chip
->options
& NAND_OWN_BUFFERS
))
2779 kfree(chip
->buffers
);
2782 EXPORT_SYMBOL_GPL(nand_scan
);
2783 EXPORT_SYMBOL_GPL(nand_scan_ident
);
2784 EXPORT_SYMBOL_GPL(nand_scan_tail
);
2785 EXPORT_SYMBOL_GPL(nand_release
);
2787 static int __init
nand_base_init(void)
2789 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
2793 static void __exit
nand_base_exit(void)
2795 led_trigger_unregister_simple(nand_led_trigger
);
2798 module_init(nand_base_init
);
2799 module_exit(nand_base_exit
);
2801 MODULE_LICENSE("GPL");
2802 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2803 MODULE_DESCRIPTION("Generic NAND flash driver code");