brmc80211: fmac: reworked next_bss()
[linux-2.6.git] / drivers / media / rc / rc-main.c
blob51a23f48bc7d83f99eed629a32188083f22786c3
1 /* rc-main.c - Remote Controller core module
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include "rc-core-priv.h"
23 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
24 #define IR_TAB_MIN_SIZE 256
25 #define IR_TAB_MAX_SIZE 8192
27 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
28 #define IR_KEYPRESS_TIMEOUT 250
30 /* Used to keep track of known keymaps */
31 static LIST_HEAD(rc_map_list);
32 static DEFINE_SPINLOCK(rc_map_lock);
34 static struct rc_map_list *seek_rc_map(const char *name)
36 struct rc_map_list *map = NULL;
38 spin_lock(&rc_map_lock);
39 list_for_each_entry(map, &rc_map_list, list) {
40 if (!strcmp(name, map->map.name)) {
41 spin_unlock(&rc_map_lock);
42 return map;
45 spin_unlock(&rc_map_lock);
47 return NULL;
50 struct rc_map *rc_map_get(const char *name)
53 struct rc_map_list *map;
55 map = seek_rc_map(name);
56 #ifdef MODULE
57 if (!map) {
58 int rc = request_module(name);
59 if (rc < 0) {
60 printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
61 return NULL;
63 msleep(20); /* Give some time for IR to register */
65 map = seek_rc_map(name);
67 #endif
68 if (!map) {
69 printk(KERN_ERR "IR keymap %s not found\n", name);
70 return NULL;
73 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
75 return &map->map;
77 EXPORT_SYMBOL_GPL(rc_map_get);
79 int rc_map_register(struct rc_map_list *map)
81 spin_lock(&rc_map_lock);
82 list_add_tail(&map->list, &rc_map_list);
83 spin_unlock(&rc_map_lock);
84 return 0;
86 EXPORT_SYMBOL_GPL(rc_map_register);
88 void rc_map_unregister(struct rc_map_list *map)
90 spin_lock(&rc_map_lock);
91 list_del(&map->list);
92 spin_unlock(&rc_map_lock);
94 EXPORT_SYMBOL_GPL(rc_map_unregister);
97 static struct rc_map_table empty[] = {
98 { 0x2a, KEY_COFFEE },
101 static struct rc_map_list empty_map = {
102 .map = {
103 .scan = empty,
104 .size = ARRAY_SIZE(empty),
105 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */
106 .name = RC_MAP_EMPTY,
111 * ir_create_table() - initializes a scancode table
112 * @rc_map: the rc_map to initialize
113 * @name: name to assign to the table
114 * @rc_type: ir type to assign to the new table
115 * @size: initial size of the table
116 * @return: zero on success or a negative error code
118 * This routine will initialize the rc_map and will allocate
119 * memory to hold at least the specified number of elements.
121 static int ir_create_table(struct rc_map *rc_map,
122 const char *name, u64 rc_type, size_t size)
124 rc_map->name = name;
125 rc_map->rc_type = rc_type;
126 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
127 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
128 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
129 if (!rc_map->scan)
130 return -ENOMEM;
132 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
133 rc_map->size, rc_map->alloc);
134 return 0;
138 * ir_free_table() - frees memory allocated by a scancode table
139 * @rc_map: the table whose mappings need to be freed
141 * This routine will free memory alloctaed for key mappings used by given
142 * scancode table.
144 static void ir_free_table(struct rc_map *rc_map)
146 rc_map->size = 0;
147 kfree(rc_map->scan);
148 rc_map->scan = NULL;
152 * ir_resize_table() - resizes a scancode table if necessary
153 * @rc_map: the rc_map to resize
154 * @gfp_flags: gfp flags to use when allocating memory
155 * @return: zero on success or a negative error code
157 * This routine will shrink the rc_map if it has lots of
158 * unused entries and grow it if it is full.
160 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
162 unsigned int oldalloc = rc_map->alloc;
163 unsigned int newalloc = oldalloc;
164 struct rc_map_table *oldscan = rc_map->scan;
165 struct rc_map_table *newscan;
167 if (rc_map->size == rc_map->len) {
168 /* All entries in use -> grow keytable */
169 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
170 return -ENOMEM;
172 newalloc *= 2;
173 IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
176 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
177 /* Less than 1/3 of entries in use -> shrink keytable */
178 newalloc /= 2;
179 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
182 if (newalloc == oldalloc)
183 return 0;
185 newscan = kmalloc(newalloc, gfp_flags);
186 if (!newscan) {
187 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
188 return -ENOMEM;
191 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
192 rc_map->scan = newscan;
193 rc_map->alloc = newalloc;
194 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
195 kfree(oldscan);
196 return 0;
200 * ir_update_mapping() - set a keycode in the scancode->keycode table
201 * @dev: the struct rc_dev device descriptor
202 * @rc_map: scancode table to be adjusted
203 * @index: index of the mapping that needs to be updated
204 * @keycode: the desired keycode
205 * @return: previous keycode assigned to the mapping
207 * This routine is used to update scancode->keycode mapping at given
208 * position.
210 static unsigned int ir_update_mapping(struct rc_dev *dev,
211 struct rc_map *rc_map,
212 unsigned int index,
213 unsigned int new_keycode)
215 int old_keycode = rc_map->scan[index].keycode;
216 int i;
218 /* Did the user wish to remove the mapping? */
219 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
220 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
221 index, rc_map->scan[index].scancode);
222 rc_map->len--;
223 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
224 (rc_map->len - index) * sizeof(struct rc_map_table));
225 } else {
226 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
227 index,
228 old_keycode == KEY_RESERVED ? "New" : "Replacing",
229 rc_map->scan[index].scancode, new_keycode);
230 rc_map->scan[index].keycode = new_keycode;
231 __set_bit(new_keycode, dev->input_dev->keybit);
234 if (old_keycode != KEY_RESERVED) {
235 /* A previous mapping was updated... */
236 __clear_bit(old_keycode, dev->input_dev->keybit);
237 /* ... but another scancode might use the same keycode */
238 for (i = 0; i < rc_map->len; i++) {
239 if (rc_map->scan[i].keycode == old_keycode) {
240 __set_bit(old_keycode, dev->input_dev->keybit);
241 break;
245 /* Possibly shrink the keytable, failure is not a problem */
246 ir_resize_table(rc_map, GFP_ATOMIC);
249 return old_keycode;
253 * ir_establish_scancode() - set a keycode in the scancode->keycode table
254 * @dev: the struct rc_dev device descriptor
255 * @rc_map: scancode table to be searched
256 * @scancode: the desired scancode
257 * @resize: controls whether we allowed to resize the table to
258 * accommodate not yet present scancodes
259 * @return: index of the mapping containing scancode in question
260 * or -1U in case of failure.
262 * This routine is used to locate given scancode in rc_map.
263 * If scancode is not yet present the routine will allocate a new slot
264 * for it.
266 static unsigned int ir_establish_scancode(struct rc_dev *dev,
267 struct rc_map *rc_map,
268 unsigned int scancode,
269 bool resize)
271 unsigned int i;
274 * Unfortunately, some hardware-based IR decoders don't provide
275 * all bits for the complete IR code. In general, they provide only
276 * the command part of the IR code. Yet, as it is possible to replace
277 * the provided IR with another one, it is needed to allow loading
278 * IR tables from other remotes. So, we support specifying a mask to
279 * indicate the valid bits of the scancodes.
281 if (dev->scanmask)
282 scancode &= dev->scanmask;
284 /* First check if we already have a mapping for this ir command */
285 for (i = 0; i < rc_map->len; i++) {
286 if (rc_map->scan[i].scancode == scancode)
287 return i;
289 /* Keytable is sorted from lowest to highest scancode */
290 if (rc_map->scan[i].scancode >= scancode)
291 break;
294 /* No previous mapping found, we might need to grow the table */
295 if (rc_map->size == rc_map->len) {
296 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
297 return -1U;
300 /* i is the proper index to insert our new keycode */
301 if (i < rc_map->len)
302 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
303 (rc_map->len - i) * sizeof(struct rc_map_table));
304 rc_map->scan[i].scancode = scancode;
305 rc_map->scan[i].keycode = KEY_RESERVED;
306 rc_map->len++;
308 return i;
312 * ir_setkeycode() - set a keycode in the scancode->keycode table
313 * @idev: the struct input_dev device descriptor
314 * @scancode: the desired scancode
315 * @keycode: result
316 * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
318 * This routine is used to handle evdev EVIOCSKEY ioctl.
320 static int ir_setkeycode(struct input_dev *idev,
321 const struct input_keymap_entry *ke,
322 unsigned int *old_keycode)
324 struct rc_dev *rdev = input_get_drvdata(idev);
325 struct rc_map *rc_map = &rdev->rc_map;
326 unsigned int index;
327 unsigned int scancode;
328 int retval = 0;
329 unsigned long flags;
331 spin_lock_irqsave(&rc_map->lock, flags);
333 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
334 index = ke->index;
335 if (index >= rc_map->len) {
336 retval = -EINVAL;
337 goto out;
339 } else {
340 retval = input_scancode_to_scalar(ke, &scancode);
341 if (retval)
342 goto out;
344 index = ir_establish_scancode(rdev, rc_map, scancode, true);
345 if (index >= rc_map->len) {
346 retval = -ENOMEM;
347 goto out;
351 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
353 out:
354 spin_unlock_irqrestore(&rc_map->lock, flags);
355 return retval;
359 * ir_setkeytable() - sets several entries in the scancode->keycode table
360 * @dev: the struct rc_dev device descriptor
361 * @to: the struct rc_map to copy entries to
362 * @from: the struct rc_map to copy entries from
363 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
365 * This routine is used to handle table initialization.
367 static int ir_setkeytable(struct rc_dev *dev,
368 const struct rc_map *from)
370 struct rc_map *rc_map = &dev->rc_map;
371 unsigned int i, index;
372 int rc;
374 rc = ir_create_table(rc_map, from->name,
375 from->rc_type, from->size);
376 if (rc)
377 return rc;
379 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
380 rc_map->size, rc_map->alloc);
382 for (i = 0; i < from->size; i++) {
383 index = ir_establish_scancode(dev, rc_map,
384 from->scan[i].scancode, false);
385 if (index >= rc_map->len) {
386 rc = -ENOMEM;
387 break;
390 ir_update_mapping(dev, rc_map, index,
391 from->scan[i].keycode);
394 if (rc)
395 ir_free_table(rc_map);
397 return rc;
401 * ir_lookup_by_scancode() - locate mapping by scancode
402 * @rc_map: the struct rc_map to search
403 * @scancode: scancode to look for in the table
404 * @return: index in the table, -1U if not found
406 * This routine performs binary search in RC keykeymap table for
407 * given scancode.
409 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
410 unsigned int scancode)
412 int start = 0;
413 int end = rc_map->len - 1;
414 int mid;
416 while (start <= end) {
417 mid = (start + end) / 2;
418 if (rc_map->scan[mid].scancode < scancode)
419 start = mid + 1;
420 else if (rc_map->scan[mid].scancode > scancode)
421 end = mid - 1;
422 else
423 return mid;
426 return -1U;
430 * ir_getkeycode() - get a keycode from the scancode->keycode table
431 * @idev: the struct input_dev device descriptor
432 * @scancode: the desired scancode
433 * @keycode: used to return the keycode, if found, or KEY_RESERVED
434 * @return: always returns zero.
436 * This routine is used to handle evdev EVIOCGKEY ioctl.
438 static int ir_getkeycode(struct input_dev *idev,
439 struct input_keymap_entry *ke)
441 struct rc_dev *rdev = input_get_drvdata(idev);
442 struct rc_map *rc_map = &rdev->rc_map;
443 struct rc_map_table *entry;
444 unsigned long flags;
445 unsigned int index;
446 unsigned int scancode;
447 int retval;
449 spin_lock_irqsave(&rc_map->lock, flags);
451 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
452 index = ke->index;
453 } else {
454 retval = input_scancode_to_scalar(ke, &scancode);
455 if (retval)
456 goto out;
458 index = ir_lookup_by_scancode(rc_map, scancode);
461 if (index < rc_map->len) {
462 entry = &rc_map->scan[index];
464 ke->index = index;
465 ke->keycode = entry->keycode;
466 ke->len = sizeof(entry->scancode);
467 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
469 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
471 * We do not really know the valid range of scancodes
472 * so let's respond with KEY_RESERVED to anything we
473 * do not have mapping for [yet].
475 ke->index = index;
476 ke->keycode = KEY_RESERVED;
477 } else {
478 retval = -EINVAL;
479 goto out;
482 retval = 0;
484 out:
485 spin_unlock_irqrestore(&rc_map->lock, flags);
486 return retval;
490 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
491 * @dev: the struct rc_dev descriptor of the device
492 * @scancode: the scancode to look for
493 * @return: the corresponding keycode, or KEY_RESERVED
495 * This routine is used by drivers which need to convert a scancode to a
496 * keycode. Normally it should not be used since drivers should have no
497 * interest in keycodes.
499 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
501 struct rc_map *rc_map = &dev->rc_map;
502 unsigned int keycode;
503 unsigned int index;
504 unsigned long flags;
506 spin_lock_irqsave(&rc_map->lock, flags);
508 index = ir_lookup_by_scancode(rc_map, scancode);
509 keycode = index < rc_map->len ?
510 rc_map->scan[index].keycode : KEY_RESERVED;
512 spin_unlock_irqrestore(&rc_map->lock, flags);
514 if (keycode != KEY_RESERVED)
515 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
516 dev->input_name, scancode, keycode);
518 return keycode;
520 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
523 * ir_do_keyup() - internal function to signal the release of a keypress
524 * @dev: the struct rc_dev descriptor of the device
525 * @sync: whether or not to call input_sync
527 * This function is used internally to release a keypress, it must be
528 * called with keylock held.
530 static void ir_do_keyup(struct rc_dev *dev, bool sync)
532 if (!dev->keypressed)
533 return;
535 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
536 input_report_key(dev->input_dev, dev->last_keycode, 0);
537 if (sync)
538 input_sync(dev->input_dev);
539 dev->keypressed = false;
543 * rc_keyup() - signals the release of a keypress
544 * @dev: the struct rc_dev descriptor of the device
546 * This routine is used to signal that a key has been released on the
547 * remote control.
549 void rc_keyup(struct rc_dev *dev)
551 unsigned long flags;
553 spin_lock_irqsave(&dev->keylock, flags);
554 ir_do_keyup(dev, true);
555 spin_unlock_irqrestore(&dev->keylock, flags);
557 EXPORT_SYMBOL_GPL(rc_keyup);
560 * ir_timer_keyup() - generates a keyup event after a timeout
561 * @cookie: a pointer to the struct rc_dev for the device
563 * This routine will generate a keyup event some time after a keydown event
564 * is generated when no further activity has been detected.
566 static void ir_timer_keyup(unsigned long cookie)
568 struct rc_dev *dev = (struct rc_dev *)cookie;
569 unsigned long flags;
572 * ir->keyup_jiffies is used to prevent a race condition if a
573 * hardware interrupt occurs at this point and the keyup timer
574 * event is moved further into the future as a result.
576 * The timer will then be reactivated and this function called
577 * again in the future. We need to exit gracefully in that case
578 * to allow the input subsystem to do its auto-repeat magic or
579 * a keyup event might follow immediately after the keydown.
581 spin_lock_irqsave(&dev->keylock, flags);
582 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
583 ir_do_keyup(dev, true);
584 spin_unlock_irqrestore(&dev->keylock, flags);
588 * rc_repeat() - signals that a key is still pressed
589 * @dev: the struct rc_dev descriptor of the device
591 * This routine is used by IR decoders when a repeat message which does
592 * not include the necessary bits to reproduce the scancode has been
593 * received.
595 void rc_repeat(struct rc_dev *dev)
597 unsigned long flags;
599 spin_lock_irqsave(&dev->keylock, flags);
601 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
602 input_sync(dev->input_dev);
604 if (!dev->keypressed)
605 goto out;
607 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
608 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
610 out:
611 spin_unlock_irqrestore(&dev->keylock, flags);
613 EXPORT_SYMBOL_GPL(rc_repeat);
616 * ir_do_keydown() - internal function to process a keypress
617 * @dev: the struct rc_dev descriptor of the device
618 * @scancode: the scancode of the keypress
619 * @keycode: the keycode of the keypress
620 * @toggle: the toggle value of the keypress
622 * This function is used internally to register a keypress, it must be
623 * called with keylock held.
625 static void ir_do_keydown(struct rc_dev *dev, int scancode,
626 u32 keycode, u8 toggle)
628 bool new_event = !dev->keypressed ||
629 dev->last_scancode != scancode ||
630 dev->last_toggle != toggle;
632 if (new_event && dev->keypressed)
633 ir_do_keyup(dev, false);
635 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
637 if (new_event && keycode != KEY_RESERVED) {
638 /* Register a keypress */
639 dev->keypressed = true;
640 dev->last_scancode = scancode;
641 dev->last_toggle = toggle;
642 dev->last_keycode = keycode;
644 IR_dprintk(1, "%s: key down event, "
645 "key 0x%04x, scancode 0x%04x\n",
646 dev->input_name, keycode, scancode);
647 input_report_key(dev->input_dev, keycode, 1);
650 input_sync(dev->input_dev);
654 * rc_keydown() - generates input event for a key press
655 * @dev: the struct rc_dev descriptor of the device
656 * @scancode: the scancode that we're seeking
657 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
658 * support toggle values, this should be set to zero)
660 * This routine is used to signal that a key has been pressed on the
661 * remote control.
663 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
665 unsigned long flags;
666 u32 keycode = rc_g_keycode_from_table(dev, scancode);
668 spin_lock_irqsave(&dev->keylock, flags);
669 ir_do_keydown(dev, scancode, keycode, toggle);
671 if (dev->keypressed) {
672 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
673 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
675 spin_unlock_irqrestore(&dev->keylock, flags);
677 EXPORT_SYMBOL_GPL(rc_keydown);
680 * rc_keydown_notimeout() - generates input event for a key press without
681 * an automatic keyup event at a later time
682 * @dev: the struct rc_dev descriptor of the device
683 * @scancode: the scancode that we're seeking
684 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
685 * support toggle values, this should be set to zero)
687 * This routine is used to signal that a key has been pressed on the
688 * remote control. The driver must manually call rc_keyup() at a later stage.
690 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
692 unsigned long flags;
693 u32 keycode = rc_g_keycode_from_table(dev, scancode);
695 spin_lock_irqsave(&dev->keylock, flags);
696 ir_do_keydown(dev, scancode, keycode, toggle);
697 spin_unlock_irqrestore(&dev->keylock, flags);
699 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
701 static int ir_open(struct input_dev *idev)
703 struct rc_dev *rdev = input_get_drvdata(idev);
705 return rdev->open(rdev);
708 static void ir_close(struct input_dev *idev)
710 struct rc_dev *rdev = input_get_drvdata(idev);
712 if (rdev)
713 rdev->close(rdev);
716 /* class for /sys/class/rc */
717 static char *ir_devnode(struct device *dev, mode_t *mode)
719 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
722 static struct class ir_input_class = {
723 .name = "rc",
724 .devnode = ir_devnode,
727 static struct {
728 u64 type;
729 char *name;
730 } proto_names[] = {
731 { RC_TYPE_UNKNOWN, "unknown" },
732 { RC_TYPE_RC5, "rc-5" },
733 { RC_TYPE_NEC, "nec" },
734 { RC_TYPE_RC6, "rc-6" },
735 { RC_TYPE_JVC, "jvc" },
736 { RC_TYPE_SONY, "sony" },
737 { RC_TYPE_RC5_SZ, "rc-5-sz" },
738 { RC_TYPE_MCE_KBD, "mce_kbd" },
739 { RC_TYPE_LIRC, "lirc" },
740 { RC_TYPE_OTHER, "other" },
743 #define PROTO_NONE "none"
746 * show_protocols() - shows the current IR protocol(s)
747 * @device: the device descriptor
748 * @mattr: the device attribute struct (unused)
749 * @buf: a pointer to the output buffer
751 * This routine is a callback routine for input read the IR protocol type(s).
752 * it is trigged by reading /sys/class/rc/rc?/protocols.
753 * It returns the protocol names of supported protocols.
754 * Enabled protocols are printed in brackets.
756 * dev->lock is taken to guard against races between device
757 * registration, store_protocols and show_protocols.
759 static ssize_t show_protocols(struct device *device,
760 struct device_attribute *mattr, char *buf)
762 struct rc_dev *dev = to_rc_dev(device);
763 u64 allowed, enabled;
764 char *tmp = buf;
765 int i;
767 /* Device is being removed */
768 if (!dev)
769 return -EINVAL;
771 mutex_lock(&dev->lock);
773 if (dev->driver_type == RC_DRIVER_SCANCODE) {
774 enabled = dev->rc_map.rc_type;
775 allowed = dev->allowed_protos;
776 } else {
777 enabled = dev->raw->enabled_protocols;
778 allowed = ir_raw_get_allowed_protocols();
781 IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
782 (long long)allowed,
783 (long long)enabled);
785 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
786 if (allowed & enabled & proto_names[i].type)
787 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
788 else if (allowed & proto_names[i].type)
789 tmp += sprintf(tmp, "%s ", proto_names[i].name);
792 if (tmp != buf)
793 tmp--;
794 *tmp = '\n';
796 mutex_unlock(&dev->lock);
798 return tmp + 1 - buf;
802 * store_protocols() - changes the current IR protocol(s)
803 * @device: the device descriptor
804 * @mattr: the device attribute struct (unused)
805 * @buf: a pointer to the input buffer
806 * @len: length of the input buffer
808 * This routine is for changing the IR protocol type.
809 * It is trigged by writing to /sys/class/rc/rc?/protocols.
810 * Writing "+proto" will add a protocol to the list of enabled protocols.
811 * Writing "-proto" will remove a protocol from the list of enabled protocols.
812 * Writing "proto" will enable only "proto".
813 * Writing "none" will disable all protocols.
814 * Returns -EINVAL if an invalid protocol combination or unknown protocol name
815 * is used, otherwise @len.
817 * dev->lock is taken to guard against races between device
818 * registration, store_protocols and show_protocols.
820 static ssize_t store_protocols(struct device *device,
821 struct device_attribute *mattr,
822 const char *data,
823 size_t len)
825 struct rc_dev *dev = to_rc_dev(device);
826 bool enable, disable;
827 const char *tmp;
828 u64 type;
829 u64 mask;
830 int rc, i, count = 0;
831 unsigned long flags;
832 ssize_t ret;
834 /* Device is being removed */
835 if (!dev)
836 return -EINVAL;
838 mutex_lock(&dev->lock);
840 if (dev->driver_type == RC_DRIVER_SCANCODE)
841 type = dev->rc_map.rc_type;
842 else if (dev->raw)
843 type = dev->raw->enabled_protocols;
844 else {
845 IR_dprintk(1, "Protocol switching not supported\n");
846 ret = -EINVAL;
847 goto out;
850 while ((tmp = strsep((char **) &data, " \n")) != NULL) {
851 if (!*tmp)
852 break;
854 if (*tmp == '+') {
855 enable = true;
856 disable = false;
857 tmp++;
858 } else if (*tmp == '-') {
859 enable = false;
860 disable = true;
861 tmp++;
862 } else {
863 enable = false;
864 disable = false;
867 if (!enable && !disable && !strncasecmp(tmp, PROTO_NONE, sizeof(PROTO_NONE))) {
868 tmp += sizeof(PROTO_NONE);
869 mask = 0;
870 count++;
871 } else {
872 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
873 if (!strcasecmp(tmp, proto_names[i].name)) {
874 tmp += strlen(proto_names[i].name);
875 mask = proto_names[i].type;
876 break;
879 if (i == ARRAY_SIZE(proto_names)) {
880 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
881 ret = -EINVAL;
882 goto out;
884 count++;
887 if (enable)
888 type |= mask;
889 else if (disable)
890 type &= ~mask;
891 else
892 type = mask;
895 if (!count) {
896 IR_dprintk(1, "Protocol not specified\n");
897 ret = -EINVAL;
898 goto out;
901 if (dev->change_protocol) {
902 rc = dev->change_protocol(dev, type);
903 if (rc < 0) {
904 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
905 (long long)type);
906 ret = -EINVAL;
907 goto out;
911 if (dev->driver_type == RC_DRIVER_SCANCODE) {
912 spin_lock_irqsave(&dev->rc_map.lock, flags);
913 dev->rc_map.rc_type = type;
914 spin_unlock_irqrestore(&dev->rc_map.lock, flags);
915 } else {
916 dev->raw->enabled_protocols = type;
919 IR_dprintk(1, "Current protocol(s): 0x%llx\n",
920 (long long)type);
922 ret = len;
924 out:
925 mutex_unlock(&dev->lock);
926 return ret;
929 static void rc_dev_release(struct device *device)
931 struct rc_dev *dev = to_rc_dev(device);
933 kfree(dev);
934 module_put(THIS_MODULE);
937 #define ADD_HOTPLUG_VAR(fmt, val...) \
938 do { \
939 int err = add_uevent_var(env, fmt, val); \
940 if (err) \
941 return err; \
942 } while (0)
944 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
946 struct rc_dev *dev = to_rc_dev(device);
948 if (dev->rc_map.name)
949 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
950 if (dev->driver_name)
951 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
953 return 0;
957 * Static device attribute struct with the sysfs attributes for IR's
959 static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
960 show_protocols, store_protocols);
962 static struct attribute *rc_dev_attrs[] = {
963 &dev_attr_protocols.attr,
964 NULL,
967 static struct attribute_group rc_dev_attr_grp = {
968 .attrs = rc_dev_attrs,
971 static const struct attribute_group *rc_dev_attr_groups[] = {
972 &rc_dev_attr_grp,
973 NULL
976 static struct device_type rc_dev_type = {
977 .groups = rc_dev_attr_groups,
978 .release = rc_dev_release,
979 .uevent = rc_dev_uevent,
982 struct rc_dev *rc_allocate_device(void)
984 struct rc_dev *dev;
986 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
987 if (!dev)
988 return NULL;
990 dev->input_dev = input_allocate_device();
991 if (!dev->input_dev) {
992 kfree(dev);
993 return NULL;
996 dev->input_dev->getkeycode = ir_getkeycode;
997 dev->input_dev->setkeycode = ir_setkeycode;
998 input_set_drvdata(dev->input_dev, dev);
1000 spin_lock_init(&dev->rc_map.lock);
1001 spin_lock_init(&dev->keylock);
1002 mutex_init(&dev->lock);
1003 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1005 dev->dev.type = &rc_dev_type;
1006 dev->dev.class = &ir_input_class;
1007 device_initialize(&dev->dev);
1009 __module_get(THIS_MODULE);
1010 return dev;
1012 EXPORT_SYMBOL_GPL(rc_allocate_device);
1014 void rc_free_device(struct rc_dev *dev)
1016 if (dev) {
1017 input_free_device(dev->input_dev);
1018 put_device(&dev->dev);
1021 EXPORT_SYMBOL_GPL(rc_free_device);
1023 int rc_register_device(struct rc_dev *dev)
1025 static atomic_t devno = ATOMIC_INIT(0);
1026 struct rc_map *rc_map;
1027 const char *path;
1028 int rc;
1030 if (!dev || !dev->map_name)
1031 return -EINVAL;
1033 rc_map = rc_map_get(dev->map_name);
1034 if (!rc_map)
1035 rc_map = rc_map_get(RC_MAP_EMPTY);
1036 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1037 return -EINVAL;
1039 set_bit(EV_KEY, dev->input_dev->evbit);
1040 set_bit(EV_REP, dev->input_dev->evbit);
1041 set_bit(EV_MSC, dev->input_dev->evbit);
1042 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1043 if (dev->open)
1044 dev->input_dev->open = ir_open;
1045 if (dev->close)
1046 dev->input_dev->close = ir_close;
1049 * Take the lock here, as the device sysfs node will appear
1050 * when device_add() is called, which may trigger an ir-keytable udev
1051 * rule, which will in turn call show_protocols and access either
1052 * dev->rc_map.rc_type or dev->raw->enabled_protocols before it has
1053 * been initialized.
1055 mutex_lock(&dev->lock);
1057 dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
1058 dev_set_name(&dev->dev, "rc%ld", dev->devno);
1059 dev_set_drvdata(&dev->dev, dev);
1060 rc = device_add(&dev->dev);
1061 if (rc)
1062 goto out_unlock;
1064 rc = ir_setkeytable(dev, rc_map);
1065 if (rc)
1066 goto out_dev;
1068 dev->input_dev->dev.parent = &dev->dev;
1069 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1070 dev->input_dev->phys = dev->input_phys;
1071 dev->input_dev->name = dev->input_name;
1072 rc = input_register_device(dev->input_dev);
1073 if (rc)
1074 goto out_table;
1077 * Default delay of 250ms is too short for some protocols, especially
1078 * since the timeout is currently set to 250ms. Increase it to 500ms,
1079 * to avoid wrong repetition of the keycodes. Note that this must be
1080 * set after the call to input_register_device().
1082 dev->input_dev->rep[REP_DELAY] = 500;
1085 * As a repeat event on protocols like RC-5 and NEC take as long as
1086 * 110/114ms, using 33ms as a repeat period is not the right thing
1087 * to do.
1089 dev->input_dev->rep[REP_PERIOD] = 125;
1091 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1092 printk(KERN_INFO "%s: %s as %s\n",
1093 dev_name(&dev->dev),
1094 dev->input_name ? dev->input_name : "Unspecified device",
1095 path ? path : "N/A");
1096 kfree(path);
1098 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1099 rc = ir_raw_event_register(dev);
1100 if (rc < 0)
1101 goto out_input;
1104 if (dev->change_protocol) {
1105 rc = dev->change_protocol(dev, rc_map->rc_type);
1106 if (rc < 0)
1107 goto out_raw;
1110 mutex_unlock(&dev->lock);
1112 IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1113 dev->devno,
1114 dev->driver_name ? dev->driver_name : "unknown",
1115 rc_map->name ? rc_map->name : "unknown",
1116 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1118 return 0;
1120 out_raw:
1121 if (dev->driver_type == RC_DRIVER_IR_RAW)
1122 ir_raw_event_unregister(dev);
1123 out_input:
1124 input_unregister_device(dev->input_dev);
1125 dev->input_dev = NULL;
1126 out_table:
1127 ir_free_table(&dev->rc_map);
1128 out_dev:
1129 device_del(&dev->dev);
1130 out_unlock:
1131 mutex_unlock(&dev->lock);
1132 return rc;
1134 EXPORT_SYMBOL_GPL(rc_register_device);
1136 void rc_unregister_device(struct rc_dev *dev)
1138 if (!dev)
1139 return;
1141 del_timer_sync(&dev->timer_keyup);
1143 if (dev->driver_type == RC_DRIVER_IR_RAW)
1144 ir_raw_event_unregister(dev);
1146 input_unregister_device(dev->input_dev);
1147 dev->input_dev = NULL;
1149 ir_free_table(&dev->rc_map);
1150 IR_dprintk(1, "Freed keycode table\n");
1152 device_unregister(&dev->dev);
1154 EXPORT_SYMBOL_GPL(rc_unregister_device);
1157 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1160 static int __init rc_core_init(void)
1162 int rc = class_register(&ir_input_class);
1163 if (rc) {
1164 printk(KERN_ERR "rc_core: unable to register rc class\n");
1165 return rc;
1168 /* Initialize/load the decoders/keymap code that will be used */
1169 ir_raw_init();
1170 rc_map_register(&empty_map);
1172 return 0;
1175 static void __exit rc_core_exit(void)
1177 class_unregister(&ir_input_class);
1178 rc_map_unregister(&empty_map);
1181 module_init(rc_core_init);
1182 module_exit(rc_core_exit);
1184 int rc_core_debug; /* ir_debug level (0,1,2) */
1185 EXPORT_SYMBOL_GPL(rc_core_debug);
1186 module_param_named(debug, rc_core_debug, int, 0644);
1188 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1189 MODULE_LICENSE("GPL");