Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux-2.6.git] / drivers / dma / ste_dma40.c
blob5ab5880d5c9041203bdb38a4d242c888777e8f2d
1 /*
2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
7 */
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/pm.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/err.h>
20 #include <linux/of.h>
21 #include <linux/of_dma.h>
22 #include <linux/amba/bus.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/platform_data/dma-ste-dma40.h>
26 #include "dmaengine.h"
27 #include "ste_dma40_ll.h"
29 #define D40_NAME "dma40"
31 #define D40_PHY_CHAN -1
33 /* For masking out/in 2 bit channel positions */
34 #define D40_CHAN_POS(chan) (2 * (chan / 2))
35 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
37 /* Maximum iterations taken before giving up suspending a channel */
38 #define D40_SUSPEND_MAX_IT 500
40 /* Milliseconds */
41 #define DMA40_AUTOSUSPEND_DELAY 100
43 /* Hardware requirement on LCLA alignment */
44 #define LCLA_ALIGNMENT 0x40000
46 /* Max number of links per event group */
47 #define D40_LCLA_LINK_PER_EVENT_GRP 128
48 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
50 /* Max number of logical channels per physical channel */
51 #define D40_MAX_LOG_CHAN_PER_PHY 32
53 /* Attempts before giving up to trying to get pages that are aligned */
54 #define MAX_LCLA_ALLOC_ATTEMPTS 256
56 /* Bit markings for allocation map */
57 #define D40_ALLOC_FREE BIT(31)
58 #define D40_ALLOC_PHY BIT(30)
59 #define D40_ALLOC_LOG_FREE 0
61 #define D40_MEMCPY_MAX_CHANS 8
63 /* Reserved event lines for memcpy only. */
64 #define DB8500_DMA_MEMCPY_EV_0 51
65 #define DB8500_DMA_MEMCPY_EV_1 56
66 #define DB8500_DMA_MEMCPY_EV_2 57
67 #define DB8500_DMA_MEMCPY_EV_3 58
68 #define DB8500_DMA_MEMCPY_EV_4 59
69 #define DB8500_DMA_MEMCPY_EV_5 60
71 static int dma40_memcpy_channels[] = {
72 DB8500_DMA_MEMCPY_EV_0,
73 DB8500_DMA_MEMCPY_EV_1,
74 DB8500_DMA_MEMCPY_EV_2,
75 DB8500_DMA_MEMCPY_EV_3,
76 DB8500_DMA_MEMCPY_EV_4,
77 DB8500_DMA_MEMCPY_EV_5,
80 /* Default configuration for physcial memcpy */
81 static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
82 .mode = STEDMA40_MODE_PHYSICAL,
83 .dir = DMA_MEM_TO_MEM,
85 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
86 .src_info.psize = STEDMA40_PSIZE_PHY_1,
87 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
89 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
90 .dst_info.psize = STEDMA40_PSIZE_PHY_1,
91 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
94 /* Default configuration for logical memcpy */
95 static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
96 .mode = STEDMA40_MODE_LOGICAL,
97 .dir = DMA_MEM_TO_MEM,
99 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
100 .src_info.psize = STEDMA40_PSIZE_LOG_1,
101 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
103 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
104 .dst_info.psize = STEDMA40_PSIZE_LOG_1,
105 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
109 * enum 40_command - The different commands and/or statuses.
111 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
112 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
113 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
114 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
116 enum d40_command {
117 D40_DMA_STOP = 0,
118 D40_DMA_RUN = 1,
119 D40_DMA_SUSPEND_REQ = 2,
120 D40_DMA_SUSPENDED = 3
124 * enum d40_events - The different Event Enables for the event lines.
126 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
127 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
128 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
129 * @D40_ROUND_EVENTLINE: Status check for event line.
132 enum d40_events {
133 D40_DEACTIVATE_EVENTLINE = 0,
134 D40_ACTIVATE_EVENTLINE = 1,
135 D40_SUSPEND_REQ_EVENTLINE = 2,
136 D40_ROUND_EVENTLINE = 3
140 * These are the registers that has to be saved and later restored
141 * when the DMA hw is powered off.
142 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
144 static u32 d40_backup_regs[] = {
145 D40_DREG_LCPA,
146 D40_DREG_LCLA,
147 D40_DREG_PRMSE,
148 D40_DREG_PRMSO,
149 D40_DREG_PRMOE,
150 D40_DREG_PRMOO,
153 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
156 * since 9540 and 8540 has the same HW revision
157 * use v4a for 9540 or ealier
158 * use v4b for 8540 or later
159 * HW revision:
160 * DB8500ed has revision 0
161 * DB8500v1 has revision 2
162 * DB8500v2 has revision 3
163 * AP9540v1 has revision 4
164 * DB8540v1 has revision 4
165 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
167 static u32 d40_backup_regs_v4a[] = {
168 D40_DREG_PSEG1,
169 D40_DREG_PSEG2,
170 D40_DREG_PSEG3,
171 D40_DREG_PSEG4,
172 D40_DREG_PCEG1,
173 D40_DREG_PCEG2,
174 D40_DREG_PCEG3,
175 D40_DREG_PCEG4,
176 D40_DREG_RSEG1,
177 D40_DREG_RSEG2,
178 D40_DREG_RSEG3,
179 D40_DREG_RSEG4,
180 D40_DREG_RCEG1,
181 D40_DREG_RCEG2,
182 D40_DREG_RCEG3,
183 D40_DREG_RCEG4,
186 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
188 static u32 d40_backup_regs_v4b[] = {
189 D40_DREG_CPSEG1,
190 D40_DREG_CPSEG2,
191 D40_DREG_CPSEG3,
192 D40_DREG_CPSEG4,
193 D40_DREG_CPSEG5,
194 D40_DREG_CPCEG1,
195 D40_DREG_CPCEG2,
196 D40_DREG_CPCEG3,
197 D40_DREG_CPCEG4,
198 D40_DREG_CPCEG5,
199 D40_DREG_CRSEG1,
200 D40_DREG_CRSEG2,
201 D40_DREG_CRSEG3,
202 D40_DREG_CRSEG4,
203 D40_DREG_CRSEG5,
204 D40_DREG_CRCEG1,
205 D40_DREG_CRCEG2,
206 D40_DREG_CRCEG3,
207 D40_DREG_CRCEG4,
208 D40_DREG_CRCEG5,
211 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213 static u32 d40_backup_regs_chan[] = {
214 D40_CHAN_REG_SSCFG,
215 D40_CHAN_REG_SSELT,
216 D40_CHAN_REG_SSPTR,
217 D40_CHAN_REG_SSLNK,
218 D40_CHAN_REG_SDCFG,
219 D40_CHAN_REG_SDELT,
220 D40_CHAN_REG_SDPTR,
221 D40_CHAN_REG_SDLNK,
224 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
225 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
228 * struct d40_interrupt_lookup - lookup table for interrupt handler
230 * @src: Interrupt mask register.
231 * @clr: Interrupt clear register.
232 * @is_error: true if this is an error interrupt.
233 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
234 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
236 struct d40_interrupt_lookup {
237 u32 src;
238 u32 clr;
239 bool is_error;
240 int offset;
244 static struct d40_interrupt_lookup il_v4a[] = {
245 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
246 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
247 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
248 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
249 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
250 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
251 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
252 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
253 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
254 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
257 static struct d40_interrupt_lookup il_v4b[] = {
258 {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
259 {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
260 {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
261 {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
262 {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
263 {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
264 {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
265 {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
266 {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
267 {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
268 {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
269 {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
273 * struct d40_reg_val - simple lookup struct
275 * @reg: The register.
276 * @val: The value that belongs to the register in reg.
278 struct d40_reg_val {
279 unsigned int reg;
280 unsigned int val;
283 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
284 /* Clock every part of the DMA block from start */
285 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
287 /* Interrupts on all logical channels */
288 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
289 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
290 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
291 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
292 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
293 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
294 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
295 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
296 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
297 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
298 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
299 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
301 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
302 /* Clock every part of the DMA block from start */
303 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
305 /* Interrupts on all logical channels */
306 { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
307 { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
308 { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
309 { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
310 { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
311 { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
312 { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
313 { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
314 { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
315 { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
316 { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
317 { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
318 { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
319 { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
320 { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
324 * struct d40_lli_pool - Structure for keeping LLIs in memory
326 * @base: Pointer to memory area when the pre_alloc_lli's are not large
327 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
328 * pre_alloc_lli is used.
329 * @dma_addr: DMA address, if mapped
330 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
331 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
332 * one buffer to one buffer.
334 struct d40_lli_pool {
335 void *base;
336 int size;
337 dma_addr_t dma_addr;
338 /* Space for dst and src, plus an extra for padding */
339 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
343 * struct d40_desc - A descriptor is one DMA job.
345 * @lli_phy: LLI settings for physical channel. Both src and dst=
346 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
347 * lli_len equals one.
348 * @lli_log: Same as above but for logical channels.
349 * @lli_pool: The pool with two entries pre-allocated.
350 * @lli_len: Number of llis of current descriptor.
351 * @lli_current: Number of transferred llis.
352 * @lcla_alloc: Number of LCLA entries allocated.
353 * @txd: DMA engine struct. Used for among other things for communication
354 * during a transfer.
355 * @node: List entry.
356 * @is_in_client_list: true if the client owns this descriptor.
357 * @cyclic: true if this is a cyclic job
359 * This descriptor is used for both logical and physical transfers.
361 struct d40_desc {
362 /* LLI physical */
363 struct d40_phy_lli_bidir lli_phy;
364 /* LLI logical */
365 struct d40_log_lli_bidir lli_log;
367 struct d40_lli_pool lli_pool;
368 int lli_len;
369 int lli_current;
370 int lcla_alloc;
372 struct dma_async_tx_descriptor txd;
373 struct list_head node;
375 bool is_in_client_list;
376 bool cyclic;
380 * struct d40_lcla_pool - LCLA pool settings and data.
382 * @base: The virtual address of LCLA. 18 bit aligned.
383 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
384 * This pointer is only there for clean-up on error.
385 * @pages: The number of pages needed for all physical channels.
386 * Only used later for clean-up on error
387 * @lock: Lock to protect the content in this struct.
388 * @alloc_map: big map over which LCLA entry is own by which job.
390 struct d40_lcla_pool {
391 void *base;
392 dma_addr_t dma_addr;
393 void *base_unaligned;
394 int pages;
395 spinlock_t lock;
396 struct d40_desc **alloc_map;
400 * struct d40_phy_res - struct for handling eventlines mapped to physical
401 * channels.
403 * @lock: A lock protection this entity.
404 * @reserved: True if used by secure world or otherwise.
405 * @num: The physical channel number of this entity.
406 * @allocated_src: Bit mapped to show which src event line's are mapped to
407 * this physical channel. Can also be free or physically allocated.
408 * @allocated_dst: Same as for src but is dst.
409 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
410 * event line number.
411 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413 struct d40_phy_res {
414 spinlock_t lock;
415 bool reserved;
416 int num;
417 u32 allocated_src;
418 u32 allocated_dst;
419 bool use_soft_lli;
422 struct d40_base;
425 * struct d40_chan - Struct that describes a channel.
427 * @lock: A spinlock to protect this struct.
428 * @log_num: The logical number, if any of this channel.
429 * @pending_tx: The number of pending transfers. Used between interrupt handler
430 * and tasklet.
431 * @busy: Set to true when transfer is ongoing on this channel.
432 * @phy_chan: Pointer to physical channel which this instance runs on. If this
433 * point is NULL, then the channel is not allocated.
434 * @chan: DMA engine handle.
435 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
436 * transfer and call client callback.
437 * @client: Cliented owned descriptor list.
438 * @pending_queue: Submitted jobs, to be issued by issue_pending()
439 * @active: Active descriptor.
440 * @done: Completed jobs
441 * @queue: Queued jobs.
442 * @prepare_queue: Prepared jobs.
443 * @dma_cfg: The client configuration of this dma channel.
444 * @configured: whether the dma_cfg configuration is valid
445 * @base: Pointer to the device instance struct.
446 * @src_def_cfg: Default cfg register setting for src.
447 * @dst_def_cfg: Default cfg register setting for dst.
448 * @log_def: Default logical channel settings.
449 * @lcpa: Pointer to dst and src lcpa settings.
450 * @runtime_addr: runtime configured address.
451 * @runtime_direction: runtime configured direction.
453 * This struct can either "be" a logical or a physical channel.
455 struct d40_chan {
456 spinlock_t lock;
457 int log_num;
458 int pending_tx;
459 bool busy;
460 struct d40_phy_res *phy_chan;
461 struct dma_chan chan;
462 struct tasklet_struct tasklet;
463 struct list_head client;
464 struct list_head pending_queue;
465 struct list_head active;
466 struct list_head done;
467 struct list_head queue;
468 struct list_head prepare_queue;
469 struct stedma40_chan_cfg dma_cfg;
470 bool configured;
471 struct d40_base *base;
472 /* Default register configurations */
473 u32 src_def_cfg;
474 u32 dst_def_cfg;
475 struct d40_def_lcsp log_def;
476 struct d40_log_lli_full *lcpa;
477 /* Runtime reconfiguration */
478 dma_addr_t runtime_addr;
479 enum dma_transfer_direction runtime_direction;
483 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
484 * controller
486 * @backup: the pointer to the registers address array for backup
487 * @backup_size: the size of the registers address array for backup
488 * @realtime_en: the realtime enable register
489 * @realtime_clear: the realtime clear register
490 * @high_prio_en: the high priority enable register
491 * @high_prio_clear: the high priority clear register
492 * @interrupt_en: the interrupt enable register
493 * @interrupt_clear: the interrupt clear register
494 * @il: the pointer to struct d40_interrupt_lookup
495 * @il_size: the size of d40_interrupt_lookup array
496 * @init_reg: the pointer to the struct d40_reg_val
497 * @init_reg_size: the size of d40_reg_val array
499 struct d40_gen_dmac {
500 u32 *backup;
501 u32 backup_size;
502 u32 realtime_en;
503 u32 realtime_clear;
504 u32 high_prio_en;
505 u32 high_prio_clear;
506 u32 interrupt_en;
507 u32 interrupt_clear;
508 struct d40_interrupt_lookup *il;
509 u32 il_size;
510 struct d40_reg_val *init_reg;
511 u32 init_reg_size;
515 * struct d40_base - The big global struct, one for each probe'd instance.
517 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
518 * @execmd_lock: Lock for execute command usage since several channels share
519 * the same physical register.
520 * @dev: The device structure.
521 * @virtbase: The virtual base address of the DMA's register.
522 * @rev: silicon revision detected.
523 * @clk: Pointer to the DMA clock structure.
524 * @phy_start: Physical memory start of the DMA registers.
525 * @phy_size: Size of the DMA register map.
526 * @irq: The IRQ number.
527 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
528 * transfers).
529 * @num_phy_chans: The number of physical channels. Read from HW. This
530 * is the number of available channels for this driver, not counting "Secure
531 * mode" allocated physical channels.
532 * @num_log_chans: The number of logical channels. Calculated from
533 * num_phy_chans.
534 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
535 * @dma_slave: dma_device channels that can do only do slave transfers.
536 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
537 * @phy_chans: Room for all possible physical channels in system.
538 * @log_chans: Room for all possible logical channels in system.
539 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
540 * to log_chans entries.
541 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
542 * to phy_chans entries.
543 * @plat_data: Pointer to provided platform_data which is the driver
544 * configuration.
545 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
546 * @phy_res: Vector containing all physical channels.
547 * @lcla_pool: lcla pool settings and data.
548 * @lcpa_base: The virtual mapped address of LCPA.
549 * @phy_lcpa: The physical address of the LCPA.
550 * @lcpa_size: The size of the LCPA area.
551 * @desc_slab: cache for descriptors.
552 * @reg_val_backup: Here the values of some hardware registers are stored
553 * before the DMA is powered off. They are restored when the power is back on.
554 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
555 * later
556 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
557 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
558 * @initialized: true if the dma has been initialized
559 * @gen_dmac: the struct for generic registers values to represent u8500/8540
560 * DMA controller
562 struct d40_base {
563 spinlock_t interrupt_lock;
564 spinlock_t execmd_lock;
565 struct device *dev;
566 void __iomem *virtbase;
567 u8 rev:4;
568 struct clk *clk;
569 phys_addr_t phy_start;
570 resource_size_t phy_size;
571 int irq;
572 int num_memcpy_chans;
573 int num_phy_chans;
574 int num_log_chans;
575 struct device_dma_parameters dma_parms;
576 struct dma_device dma_both;
577 struct dma_device dma_slave;
578 struct dma_device dma_memcpy;
579 struct d40_chan *phy_chans;
580 struct d40_chan *log_chans;
581 struct d40_chan **lookup_log_chans;
582 struct d40_chan **lookup_phy_chans;
583 struct stedma40_platform_data *plat_data;
584 struct regulator *lcpa_regulator;
585 /* Physical half channels */
586 struct d40_phy_res *phy_res;
587 struct d40_lcla_pool lcla_pool;
588 void *lcpa_base;
589 dma_addr_t phy_lcpa;
590 resource_size_t lcpa_size;
591 struct kmem_cache *desc_slab;
592 u32 reg_val_backup[BACKUP_REGS_SZ];
593 u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
594 u32 *reg_val_backup_chan;
595 u16 gcc_pwr_off_mask;
596 bool initialized;
597 struct d40_gen_dmac gen_dmac;
600 static struct device *chan2dev(struct d40_chan *d40c)
602 return &d40c->chan.dev->device;
605 static bool chan_is_physical(struct d40_chan *chan)
607 return chan->log_num == D40_PHY_CHAN;
610 static bool chan_is_logical(struct d40_chan *chan)
612 return !chan_is_physical(chan);
615 static void __iomem *chan_base(struct d40_chan *chan)
617 return chan->base->virtbase + D40_DREG_PCBASE +
618 chan->phy_chan->num * D40_DREG_PCDELTA;
621 #define d40_err(dev, format, arg...) \
622 dev_err(dev, "[%s] " format, __func__, ## arg)
624 #define chan_err(d40c, format, arg...) \
625 d40_err(chan2dev(d40c), format, ## arg)
627 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
628 int lli_len)
630 bool is_log = chan_is_logical(d40c);
631 u32 align;
632 void *base;
634 if (is_log)
635 align = sizeof(struct d40_log_lli);
636 else
637 align = sizeof(struct d40_phy_lli);
639 if (lli_len == 1) {
640 base = d40d->lli_pool.pre_alloc_lli;
641 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
642 d40d->lli_pool.base = NULL;
643 } else {
644 d40d->lli_pool.size = lli_len * 2 * align;
646 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
647 d40d->lli_pool.base = base;
649 if (d40d->lli_pool.base == NULL)
650 return -ENOMEM;
653 if (is_log) {
654 d40d->lli_log.src = PTR_ALIGN(base, align);
655 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
657 d40d->lli_pool.dma_addr = 0;
658 } else {
659 d40d->lli_phy.src = PTR_ALIGN(base, align);
660 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
662 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
663 d40d->lli_phy.src,
664 d40d->lli_pool.size,
665 DMA_TO_DEVICE);
667 if (dma_mapping_error(d40c->base->dev,
668 d40d->lli_pool.dma_addr)) {
669 kfree(d40d->lli_pool.base);
670 d40d->lli_pool.base = NULL;
671 d40d->lli_pool.dma_addr = 0;
672 return -ENOMEM;
676 return 0;
679 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
681 if (d40d->lli_pool.dma_addr)
682 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
683 d40d->lli_pool.size, DMA_TO_DEVICE);
685 kfree(d40d->lli_pool.base);
686 d40d->lli_pool.base = NULL;
687 d40d->lli_pool.size = 0;
688 d40d->lli_log.src = NULL;
689 d40d->lli_log.dst = NULL;
690 d40d->lli_phy.src = NULL;
691 d40d->lli_phy.dst = NULL;
694 static int d40_lcla_alloc_one(struct d40_chan *d40c,
695 struct d40_desc *d40d)
697 unsigned long flags;
698 int i;
699 int ret = -EINVAL;
701 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
704 * Allocate both src and dst at the same time, therefore the half
705 * start on 1 since 0 can't be used since zero is used as end marker.
707 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
708 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
710 if (!d40c->base->lcla_pool.alloc_map[idx]) {
711 d40c->base->lcla_pool.alloc_map[idx] = d40d;
712 d40d->lcla_alloc++;
713 ret = i;
714 break;
718 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
720 return ret;
723 static int d40_lcla_free_all(struct d40_chan *d40c,
724 struct d40_desc *d40d)
726 unsigned long flags;
727 int i;
728 int ret = -EINVAL;
730 if (chan_is_physical(d40c))
731 return 0;
733 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
735 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
736 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
738 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
739 d40c->base->lcla_pool.alloc_map[idx] = NULL;
740 d40d->lcla_alloc--;
741 if (d40d->lcla_alloc == 0) {
742 ret = 0;
743 break;
748 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
750 return ret;
754 static void d40_desc_remove(struct d40_desc *d40d)
756 list_del(&d40d->node);
759 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
761 struct d40_desc *desc = NULL;
763 if (!list_empty(&d40c->client)) {
764 struct d40_desc *d;
765 struct d40_desc *_d;
767 list_for_each_entry_safe(d, _d, &d40c->client, node) {
768 if (async_tx_test_ack(&d->txd)) {
769 d40_desc_remove(d);
770 desc = d;
771 memset(desc, 0, sizeof(*desc));
772 break;
777 if (!desc)
778 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
780 if (desc)
781 INIT_LIST_HEAD(&desc->node);
783 return desc;
786 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
789 d40_pool_lli_free(d40c, d40d);
790 d40_lcla_free_all(d40c, d40d);
791 kmem_cache_free(d40c->base->desc_slab, d40d);
794 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
796 list_add_tail(&desc->node, &d40c->active);
799 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
801 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
802 struct d40_phy_lli *lli_src = desc->lli_phy.src;
803 void __iomem *base = chan_base(chan);
805 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
806 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
807 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
808 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
810 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
811 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
812 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
813 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
816 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
818 list_add_tail(&desc->node, &d40c->done);
821 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
823 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
824 struct d40_log_lli_bidir *lli = &desc->lli_log;
825 int lli_current = desc->lli_current;
826 int lli_len = desc->lli_len;
827 bool cyclic = desc->cyclic;
828 int curr_lcla = -EINVAL;
829 int first_lcla = 0;
830 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
831 bool linkback;
834 * We may have partially running cyclic transfers, in case we did't get
835 * enough LCLA entries.
837 linkback = cyclic && lli_current == 0;
840 * For linkback, we need one LCLA even with only one link, because we
841 * can't link back to the one in LCPA space
843 if (linkback || (lli_len - lli_current > 1)) {
845 * If the channel is expected to use only soft_lli don't
846 * allocate a lcla. This is to avoid a HW issue that exists
847 * in some controller during a peripheral to memory transfer
848 * that uses linked lists.
850 if (!(chan->phy_chan->use_soft_lli &&
851 chan->dma_cfg.dir == DMA_DEV_TO_MEM))
852 curr_lcla = d40_lcla_alloc_one(chan, desc);
854 first_lcla = curr_lcla;
858 * For linkback, we normally load the LCPA in the loop since we need to
859 * link it to the second LCLA and not the first. However, if we
860 * couldn't even get a first LCLA, then we have to run in LCPA and
861 * reload manually.
863 if (!linkback || curr_lcla == -EINVAL) {
864 unsigned int flags = 0;
866 if (curr_lcla == -EINVAL)
867 flags |= LLI_TERM_INT;
869 d40_log_lli_lcpa_write(chan->lcpa,
870 &lli->dst[lli_current],
871 &lli->src[lli_current],
872 curr_lcla,
873 flags);
874 lli_current++;
877 if (curr_lcla < 0)
878 goto out;
880 for (; lli_current < lli_len; lli_current++) {
881 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
882 8 * curr_lcla * 2;
883 struct d40_log_lli *lcla = pool->base + lcla_offset;
884 unsigned int flags = 0;
885 int next_lcla;
887 if (lli_current + 1 < lli_len)
888 next_lcla = d40_lcla_alloc_one(chan, desc);
889 else
890 next_lcla = linkback ? first_lcla : -EINVAL;
892 if (cyclic || next_lcla == -EINVAL)
893 flags |= LLI_TERM_INT;
895 if (linkback && curr_lcla == first_lcla) {
896 /* First link goes in both LCPA and LCLA */
897 d40_log_lli_lcpa_write(chan->lcpa,
898 &lli->dst[lli_current],
899 &lli->src[lli_current],
900 next_lcla, flags);
904 * One unused LCLA in the cyclic case if the very first
905 * next_lcla fails...
907 d40_log_lli_lcla_write(lcla,
908 &lli->dst[lli_current],
909 &lli->src[lli_current],
910 next_lcla, flags);
913 * Cache maintenance is not needed if lcla is
914 * mapped in esram
916 if (!use_esram_lcla) {
917 dma_sync_single_range_for_device(chan->base->dev,
918 pool->dma_addr, lcla_offset,
919 2 * sizeof(struct d40_log_lli),
920 DMA_TO_DEVICE);
922 curr_lcla = next_lcla;
924 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
925 lli_current++;
926 break;
930 out:
931 desc->lli_current = lli_current;
934 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
936 if (chan_is_physical(d40c)) {
937 d40_phy_lli_load(d40c, d40d);
938 d40d->lli_current = d40d->lli_len;
939 } else
940 d40_log_lli_to_lcxa(d40c, d40d);
943 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
945 struct d40_desc *d;
947 if (list_empty(&d40c->active))
948 return NULL;
950 d = list_first_entry(&d40c->active,
951 struct d40_desc,
952 node);
953 return d;
956 /* remove desc from current queue and add it to the pending_queue */
957 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
959 d40_desc_remove(desc);
960 desc->is_in_client_list = false;
961 list_add_tail(&desc->node, &d40c->pending_queue);
964 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
966 struct d40_desc *d;
968 if (list_empty(&d40c->pending_queue))
969 return NULL;
971 d = list_first_entry(&d40c->pending_queue,
972 struct d40_desc,
973 node);
974 return d;
977 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
979 struct d40_desc *d;
981 if (list_empty(&d40c->queue))
982 return NULL;
984 d = list_first_entry(&d40c->queue,
985 struct d40_desc,
986 node);
987 return d;
990 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
992 if (list_empty(&d40c->done))
993 return NULL;
995 return list_first_entry(&d40c->done, struct d40_desc, node);
998 static int d40_psize_2_burst_size(bool is_log, int psize)
1000 if (is_log) {
1001 if (psize == STEDMA40_PSIZE_LOG_1)
1002 return 1;
1003 } else {
1004 if (psize == STEDMA40_PSIZE_PHY_1)
1005 return 1;
1008 return 2 << psize;
1012 * The dma only supports transmitting packages up to
1013 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1015 * Calculate the total number of dma elements required to send the entire sg list.
1017 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1019 int dmalen;
1020 u32 max_w = max(data_width1, data_width2);
1021 u32 min_w = min(data_width1, data_width2);
1022 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1024 if (seg_max > STEDMA40_MAX_SEG_SIZE)
1025 seg_max -= max_w;
1027 if (!IS_ALIGNED(size, max_w))
1028 return -EINVAL;
1030 if (size <= seg_max)
1031 dmalen = 1;
1032 else {
1033 dmalen = size / seg_max;
1034 if (dmalen * seg_max < size)
1035 dmalen++;
1037 return dmalen;
1040 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1041 u32 data_width1, u32 data_width2)
1043 struct scatterlist *sg;
1044 int i;
1045 int len = 0;
1046 int ret;
1048 for_each_sg(sgl, sg, sg_len, i) {
1049 ret = d40_size_2_dmalen(sg_dma_len(sg),
1050 data_width1, data_width2);
1051 if (ret < 0)
1052 return ret;
1053 len += ret;
1055 return len;
1059 #ifdef CONFIG_PM
1060 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
1061 u32 *regaddr, int num, bool save)
1063 int i;
1065 for (i = 0; i < num; i++) {
1066 void __iomem *addr = baseaddr + regaddr[i];
1068 if (save)
1069 backup[i] = readl_relaxed(addr);
1070 else
1071 writel_relaxed(backup[i], addr);
1075 static void d40_save_restore_registers(struct d40_base *base, bool save)
1077 int i;
1079 /* Save/Restore channel specific registers */
1080 for (i = 0; i < base->num_phy_chans; i++) {
1081 void __iomem *addr;
1082 int idx;
1084 if (base->phy_res[i].reserved)
1085 continue;
1087 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
1088 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
1090 dma40_backup(addr, &base->reg_val_backup_chan[idx],
1091 d40_backup_regs_chan,
1092 ARRAY_SIZE(d40_backup_regs_chan),
1093 save);
1096 /* Save/Restore global registers */
1097 dma40_backup(base->virtbase, base->reg_val_backup,
1098 d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
1099 save);
1101 /* Save/Restore registers only existing on dma40 v3 and later */
1102 if (base->gen_dmac.backup)
1103 dma40_backup(base->virtbase, base->reg_val_backup_v4,
1104 base->gen_dmac.backup,
1105 base->gen_dmac.backup_size,
1106 save);
1108 #else
1109 static void d40_save_restore_registers(struct d40_base *base, bool save)
1112 #endif
1114 static int __d40_execute_command_phy(struct d40_chan *d40c,
1115 enum d40_command command)
1117 u32 status;
1118 int i;
1119 void __iomem *active_reg;
1120 int ret = 0;
1121 unsigned long flags;
1122 u32 wmask;
1124 if (command == D40_DMA_STOP) {
1125 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1126 if (ret)
1127 return ret;
1130 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1132 if (d40c->phy_chan->num % 2 == 0)
1133 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1134 else
1135 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1137 if (command == D40_DMA_SUSPEND_REQ) {
1138 status = (readl(active_reg) &
1139 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1140 D40_CHAN_POS(d40c->phy_chan->num);
1142 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1143 goto done;
1146 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1147 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1148 active_reg);
1150 if (command == D40_DMA_SUSPEND_REQ) {
1152 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1153 status = (readl(active_reg) &
1154 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1155 D40_CHAN_POS(d40c->phy_chan->num);
1157 cpu_relax();
1159 * Reduce the number of bus accesses while
1160 * waiting for the DMA to suspend.
1162 udelay(3);
1164 if (status == D40_DMA_STOP ||
1165 status == D40_DMA_SUSPENDED)
1166 break;
1169 if (i == D40_SUSPEND_MAX_IT) {
1170 chan_err(d40c,
1171 "unable to suspend the chl %d (log: %d) status %x\n",
1172 d40c->phy_chan->num, d40c->log_num,
1173 status);
1174 dump_stack();
1175 ret = -EBUSY;
1179 done:
1180 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1181 return ret;
1184 static void d40_term_all(struct d40_chan *d40c)
1186 struct d40_desc *d40d;
1187 struct d40_desc *_d;
1189 /* Release completed descriptors */
1190 while ((d40d = d40_first_done(d40c))) {
1191 d40_desc_remove(d40d);
1192 d40_desc_free(d40c, d40d);
1195 /* Release active descriptors */
1196 while ((d40d = d40_first_active_get(d40c))) {
1197 d40_desc_remove(d40d);
1198 d40_desc_free(d40c, d40d);
1201 /* Release queued descriptors waiting for transfer */
1202 while ((d40d = d40_first_queued(d40c))) {
1203 d40_desc_remove(d40d);
1204 d40_desc_free(d40c, d40d);
1207 /* Release pending descriptors */
1208 while ((d40d = d40_first_pending(d40c))) {
1209 d40_desc_remove(d40d);
1210 d40_desc_free(d40c, d40d);
1213 /* Release client owned descriptors */
1214 if (!list_empty(&d40c->client))
1215 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1216 d40_desc_remove(d40d);
1217 d40_desc_free(d40c, d40d);
1220 /* Release descriptors in prepare queue */
1221 if (!list_empty(&d40c->prepare_queue))
1222 list_for_each_entry_safe(d40d, _d,
1223 &d40c->prepare_queue, node) {
1224 d40_desc_remove(d40d);
1225 d40_desc_free(d40c, d40d);
1228 d40c->pending_tx = 0;
1231 static void __d40_config_set_event(struct d40_chan *d40c,
1232 enum d40_events event_type, u32 event,
1233 int reg)
1235 void __iomem *addr = chan_base(d40c) + reg;
1236 int tries;
1237 u32 status;
1239 switch (event_type) {
1241 case D40_DEACTIVATE_EVENTLINE:
1243 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1244 | ~D40_EVENTLINE_MASK(event), addr);
1245 break;
1247 case D40_SUSPEND_REQ_EVENTLINE:
1248 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1249 D40_EVENTLINE_POS(event);
1251 if (status == D40_DEACTIVATE_EVENTLINE ||
1252 status == D40_SUSPEND_REQ_EVENTLINE)
1253 break;
1255 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1256 | ~D40_EVENTLINE_MASK(event), addr);
1258 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1260 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1261 D40_EVENTLINE_POS(event);
1263 cpu_relax();
1265 * Reduce the number of bus accesses while
1266 * waiting for the DMA to suspend.
1268 udelay(3);
1270 if (status == D40_DEACTIVATE_EVENTLINE)
1271 break;
1274 if (tries == D40_SUSPEND_MAX_IT) {
1275 chan_err(d40c,
1276 "unable to stop the event_line chl %d (log: %d)"
1277 "status %x\n", d40c->phy_chan->num,
1278 d40c->log_num, status);
1280 break;
1282 case D40_ACTIVATE_EVENTLINE:
1284 * The hardware sometimes doesn't register the enable when src and dst
1285 * event lines are active on the same logical channel. Retry to ensure
1286 * it does. Usually only one retry is sufficient.
1288 tries = 100;
1289 while (--tries) {
1290 writel((D40_ACTIVATE_EVENTLINE <<
1291 D40_EVENTLINE_POS(event)) |
1292 ~D40_EVENTLINE_MASK(event), addr);
1294 if (readl(addr) & D40_EVENTLINE_MASK(event))
1295 break;
1298 if (tries != 99)
1299 dev_dbg(chan2dev(d40c),
1300 "[%s] workaround enable S%cLNK (%d tries)\n",
1301 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1302 100 - tries);
1304 WARN_ON(!tries);
1305 break;
1307 case D40_ROUND_EVENTLINE:
1308 BUG();
1309 break;
1314 static void d40_config_set_event(struct d40_chan *d40c,
1315 enum d40_events event_type)
1317 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1319 /* Enable event line connected to device (or memcpy) */
1320 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1321 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1322 __d40_config_set_event(d40c, event_type, event,
1323 D40_CHAN_REG_SSLNK);
1325 if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM)
1326 __d40_config_set_event(d40c, event_type, event,
1327 D40_CHAN_REG_SDLNK);
1330 static u32 d40_chan_has_events(struct d40_chan *d40c)
1332 void __iomem *chanbase = chan_base(d40c);
1333 u32 val;
1335 val = readl(chanbase + D40_CHAN_REG_SSLNK);
1336 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1338 return val;
1341 static int
1342 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1344 unsigned long flags;
1345 int ret = 0;
1346 u32 active_status;
1347 void __iomem *active_reg;
1349 if (d40c->phy_chan->num % 2 == 0)
1350 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1351 else
1352 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1355 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1357 switch (command) {
1358 case D40_DMA_STOP:
1359 case D40_DMA_SUSPEND_REQ:
1361 active_status = (readl(active_reg) &
1362 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1363 D40_CHAN_POS(d40c->phy_chan->num);
1365 if (active_status == D40_DMA_RUN)
1366 d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1367 else
1368 d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1370 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1371 ret = __d40_execute_command_phy(d40c, command);
1373 break;
1375 case D40_DMA_RUN:
1377 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1378 ret = __d40_execute_command_phy(d40c, command);
1379 break;
1381 case D40_DMA_SUSPENDED:
1382 BUG();
1383 break;
1386 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1387 return ret;
1390 static int d40_channel_execute_command(struct d40_chan *d40c,
1391 enum d40_command command)
1393 if (chan_is_logical(d40c))
1394 return __d40_execute_command_log(d40c, command);
1395 else
1396 return __d40_execute_command_phy(d40c, command);
1399 static u32 d40_get_prmo(struct d40_chan *d40c)
1401 static const unsigned int phy_map[] = {
1402 [STEDMA40_PCHAN_BASIC_MODE]
1403 = D40_DREG_PRMO_PCHAN_BASIC,
1404 [STEDMA40_PCHAN_MODULO_MODE]
1405 = D40_DREG_PRMO_PCHAN_MODULO,
1406 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1407 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1409 static const unsigned int log_map[] = {
1410 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1411 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1412 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1413 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1414 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1415 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1418 if (chan_is_physical(d40c))
1419 return phy_map[d40c->dma_cfg.mode_opt];
1420 else
1421 return log_map[d40c->dma_cfg.mode_opt];
1424 static void d40_config_write(struct d40_chan *d40c)
1426 u32 addr_base;
1427 u32 var;
1429 /* Odd addresses are even addresses + 4 */
1430 addr_base = (d40c->phy_chan->num % 2) * 4;
1431 /* Setup channel mode to logical or physical */
1432 var = ((u32)(chan_is_logical(d40c)) + 1) <<
1433 D40_CHAN_POS(d40c->phy_chan->num);
1434 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1436 /* Setup operational mode option register */
1437 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1439 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1441 if (chan_is_logical(d40c)) {
1442 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1443 & D40_SREG_ELEM_LOG_LIDX_MASK;
1444 void __iomem *chanbase = chan_base(d40c);
1446 /* Set default config for CFG reg */
1447 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1448 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1450 /* Set LIDX for lcla */
1451 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1452 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1454 /* Clear LNK which will be used by d40_chan_has_events() */
1455 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1456 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1460 static u32 d40_residue(struct d40_chan *d40c)
1462 u32 num_elt;
1464 if (chan_is_logical(d40c))
1465 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1466 >> D40_MEM_LCSP2_ECNT_POS;
1467 else {
1468 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1469 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1470 >> D40_SREG_ELEM_PHY_ECNT_POS;
1473 return num_elt * d40c->dma_cfg.dst_info.data_width;
1476 static bool d40_tx_is_linked(struct d40_chan *d40c)
1478 bool is_link;
1480 if (chan_is_logical(d40c))
1481 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1482 else
1483 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1484 & D40_SREG_LNK_PHYS_LNK_MASK;
1486 return is_link;
1489 static int d40_pause(struct d40_chan *d40c)
1491 int res = 0;
1492 unsigned long flags;
1494 if (!d40c->busy)
1495 return 0;
1497 pm_runtime_get_sync(d40c->base->dev);
1498 spin_lock_irqsave(&d40c->lock, flags);
1500 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1502 pm_runtime_mark_last_busy(d40c->base->dev);
1503 pm_runtime_put_autosuspend(d40c->base->dev);
1504 spin_unlock_irqrestore(&d40c->lock, flags);
1505 return res;
1508 static int d40_resume(struct d40_chan *d40c)
1510 int res = 0;
1511 unsigned long flags;
1513 if (!d40c->busy)
1514 return 0;
1516 spin_lock_irqsave(&d40c->lock, flags);
1517 pm_runtime_get_sync(d40c->base->dev);
1519 /* If bytes left to transfer or linked tx resume job */
1520 if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1521 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1523 pm_runtime_mark_last_busy(d40c->base->dev);
1524 pm_runtime_put_autosuspend(d40c->base->dev);
1525 spin_unlock_irqrestore(&d40c->lock, flags);
1526 return res;
1529 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1531 struct d40_chan *d40c = container_of(tx->chan,
1532 struct d40_chan,
1533 chan);
1534 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1535 unsigned long flags;
1536 dma_cookie_t cookie;
1538 spin_lock_irqsave(&d40c->lock, flags);
1539 cookie = dma_cookie_assign(tx);
1540 d40_desc_queue(d40c, d40d);
1541 spin_unlock_irqrestore(&d40c->lock, flags);
1543 return cookie;
1546 static int d40_start(struct d40_chan *d40c)
1548 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1551 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1553 struct d40_desc *d40d;
1554 int err;
1556 /* Start queued jobs, if any */
1557 d40d = d40_first_queued(d40c);
1559 if (d40d != NULL) {
1560 if (!d40c->busy) {
1561 d40c->busy = true;
1562 pm_runtime_get_sync(d40c->base->dev);
1565 /* Remove from queue */
1566 d40_desc_remove(d40d);
1568 /* Add to active queue */
1569 d40_desc_submit(d40c, d40d);
1571 /* Initiate DMA job */
1572 d40_desc_load(d40c, d40d);
1574 /* Start dma job */
1575 err = d40_start(d40c);
1577 if (err)
1578 return NULL;
1581 return d40d;
1584 /* called from interrupt context */
1585 static void dma_tc_handle(struct d40_chan *d40c)
1587 struct d40_desc *d40d;
1589 /* Get first active entry from list */
1590 d40d = d40_first_active_get(d40c);
1592 if (d40d == NULL)
1593 return;
1595 if (d40d->cyclic) {
1597 * If this was a paritially loaded list, we need to reloaded
1598 * it, and only when the list is completed. We need to check
1599 * for done because the interrupt will hit for every link, and
1600 * not just the last one.
1602 if (d40d->lli_current < d40d->lli_len
1603 && !d40_tx_is_linked(d40c)
1604 && !d40_residue(d40c)) {
1605 d40_lcla_free_all(d40c, d40d);
1606 d40_desc_load(d40c, d40d);
1607 (void) d40_start(d40c);
1609 if (d40d->lli_current == d40d->lli_len)
1610 d40d->lli_current = 0;
1612 } else {
1613 d40_lcla_free_all(d40c, d40d);
1615 if (d40d->lli_current < d40d->lli_len) {
1616 d40_desc_load(d40c, d40d);
1617 /* Start dma job */
1618 (void) d40_start(d40c);
1619 return;
1622 if (d40_queue_start(d40c) == NULL) {
1623 d40c->busy = false;
1625 pm_runtime_mark_last_busy(d40c->base->dev);
1626 pm_runtime_put_autosuspend(d40c->base->dev);
1629 d40_desc_remove(d40d);
1630 d40_desc_done(d40c, d40d);
1633 d40c->pending_tx++;
1634 tasklet_schedule(&d40c->tasklet);
1638 static void dma_tasklet(unsigned long data)
1640 struct d40_chan *d40c = (struct d40_chan *) data;
1641 struct d40_desc *d40d;
1642 unsigned long flags;
1643 dma_async_tx_callback callback;
1644 void *callback_param;
1646 spin_lock_irqsave(&d40c->lock, flags);
1648 /* Get first entry from the done list */
1649 d40d = d40_first_done(d40c);
1650 if (d40d == NULL) {
1651 /* Check if we have reached here for cyclic job */
1652 d40d = d40_first_active_get(d40c);
1653 if (d40d == NULL || !d40d->cyclic)
1654 goto err;
1657 if (!d40d->cyclic)
1658 dma_cookie_complete(&d40d->txd);
1661 * If terminating a channel pending_tx is set to zero.
1662 * This prevents any finished active jobs to return to the client.
1664 if (d40c->pending_tx == 0) {
1665 spin_unlock_irqrestore(&d40c->lock, flags);
1666 return;
1669 /* Callback to client */
1670 callback = d40d->txd.callback;
1671 callback_param = d40d->txd.callback_param;
1673 if (!d40d->cyclic) {
1674 if (async_tx_test_ack(&d40d->txd)) {
1675 d40_desc_remove(d40d);
1676 d40_desc_free(d40c, d40d);
1677 } else if (!d40d->is_in_client_list) {
1678 d40_desc_remove(d40d);
1679 d40_lcla_free_all(d40c, d40d);
1680 list_add_tail(&d40d->node, &d40c->client);
1681 d40d->is_in_client_list = true;
1685 d40c->pending_tx--;
1687 if (d40c->pending_tx)
1688 tasklet_schedule(&d40c->tasklet);
1690 spin_unlock_irqrestore(&d40c->lock, flags);
1692 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1693 callback(callback_param);
1695 return;
1697 err:
1698 /* Rescue manouver if receiving double interrupts */
1699 if (d40c->pending_tx > 0)
1700 d40c->pending_tx--;
1701 spin_unlock_irqrestore(&d40c->lock, flags);
1704 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1706 int i;
1707 u32 idx;
1708 u32 row;
1709 long chan = -1;
1710 struct d40_chan *d40c;
1711 unsigned long flags;
1712 struct d40_base *base = data;
1713 u32 regs[base->gen_dmac.il_size];
1714 struct d40_interrupt_lookup *il = base->gen_dmac.il;
1715 u32 il_size = base->gen_dmac.il_size;
1717 spin_lock_irqsave(&base->interrupt_lock, flags);
1719 /* Read interrupt status of both logical and physical channels */
1720 for (i = 0; i < il_size; i++)
1721 regs[i] = readl(base->virtbase + il[i].src);
1723 for (;;) {
1725 chan = find_next_bit((unsigned long *)regs,
1726 BITS_PER_LONG * il_size, chan + 1);
1728 /* No more set bits found? */
1729 if (chan == BITS_PER_LONG * il_size)
1730 break;
1732 row = chan / BITS_PER_LONG;
1733 idx = chan & (BITS_PER_LONG - 1);
1735 if (il[row].offset == D40_PHY_CHAN)
1736 d40c = base->lookup_phy_chans[idx];
1737 else
1738 d40c = base->lookup_log_chans[il[row].offset + idx];
1740 if (!d40c) {
1742 * No error because this can happen if something else
1743 * in the system is using the channel.
1745 continue;
1748 /* ACK interrupt */
1749 writel(BIT(idx), base->virtbase + il[row].clr);
1751 spin_lock(&d40c->lock);
1753 if (!il[row].is_error)
1754 dma_tc_handle(d40c);
1755 else
1756 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1757 chan, il[row].offset, idx);
1759 spin_unlock(&d40c->lock);
1762 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1764 return IRQ_HANDLED;
1767 static int d40_validate_conf(struct d40_chan *d40c,
1768 struct stedma40_chan_cfg *conf)
1770 int res = 0;
1771 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1773 if (!conf->dir) {
1774 chan_err(d40c, "Invalid direction.\n");
1775 res = -EINVAL;
1778 if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
1779 (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1780 (conf->dev_type < 0)) {
1781 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1782 res = -EINVAL;
1785 if (conf->dir == DMA_DEV_TO_DEV) {
1787 * DMAC HW supports it. Will be added to this driver,
1788 * in case any dma client requires it.
1790 chan_err(d40c, "periph to periph not supported\n");
1791 res = -EINVAL;
1794 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1795 conf->src_info.data_width !=
1796 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1797 conf->dst_info.data_width) {
1799 * The DMAC hardware only supports
1800 * src (burst x width) == dst (burst x width)
1803 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1804 res = -EINVAL;
1807 return res;
1810 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1811 bool is_src, int log_event_line, bool is_log,
1812 bool *first_user)
1814 unsigned long flags;
1815 spin_lock_irqsave(&phy->lock, flags);
1817 *first_user = ((phy->allocated_src | phy->allocated_dst)
1818 == D40_ALLOC_FREE);
1820 if (!is_log) {
1821 /* Physical interrupts are masked per physical full channel */
1822 if (phy->allocated_src == D40_ALLOC_FREE &&
1823 phy->allocated_dst == D40_ALLOC_FREE) {
1824 phy->allocated_dst = D40_ALLOC_PHY;
1825 phy->allocated_src = D40_ALLOC_PHY;
1826 goto found;
1827 } else
1828 goto not_found;
1831 /* Logical channel */
1832 if (is_src) {
1833 if (phy->allocated_src == D40_ALLOC_PHY)
1834 goto not_found;
1836 if (phy->allocated_src == D40_ALLOC_FREE)
1837 phy->allocated_src = D40_ALLOC_LOG_FREE;
1839 if (!(phy->allocated_src & BIT(log_event_line))) {
1840 phy->allocated_src |= BIT(log_event_line);
1841 goto found;
1842 } else
1843 goto not_found;
1844 } else {
1845 if (phy->allocated_dst == D40_ALLOC_PHY)
1846 goto not_found;
1848 if (phy->allocated_dst == D40_ALLOC_FREE)
1849 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1851 if (!(phy->allocated_dst & BIT(log_event_line))) {
1852 phy->allocated_dst |= BIT(log_event_line);
1853 goto found;
1854 } else
1855 goto not_found;
1858 not_found:
1859 spin_unlock_irqrestore(&phy->lock, flags);
1860 return false;
1861 found:
1862 spin_unlock_irqrestore(&phy->lock, flags);
1863 return true;
1866 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1867 int log_event_line)
1869 unsigned long flags;
1870 bool is_free = false;
1872 spin_lock_irqsave(&phy->lock, flags);
1873 if (!log_event_line) {
1874 phy->allocated_dst = D40_ALLOC_FREE;
1875 phy->allocated_src = D40_ALLOC_FREE;
1876 is_free = true;
1877 goto out;
1880 /* Logical channel */
1881 if (is_src) {
1882 phy->allocated_src &= ~BIT(log_event_line);
1883 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1884 phy->allocated_src = D40_ALLOC_FREE;
1885 } else {
1886 phy->allocated_dst &= ~BIT(log_event_line);
1887 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1888 phy->allocated_dst = D40_ALLOC_FREE;
1891 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1892 D40_ALLOC_FREE);
1894 out:
1895 spin_unlock_irqrestore(&phy->lock, flags);
1897 return is_free;
1900 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1902 int dev_type = d40c->dma_cfg.dev_type;
1903 int event_group;
1904 int event_line;
1905 struct d40_phy_res *phys;
1906 int i;
1907 int j;
1908 int log_num;
1909 int num_phy_chans;
1910 bool is_src;
1911 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1913 phys = d40c->base->phy_res;
1914 num_phy_chans = d40c->base->num_phy_chans;
1916 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1917 log_num = 2 * dev_type;
1918 is_src = true;
1919 } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1920 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1921 /* dst event lines are used for logical memcpy */
1922 log_num = 2 * dev_type + 1;
1923 is_src = false;
1924 } else
1925 return -EINVAL;
1927 event_group = D40_TYPE_TO_GROUP(dev_type);
1928 event_line = D40_TYPE_TO_EVENT(dev_type);
1930 if (!is_log) {
1931 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1932 /* Find physical half channel */
1933 if (d40c->dma_cfg.use_fixed_channel) {
1934 i = d40c->dma_cfg.phy_channel;
1935 if (d40_alloc_mask_set(&phys[i], is_src,
1936 0, is_log,
1937 first_phy_user))
1938 goto found_phy;
1939 } else {
1940 for (i = 0; i < num_phy_chans; i++) {
1941 if (d40_alloc_mask_set(&phys[i], is_src,
1942 0, is_log,
1943 first_phy_user))
1944 goto found_phy;
1947 } else
1948 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1949 int phy_num = j + event_group * 2;
1950 for (i = phy_num; i < phy_num + 2; i++) {
1951 if (d40_alloc_mask_set(&phys[i],
1952 is_src,
1954 is_log,
1955 first_phy_user))
1956 goto found_phy;
1959 return -EINVAL;
1960 found_phy:
1961 d40c->phy_chan = &phys[i];
1962 d40c->log_num = D40_PHY_CHAN;
1963 goto out;
1965 if (dev_type == -1)
1966 return -EINVAL;
1968 /* Find logical channel */
1969 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1970 int phy_num = j + event_group * 2;
1972 if (d40c->dma_cfg.use_fixed_channel) {
1973 i = d40c->dma_cfg.phy_channel;
1975 if ((i != phy_num) && (i != phy_num + 1)) {
1976 dev_err(chan2dev(d40c),
1977 "invalid fixed phy channel %d\n", i);
1978 return -EINVAL;
1981 if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1982 is_log, first_phy_user))
1983 goto found_log;
1985 dev_err(chan2dev(d40c),
1986 "could not allocate fixed phy channel %d\n", i);
1987 return -EINVAL;
1991 * Spread logical channels across all available physical rather
1992 * than pack every logical channel at the first available phy
1993 * channels.
1995 if (is_src) {
1996 for (i = phy_num; i < phy_num + 2; i++) {
1997 if (d40_alloc_mask_set(&phys[i], is_src,
1998 event_line, is_log,
1999 first_phy_user))
2000 goto found_log;
2002 } else {
2003 for (i = phy_num + 1; i >= phy_num; i--) {
2004 if (d40_alloc_mask_set(&phys[i], is_src,
2005 event_line, is_log,
2006 first_phy_user))
2007 goto found_log;
2011 return -EINVAL;
2013 found_log:
2014 d40c->phy_chan = &phys[i];
2015 d40c->log_num = log_num;
2016 out:
2018 if (is_log)
2019 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
2020 else
2021 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
2023 return 0;
2027 static int d40_config_memcpy(struct d40_chan *d40c)
2029 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
2031 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
2032 d40c->dma_cfg = dma40_memcpy_conf_log;
2033 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
2035 d40_log_cfg(&d40c->dma_cfg,
2036 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2038 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
2039 dma_has_cap(DMA_SLAVE, cap)) {
2040 d40c->dma_cfg = dma40_memcpy_conf_phy;
2042 /* Generate interrrupt at end of transfer or relink. */
2043 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
2045 /* Generate interrupt on error. */
2046 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2047 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2049 } else {
2050 chan_err(d40c, "No memcpy\n");
2051 return -EINVAL;
2054 return 0;
2057 static int d40_free_dma(struct d40_chan *d40c)
2060 int res = 0;
2061 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2062 struct d40_phy_res *phy = d40c->phy_chan;
2063 bool is_src;
2065 /* Terminate all queued and active transfers */
2066 d40_term_all(d40c);
2068 if (phy == NULL) {
2069 chan_err(d40c, "phy == null\n");
2070 return -EINVAL;
2073 if (phy->allocated_src == D40_ALLOC_FREE &&
2074 phy->allocated_dst == D40_ALLOC_FREE) {
2075 chan_err(d40c, "channel already free\n");
2076 return -EINVAL;
2079 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2080 d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2081 is_src = false;
2082 else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2083 is_src = true;
2084 else {
2085 chan_err(d40c, "Unknown direction\n");
2086 return -EINVAL;
2089 pm_runtime_get_sync(d40c->base->dev);
2090 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2091 if (res) {
2092 chan_err(d40c, "stop failed\n");
2093 goto out;
2096 d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2098 if (chan_is_logical(d40c))
2099 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2100 else
2101 d40c->base->lookup_phy_chans[phy->num] = NULL;
2103 if (d40c->busy) {
2104 pm_runtime_mark_last_busy(d40c->base->dev);
2105 pm_runtime_put_autosuspend(d40c->base->dev);
2108 d40c->busy = false;
2109 d40c->phy_chan = NULL;
2110 d40c->configured = false;
2111 out:
2113 pm_runtime_mark_last_busy(d40c->base->dev);
2114 pm_runtime_put_autosuspend(d40c->base->dev);
2115 return res;
2118 static bool d40_is_paused(struct d40_chan *d40c)
2120 void __iomem *chanbase = chan_base(d40c);
2121 bool is_paused = false;
2122 unsigned long flags;
2123 void __iomem *active_reg;
2124 u32 status;
2125 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2127 spin_lock_irqsave(&d40c->lock, flags);
2129 if (chan_is_physical(d40c)) {
2130 if (d40c->phy_chan->num % 2 == 0)
2131 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2132 else
2133 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2135 status = (readl(active_reg) &
2136 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2137 D40_CHAN_POS(d40c->phy_chan->num);
2138 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2139 is_paused = true;
2141 goto _exit;
2144 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2145 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2146 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2147 } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2148 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2149 } else {
2150 chan_err(d40c, "Unknown direction\n");
2151 goto _exit;
2154 status = (status & D40_EVENTLINE_MASK(event)) >>
2155 D40_EVENTLINE_POS(event);
2157 if (status != D40_DMA_RUN)
2158 is_paused = true;
2159 _exit:
2160 spin_unlock_irqrestore(&d40c->lock, flags);
2161 return is_paused;
2165 static u32 stedma40_residue(struct dma_chan *chan)
2167 struct d40_chan *d40c =
2168 container_of(chan, struct d40_chan, chan);
2169 u32 bytes_left;
2170 unsigned long flags;
2172 spin_lock_irqsave(&d40c->lock, flags);
2173 bytes_left = d40_residue(d40c);
2174 spin_unlock_irqrestore(&d40c->lock, flags);
2176 return bytes_left;
2179 static int
2180 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2181 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2182 unsigned int sg_len, dma_addr_t src_dev_addr,
2183 dma_addr_t dst_dev_addr)
2185 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2186 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2187 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2188 int ret;
2190 ret = d40_log_sg_to_lli(sg_src, sg_len,
2191 src_dev_addr,
2192 desc->lli_log.src,
2193 chan->log_def.lcsp1,
2194 src_info->data_width,
2195 dst_info->data_width);
2197 ret = d40_log_sg_to_lli(sg_dst, sg_len,
2198 dst_dev_addr,
2199 desc->lli_log.dst,
2200 chan->log_def.lcsp3,
2201 dst_info->data_width,
2202 src_info->data_width);
2204 return ret < 0 ? ret : 0;
2207 static int
2208 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2209 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2210 unsigned int sg_len, dma_addr_t src_dev_addr,
2211 dma_addr_t dst_dev_addr)
2213 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2214 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2215 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2216 unsigned long flags = 0;
2217 int ret;
2219 if (desc->cyclic)
2220 flags |= LLI_CYCLIC | LLI_TERM_INT;
2222 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2223 desc->lli_phy.src,
2224 virt_to_phys(desc->lli_phy.src),
2225 chan->src_def_cfg,
2226 src_info, dst_info, flags);
2228 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2229 desc->lli_phy.dst,
2230 virt_to_phys(desc->lli_phy.dst),
2231 chan->dst_def_cfg,
2232 dst_info, src_info, flags);
2234 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2235 desc->lli_pool.size, DMA_TO_DEVICE);
2237 return ret < 0 ? ret : 0;
2240 static struct d40_desc *
2241 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2242 unsigned int sg_len, unsigned long dma_flags)
2244 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2245 struct d40_desc *desc;
2246 int ret;
2248 desc = d40_desc_get(chan);
2249 if (!desc)
2250 return NULL;
2252 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2253 cfg->dst_info.data_width);
2254 if (desc->lli_len < 0) {
2255 chan_err(chan, "Unaligned size\n");
2256 goto err;
2259 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2260 if (ret < 0) {
2261 chan_err(chan, "Could not allocate lli\n");
2262 goto err;
2265 desc->lli_current = 0;
2266 desc->txd.flags = dma_flags;
2267 desc->txd.tx_submit = d40_tx_submit;
2269 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2271 return desc;
2273 err:
2274 d40_desc_free(chan, desc);
2275 return NULL;
2278 static struct dma_async_tx_descriptor *
2279 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2280 struct scatterlist *sg_dst, unsigned int sg_len,
2281 enum dma_transfer_direction direction, unsigned long dma_flags)
2283 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2284 dma_addr_t src_dev_addr = 0;
2285 dma_addr_t dst_dev_addr = 0;
2286 struct d40_desc *desc;
2287 unsigned long flags;
2288 int ret;
2290 if (!chan->phy_chan) {
2291 chan_err(chan, "Cannot prepare unallocated channel\n");
2292 return NULL;
2295 spin_lock_irqsave(&chan->lock, flags);
2297 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2298 if (desc == NULL)
2299 goto err;
2301 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2302 desc->cyclic = true;
2304 if (direction == DMA_DEV_TO_MEM)
2305 src_dev_addr = chan->runtime_addr;
2306 else if (direction == DMA_MEM_TO_DEV)
2307 dst_dev_addr = chan->runtime_addr;
2309 if (chan_is_logical(chan))
2310 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2311 sg_len, src_dev_addr, dst_dev_addr);
2312 else
2313 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2314 sg_len, src_dev_addr, dst_dev_addr);
2316 if (ret) {
2317 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2318 chan_is_logical(chan) ? "log" : "phy", ret);
2319 goto err;
2323 * add descriptor to the prepare queue in order to be able
2324 * to free them later in terminate_all
2326 list_add_tail(&desc->node, &chan->prepare_queue);
2328 spin_unlock_irqrestore(&chan->lock, flags);
2330 return &desc->txd;
2332 err:
2333 if (desc)
2334 d40_desc_free(chan, desc);
2335 spin_unlock_irqrestore(&chan->lock, flags);
2336 return NULL;
2339 bool stedma40_filter(struct dma_chan *chan, void *data)
2341 struct stedma40_chan_cfg *info = data;
2342 struct d40_chan *d40c =
2343 container_of(chan, struct d40_chan, chan);
2344 int err;
2346 if (data) {
2347 err = d40_validate_conf(d40c, info);
2348 if (!err)
2349 d40c->dma_cfg = *info;
2350 } else
2351 err = d40_config_memcpy(d40c);
2353 if (!err)
2354 d40c->configured = true;
2356 return err == 0;
2358 EXPORT_SYMBOL(stedma40_filter);
2360 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2362 bool realtime = d40c->dma_cfg.realtime;
2363 bool highprio = d40c->dma_cfg.high_priority;
2364 u32 rtreg;
2365 u32 event = D40_TYPE_TO_EVENT(dev_type);
2366 u32 group = D40_TYPE_TO_GROUP(dev_type);
2367 u32 bit = BIT(event);
2368 u32 prioreg;
2369 struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2371 rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2373 * Due to a hardware bug, in some cases a logical channel triggered by
2374 * a high priority destination event line can generate extra packet
2375 * transactions.
2377 * The workaround is to not set the high priority level for the
2378 * destination event lines that trigger logical channels.
2380 if (!src && chan_is_logical(d40c))
2381 highprio = false;
2383 prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2385 /* Destination event lines are stored in the upper halfword */
2386 if (!src)
2387 bit <<= 16;
2389 writel(bit, d40c->base->virtbase + prioreg + group * 4);
2390 writel(bit, d40c->base->virtbase + rtreg + group * 4);
2393 static void d40_set_prio_realtime(struct d40_chan *d40c)
2395 if (d40c->base->rev < 3)
2396 return;
2398 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
2399 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2400 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2402 if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) ||
2403 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2404 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2407 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2408 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2409 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2410 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2412 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2413 struct of_dma *ofdma)
2415 struct stedma40_chan_cfg cfg;
2416 dma_cap_mask_t cap;
2417 u32 flags;
2419 memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2421 dma_cap_zero(cap);
2422 dma_cap_set(DMA_SLAVE, cap);
2424 cfg.dev_type = dma_spec->args[0];
2425 flags = dma_spec->args[2];
2427 switch (D40_DT_FLAGS_MODE(flags)) {
2428 case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2429 case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2432 switch (D40_DT_FLAGS_DIR(flags)) {
2433 case 0:
2434 cfg.dir = DMA_MEM_TO_DEV;
2435 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2436 break;
2437 case 1:
2438 cfg.dir = DMA_DEV_TO_MEM;
2439 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2440 break;
2443 if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2444 cfg.phy_channel = dma_spec->args[1];
2445 cfg.use_fixed_channel = true;
2448 return dma_request_channel(cap, stedma40_filter, &cfg);
2451 /* DMA ENGINE functions */
2452 static int d40_alloc_chan_resources(struct dma_chan *chan)
2454 int err;
2455 unsigned long flags;
2456 struct d40_chan *d40c =
2457 container_of(chan, struct d40_chan, chan);
2458 bool is_free_phy;
2459 spin_lock_irqsave(&d40c->lock, flags);
2461 dma_cookie_init(chan);
2463 /* If no dma configuration is set use default configuration (memcpy) */
2464 if (!d40c->configured) {
2465 err = d40_config_memcpy(d40c);
2466 if (err) {
2467 chan_err(d40c, "Failed to configure memcpy channel\n");
2468 goto fail;
2472 err = d40_allocate_channel(d40c, &is_free_phy);
2473 if (err) {
2474 chan_err(d40c, "Failed to allocate channel\n");
2475 d40c->configured = false;
2476 goto fail;
2479 pm_runtime_get_sync(d40c->base->dev);
2481 d40_set_prio_realtime(d40c);
2483 if (chan_is_logical(d40c)) {
2484 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2485 d40c->lcpa = d40c->base->lcpa_base +
2486 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2487 else
2488 d40c->lcpa = d40c->base->lcpa_base +
2489 d40c->dma_cfg.dev_type *
2490 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2492 /* Unmask the Global Interrupt Mask. */
2493 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2494 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2497 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2498 chan_is_logical(d40c) ? "logical" : "physical",
2499 d40c->phy_chan->num,
2500 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2504 * Only write channel configuration to the DMA if the physical
2505 * resource is free. In case of multiple logical channels
2506 * on the same physical resource, only the first write is necessary.
2508 if (is_free_phy)
2509 d40_config_write(d40c);
2510 fail:
2511 pm_runtime_mark_last_busy(d40c->base->dev);
2512 pm_runtime_put_autosuspend(d40c->base->dev);
2513 spin_unlock_irqrestore(&d40c->lock, flags);
2514 return err;
2517 static void d40_free_chan_resources(struct dma_chan *chan)
2519 struct d40_chan *d40c =
2520 container_of(chan, struct d40_chan, chan);
2521 int err;
2522 unsigned long flags;
2524 if (d40c->phy_chan == NULL) {
2525 chan_err(d40c, "Cannot free unallocated channel\n");
2526 return;
2529 spin_lock_irqsave(&d40c->lock, flags);
2531 err = d40_free_dma(d40c);
2533 if (err)
2534 chan_err(d40c, "Failed to free channel\n");
2535 spin_unlock_irqrestore(&d40c->lock, flags);
2538 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2539 dma_addr_t dst,
2540 dma_addr_t src,
2541 size_t size,
2542 unsigned long dma_flags)
2544 struct scatterlist dst_sg;
2545 struct scatterlist src_sg;
2547 sg_init_table(&dst_sg, 1);
2548 sg_init_table(&src_sg, 1);
2550 sg_dma_address(&dst_sg) = dst;
2551 sg_dma_address(&src_sg) = src;
2553 sg_dma_len(&dst_sg) = size;
2554 sg_dma_len(&src_sg) = size;
2556 return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2559 static struct dma_async_tx_descriptor *
2560 d40_prep_memcpy_sg(struct dma_chan *chan,
2561 struct scatterlist *dst_sg, unsigned int dst_nents,
2562 struct scatterlist *src_sg, unsigned int src_nents,
2563 unsigned long dma_flags)
2565 if (dst_nents != src_nents)
2566 return NULL;
2568 return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2571 static struct dma_async_tx_descriptor *
2572 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2573 unsigned int sg_len, enum dma_transfer_direction direction,
2574 unsigned long dma_flags, void *context)
2576 if (!is_slave_direction(direction))
2577 return NULL;
2579 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2582 static struct dma_async_tx_descriptor *
2583 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2584 size_t buf_len, size_t period_len,
2585 enum dma_transfer_direction direction, unsigned long flags,
2586 void *context)
2588 unsigned int periods = buf_len / period_len;
2589 struct dma_async_tx_descriptor *txd;
2590 struct scatterlist *sg;
2591 int i;
2593 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2594 for (i = 0; i < periods; i++) {
2595 sg_dma_address(&sg[i]) = dma_addr;
2596 sg_dma_len(&sg[i]) = period_len;
2597 dma_addr += period_len;
2600 sg[periods].offset = 0;
2601 sg_dma_len(&sg[periods]) = 0;
2602 sg[periods].page_link =
2603 ((unsigned long)sg | 0x01) & ~0x02;
2605 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2606 DMA_PREP_INTERRUPT);
2608 kfree(sg);
2610 return txd;
2613 static enum dma_status d40_tx_status(struct dma_chan *chan,
2614 dma_cookie_t cookie,
2615 struct dma_tx_state *txstate)
2617 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2618 enum dma_status ret;
2620 if (d40c->phy_chan == NULL) {
2621 chan_err(d40c, "Cannot read status of unallocated channel\n");
2622 return -EINVAL;
2625 ret = dma_cookie_status(chan, cookie, txstate);
2626 if (ret != DMA_SUCCESS)
2627 dma_set_residue(txstate, stedma40_residue(chan));
2629 if (d40_is_paused(d40c))
2630 ret = DMA_PAUSED;
2632 return ret;
2635 static void d40_issue_pending(struct dma_chan *chan)
2637 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2638 unsigned long flags;
2640 if (d40c->phy_chan == NULL) {
2641 chan_err(d40c, "Channel is not allocated!\n");
2642 return;
2645 spin_lock_irqsave(&d40c->lock, flags);
2647 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2649 /* Busy means that queued jobs are already being processed */
2650 if (!d40c->busy)
2651 (void) d40_queue_start(d40c);
2653 spin_unlock_irqrestore(&d40c->lock, flags);
2656 static void d40_terminate_all(struct dma_chan *chan)
2658 unsigned long flags;
2659 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2660 int ret;
2662 spin_lock_irqsave(&d40c->lock, flags);
2664 pm_runtime_get_sync(d40c->base->dev);
2665 ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2666 if (ret)
2667 chan_err(d40c, "Failed to stop channel\n");
2669 d40_term_all(d40c);
2670 pm_runtime_mark_last_busy(d40c->base->dev);
2671 pm_runtime_put_autosuspend(d40c->base->dev);
2672 if (d40c->busy) {
2673 pm_runtime_mark_last_busy(d40c->base->dev);
2674 pm_runtime_put_autosuspend(d40c->base->dev);
2676 d40c->busy = false;
2678 spin_unlock_irqrestore(&d40c->lock, flags);
2681 static int
2682 dma40_config_to_halfchannel(struct d40_chan *d40c,
2683 struct stedma40_half_channel_info *info,
2684 u32 maxburst)
2686 int psize;
2688 if (chan_is_logical(d40c)) {
2689 if (maxburst >= 16)
2690 psize = STEDMA40_PSIZE_LOG_16;
2691 else if (maxburst >= 8)
2692 psize = STEDMA40_PSIZE_LOG_8;
2693 else if (maxburst >= 4)
2694 psize = STEDMA40_PSIZE_LOG_4;
2695 else
2696 psize = STEDMA40_PSIZE_LOG_1;
2697 } else {
2698 if (maxburst >= 16)
2699 psize = STEDMA40_PSIZE_PHY_16;
2700 else if (maxburst >= 8)
2701 psize = STEDMA40_PSIZE_PHY_8;
2702 else if (maxburst >= 4)
2703 psize = STEDMA40_PSIZE_PHY_4;
2704 else
2705 psize = STEDMA40_PSIZE_PHY_1;
2708 info->psize = psize;
2709 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2711 return 0;
2714 /* Runtime reconfiguration extension */
2715 static int d40_set_runtime_config(struct dma_chan *chan,
2716 struct dma_slave_config *config)
2718 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2719 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2720 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2721 dma_addr_t config_addr;
2722 u32 src_maxburst, dst_maxburst;
2723 int ret;
2725 src_addr_width = config->src_addr_width;
2726 src_maxburst = config->src_maxburst;
2727 dst_addr_width = config->dst_addr_width;
2728 dst_maxburst = config->dst_maxburst;
2730 if (config->direction == DMA_DEV_TO_MEM) {
2731 config_addr = config->src_addr;
2733 if (cfg->dir != DMA_DEV_TO_MEM)
2734 dev_dbg(d40c->base->dev,
2735 "channel was not configured for peripheral "
2736 "to memory transfer (%d) overriding\n",
2737 cfg->dir);
2738 cfg->dir = DMA_DEV_TO_MEM;
2740 /* Configure the memory side */
2741 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2742 dst_addr_width = src_addr_width;
2743 if (dst_maxburst == 0)
2744 dst_maxburst = src_maxburst;
2746 } else if (config->direction == DMA_MEM_TO_DEV) {
2747 config_addr = config->dst_addr;
2749 if (cfg->dir != DMA_MEM_TO_DEV)
2750 dev_dbg(d40c->base->dev,
2751 "channel was not configured for memory "
2752 "to peripheral transfer (%d) overriding\n",
2753 cfg->dir);
2754 cfg->dir = DMA_MEM_TO_DEV;
2756 /* Configure the memory side */
2757 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2758 src_addr_width = dst_addr_width;
2759 if (src_maxburst == 0)
2760 src_maxburst = dst_maxburst;
2761 } else {
2762 dev_err(d40c->base->dev,
2763 "unrecognized channel direction %d\n",
2764 config->direction);
2765 return -EINVAL;
2768 if (config_addr <= 0) {
2769 dev_err(d40c->base->dev, "no address supplied\n");
2770 return -EINVAL;
2773 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2774 dev_err(d40c->base->dev,
2775 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2776 src_maxburst,
2777 src_addr_width,
2778 dst_maxburst,
2779 dst_addr_width);
2780 return -EINVAL;
2783 if (src_maxburst > 16) {
2784 src_maxburst = 16;
2785 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2786 } else if (dst_maxburst > 16) {
2787 dst_maxburst = 16;
2788 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2791 /* Only valid widths are; 1, 2, 4 and 8. */
2792 if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2793 src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2794 dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2795 dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2796 ((src_addr_width > 1) && (src_addr_width & 1)) ||
2797 ((dst_addr_width > 1) && (dst_addr_width & 1)))
2798 return -EINVAL;
2800 cfg->src_info.data_width = src_addr_width;
2801 cfg->dst_info.data_width = dst_addr_width;
2803 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2804 src_maxburst);
2805 if (ret)
2806 return ret;
2808 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2809 dst_maxburst);
2810 if (ret)
2811 return ret;
2813 /* Fill in register values */
2814 if (chan_is_logical(d40c))
2815 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2816 else
2817 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2819 /* These settings will take precedence later */
2820 d40c->runtime_addr = config_addr;
2821 d40c->runtime_direction = config->direction;
2822 dev_dbg(d40c->base->dev,
2823 "configured channel %s for %s, data width %d/%d, "
2824 "maxburst %d/%d elements, LE, no flow control\n",
2825 dma_chan_name(chan),
2826 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2827 src_addr_width, dst_addr_width,
2828 src_maxburst, dst_maxburst);
2830 return 0;
2833 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2834 unsigned long arg)
2836 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2838 if (d40c->phy_chan == NULL) {
2839 chan_err(d40c, "Channel is not allocated!\n");
2840 return -EINVAL;
2843 switch (cmd) {
2844 case DMA_TERMINATE_ALL:
2845 d40_terminate_all(chan);
2846 return 0;
2847 case DMA_PAUSE:
2848 return d40_pause(d40c);
2849 case DMA_RESUME:
2850 return d40_resume(d40c);
2851 case DMA_SLAVE_CONFIG:
2852 return d40_set_runtime_config(chan,
2853 (struct dma_slave_config *) arg);
2854 default:
2855 break;
2858 /* Other commands are unimplemented */
2859 return -ENXIO;
2862 /* Initialization functions */
2864 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2865 struct d40_chan *chans, int offset,
2866 int num_chans)
2868 int i = 0;
2869 struct d40_chan *d40c;
2871 INIT_LIST_HEAD(&dma->channels);
2873 for (i = offset; i < offset + num_chans; i++) {
2874 d40c = &chans[i];
2875 d40c->base = base;
2876 d40c->chan.device = dma;
2878 spin_lock_init(&d40c->lock);
2880 d40c->log_num = D40_PHY_CHAN;
2882 INIT_LIST_HEAD(&d40c->done);
2883 INIT_LIST_HEAD(&d40c->active);
2884 INIT_LIST_HEAD(&d40c->queue);
2885 INIT_LIST_HEAD(&d40c->pending_queue);
2886 INIT_LIST_HEAD(&d40c->client);
2887 INIT_LIST_HEAD(&d40c->prepare_queue);
2889 tasklet_init(&d40c->tasklet, dma_tasklet,
2890 (unsigned long) d40c);
2892 list_add_tail(&d40c->chan.device_node,
2893 &dma->channels);
2897 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2899 if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2900 dev->device_prep_slave_sg = d40_prep_slave_sg;
2902 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2903 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2906 * This controller can only access address at even
2907 * 32bit boundaries, i.e. 2^2
2909 dev->copy_align = 2;
2912 if (dma_has_cap(DMA_SG, dev->cap_mask))
2913 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2915 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2916 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2918 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2919 dev->device_free_chan_resources = d40_free_chan_resources;
2920 dev->device_issue_pending = d40_issue_pending;
2921 dev->device_tx_status = d40_tx_status;
2922 dev->device_control = d40_control;
2923 dev->dev = base->dev;
2926 static int __init d40_dmaengine_init(struct d40_base *base,
2927 int num_reserved_chans)
2929 int err ;
2931 d40_chan_init(base, &base->dma_slave, base->log_chans,
2932 0, base->num_log_chans);
2934 dma_cap_zero(base->dma_slave.cap_mask);
2935 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2936 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2938 d40_ops_init(base, &base->dma_slave);
2940 err = dma_async_device_register(&base->dma_slave);
2942 if (err) {
2943 d40_err(base->dev, "Failed to register slave channels\n");
2944 goto failure1;
2947 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2948 base->num_log_chans, base->num_memcpy_chans);
2950 dma_cap_zero(base->dma_memcpy.cap_mask);
2951 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2952 dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2954 d40_ops_init(base, &base->dma_memcpy);
2956 err = dma_async_device_register(&base->dma_memcpy);
2958 if (err) {
2959 d40_err(base->dev,
2960 "Failed to regsiter memcpy only channels\n");
2961 goto failure2;
2964 d40_chan_init(base, &base->dma_both, base->phy_chans,
2965 0, num_reserved_chans);
2967 dma_cap_zero(base->dma_both.cap_mask);
2968 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2969 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2970 dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2971 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2973 d40_ops_init(base, &base->dma_both);
2974 err = dma_async_device_register(&base->dma_both);
2976 if (err) {
2977 d40_err(base->dev,
2978 "Failed to register logical and physical capable channels\n");
2979 goto failure3;
2981 return 0;
2982 failure3:
2983 dma_async_device_unregister(&base->dma_memcpy);
2984 failure2:
2985 dma_async_device_unregister(&base->dma_slave);
2986 failure1:
2987 return err;
2990 /* Suspend resume functionality */
2991 #ifdef CONFIG_PM
2992 static int dma40_pm_suspend(struct device *dev)
2994 struct platform_device *pdev = to_platform_device(dev);
2995 struct d40_base *base = platform_get_drvdata(pdev);
2996 int ret = 0;
2998 if (base->lcpa_regulator)
2999 ret = regulator_disable(base->lcpa_regulator);
3000 return ret;
3003 static int dma40_runtime_suspend(struct device *dev)
3005 struct platform_device *pdev = to_platform_device(dev);
3006 struct d40_base *base = platform_get_drvdata(pdev);
3008 d40_save_restore_registers(base, true);
3010 /* Don't disable/enable clocks for v1 due to HW bugs */
3011 if (base->rev != 1)
3012 writel_relaxed(base->gcc_pwr_off_mask,
3013 base->virtbase + D40_DREG_GCC);
3015 return 0;
3018 static int dma40_runtime_resume(struct device *dev)
3020 struct platform_device *pdev = to_platform_device(dev);
3021 struct d40_base *base = platform_get_drvdata(pdev);
3023 if (base->initialized)
3024 d40_save_restore_registers(base, false);
3026 writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3027 base->virtbase + D40_DREG_GCC);
3028 return 0;
3031 static int dma40_resume(struct device *dev)
3033 struct platform_device *pdev = to_platform_device(dev);
3034 struct d40_base *base = platform_get_drvdata(pdev);
3035 int ret = 0;
3037 if (base->lcpa_regulator)
3038 ret = regulator_enable(base->lcpa_regulator);
3040 return ret;
3043 static const struct dev_pm_ops dma40_pm_ops = {
3044 .suspend = dma40_pm_suspend,
3045 .runtime_suspend = dma40_runtime_suspend,
3046 .runtime_resume = dma40_runtime_resume,
3047 .resume = dma40_resume,
3049 #define DMA40_PM_OPS (&dma40_pm_ops)
3050 #else
3051 #define DMA40_PM_OPS NULL
3052 #endif
3054 /* Initialization functions. */
3056 static int __init d40_phy_res_init(struct d40_base *base)
3058 int i;
3059 int num_phy_chans_avail = 0;
3060 u32 val[2];
3061 int odd_even_bit = -2;
3062 int gcc = D40_DREG_GCC_ENA;
3064 val[0] = readl(base->virtbase + D40_DREG_PRSME);
3065 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3067 for (i = 0; i < base->num_phy_chans; i++) {
3068 base->phy_res[i].num = i;
3069 odd_even_bit += 2 * ((i % 2) == 0);
3070 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3071 /* Mark security only channels as occupied */
3072 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3073 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3074 base->phy_res[i].reserved = true;
3075 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3076 D40_DREG_GCC_SRC);
3077 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3078 D40_DREG_GCC_DST);
3081 } else {
3082 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3083 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3084 base->phy_res[i].reserved = false;
3085 num_phy_chans_avail++;
3087 spin_lock_init(&base->phy_res[i].lock);
3090 /* Mark disabled channels as occupied */
3091 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3092 int chan = base->plat_data->disabled_channels[i];
3094 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3095 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3096 base->phy_res[chan].reserved = true;
3097 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3098 D40_DREG_GCC_SRC);
3099 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3100 D40_DREG_GCC_DST);
3101 num_phy_chans_avail--;
3104 /* Mark soft_lli channels */
3105 for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3106 int chan = base->plat_data->soft_lli_chans[i];
3108 base->phy_res[chan].use_soft_lli = true;
3111 dev_info(base->dev, "%d of %d physical DMA channels available\n",
3112 num_phy_chans_avail, base->num_phy_chans);
3114 /* Verify settings extended vs standard */
3115 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3117 for (i = 0; i < base->num_phy_chans; i++) {
3119 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3120 (val[0] & 0x3) != 1)
3121 dev_info(base->dev,
3122 "[%s] INFO: channel %d is misconfigured (%d)\n",
3123 __func__, i, val[0] & 0x3);
3125 val[0] = val[0] >> 2;
3129 * To keep things simple, Enable all clocks initially.
3130 * The clocks will get managed later post channel allocation.
3131 * The clocks for the event lines on which reserved channels exists
3132 * are not managed here.
3134 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3135 base->gcc_pwr_off_mask = gcc;
3137 return num_phy_chans_avail;
3140 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3142 struct stedma40_platform_data *plat_data = pdev->dev.platform_data;
3143 struct clk *clk = NULL;
3144 void __iomem *virtbase = NULL;
3145 struct resource *res = NULL;
3146 struct d40_base *base = NULL;
3147 int num_log_chans = 0;
3148 int num_phy_chans;
3149 int num_memcpy_chans;
3150 int clk_ret = -EINVAL;
3151 int i;
3152 u32 pid;
3153 u32 cid;
3154 u8 rev;
3156 clk = clk_get(&pdev->dev, NULL);
3157 if (IS_ERR(clk)) {
3158 d40_err(&pdev->dev, "No matching clock found\n");
3159 goto failure;
3162 clk_ret = clk_prepare_enable(clk);
3163 if (clk_ret) {
3164 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3165 goto failure;
3168 /* Get IO for DMAC base address */
3169 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3170 if (!res)
3171 goto failure;
3173 if (request_mem_region(res->start, resource_size(res),
3174 D40_NAME " I/O base") == NULL)
3175 goto failure;
3177 virtbase = ioremap(res->start, resource_size(res));
3178 if (!virtbase)
3179 goto failure;
3181 /* This is just a regular AMBA PrimeCell ID actually */
3182 for (pid = 0, i = 0; i < 4; i++)
3183 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3184 & 255) << (i * 8);
3185 for (cid = 0, i = 0; i < 4; i++)
3186 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3187 & 255) << (i * 8);
3189 if (cid != AMBA_CID) {
3190 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3191 goto failure;
3193 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3194 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3195 AMBA_MANF_BITS(pid),
3196 AMBA_VENDOR_ST);
3197 goto failure;
3200 * HW revision:
3201 * DB8500ed has revision 0
3202 * ? has revision 1
3203 * DB8500v1 has revision 2
3204 * DB8500v2 has revision 3
3205 * AP9540v1 has revision 4
3206 * DB8540v1 has revision 4
3208 rev = AMBA_REV_BITS(pid);
3209 if (rev < 2) {
3210 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3211 goto failure;
3214 /* The number of physical channels on this HW */
3215 if (plat_data->num_of_phy_chans)
3216 num_phy_chans = plat_data->num_of_phy_chans;
3217 else
3218 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3220 /* The number of channels used for memcpy */
3221 if (plat_data->num_of_memcpy_chans)
3222 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3223 else
3224 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3226 num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3228 dev_info(&pdev->dev,
3229 "hardware rev: %d @ 0x%x with %d physical and %d logical channels\n",
3230 rev, res->start, num_phy_chans, num_log_chans);
3232 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3233 (num_phy_chans + num_log_chans + num_memcpy_chans) *
3234 sizeof(struct d40_chan), GFP_KERNEL);
3236 if (base == NULL) {
3237 d40_err(&pdev->dev, "Out of memory\n");
3238 goto failure;
3241 base->rev = rev;
3242 base->clk = clk;
3243 base->num_memcpy_chans = num_memcpy_chans;
3244 base->num_phy_chans = num_phy_chans;
3245 base->num_log_chans = num_log_chans;
3246 base->phy_start = res->start;
3247 base->phy_size = resource_size(res);
3248 base->virtbase = virtbase;
3249 base->plat_data = plat_data;
3250 base->dev = &pdev->dev;
3251 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3252 base->log_chans = &base->phy_chans[num_phy_chans];
3254 if (base->plat_data->num_of_phy_chans == 14) {
3255 base->gen_dmac.backup = d40_backup_regs_v4b;
3256 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3257 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3258 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3259 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3260 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3261 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3262 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3263 base->gen_dmac.il = il_v4b;
3264 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3265 base->gen_dmac.init_reg = dma_init_reg_v4b;
3266 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3267 } else {
3268 if (base->rev >= 3) {
3269 base->gen_dmac.backup = d40_backup_regs_v4a;
3270 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3272 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3273 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3274 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3275 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3276 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3277 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3278 base->gen_dmac.il = il_v4a;
3279 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3280 base->gen_dmac.init_reg = dma_init_reg_v4a;
3281 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3284 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3285 GFP_KERNEL);
3286 if (!base->phy_res)
3287 goto failure;
3289 base->lookup_phy_chans = kzalloc(num_phy_chans *
3290 sizeof(struct d40_chan *),
3291 GFP_KERNEL);
3292 if (!base->lookup_phy_chans)
3293 goto failure;
3295 base->lookup_log_chans = kzalloc(num_log_chans *
3296 sizeof(struct d40_chan *),
3297 GFP_KERNEL);
3298 if (!base->lookup_log_chans)
3299 goto failure;
3301 base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3302 sizeof(d40_backup_regs_chan),
3303 GFP_KERNEL);
3304 if (!base->reg_val_backup_chan)
3305 goto failure;
3307 base->lcla_pool.alloc_map =
3308 kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3309 * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3310 if (!base->lcla_pool.alloc_map)
3311 goto failure;
3313 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3314 0, SLAB_HWCACHE_ALIGN,
3315 NULL);
3316 if (base->desc_slab == NULL)
3317 goto failure;
3319 return base;
3321 failure:
3322 if (!clk_ret)
3323 clk_disable_unprepare(clk);
3324 if (!IS_ERR(clk))
3325 clk_put(clk);
3326 if (virtbase)
3327 iounmap(virtbase);
3328 if (res)
3329 release_mem_region(res->start,
3330 resource_size(res));
3331 if (virtbase)
3332 iounmap(virtbase);
3334 if (base) {
3335 kfree(base->lcla_pool.alloc_map);
3336 kfree(base->reg_val_backup_chan);
3337 kfree(base->lookup_log_chans);
3338 kfree(base->lookup_phy_chans);
3339 kfree(base->phy_res);
3340 kfree(base);
3343 return NULL;
3346 static void __init d40_hw_init(struct d40_base *base)
3349 int i;
3350 u32 prmseo[2] = {0, 0};
3351 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3352 u32 pcmis = 0;
3353 u32 pcicr = 0;
3354 struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3355 u32 reg_size = base->gen_dmac.init_reg_size;
3357 for (i = 0; i < reg_size; i++)
3358 writel(dma_init_reg[i].val,
3359 base->virtbase + dma_init_reg[i].reg);
3361 /* Configure all our dma channels to default settings */
3362 for (i = 0; i < base->num_phy_chans; i++) {
3364 activeo[i % 2] = activeo[i % 2] << 2;
3366 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3367 == D40_ALLOC_PHY) {
3368 activeo[i % 2] |= 3;
3369 continue;
3372 /* Enable interrupt # */
3373 pcmis = (pcmis << 1) | 1;
3375 /* Clear interrupt # */
3376 pcicr = (pcicr << 1) | 1;
3378 /* Set channel to physical mode */
3379 prmseo[i % 2] = prmseo[i % 2] << 2;
3380 prmseo[i % 2] |= 1;
3384 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3385 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3386 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3387 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3389 /* Write which interrupt to enable */
3390 writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3392 /* Write which interrupt to clear */
3393 writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3395 /* These are __initdata and cannot be accessed after init */
3396 base->gen_dmac.init_reg = NULL;
3397 base->gen_dmac.init_reg_size = 0;
3400 static int __init d40_lcla_allocate(struct d40_base *base)
3402 struct d40_lcla_pool *pool = &base->lcla_pool;
3403 unsigned long *page_list;
3404 int i, j;
3405 int ret = 0;
3408 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3409 * To full fill this hardware requirement without wasting 256 kb
3410 * we allocate pages until we get an aligned one.
3412 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3413 GFP_KERNEL);
3415 if (!page_list) {
3416 ret = -ENOMEM;
3417 goto failure;
3420 /* Calculating how many pages that are required */
3421 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3423 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3424 page_list[i] = __get_free_pages(GFP_KERNEL,
3425 base->lcla_pool.pages);
3426 if (!page_list[i]) {
3428 d40_err(base->dev, "Failed to allocate %d pages.\n",
3429 base->lcla_pool.pages);
3431 for (j = 0; j < i; j++)
3432 free_pages(page_list[j], base->lcla_pool.pages);
3433 goto failure;
3436 if ((virt_to_phys((void *)page_list[i]) &
3437 (LCLA_ALIGNMENT - 1)) == 0)
3438 break;
3441 for (j = 0; j < i; j++)
3442 free_pages(page_list[j], base->lcla_pool.pages);
3444 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3445 base->lcla_pool.base = (void *)page_list[i];
3446 } else {
3448 * After many attempts and no succees with finding the correct
3449 * alignment, try with allocating a big buffer.
3451 dev_warn(base->dev,
3452 "[%s] Failed to get %d pages @ 18 bit align.\n",
3453 __func__, base->lcla_pool.pages);
3454 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3455 base->num_phy_chans +
3456 LCLA_ALIGNMENT,
3457 GFP_KERNEL);
3458 if (!base->lcla_pool.base_unaligned) {
3459 ret = -ENOMEM;
3460 goto failure;
3463 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3464 LCLA_ALIGNMENT);
3467 pool->dma_addr = dma_map_single(base->dev, pool->base,
3468 SZ_1K * base->num_phy_chans,
3469 DMA_TO_DEVICE);
3470 if (dma_mapping_error(base->dev, pool->dma_addr)) {
3471 pool->dma_addr = 0;
3472 ret = -ENOMEM;
3473 goto failure;
3476 writel(virt_to_phys(base->lcla_pool.base),
3477 base->virtbase + D40_DREG_LCLA);
3478 failure:
3479 kfree(page_list);
3480 return ret;
3483 static int __init d40_of_probe(struct platform_device *pdev,
3484 struct device_node *np)
3486 struct stedma40_platform_data *pdata;
3487 int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3488 const const __be32 *list;
3490 pdata = devm_kzalloc(&pdev->dev,
3491 sizeof(struct stedma40_platform_data),
3492 GFP_KERNEL);
3493 if (!pdata)
3494 return -ENOMEM;
3496 /* If absent this value will be obtained from h/w. */
3497 of_property_read_u32(np, "dma-channels", &num_phy);
3498 if (num_phy > 0)
3499 pdata->num_of_phy_chans = num_phy;
3501 list = of_get_property(np, "memcpy-channels", &num_memcpy);
3502 num_memcpy /= sizeof(*list);
3504 if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3505 d40_err(&pdev->dev,
3506 "Invalid number of memcpy channels specified (%d)\n",
3507 num_memcpy);
3508 return -EINVAL;
3510 pdata->num_of_memcpy_chans = num_memcpy;
3512 of_property_read_u32_array(np, "memcpy-channels",
3513 dma40_memcpy_channels,
3514 num_memcpy);
3516 list = of_get_property(np, "disabled-channels", &num_disabled);
3517 num_disabled /= sizeof(*list);
3519 if (num_disabled > STEDMA40_MAX_PHYS || num_disabled < 0) {
3520 d40_err(&pdev->dev,
3521 "Invalid number of disabled channels specified (%d)\n",
3522 num_disabled);
3523 return -EINVAL;
3526 of_property_read_u32_array(np, "disabled-channels",
3527 pdata->disabled_channels,
3528 num_disabled);
3529 pdata->disabled_channels[num_disabled] = -1;
3531 pdev->dev.platform_data = pdata;
3533 return 0;
3536 static int __init d40_probe(struct platform_device *pdev)
3538 struct stedma40_platform_data *plat_data = pdev->dev.platform_data;
3539 struct device_node *np = pdev->dev.of_node;
3540 int ret = -ENOENT;
3541 struct d40_base *base = NULL;
3542 struct resource *res = NULL;
3543 int num_reserved_chans;
3544 u32 val;
3546 if (!plat_data) {
3547 if (np) {
3548 if(d40_of_probe(pdev, np)) {
3549 ret = -ENOMEM;
3550 goto failure;
3552 } else {
3553 d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3554 goto failure;
3558 base = d40_hw_detect_init(pdev);
3559 if (!base)
3560 goto failure;
3562 num_reserved_chans = d40_phy_res_init(base);
3564 platform_set_drvdata(pdev, base);
3566 spin_lock_init(&base->interrupt_lock);
3567 spin_lock_init(&base->execmd_lock);
3569 /* Get IO for logical channel parameter address */
3570 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3571 if (!res) {
3572 ret = -ENOENT;
3573 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3574 goto failure;
3576 base->lcpa_size = resource_size(res);
3577 base->phy_lcpa = res->start;
3579 if (request_mem_region(res->start, resource_size(res),
3580 D40_NAME " I/O lcpa") == NULL) {
3581 ret = -EBUSY;
3582 d40_err(&pdev->dev,
3583 "Failed to request LCPA region 0x%x-0x%x\n",
3584 res->start, res->end);
3585 goto failure;
3588 /* We make use of ESRAM memory for this. */
3589 val = readl(base->virtbase + D40_DREG_LCPA);
3590 if (res->start != val && val != 0) {
3591 dev_warn(&pdev->dev,
3592 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
3593 __func__, val, res->start);
3594 } else
3595 writel(res->start, base->virtbase + D40_DREG_LCPA);
3597 base->lcpa_base = ioremap(res->start, resource_size(res));
3598 if (!base->lcpa_base) {
3599 ret = -ENOMEM;
3600 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3601 goto failure;
3603 /* If lcla has to be located in ESRAM we don't need to allocate */
3604 if (base->plat_data->use_esram_lcla) {
3605 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3606 "lcla_esram");
3607 if (!res) {
3608 ret = -ENOENT;
3609 d40_err(&pdev->dev,
3610 "No \"lcla_esram\" memory resource\n");
3611 goto failure;
3613 base->lcla_pool.base = ioremap(res->start,
3614 resource_size(res));
3615 if (!base->lcla_pool.base) {
3616 ret = -ENOMEM;
3617 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3618 goto failure;
3620 writel(res->start, base->virtbase + D40_DREG_LCLA);
3622 } else {
3623 ret = d40_lcla_allocate(base);
3624 if (ret) {
3625 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3626 goto failure;
3630 spin_lock_init(&base->lcla_pool.lock);
3632 base->irq = platform_get_irq(pdev, 0);
3634 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3635 if (ret) {
3636 d40_err(&pdev->dev, "No IRQ defined\n");
3637 goto failure;
3640 pm_runtime_irq_safe(base->dev);
3641 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3642 pm_runtime_use_autosuspend(base->dev);
3643 pm_runtime_enable(base->dev);
3644 pm_runtime_resume(base->dev);
3646 if (base->plat_data->use_esram_lcla) {
3648 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3649 if (IS_ERR(base->lcpa_regulator)) {
3650 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3651 ret = PTR_ERR(base->lcpa_regulator);
3652 base->lcpa_regulator = NULL;
3653 goto failure;
3656 ret = regulator_enable(base->lcpa_regulator);
3657 if (ret) {
3658 d40_err(&pdev->dev,
3659 "Failed to enable lcpa_regulator\n");
3660 regulator_put(base->lcpa_regulator);
3661 base->lcpa_regulator = NULL;
3662 goto failure;
3666 base->initialized = true;
3667 ret = d40_dmaengine_init(base, num_reserved_chans);
3668 if (ret)
3669 goto failure;
3671 base->dev->dma_parms = &base->dma_parms;
3672 ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3673 if (ret) {
3674 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3675 goto failure;
3678 d40_hw_init(base);
3680 if (np) {
3681 ret = of_dma_controller_register(np, d40_xlate, NULL);
3682 if (ret)
3683 dev_err(&pdev->dev,
3684 "could not register of_dma_controller\n");
3687 dev_info(base->dev, "initialized\n");
3688 return 0;
3690 failure:
3691 if (base) {
3692 if (base->desc_slab)
3693 kmem_cache_destroy(base->desc_slab);
3694 if (base->virtbase)
3695 iounmap(base->virtbase);
3697 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3698 iounmap(base->lcla_pool.base);
3699 base->lcla_pool.base = NULL;
3702 if (base->lcla_pool.dma_addr)
3703 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3704 SZ_1K * base->num_phy_chans,
3705 DMA_TO_DEVICE);
3707 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3708 free_pages((unsigned long)base->lcla_pool.base,
3709 base->lcla_pool.pages);
3711 kfree(base->lcla_pool.base_unaligned);
3713 if (base->phy_lcpa)
3714 release_mem_region(base->phy_lcpa,
3715 base->lcpa_size);
3716 if (base->phy_start)
3717 release_mem_region(base->phy_start,
3718 base->phy_size);
3719 if (base->clk) {
3720 clk_disable_unprepare(base->clk);
3721 clk_put(base->clk);
3724 if (base->lcpa_regulator) {
3725 regulator_disable(base->lcpa_regulator);
3726 regulator_put(base->lcpa_regulator);
3729 kfree(base->lcla_pool.alloc_map);
3730 kfree(base->lookup_log_chans);
3731 kfree(base->lookup_phy_chans);
3732 kfree(base->phy_res);
3733 kfree(base);
3736 d40_err(&pdev->dev, "probe failed\n");
3737 return ret;
3740 static const struct of_device_id d40_match[] = {
3741 { .compatible = "stericsson,dma40", },
3745 static struct platform_driver d40_driver = {
3746 .driver = {
3747 .owner = THIS_MODULE,
3748 .name = D40_NAME,
3749 .pm = DMA40_PM_OPS,
3750 .of_match_table = d40_match,
3754 static int __init stedma40_init(void)
3756 return platform_driver_probe(&d40_driver, d40_probe);
3758 subsys_initcall(stedma40_init);