drivers/base/node.c: switch to register_hotmemory_notifier()
[linux-2.6.git] / drivers / block / loop.c
blobdfe758382eafe71861f244f3436ce2db06f5f541
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
76 #include <linux/sysfs.h>
77 #include <linux/miscdevice.h>
78 #include <linux/falloc.h>
80 #include <asm/uaccess.h>
82 static DEFINE_IDR(loop_index_idr);
83 static DEFINE_MUTEX(loop_index_mutex);
85 static int max_part;
86 static int part_shift;
89 * Transfer functions
91 static int transfer_none(struct loop_device *lo, int cmd,
92 struct page *raw_page, unsigned raw_off,
93 struct page *loop_page, unsigned loop_off,
94 int size, sector_t real_block)
96 char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 if (cmd == READ)
100 memcpy(loop_buf, raw_buf, size);
101 else
102 memcpy(raw_buf, loop_buf, size);
104 kunmap_atomic(loop_buf);
105 kunmap_atomic(raw_buf);
106 cond_resched();
107 return 0;
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 struct page *raw_page, unsigned raw_off,
112 struct page *loop_page, unsigned loop_off,
113 int size, sector_t real_block)
115 char *raw_buf = kmap_atomic(raw_page) + raw_off;
116 char *loop_buf = kmap_atomic(loop_page) + loop_off;
117 char *in, *out, *key;
118 int i, keysize;
120 if (cmd == READ) {
121 in = raw_buf;
122 out = loop_buf;
123 } else {
124 in = loop_buf;
125 out = raw_buf;
128 key = lo->lo_encrypt_key;
129 keysize = lo->lo_encrypt_key_size;
130 for (i = 0; i < size; i++)
131 *out++ = *in++ ^ key[(i & 511) % keysize];
133 kunmap_atomic(loop_buf);
134 kunmap_atomic(raw_buf);
135 cond_resched();
136 return 0;
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
141 if (unlikely(info->lo_encrypt_key_size <= 0))
142 return -EINVAL;
143 return 0;
146 static struct loop_func_table none_funcs = {
147 .number = LO_CRYPT_NONE,
148 .transfer = transfer_none,
151 static struct loop_func_table xor_funcs = {
152 .number = LO_CRYPT_XOR,
153 .transfer = transfer_xor,
154 .init = xor_init
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 &none_funcs,
160 &xor_funcs
163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
165 loff_t loopsize;
167 /* Compute loopsize in bytes */
168 loopsize = i_size_read(file->f_mapping->host);
169 if (offset > 0)
170 loopsize -= offset;
171 /* offset is beyond i_size, weird but possible */
172 if (loopsize < 0)
173 return 0;
175 if (sizelimit > 0 && sizelimit < loopsize)
176 loopsize = sizelimit;
178 * Unfortunately, if we want to do I/O on the device,
179 * the number of 512-byte sectors has to fit into a sector_t.
181 return loopsize >> 9;
184 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
186 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
189 static int
190 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
192 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
193 sector_t x = (sector_t)size;
194 struct block_device *bdev = lo->lo_device;
196 if (unlikely((loff_t)x != size))
197 return -EFBIG;
198 if (lo->lo_offset != offset)
199 lo->lo_offset = offset;
200 if (lo->lo_sizelimit != sizelimit)
201 lo->lo_sizelimit = sizelimit;
202 set_capacity(lo->lo_disk, x);
203 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
204 /* let user-space know about the new size */
205 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
206 return 0;
209 static inline int
210 lo_do_transfer(struct loop_device *lo, int cmd,
211 struct page *rpage, unsigned roffs,
212 struct page *lpage, unsigned loffs,
213 int size, sector_t rblock)
215 if (unlikely(!lo->transfer))
216 return 0;
218 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
222 * __do_lo_send_write - helper for writing data to a loop device
224 * This helper just factors out common code between do_lo_send_direct_write()
225 * and do_lo_send_write().
227 static int __do_lo_send_write(struct file *file,
228 u8 *buf, const int len, loff_t pos)
230 ssize_t bw;
231 mm_segment_t old_fs = get_fs();
233 set_fs(get_ds());
234 bw = file->f_op->write(file, buf, len, &pos);
235 set_fs(old_fs);
236 if (likely(bw == len))
237 return 0;
238 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
239 (unsigned long long)pos, len);
240 if (bw >= 0)
241 bw = -EIO;
242 return bw;
246 * do_lo_send_direct_write - helper for writing data to a loop device
248 * This is the fast, non-transforming version that does not need double
249 * buffering.
251 static int do_lo_send_direct_write(struct loop_device *lo,
252 struct bio_vec *bvec, loff_t pos, struct page *page)
254 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
255 kmap(bvec->bv_page) + bvec->bv_offset,
256 bvec->bv_len, pos);
257 kunmap(bvec->bv_page);
258 cond_resched();
259 return bw;
263 * do_lo_send_write - helper for writing data to a loop device
265 * This is the slow, transforming version that needs to double buffer the
266 * data as it cannot do the transformations in place without having direct
267 * access to the destination pages of the backing file.
269 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
270 loff_t pos, struct page *page)
272 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
273 bvec->bv_offset, bvec->bv_len, pos >> 9);
274 if (likely(!ret))
275 return __do_lo_send_write(lo->lo_backing_file,
276 page_address(page), bvec->bv_len,
277 pos);
278 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
279 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
280 if (ret > 0)
281 ret = -EIO;
282 return ret;
285 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
287 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
288 struct page *page);
289 struct bio_vec *bvec;
290 struct page *page = NULL;
291 int i, ret = 0;
293 if (lo->transfer != transfer_none) {
294 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
295 if (unlikely(!page))
296 goto fail;
297 kmap(page);
298 do_lo_send = do_lo_send_write;
299 } else {
300 do_lo_send = do_lo_send_direct_write;
303 bio_for_each_segment(bvec, bio, i) {
304 ret = do_lo_send(lo, bvec, pos, page);
305 if (ret < 0)
306 break;
307 pos += bvec->bv_len;
309 if (page) {
310 kunmap(page);
311 __free_page(page);
313 out:
314 return ret;
315 fail:
316 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
317 ret = -ENOMEM;
318 goto out;
321 struct lo_read_data {
322 struct loop_device *lo;
323 struct page *page;
324 unsigned offset;
325 int bsize;
328 static int
329 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
330 struct splice_desc *sd)
332 struct lo_read_data *p = sd->u.data;
333 struct loop_device *lo = p->lo;
334 struct page *page = buf->page;
335 sector_t IV;
336 int size;
338 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
339 (buf->offset >> 9);
340 size = sd->len;
341 if (size > p->bsize)
342 size = p->bsize;
344 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
345 printk(KERN_ERR "loop: transfer error block %ld\n",
346 page->index);
347 size = -EINVAL;
350 flush_dcache_page(p->page);
352 if (size > 0)
353 p->offset += size;
355 return size;
358 static int
359 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
361 return __splice_from_pipe(pipe, sd, lo_splice_actor);
364 static ssize_t
365 do_lo_receive(struct loop_device *lo,
366 struct bio_vec *bvec, int bsize, loff_t pos)
368 struct lo_read_data cookie;
369 struct splice_desc sd;
370 struct file *file;
371 ssize_t retval;
373 cookie.lo = lo;
374 cookie.page = bvec->bv_page;
375 cookie.offset = bvec->bv_offset;
376 cookie.bsize = bsize;
378 sd.len = 0;
379 sd.total_len = bvec->bv_len;
380 sd.flags = 0;
381 sd.pos = pos;
382 sd.u.data = &cookie;
384 file = lo->lo_backing_file;
385 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
387 return retval;
390 static int
391 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
393 struct bio_vec *bvec;
394 ssize_t s;
395 int i;
397 bio_for_each_segment(bvec, bio, i) {
398 s = do_lo_receive(lo, bvec, bsize, pos);
399 if (s < 0)
400 return s;
402 if (s != bvec->bv_len) {
403 zero_fill_bio(bio);
404 break;
406 pos += bvec->bv_len;
408 return 0;
411 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
413 loff_t pos;
414 int ret;
416 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
418 if (bio_rw(bio) == WRITE) {
419 struct file *file = lo->lo_backing_file;
421 if (bio->bi_rw & REQ_FLUSH) {
422 ret = vfs_fsync(file, 0);
423 if (unlikely(ret && ret != -EINVAL)) {
424 ret = -EIO;
425 goto out;
430 * We use punch hole to reclaim the free space used by the
431 * image a.k.a. discard. However we do not support discard if
432 * encryption is enabled, because it may give an attacker
433 * useful information.
435 if (bio->bi_rw & REQ_DISCARD) {
436 struct file *file = lo->lo_backing_file;
437 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
439 if ((!file->f_op->fallocate) ||
440 lo->lo_encrypt_key_size) {
441 ret = -EOPNOTSUPP;
442 goto out;
444 ret = file->f_op->fallocate(file, mode, pos,
445 bio->bi_size);
446 if (unlikely(ret && ret != -EINVAL &&
447 ret != -EOPNOTSUPP))
448 ret = -EIO;
449 goto out;
452 ret = lo_send(lo, bio, pos);
454 if ((bio->bi_rw & REQ_FUA) && !ret) {
455 ret = vfs_fsync(file, 0);
456 if (unlikely(ret && ret != -EINVAL))
457 ret = -EIO;
459 } else
460 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
462 out:
463 return ret;
467 * Add bio to back of pending list
469 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
471 lo->lo_bio_count++;
472 bio_list_add(&lo->lo_bio_list, bio);
476 * Grab first pending buffer
478 static struct bio *loop_get_bio(struct loop_device *lo)
480 lo->lo_bio_count--;
481 return bio_list_pop(&lo->lo_bio_list);
484 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
486 struct loop_device *lo = q->queuedata;
487 int rw = bio_rw(old_bio);
489 if (rw == READA)
490 rw = READ;
492 BUG_ON(!lo || (rw != READ && rw != WRITE));
494 spin_lock_irq(&lo->lo_lock);
495 if (lo->lo_state != Lo_bound)
496 goto out;
497 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
498 goto out;
499 if (lo->lo_bio_count >= q->nr_congestion_on)
500 wait_event_lock_irq(lo->lo_req_wait,
501 lo->lo_bio_count < q->nr_congestion_off,
502 lo->lo_lock);
503 loop_add_bio(lo, old_bio);
504 wake_up(&lo->lo_event);
505 spin_unlock_irq(&lo->lo_lock);
506 return;
508 out:
509 spin_unlock_irq(&lo->lo_lock);
510 bio_io_error(old_bio);
513 struct switch_request {
514 struct file *file;
515 struct completion wait;
518 static void do_loop_switch(struct loop_device *, struct switch_request *);
520 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
522 if (unlikely(!bio->bi_bdev)) {
523 do_loop_switch(lo, bio->bi_private);
524 bio_put(bio);
525 } else {
526 int ret = do_bio_filebacked(lo, bio);
527 bio_endio(bio, ret);
532 * worker thread that handles reads/writes to file backed loop devices,
533 * to avoid blocking in our make_request_fn. it also does loop decrypting
534 * on reads for block backed loop, as that is too heavy to do from
535 * b_end_io context where irqs may be disabled.
537 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
538 * calling kthread_stop(). Therefore once kthread_should_stop() is
539 * true, make_request will not place any more requests. Therefore
540 * once kthread_should_stop() is true and lo_bio is NULL, we are
541 * done with the loop.
543 static int loop_thread(void *data)
545 struct loop_device *lo = data;
546 struct bio *bio;
548 set_user_nice(current, -20);
550 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
552 wait_event_interruptible(lo->lo_event,
553 !bio_list_empty(&lo->lo_bio_list) ||
554 kthread_should_stop());
556 if (bio_list_empty(&lo->lo_bio_list))
557 continue;
558 spin_lock_irq(&lo->lo_lock);
559 bio = loop_get_bio(lo);
560 if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off)
561 wake_up(&lo->lo_req_wait);
562 spin_unlock_irq(&lo->lo_lock);
564 BUG_ON(!bio);
565 loop_handle_bio(lo, bio);
568 return 0;
572 * loop_switch performs the hard work of switching a backing store.
573 * First it needs to flush existing IO, it does this by sending a magic
574 * BIO down the pipe. The completion of this BIO does the actual switch.
576 static int loop_switch(struct loop_device *lo, struct file *file)
578 struct switch_request w;
579 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
580 if (!bio)
581 return -ENOMEM;
582 init_completion(&w.wait);
583 w.file = file;
584 bio->bi_private = &w;
585 bio->bi_bdev = NULL;
586 loop_make_request(lo->lo_queue, bio);
587 wait_for_completion(&w.wait);
588 return 0;
592 * Helper to flush the IOs in loop, but keeping loop thread running
594 static int loop_flush(struct loop_device *lo)
596 /* loop not yet configured, no running thread, nothing to flush */
597 if (!lo->lo_thread)
598 return 0;
600 return loop_switch(lo, NULL);
604 * Do the actual switch; called from the BIO completion routine
606 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
608 struct file *file = p->file;
609 struct file *old_file = lo->lo_backing_file;
610 struct address_space *mapping;
612 /* if no new file, only flush of queued bios requested */
613 if (!file)
614 goto out;
616 mapping = file->f_mapping;
617 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
618 lo->lo_backing_file = file;
619 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
620 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
621 lo->old_gfp_mask = mapping_gfp_mask(mapping);
622 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
623 out:
624 complete(&p->wait);
629 * loop_change_fd switched the backing store of a loopback device to
630 * a new file. This is useful for operating system installers to free up
631 * the original file and in High Availability environments to switch to
632 * an alternative location for the content in case of server meltdown.
633 * This can only work if the loop device is used read-only, and if the
634 * new backing store is the same size and type as the old backing store.
636 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
637 unsigned int arg)
639 struct file *file, *old_file;
640 struct inode *inode;
641 int error;
643 error = -ENXIO;
644 if (lo->lo_state != Lo_bound)
645 goto out;
647 /* the loop device has to be read-only */
648 error = -EINVAL;
649 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
650 goto out;
652 error = -EBADF;
653 file = fget(arg);
654 if (!file)
655 goto out;
657 inode = file->f_mapping->host;
658 old_file = lo->lo_backing_file;
660 error = -EINVAL;
662 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
663 goto out_putf;
665 /* size of the new backing store needs to be the same */
666 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
667 goto out_putf;
669 /* and ... switch */
670 error = loop_switch(lo, file);
671 if (error)
672 goto out_putf;
674 fput(old_file);
675 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
676 ioctl_by_bdev(bdev, BLKRRPART, 0);
677 return 0;
679 out_putf:
680 fput(file);
681 out:
682 return error;
685 static inline int is_loop_device(struct file *file)
687 struct inode *i = file->f_mapping->host;
689 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
692 /* loop sysfs attributes */
694 static ssize_t loop_attr_show(struct device *dev, char *page,
695 ssize_t (*callback)(struct loop_device *, char *))
697 struct gendisk *disk = dev_to_disk(dev);
698 struct loop_device *lo = disk->private_data;
700 return callback(lo, page);
703 #define LOOP_ATTR_RO(_name) \
704 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
705 static ssize_t loop_attr_do_show_##_name(struct device *d, \
706 struct device_attribute *attr, char *b) \
708 return loop_attr_show(d, b, loop_attr_##_name##_show); \
710 static struct device_attribute loop_attr_##_name = \
711 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
713 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
715 ssize_t ret;
716 char *p = NULL;
718 spin_lock_irq(&lo->lo_lock);
719 if (lo->lo_backing_file)
720 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
721 spin_unlock_irq(&lo->lo_lock);
723 if (IS_ERR_OR_NULL(p))
724 ret = PTR_ERR(p);
725 else {
726 ret = strlen(p);
727 memmove(buf, p, ret);
728 buf[ret++] = '\n';
729 buf[ret] = 0;
732 return ret;
735 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
737 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
740 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
742 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
745 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
747 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
749 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
752 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
754 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
756 return sprintf(buf, "%s\n", partscan ? "1" : "0");
759 LOOP_ATTR_RO(backing_file);
760 LOOP_ATTR_RO(offset);
761 LOOP_ATTR_RO(sizelimit);
762 LOOP_ATTR_RO(autoclear);
763 LOOP_ATTR_RO(partscan);
765 static struct attribute *loop_attrs[] = {
766 &loop_attr_backing_file.attr,
767 &loop_attr_offset.attr,
768 &loop_attr_sizelimit.attr,
769 &loop_attr_autoclear.attr,
770 &loop_attr_partscan.attr,
771 NULL,
774 static struct attribute_group loop_attribute_group = {
775 .name = "loop",
776 .attrs= loop_attrs,
779 static int loop_sysfs_init(struct loop_device *lo)
781 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
782 &loop_attribute_group);
785 static void loop_sysfs_exit(struct loop_device *lo)
787 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
788 &loop_attribute_group);
791 static void loop_config_discard(struct loop_device *lo)
793 struct file *file = lo->lo_backing_file;
794 struct inode *inode = file->f_mapping->host;
795 struct request_queue *q = lo->lo_queue;
798 * We use punch hole to reclaim the free space used by the
799 * image a.k.a. discard. However we do support discard if
800 * encryption is enabled, because it may give an attacker
801 * useful information.
803 if ((!file->f_op->fallocate) ||
804 lo->lo_encrypt_key_size) {
805 q->limits.discard_granularity = 0;
806 q->limits.discard_alignment = 0;
807 q->limits.max_discard_sectors = 0;
808 q->limits.discard_zeroes_data = 0;
809 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
810 return;
813 q->limits.discard_granularity = inode->i_sb->s_blocksize;
814 q->limits.discard_alignment = 0;
815 q->limits.max_discard_sectors = UINT_MAX >> 9;
816 q->limits.discard_zeroes_data = 1;
817 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
820 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
821 struct block_device *bdev, unsigned int arg)
823 struct file *file, *f;
824 struct inode *inode;
825 struct address_space *mapping;
826 unsigned lo_blocksize;
827 int lo_flags = 0;
828 int error;
829 loff_t size;
831 /* This is safe, since we have a reference from open(). */
832 __module_get(THIS_MODULE);
834 error = -EBADF;
835 file = fget(arg);
836 if (!file)
837 goto out;
839 error = -EBUSY;
840 if (lo->lo_state != Lo_unbound)
841 goto out_putf;
843 /* Avoid recursion */
844 f = file;
845 while (is_loop_device(f)) {
846 struct loop_device *l;
848 if (f->f_mapping->host->i_bdev == bdev)
849 goto out_putf;
851 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
852 if (l->lo_state == Lo_unbound) {
853 error = -EINVAL;
854 goto out_putf;
856 f = l->lo_backing_file;
859 mapping = file->f_mapping;
860 inode = mapping->host;
862 error = -EINVAL;
863 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
864 goto out_putf;
866 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
867 !file->f_op->write)
868 lo_flags |= LO_FLAGS_READ_ONLY;
870 lo_blocksize = S_ISBLK(inode->i_mode) ?
871 inode->i_bdev->bd_block_size : PAGE_SIZE;
873 error = -EFBIG;
874 size = get_loop_size(lo, file);
875 if ((loff_t)(sector_t)size != size)
876 goto out_putf;
878 error = 0;
880 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
882 lo->lo_blocksize = lo_blocksize;
883 lo->lo_device = bdev;
884 lo->lo_flags = lo_flags;
885 lo->lo_backing_file = file;
886 lo->transfer = transfer_none;
887 lo->ioctl = NULL;
888 lo->lo_sizelimit = 0;
889 lo->lo_bio_count = 0;
890 lo->old_gfp_mask = mapping_gfp_mask(mapping);
891 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
893 bio_list_init(&lo->lo_bio_list);
896 * set queue make_request_fn, and add limits based on lower level
897 * device
899 blk_queue_make_request(lo->lo_queue, loop_make_request);
900 lo->lo_queue->queuedata = lo;
902 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
903 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
905 set_capacity(lo->lo_disk, size);
906 bd_set_size(bdev, size << 9);
907 loop_sysfs_init(lo);
908 /* let user-space know about the new size */
909 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
911 set_blocksize(bdev, lo_blocksize);
913 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
914 lo->lo_number);
915 if (IS_ERR(lo->lo_thread)) {
916 error = PTR_ERR(lo->lo_thread);
917 goto out_clr;
919 lo->lo_state = Lo_bound;
920 wake_up_process(lo->lo_thread);
921 if (part_shift)
922 lo->lo_flags |= LO_FLAGS_PARTSCAN;
923 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
924 ioctl_by_bdev(bdev, BLKRRPART, 0);
926 /* Grab the block_device to prevent its destruction after we
927 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
929 bdgrab(bdev);
930 return 0;
932 out_clr:
933 loop_sysfs_exit(lo);
934 lo->lo_thread = NULL;
935 lo->lo_device = NULL;
936 lo->lo_backing_file = NULL;
937 lo->lo_flags = 0;
938 set_capacity(lo->lo_disk, 0);
939 invalidate_bdev(bdev);
940 bd_set_size(bdev, 0);
941 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
942 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
943 lo->lo_state = Lo_unbound;
944 out_putf:
945 fput(file);
946 out:
947 /* This is safe: open() is still holding a reference. */
948 module_put(THIS_MODULE);
949 return error;
952 static int
953 loop_release_xfer(struct loop_device *lo)
955 int err = 0;
956 struct loop_func_table *xfer = lo->lo_encryption;
958 if (xfer) {
959 if (xfer->release)
960 err = xfer->release(lo);
961 lo->transfer = NULL;
962 lo->lo_encryption = NULL;
963 module_put(xfer->owner);
965 return err;
968 static int
969 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
970 const struct loop_info64 *i)
972 int err = 0;
974 if (xfer) {
975 struct module *owner = xfer->owner;
977 if (!try_module_get(owner))
978 return -EINVAL;
979 if (xfer->init)
980 err = xfer->init(lo, i);
981 if (err)
982 module_put(owner);
983 else
984 lo->lo_encryption = xfer;
986 return err;
989 static int loop_clr_fd(struct loop_device *lo)
991 struct file *filp = lo->lo_backing_file;
992 gfp_t gfp = lo->old_gfp_mask;
993 struct block_device *bdev = lo->lo_device;
995 if (lo->lo_state != Lo_bound)
996 return -ENXIO;
999 * If we've explicitly asked to tear down the loop device,
1000 * and it has an elevated reference count, set it for auto-teardown when
1001 * the last reference goes away. This stops $!~#$@ udev from
1002 * preventing teardown because it decided that it needs to run blkid on
1003 * the loopback device whenever they appear. xfstests is notorious for
1004 * failing tests because blkid via udev races with a losetup
1005 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1006 * command to fail with EBUSY.
1008 if (lo->lo_refcnt > 1) {
1009 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1010 mutex_unlock(&lo->lo_ctl_mutex);
1011 return 0;
1014 if (filp == NULL)
1015 return -EINVAL;
1017 spin_lock_irq(&lo->lo_lock);
1018 lo->lo_state = Lo_rundown;
1019 spin_unlock_irq(&lo->lo_lock);
1021 kthread_stop(lo->lo_thread);
1023 spin_lock_irq(&lo->lo_lock);
1024 lo->lo_backing_file = NULL;
1025 spin_unlock_irq(&lo->lo_lock);
1027 loop_release_xfer(lo);
1028 lo->transfer = NULL;
1029 lo->ioctl = NULL;
1030 lo->lo_device = NULL;
1031 lo->lo_encryption = NULL;
1032 lo->lo_offset = 0;
1033 lo->lo_sizelimit = 0;
1034 lo->lo_encrypt_key_size = 0;
1035 lo->lo_thread = NULL;
1036 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1037 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1038 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1039 if (bdev) {
1040 bdput(bdev);
1041 invalidate_bdev(bdev);
1043 set_capacity(lo->lo_disk, 0);
1044 loop_sysfs_exit(lo);
1045 if (bdev) {
1046 bd_set_size(bdev, 0);
1047 /* let user-space know about this change */
1048 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1050 mapping_set_gfp_mask(filp->f_mapping, gfp);
1051 lo->lo_state = Lo_unbound;
1052 /* This is safe: open() is still holding a reference. */
1053 module_put(THIS_MODULE);
1054 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1055 ioctl_by_bdev(bdev, BLKRRPART, 0);
1056 lo->lo_flags = 0;
1057 if (!part_shift)
1058 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1059 mutex_unlock(&lo->lo_ctl_mutex);
1061 * Need not hold lo_ctl_mutex to fput backing file.
1062 * Calling fput holding lo_ctl_mutex triggers a circular
1063 * lock dependency possibility warning as fput can take
1064 * bd_mutex which is usually taken before lo_ctl_mutex.
1066 fput(filp);
1067 return 0;
1070 static int
1071 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1073 int err;
1074 struct loop_func_table *xfer;
1075 kuid_t uid = current_uid();
1077 if (lo->lo_encrypt_key_size &&
1078 !uid_eq(lo->lo_key_owner, uid) &&
1079 !capable(CAP_SYS_ADMIN))
1080 return -EPERM;
1081 if (lo->lo_state != Lo_bound)
1082 return -ENXIO;
1083 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1084 return -EINVAL;
1086 err = loop_release_xfer(lo);
1087 if (err)
1088 return err;
1090 if (info->lo_encrypt_type) {
1091 unsigned int type = info->lo_encrypt_type;
1093 if (type >= MAX_LO_CRYPT)
1094 return -EINVAL;
1095 xfer = xfer_funcs[type];
1096 if (xfer == NULL)
1097 return -EINVAL;
1098 } else
1099 xfer = NULL;
1101 err = loop_init_xfer(lo, xfer, info);
1102 if (err)
1103 return err;
1105 if (lo->lo_offset != info->lo_offset ||
1106 lo->lo_sizelimit != info->lo_sizelimit)
1107 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1108 return -EFBIG;
1110 loop_config_discard(lo);
1112 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1113 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1114 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1115 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1117 if (!xfer)
1118 xfer = &none_funcs;
1119 lo->transfer = xfer->transfer;
1120 lo->ioctl = xfer->ioctl;
1122 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1123 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1124 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1126 if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1127 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1128 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1129 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1130 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1133 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1134 lo->lo_init[0] = info->lo_init[0];
1135 lo->lo_init[1] = info->lo_init[1];
1136 if (info->lo_encrypt_key_size) {
1137 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1138 info->lo_encrypt_key_size);
1139 lo->lo_key_owner = uid;
1142 return 0;
1145 static int
1146 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1148 struct file *file = lo->lo_backing_file;
1149 struct kstat stat;
1150 int error;
1152 if (lo->lo_state != Lo_bound)
1153 return -ENXIO;
1154 error = vfs_getattr(&file->f_path, &stat);
1155 if (error)
1156 return error;
1157 memset(info, 0, sizeof(*info));
1158 info->lo_number = lo->lo_number;
1159 info->lo_device = huge_encode_dev(stat.dev);
1160 info->lo_inode = stat.ino;
1161 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1162 info->lo_offset = lo->lo_offset;
1163 info->lo_sizelimit = lo->lo_sizelimit;
1164 info->lo_flags = lo->lo_flags;
1165 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1166 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1167 info->lo_encrypt_type =
1168 lo->lo_encryption ? lo->lo_encryption->number : 0;
1169 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1170 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1171 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1172 lo->lo_encrypt_key_size);
1174 return 0;
1177 static void
1178 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1180 memset(info64, 0, sizeof(*info64));
1181 info64->lo_number = info->lo_number;
1182 info64->lo_device = info->lo_device;
1183 info64->lo_inode = info->lo_inode;
1184 info64->lo_rdevice = info->lo_rdevice;
1185 info64->lo_offset = info->lo_offset;
1186 info64->lo_sizelimit = 0;
1187 info64->lo_encrypt_type = info->lo_encrypt_type;
1188 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1189 info64->lo_flags = info->lo_flags;
1190 info64->lo_init[0] = info->lo_init[0];
1191 info64->lo_init[1] = info->lo_init[1];
1192 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1193 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1194 else
1195 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1196 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1199 static int
1200 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1202 memset(info, 0, sizeof(*info));
1203 info->lo_number = info64->lo_number;
1204 info->lo_device = info64->lo_device;
1205 info->lo_inode = info64->lo_inode;
1206 info->lo_rdevice = info64->lo_rdevice;
1207 info->lo_offset = info64->lo_offset;
1208 info->lo_encrypt_type = info64->lo_encrypt_type;
1209 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1210 info->lo_flags = info64->lo_flags;
1211 info->lo_init[0] = info64->lo_init[0];
1212 info->lo_init[1] = info64->lo_init[1];
1213 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1214 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1215 else
1216 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1217 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1219 /* error in case values were truncated */
1220 if (info->lo_device != info64->lo_device ||
1221 info->lo_rdevice != info64->lo_rdevice ||
1222 info->lo_inode != info64->lo_inode ||
1223 info->lo_offset != info64->lo_offset)
1224 return -EOVERFLOW;
1226 return 0;
1229 static int
1230 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1232 struct loop_info info;
1233 struct loop_info64 info64;
1235 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1236 return -EFAULT;
1237 loop_info64_from_old(&info, &info64);
1238 return loop_set_status(lo, &info64);
1241 static int
1242 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1244 struct loop_info64 info64;
1246 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1247 return -EFAULT;
1248 return loop_set_status(lo, &info64);
1251 static int
1252 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1253 struct loop_info info;
1254 struct loop_info64 info64;
1255 int err = 0;
1257 if (!arg)
1258 err = -EINVAL;
1259 if (!err)
1260 err = loop_get_status(lo, &info64);
1261 if (!err)
1262 err = loop_info64_to_old(&info64, &info);
1263 if (!err && copy_to_user(arg, &info, sizeof(info)))
1264 err = -EFAULT;
1266 return err;
1269 static int
1270 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1271 struct loop_info64 info64;
1272 int err = 0;
1274 if (!arg)
1275 err = -EINVAL;
1276 if (!err)
1277 err = loop_get_status(lo, &info64);
1278 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1279 err = -EFAULT;
1281 return err;
1284 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1286 if (unlikely(lo->lo_state != Lo_bound))
1287 return -ENXIO;
1289 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1292 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1293 unsigned int cmd, unsigned long arg)
1295 struct loop_device *lo = bdev->bd_disk->private_data;
1296 int err;
1298 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1299 switch (cmd) {
1300 case LOOP_SET_FD:
1301 err = loop_set_fd(lo, mode, bdev, arg);
1302 break;
1303 case LOOP_CHANGE_FD:
1304 err = loop_change_fd(lo, bdev, arg);
1305 break;
1306 case LOOP_CLR_FD:
1307 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1308 err = loop_clr_fd(lo);
1309 if (!err)
1310 goto out_unlocked;
1311 break;
1312 case LOOP_SET_STATUS:
1313 err = -EPERM;
1314 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1315 err = loop_set_status_old(lo,
1316 (struct loop_info __user *)arg);
1317 break;
1318 case LOOP_GET_STATUS:
1319 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1320 break;
1321 case LOOP_SET_STATUS64:
1322 err = -EPERM;
1323 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1324 err = loop_set_status64(lo,
1325 (struct loop_info64 __user *) arg);
1326 break;
1327 case LOOP_GET_STATUS64:
1328 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1329 break;
1330 case LOOP_SET_CAPACITY:
1331 err = -EPERM;
1332 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1333 err = loop_set_capacity(lo, bdev);
1334 break;
1335 default:
1336 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1338 mutex_unlock(&lo->lo_ctl_mutex);
1340 out_unlocked:
1341 return err;
1344 #ifdef CONFIG_COMPAT
1345 struct compat_loop_info {
1346 compat_int_t lo_number; /* ioctl r/o */
1347 compat_dev_t lo_device; /* ioctl r/o */
1348 compat_ulong_t lo_inode; /* ioctl r/o */
1349 compat_dev_t lo_rdevice; /* ioctl r/o */
1350 compat_int_t lo_offset;
1351 compat_int_t lo_encrypt_type;
1352 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1353 compat_int_t lo_flags; /* ioctl r/o */
1354 char lo_name[LO_NAME_SIZE];
1355 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1356 compat_ulong_t lo_init[2];
1357 char reserved[4];
1361 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1362 * - noinlined to reduce stack space usage in main part of driver
1364 static noinline int
1365 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1366 struct loop_info64 *info64)
1368 struct compat_loop_info info;
1370 if (copy_from_user(&info, arg, sizeof(info)))
1371 return -EFAULT;
1373 memset(info64, 0, sizeof(*info64));
1374 info64->lo_number = info.lo_number;
1375 info64->lo_device = info.lo_device;
1376 info64->lo_inode = info.lo_inode;
1377 info64->lo_rdevice = info.lo_rdevice;
1378 info64->lo_offset = info.lo_offset;
1379 info64->lo_sizelimit = 0;
1380 info64->lo_encrypt_type = info.lo_encrypt_type;
1381 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1382 info64->lo_flags = info.lo_flags;
1383 info64->lo_init[0] = info.lo_init[0];
1384 info64->lo_init[1] = info.lo_init[1];
1385 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1386 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1387 else
1388 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1389 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1390 return 0;
1394 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1395 * - noinlined to reduce stack space usage in main part of driver
1397 static noinline int
1398 loop_info64_to_compat(const struct loop_info64 *info64,
1399 struct compat_loop_info __user *arg)
1401 struct compat_loop_info info;
1403 memset(&info, 0, sizeof(info));
1404 info.lo_number = info64->lo_number;
1405 info.lo_device = info64->lo_device;
1406 info.lo_inode = info64->lo_inode;
1407 info.lo_rdevice = info64->lo_rdevice;
1408 info.lo_offset = info64->lo_offset;
1409 info.lo_encrypt_type = info64->lo_encrypt_type;
1410 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1411 info.lo_flags = info64->lo_flags;
1412 info.lo_init[0] = info64->lo_init[0];
1413 info.lo_init[1] = info64->lo_init[1];
1414 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1415 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1416 else
1417 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1418 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1420 /* error in case values were truncated */
1421 if (info.lo_device != info64->lo_device ||
1422 info.lo_rdevice != info64->lo_rdevice ||
1423 info.lo_inode != info64->lo_inode ||
1424 info.lo_offset != info64->lo_offset ||
1425 info.lo_init[0] != info64->lo_init[0] ||
1426 info.lo_init[1] != info64->lo_init[1])
1427 return -EOVERFLOW;
1429 if (copy_to_user(arg, &info, sizeof(info)))
1430 return -EFAULT;
1431 return 0;
1434 static int
1435 loop_set_status_compat(struct loop_device *lo,
1436 const struct compat_loop_info __user *arg)
1438 struct loop_info64 info64;
1439 int ret;
1441 ret = loop_info64_from_compat(arg, &info64);
1442 if (ret < 0)
1443 return ret;
1444 return loop_set_status(lo, &info64);
1447 static int
1448 loop_get_status_compat(struct loop_device *lo,
1449 struct compat_loop_info __user *arg)
1451 struct loop_info64 info64;
1452 int err = 0;
1454 if (!arg)
1455 err = -EINVAL;
1456 if (!err)
1457 err = loop_get_status(lo, &info64);
1458 if (!err)
1459 err = loop_info64_to_compat(&info64, arg);
1460 return err;
1463 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1464 unsigned int cmd, unsigned long arg)
1466 struct loop_device *lo = bdev->bd_disk->private_data;
1467 int err;
1469 switch(cmd) {
1470 case LOOP_SET_STATUS:
1471 mutex_lock(&lo->lo_ctl_mutex);
1472 err = loop_set_status_compat(
1473 lo, (const struct compat_loop_info __user *) arg);
1474 mutex_unlock(&lo->lo_ctl_mutex);
1475 break;
1476 case LOOP_GET_STATUS:
1477 mutex_lock(&lo->lo_ctl_mutex);
1478 err = loop_get_status_compat(
1479 lo, (struct compat_loop_info __user *) arg);
1480 mutex_unlock(&lo->lo_ctl_mutex);
1481 break;
1482 case LOOP_SET_CAPACITY:
1483 case LOOP_CLR_FD:
1484 case LOOP_GET_STATUS64:
1485 case LOOP_SET_STATUS64:
1486 arg = (unsigned long) compat_ptr(arg);
1487 case LOOP_SET_FD:
1488 case LOOP_CHANGE_FD:
1489 err = lo_ioctl(bdev, mode, cmd, arg);
1490 break;
1491 default:
1492 err = -ENOIOCTLCMD;
1493 break;
1495 return err;
1497 #endif
1499 static int lo_open(struct block_device *bdev, fmode_t mode)
1501 struct loop_device *lo;
1502 int err = 0;
1504 mutex_lock(&loop_index_mutex);
1505 lo = bdev->bd_disk->private_data;
1506 if (!lo) {
1507 err = -ENXIO;
1508 goto out;
1511 mutex_lock(&lo->lo_ctl_mutex);
1512 lo->lo_refcnt++;
1513 mutex_unlock(&lo->lo_ctl_mutex);
1514 out:
1515 mutex_unlock(&loop_index_mutex);
1516 return err;
1519 static int lo_release(struct gendisk *disk, fmode_t mode)
1521 struct loop_device *lo = disk->private_data;
1522 int err;
1524 mutex_lock(&lo->lo_ctl_mutex);
1526 if (--lo->lo_refcnt)
1527 goto out;
1529 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1531 * In autoclear mode, stop the loop thread
1532 * and remove configuration after last close.
1534 err = loop_clr_fd(lo);
1535 if (!err)
1536 goto out_unlocked;
1537 } else {
1539 * Otherwise keep thread (if running) and config,
1540 * but flush possible ongoing bios in thread.
1542 loop_flush(lo);
1545 out:
1546 mutex_unlock(&lo->lo_ctl_mutex);
1547 out_unlocked:
1548 return 0;
1551 static const struct block_device_operations lo_fops = {
1552 .owner = THIS_MODULE,
1553 .open = lo_open,
1554 .release = lo_release,
1555 .ioctl = lo_ioctl,
1556 #ifdef CONFIG_COMPAT
1557 .compat_ioctl = lo_compat_ioctl,
1558 #endif
1562 * And now the modules code and kernel interface.
1564 static int max_loop;
1565 module_param(max_loop, int, S_IRUGO);
1566 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1567 module_param(max_part, int, S_IRUGO);
1568 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1569 MODULE_LICENSE("GPL");
1570 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1572 int loop_register_transfer(struct loop_func_table *funcs)
1574 unsigned int n = funcs->number;
1576 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1577 return -EINVAL;
1578 xfer_funcs[n] = funcs;
1579 return 0;
1582 static int unregister_transfer_cb(int id, void *ptr, void *data)
1584 struct loop_device *lo = ptr;
1585 struct loop_func_table *xfer = data;
1587 mutex_lock(&lo->lo_ctl_mutex);
1588 if (lo->lo_encryption == xfer)
1589 loop_release_xfer(lo);
1590 mutex_unlock(&lo->lo_ctl_mutex);
1591 return 0;
1594 int loop_unregister_transfer(int number)
1596 unsigned int n = number;
1597 struct loop_func_table *xfer;
1599 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1600 return -EINVAL;
1602 xfer_funcs[n] = NULL;
1603 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1604 return 0;
1607 EXPORT_SYMBOL(loop_register_transfer);
1608 EXPORT_SYMBOL(loop_unregister_transfer);
1610 static int loop_add(struct loop_device **l, int i)
1612 struct loop_device *lo;
1613 struct gendisk *disk;
1614 int err;
1616 err = -ENOMEM;
1617 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1618 if (!lo)
1619 goto out;
1621 /* allocate id, if @id >= 0, we're requesting that specific id */
1622 if (i >= 0) {
1623 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1624 if (err == -ENOSPC)
1625 err = -EEXIST;
1626 } else {
1627 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1629 if (err < 0)
1630 goto out_free_dev;
1631 i = err;
1633 err = -ENOMEM;
1634 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1635 if (!lo->lo_queue)
1636 goto out_free_dev;
1638 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1639 if (!disk)
1640 goto out_free_queue;
1643 * Disable partition scanning by default. The in-kernel partition
1644 * scanning can be requested individually per-device during its
1645 * setup. Userspace can always add and remove partitions from all
1646 * devices. The needed partition minors are allocated from the
1647 * extended minor space, the main loop device numbers will continue
1648 * to match the loop minors, regardless of the number of partitions
1649 * used.
1651 * If max_part is given, partition scanning is globally enabled for
1652 * all loop devices. The minors for the main loop devices will be
1653 * multiples of max_part.
1655 * Note: Global-for-all-devices, set-only-at-init, read-only module
1656 * parameteters like 'max_loop' and 'max_part' make things needlessly
1657 * complicated, are too static, inflexible and may surprise
1658 * userspace tools. Parameters like this in general should be avoided.
1660 if (!part_shift)
1661 disk->flags |= GENHD_FL_NO_PART_SCAN;
1662 disk->flags |= GENHD_FL_EXT_DEVT;
1663 mutex_init(&lo->lo_ctl_mutex);
1664 lo->lo_number = i;
1665 lo->lo_thread = NULL;
1666 init_waitqueue_head(&lo->lo_event);
1667 init_waitqueue_head(&lo->lo_req_wait);
1668 spin_lock_init(&lo->lo_lock);
1669 disk->major = LOOP_MAJOR;
1670 disk->first_minor = i << part_shift;
1671 disk->fops = &lo_fops;
1672 disk->private_data = lo;
1673 disk->queue = lo->lo_queue;
1674 sprintf(disk->disk_name, "loop%d", i);
1675 add_disk(disk);
1676 *l = lo;
1677 return lo->lo_number;
1679 out_free_queue:
1680 blk_cleanup_queue(lo->lo_queue);
1681 out_free_dev:
1682 kfree(lo);
1683 out:
1684 return err;
1687 static void loop_remove(struct loop_device *lo)
1689 del_gendisk(lo->lo_disk);
1690 blk_cleanup_queue(lo->lo_queue);
1691 put_disk(lo->lo_disk);
1692 kfree(lo);
1695 static int find_free_cb(int id, void *ptr, void *data)
1697 struct loop_device *lo = ptr;
1698 struct loop_device **l = data;
1700 if (lo->lo_state == Lo_unbound) {
1701 *l = lo;
1702 return 1;
1704 return 0;
1707 static int loop_lookup(struct loop_device **l, int i)
1709 struct loop_device *lo;
1710 int ret = -ENODEV;
1712 if (i < 0) {
1713 int err;
1715 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1716 if (err == 1) {
1717 *l = lo;
1718 ret = lo->lo_number;
1720 goto out;
1723 /* lookup and return a specific i */
1724 lo = idr_find(&loop_index_idr, i);
1725 if (lo) {
1726 *l = lo;
1727 ret = lo->lo_number;
1729 out:
1730 return ret;
1733 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1735 struct loop_device *lo;
1736 struct kobject *kobj;
1737 int err;
1739 mutex_lock(&loop_index_mutex);
1740 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1741 if (err < 0)
1742 err = loop_add(&lo, MINOR(dev) >> part_shift);
1743 if (err < 0)
1744 kobj = ERR_PTR(err);
1745 else
1746 kobj = get_disk(lo->lo_disk);
1747 mutex_unlock(&loop_index_mutex);
1749 *part = 0;
1750 return kobj;
1753 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1754 unsigned long parm)
1756 struct loop_device *lo;
1757 int ret = -ENOSYS;
1759 mutex_lock(&loop_index_mutex);
1760 switch (cmd) {
1761 case LOOP_CTL_ADD:
1762 ret = loop_lookup(&lo, parm);
1763 if (ret >= 0) {
1764 ret = -EEXIST;
1765 break;
1767 ret = loop_add(&lo, parm);
1768 break;
1769 case LOOP_CTL_REMOVE:
1770 ret = loop_lookup(&lo, parm);
1771 if (ret < 0)
1772 break;
1773 mutex_lock(&lo->lo_ctl_mutex);
1774 if (lo->lo_state != Lo_unbound) {
1775 ret = -EBUSY;
1776 mutex_unlock(&lo->lo_ctl_mutex);
1777 break;
1779 if (lo->lo_refcnt > 0) {
1780 ret = -EBUSY;
1781 mutex_unlock(&lo->lo_ctl_mutex);
1782 break;
1784 lo->lo_disk->private_data = NULL;
1785 mutex_unlock(&lo->lo_ctl_mutex);
1786 idr_remove(&loop_index_idr, lo->lo_number);
1787 loop_remove(lo);
1788 break;
1789 case LOOP_CTL_GET_FREE:
1790 ret = loop_lookup(&lo, -1);
1791 if (ret >= 0)
1792 break;
1793 ret = loop_add(&lo, -1);
1795 mutex_unlock(&loop_index_mutex);
1797 return ret;
1800 static const struct file_operations loop_ctl_fops = {
1801 .open = nonseekable_open,
1802 .unlocked_ioctl = loop_control_ioctl,
1803 .compat_ioctl = loop_control_ioctl,
1804 .owner = THIS_MODULE,
1805 .llseek = noop_llseek,
1808 static struct miscdevice loop_misc = {
1809 .minor = LOOP_CTRL_MINOR,
1810 .name = "loop-control",
1811 .fops = &loop_ctl_fops,
1814 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1815 MODULE_ALIAS("devname:loop-control");
1817 static int __init loop_init(void)
1819 int i, nr;
1820 unsigned long range;
1821 struct loop_device *lo;
1822 int err;
1824 err = misc_register(&loop_misc);
1825 if (err < 0)
1826 return err;
1828 part_shift = 0;
1829 if (max_part > 0) {
1830 part_shift = fls(max_part);
1833 * Adjust max_part according to part_shift as it is exported
1834 * to user space so that user can decide correct minor number
1835 * if [s]he want to create more devices.
1837 * Note that -1 is required because partition 0 is reserved
1838 * for the whole disk.
1840 max_part = (1UL << part_shift) - 1;
1843 if ((1UL << part_shift) > DISK_MAX_PARTS) {
1844 err = -EINVAL;
1845 goto misc_out;
1848 if (max_loop > 1UL << (MINORBITS - part_shift)) {
1849 err = -EINVAL;
1850 goto misc_out;
1854 * If max_loop is specified, create that many devices upfront.
1855 * This also becomes a hard limit. If max_loop is not specified,
1856 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1857 * init time. Loop devices can be requested on-demand with the
1858 * /dev/loop-control interface, or be instantiated by accessing
1859 * a 'dead' device node.
1861 if (max_loop) {
1862 nr = max_loop;
1863 range = max_loop << part_shift;
1864 } else {
1865 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1866 range = 1UL << MINORBITS;
1869 if (register_blkdev(LOOP_MAJOR, "loop")) {
1870 err = -EIO;
1871 goto misc_out;
1874 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1875 THIS_MODULE, loop_probe, NULL, NULL);
1877 /* pre-create number of devices given by config or max_loop */
1878 mutex_lock(&loop_index_mutex);
1879 for (i = 0; i < nr; i++)
1880 loop_add(&lo, i);
1881 mutex_unlock(&loop_index_mutex);
1883 printk(KERN_INFO "loop: module loaded\n");
1884 return 0;
1886 misc_out:
1887 misc_deregister(&loop_misc);
1888 return err;
1891 static int loop_exit_cb(int id, void *ptr, void *data)
1893 struct loop_device *lo = ptr;
1895 loop_remove(lo);
1896 return 0;
1899 static void __exit loop_exit(void)
1901 unsigned long range;
1903 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1905 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1906 idr_destroy(&loop_index_idr);
1908 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1909 unregister_blkdev(LOOP_MAJOR, "loop");
1911 misc_deregister(&loop_misc);
1914 module_init(loop_init);
1915 module_exit(loop_exit);
1917 #ifndef MODULE
1918 static int __init max_loop_setup(char *str)
1920 max_loop = simple_strtol(str, NULL, 0);
1921 return 1;
1924 __setup("max_loop=", max_loop_setup);
1925 #endif