2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
65 static struct kmem_cache
*anon_vma_cachep
;
66 static struct kmem_cache
*anon_vma_chain_cachep
;
68 static inline struct anon_vma
*anon_vma_alloc(void)
70 struct anon_vma
*anon_vma
;
72 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
74 atomic_set(&anon_vma
->refcount
, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma
->root
= anon_vma
;
85 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
87 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
101 * atomic_read() rwsem_is_locked()
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
106 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
107 anon_vma_lock_write(anon_vma
);
108 anon_vma_unlock_write(anon_vma
);
111 kmem_cache_free(anon_vma_cachep
, anon_vma
);
114 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
116 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
119 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
121 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
124 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
125 struct anon_vma_chain
*avc
,
126 struct anon_vma
*anon_vma
)
129 avc
->anon_vma
= anon_vma
;
130 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
131 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
135 * anon_vma_prepare - attach an anon_vma to a memory region
136 * @vma: the memory region in question
138 * This makes sure the memory mapping described by 'vma' has
139 * an 'anon_vma' attached to it, so that we can associate the
140 * anonymous pages mapped into it with that anon_vma.
142 * The common case will be that we already have one, but if
143 * not we either need to find an adjacent mapping that we
144 * can re-use the anon_vma from (very common when the only
145 * reason for splitting a vma has been mprotect()), or we
146 * allocate a new one.
148 * Anon-vma allocations are very subtle, because we may have
149 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
150 * and that may actually touch the spinlock even in the newly
151 * allocated vma (it depends on RCU to make sure that the
152 * anon_vma isn't actually destroyed).
154 * As a result, we need to do proper anon_vma locking even
155 * for the new allocation. At the same time, we do not want
156 * to do any locking for the common case of already having
159 * This must be called with the mmap_sem held for reading.
161 int anon_vma_prepare(struct vm_area_struct
*vma
)
163 struct anon_vma
*anon_vma
= vma
->anon_vma
;
164 struct anon_vma_chain
*avc
;
167 if (unlikely(!anon_vma
)) {
168 struct mm_struct
*mm
= vma
->vm_mm
;
169 struct anon_vma
*allocated
;
171 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
175 anon_vma
= find_mergeable_anon_vma(vma
);
178 anon_vma
= anon_vma_alloc();
179 if (unlikely(!anon_vma
))
180 goto out_enomem_free_avc
;
181 allocated
= anon_vma
;
184 anon_vma_lock_write(anon_vma
);
185 /* page_table_lock to protect against threads */
186 spin_lock(&mm
->page_table_lock
);
187 if (likely(!vma
->anon_vma
)) {
188 vma
->anon_vma
= anon_vma
;
189 anon_vma_chain_link(vma
, avc
, anon_vma
);
193 spin_unlock(&mm
->page_table_lock
);
194 anon_vma_unlock_write(anon_vma
);
196 if (unlikely(allocated
))
197 put_anon_vma(allocated
);
199 anon_vma_chain_free(avc
);
204 anon_vma_chain_free(avc
);
210 * This is a useful helper function for locking the anon_vma root as
211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
214 * Such anon_vma's should have the same root, so you'd expect to see
215 * just a single mutex_lock for the whole traversal.
217 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
219 struct anon_vma
*new_root
= anon_vma
->root
;
220 if (new_root
!= root
) {
221 if (WARN_ON_ONCE(root
))
222 up_write(&root
->rwsem
);
224 down_write(&root
->rwsem
);
229 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
232 up_write(&root
->rwsem
);
236 * Attach the anon_vmas from src to dst.
237 * Returns 0 on success, -ENOMEM on failure.
239 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
241 struct anon_vma_chain
*avc
, *pavc
;
242 struct anon_vma
*root
= NULL
;
244 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
245 struct anon_vma
*anon_vma
;
247 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
248 if (unlikely(!avc
)) {
249 unlock_anon_vma_root(root
);
251 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
255 anon_vma
= pavc
->anon_vma
;
256 root
= lock_anon_vma_root(root
, anon_vma
);
257 anon_vma_chain_link(dst
, avc
, anon_vma
);
259 unlock_anon_vma_root(root
);
263 unlink_anon_vmas(dst
);
268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
269 * the corresponding VMA in the parent process is attached to.
270 * Returns 0 on success, non-zero on failure.
272 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
274 struct anon_vma_chain
*avc
;
275 struct anon_vma
*anon_vma
;
277 /* Don't bother if the parent process has no anon_vma here. */
282 * First, attach the new VMA to the parent VMA's anon_vmas,
283 * so rmap can find non-COWed pages in child processes.
285 if (anon_vma_clone(vma
, pvma
))
288 /* Then add our own anon_vma. */
289 anon_vma
= anon_vma_alloc();
292 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
294 goto out_error_free_anon_vma
;
297 * The root anon_vma's spinlock is the lock actually used when we
298 * lock any of the anon_vmas in this anon_vma tree.
300 anon_vma
->root
= pvma
->anon_vma
->root
;
302 * With refcounts, an anon_vma can stay around longer than the
303 * process it belongs to. The root anon_vma needs to be pinned until
304 * this anon_vma is freed, because the lock lives in the root.
306 get_anon_vma(anon_vma
->root
);
307 /* Mark this anon_vma as the one where our new (COWed) pages go. */
308 vma
->anon_vma
= anon_vma
;
309 anon_vma_lock_write(anon_vma
);
310 anon_vma_chain_link(vma
, avc
, anon_vma
);
311 anon_vma_unlock_write(anon_vma
);
315 out_error_free_anon_vma
:
316 put_anon_vma(anon_vma
);
318 unlink_anon_vmas(vma
);
322 void unlink_anon_vmas(struct vm_area_struct
*vma
)
324 struct anon_vma_chain
*avc
, *next
;
325 struct anon_vma
*root
= NULL
;
328 * Unlink each anon_vma chained to the VMA. This list is ordered
329 * from newest to oldest, ensuring the root anon_vma gets freed last.
331 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
332 struct anon_vma
*anon_vma
= avc
->anon_vma
;
334 root
= lock_anon_vma_root(root
, anon_vma
);
335 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
338 * Leave empty anon_vmas on the list - we'll need
339 * to free them outside the lock.
341 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
))
344 list_del(&avc
->same_vma
);
345 anon_vma_chain_free(avc
);
347 unlock_anon_vma_root(root
);
350 * Iterate the list once more, it now only contains empty and unlinked
351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352 * needing to write-acquire the anon_vma->root->rwsem.
354 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
355 struct anon_vma
*anon_vma
= avc
->anon_vma
;
357 put_anon_vma(anon_vma
);
359 list_del(&avc
->same_vma
);
360 anon_vma_chain_free(avc
);
364 static void anon_vma_ctor(void *data
)
366 struct anon_vma
*anon_vma
= data
;
368 init_rwsem(&anon_vma
->rwsem
);
369 atomic_set(&anon_vma
->refcount
, 0);
370 anon_vma
->rb_root
= RB_ROOT
;
373 void __init
anon_vma_init(void)
375 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
376 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
377 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
383 * Since there is no serialization what so ever against page_remove_rmap()
384 * the best this function can do is return a locked anon_vma that might
385 * have been relevant to this page.
387 * The page might have been remapped to a different anon_vma or the anon_vma
388 * returned may already be freed (and even reused).
390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392 * ensure that any anon_vma obtained from the page will still be valid for as
393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
395 * All users of this function must be very careful when walking the anon_vma
396 * chain and verify that the page in question is indeed mapped in it
397 * [ something equivalent to page_mapped_in_vma() ].
399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400 * that the anon_vma pointer from page->mapping is valid if there is a
401 * mapcount, we can dereference the anon_vma after observing those.
403 struct anon_vma
*page_get_anon_vma(struct page
*page
)
405 struct anon_vma
*anon_vma
= NULL
;
406 unsigned long anon_mapping
;
409 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
410 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
412 if (!page_mapped(page
))
415 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
416 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
422 * If this page is still mapped, then its anon_vma cannot have been
423 * freed. But if it has been unmapped, we have no security against the
424 * anon_vma structure being freed and reused (for another anon_vma:
425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 * above cannot corrupt).
428 if (!page_mapped(page
)) {
429 put_anon_vma(anon_vma
);
439 * Similar to page_get_anon_vma() except it locks the anon_vma.
441 * Its a little more complex as it tries to keep the fast path to a single
442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443 * reference like with page_get_anon_vma() and then block on the mutex.
445 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
447 struct anon_vma
*anon_vma
= NULL
;
448 struct anon_vma
*root_anon_vma
;
449 unsigned long anon_mapping
;
452 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
453 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
455 if (!page_mapped(page
))
458 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
459 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
460 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
462 * If the page is still mapped, then this anon_vma is still
463 * its anon_vma, and holding the mutex ensures that it will
464 * not go away, see anon_vma_free().
466 if (!page_mapped(page
)) {
467 up_read(&root_anon_vma
->rwsem
);
473 /* trylock failed, we got to sleep */
474 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
479 if (!page_mapped(page
)) {
480 put_anon_vma(anon_vma
);
485 /* we pinned the anon_vma, its safe to sleep */
487 anon_vma_lock_read(anon_vma
);
489 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
491 * Oops, we held the last refcount, release the lock
492 * and bail -- can't simply use put_anon_vma() because
493 * we'll deadlock on the anon_vma_lock_write() recursion.
495 anon_vma_unlock_read(anon_vma
);
496 __put_anon_vma(anon_vma
);
507 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
509 anon_vma_unlock_read(anon_vma
);
513 * At what user virtual address is page expected in @vma?
515 static inline unsigned long
516 __vma_address(struct page
*page
, struct vm_area_struct
*vma
)
518 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
520 if (unlikely(is_vm_hugetlb_page(vma
)))
521 pgoff
= page
->index
<< huge_page_order(page_hstate(page
));
523 return vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
527 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
529 unsigned long address
= __vma_address(page
, vma
);
531 /* page should be within @vma mapping range */
532 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
541 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
543 unsigned long address
;
544 if (PageAnon(page
)) {
545 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
550 if (!vma
->anon_vma
|| !page__anon_vma
||
551 vma
->anon_vma
->root
!= page__anon_vma
->root
)
553 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
555 vma
->vm_file
->f_mapping
!= page
->mapping
)
559 address
= __vma_address(page
, vma
);
560 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
565 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
571 pgd
= pgd_offset(mm
, address
);
572 if (!pgd_present(*pgd
))
575 pud
= pud_offset(pgd
, address
);
576 if (!pud_present(*pud
))
579 pmd
= pmd_offset(pud
, address
);
580 if (!pmd_present(*pmd
))
587 * Check that @page is mapped at @address into @mm.
589 * If @sync is false, page_check_address may perform a racy check to avoid
590 * the page table lock when the pte is not present (helpful when reclaiming
591 * highly shared pages).
593 * On success returns with pte mapped and locked.
595 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
596 unsigned long address
, spinlock_t
**ptlp
, int sync
)
602 if (unlikely(PageHuge(page
))) {
603 pte
= huge_pte_offset(mm
, address
);
604 ptl
= &mm
->page_table_lock
;
608 pmd
= mm_find_pmd(mm
, address
);
612 if (pmd_trans_huge(*pmd
))
615 pte
= pte_offset_map(pmd
, address
);
616 /* Make a quick check before getting the lock */
617 if (!sync
&& !pte_present(*pte
)) {
622 ptl
= pte_lockptr(mm
, pmd
);
625 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
629 pte_unmap_unlock(pte
, ptl
);
634 * page_mapped_in_vma - check whether a page is really mapped in a VMA
635 * @page: the page to test
636 * @vma: the VMA to test
638 * Returns 1 if the page is mapped into the page tables of the VMA, 0
639 * if the page is not mapped into the page tables of this VMA. Only
640 * valid for normal file or anonymous VMAs.
642 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
644 unsigned long address
;
648 address
= __vma_address(page
, vma
);
649 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
651 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
652 if (!pte
) /* the page is not in this mm */
654 pte_unmap_unlock(pte
, ptl
);
660 * Subfunctions of page_referenced: page_referenced_one called
661 * repeatedly from either page_referenced_anon or page_referenced_file.
663 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
664 unsigned long address
, unsigned int *mapcount
,
665 unsigned long *vm_flags
)
667 struct mm_struct
*mm
= vma
->vm_mm
;
670 if (unlikely(PageTransHuge(page
))) {
673 spin_lock(&mm
->page_table_lock
);
675 * rmap might return false positives; we must filter
676 * these out using page_check_address_pmd().
678 pmd
= page_check_address_pmd(page
, mm
, address
,
679 PAGE_CHECK_ADDRESS_PMD_FLAG
);
681 spin_unlock(&mm
->page_table_lock
);
685 if (vma
->vm_flags
& VM_LOCKED
) {
686 spin_unlock(&mm
->page_table_lock
);
687 *mapcount
= 0; /* break early from loop */
688 *vm_flags
|= VM_LOCKED
;
692 /* go ahead even if the pmd is pmd_trans_splitting() */
693 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
695 spin_unlock(&mm
->page_table_lock
);
701 * rmap might return false positives; we must filter
702 * these out using page_check_address().
704 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
708 if (vma
->vm_flags
& VM_LOCKED
) {
709 pte_unmap_unlock(pte
, ptl
);
710 *mapcount
= 0; /* break early from loop */
711 *vm_flags
|= VM_LOCKED
;
715 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
717 * Don't treat a reference through a sequentially read
718 * mapping as such. If the page has been used in
719 * another mapping, we will catch it; if this other
720 * mapping is already gone, the unmap path will have
721 * set PG_referenced or activated the page.
723 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
726 pte_unmap_unlock(pte
, ptl
);
732 *vm_flags
|= vma
->vm_flags
;
737 static int page_referenced_anon(struct page
*page
,
738 struct mem_cgroup
*memcg
,
739 unsigned long *vm_flags
)
741 unsigned int mapcount
;
742 struct anon_vma
*anon_vma
;
744 struct anon_vma_chain
*avc
;
747 anon_vma
= page_lock_anon_vma_read(page
);
751 mapcount
= page_mapcount(page
);
752 pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
753 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
754 struct vm_area_struct
*vma
= avc
->vma
;
755 unsigned long address
= vma_address(page
, vma
);
757 * If we are reclaiming on behalf of a cgroup, skip
758 * counting on behalf of references from different
761 if (memcg
&& !mm_match_cgroup(vma
->vm_mm
, memcg
))
763 referenced
+= page_referenced_one(page
, vma
, address
,
764 &mapcount
, vm_flags
);
769 page_unlock_anon_vma_read(anon_vma
);
774 * page_referenced_file - referenced check for object-based rmap
775 * @page: the page we're checking references on.
776 * @memcg: target memory control group
777 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
779 * For an object-based mapped page, find all the places it is mapped and
780 * check/clear the referenced flag. This is done by following the page->mapping
781 * pointer, then walking the chain of vmas it holds. It returns the number
782 * of references it found.
784 * This function is only called from page_referenced for object-based pages.
786 static int page_referenced_file(struct page
*page
,
787 struct mem_cgroup
*memcg
,
788 unsigned long *vm_flags
)
790 unsigned int mapcount
;
791 struct address_space
*mapping
= page
->mapping
;
792 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
793 struct vm_area_struct
*vma
;
797 * The caller's checks on page->mapping and !PageAnon have made
798 * sure that this is a file page: the check for page->mapping
799 * excludes the case just before it gets set on an anon page.
801 BUG_ON(PageAnon(page
));
804 * The page lock not only makes sure that page->mapping cannot
805 * suddenly be NULLified by truncation, it makes sure that the
806 * structure at mapping cannot be freed and reused yet,
807 * so we can safely take mapping->i_mmap_mutex.
809 BUG_ON(!PageLocked(page
));
811 mutex_lock(&mapping
->i_mmap_mutex
);
814 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
815 * is more likely to be accurate if we note it after spinning.
817 mapcount
= page_mapcount(page
);
819 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
820 unsigned long address
= vma_address(page
, vma
);
822 * If we are reclaiming on behalf of a cgroup, skip
823 * counting on behalf of references from different
826 if (memcg
&& !mm_match_cgroup(vma
->vm_mm
, memcg
))
828 referenced
+= page_referenced_one(page
, vma
, address
,
829 &mapcount
, vm_flags
);
834 mutex_unlock(&mapping
->i_mmap_mutex
);
839 * page_referenced - test if the page was referenced
840 * @page: the page to test
841 * @is_locked: caller holds lock on the page
842 * @memcg: target memory cgroup
843 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
845 * Quick test_and_clear_referenced for all mappings to a page,
846 * returns the number of ptes which referenced the page.
848 int page_referenced(struct page
*page
,
850 struct mem_cgroup
*memcg
,
851 unsigned long *vm_flags
)
857 if (page_mapped(page
) && page_rmapping(page
)) {
858 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
859 we_locked
= trylock_page(page
);
865 if (unlikely(PageKsm(page
)))
866 referenced
+= page_referenced_ksm(page
, memcg
,
868 else if (PageAnon(page
))
869 referenced
+= page_referenced_anon(page
, memcg
,
871 else if (page
->mapping
)
872 referenced
+= page_referenced_file(page
, memcg
,
881 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
882 unsigned long address
)
884 struct mm_struct
*mm
= vma
->vm_mm
;
889 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
893 if (pte_dirty(*pte
) || pte_write(*pte
)) {
896 flush_cache_page(vma
, address
, pte_pfn(*pte
));
897 entry
= ptep_clear_flush(vma
, address
, pte
);
898 entry
= pte_wrprotect(entry
);
899 entry
= pte_mkclean(entry
);
900 set_pte_at(mm
, address
, pte
, entry
);
904 pte_unmap_unlock(pte
, ptl
);
907 mmu_notifier_invalidate_page(mm
, address
);
912 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
914 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
915 struct vm_area_struct
*vma
;
918 BUG_ON(PageAnon(page
));
920 mutex_lock(&mapping
->i_mmap_mutex
);
921 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
922 if (vma
->vm_flags
& VM_SHARED
) {
923 unsigned long address
= vma_address(page
, vma
);
924 ret
+= page_mkclean_one(page
, vma
, address
);
927 mutex_unlock(&mapping
->i_mmap_mutex
);
931 int page_mkclean(struct page
*page
)
935 BUG_ON(!PageLocked(page
));
937 if (page_mapped(page
)) {
938 struct address_space
*mapping
= page_mapping(page
);
940 ret
= page_mkclean_file(mapping
, page
);
945 EXPORT_SYMBOL_GPL(page_mkclean
);
948 * page_move_anon_rmap - move a page to our anon_vma
949 * @page: the page to move to our anon_vma
950 * @vma: the vma the page belongs to
951 * @address: the user virtual address mapped
953 * When a page belongs exclusively to one process after a COW event,
954 * that page can be moved into the anon_vma that belongs to just that
955 * process, so the rmap code will not search the parent or sibling
958 void page_move_anon_rmap(struct page
*page
,
959 struct vm_area_struct
*vma
, unsigned long address
)
961 struct anon_vma
*anon_vma
= vma
->anon_vma
;
963 VM_BUG_ON(!PageLocked(page
));
964 VM_BUG_ON(!anon_vma
);
965 VM_BUG_ON(page
->index
!= linear_page_index(vma
, address
));
967 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
968 page
->mapping
= (struct address_space
*) anon_vma
;
972 * __page_set_anon_rmap - set up new anonymous rmap
973 * @page: Page to add to rmap
974 * @vma: VM area to add page to.
975 * @address: User virtual address of the mapping
976 * @exclusive: the page is exclusively owned by the current process
978 static void __page_set_anon_rmap(struct page
*page
,
979 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
981 struct anon_vma
*anon_vma
= vma
->anon_vma
;
989 * If the page isn't exclusively mapped into this vma,
990 * we must use the _oldest_ possible anon_vma for the
994 anon_vma
= anon_vma
->root
;
996 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
997 page
->mapping
= (struct address_space
*) anon_vma
;
998 page
->index
= linear_page_index(vma
, address
);
1002 * __page_check_anon_rmap - sanity check anonymous rmap addition
1003 * @page: the page to add the mapping to
1004 * @vma: the vm area in which the mapping is added
1005 * @address: the user virtual address mapped
1007 static void __page_check_anon_rmap(struct page
*page
,
1008 struct vm_area_struct
*vma
, unsigned long address
)
1010 #ifdef CONFIG_DEBUG_VM
1012 * The page's anon-rmap details (mapping and index) are guaranteed to
1013 * be set up correctly at this point.
1015 * We have exclusion against page_add_anon_rmap because the caller
1016 * always holds the page locked, except if called from page_dup_rmap,
1017 * in which case the page is already known to be setup.
1019 * We have exclusion against page_add_new_anon_rmap because those pages
1020 * are initially only visible via the pagetables, and the pte is locked
1021 * over the call to page_add_new_anon_rmap.
1023 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
1024 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
1029 * page_add_anon_rmap - add pte mapping to an anonymous page
1030 * @page: the page to add the mapping to
1031 * @vma: the vm area in which the mapping is added
1032 * @address: the user virtual address mapped
1034 * The caller needs to hold the pte lock, and the page must be locked in
1035 * the anon_vma case: to serialize mapping,index checking after setting,
1036 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1037 * (but PageKsm is never downgraded to PageAnon).
1039 void page_add_anon_rmap(struct page
*page
,
1040 struct vm_area_struct
*vma
, unsigned long address
)
1042 do_page_add_anon_rmap(page
, vma
, address
, 0);
1046 * Special version of the above for do_swap_page, which often runs
1047 * into pages that are exclusively owned by the current process.
1048 * Everybody else should continue to use page_add_anon_rmap above.
1050 void do_page_add_anon_rmap(struct page
*page
,
1051 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1053 int first
= atomic_inc_and_test(&page
->_mapcount
);
1055 if (PageTransHuge(page
))
1056 __inc_zone_page_state(page
,
1057 NR_ANON_TRANSPARENT_HUGEPAGES
);
1058 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1059 hpage_nr_pages(page
));
1061 if (unlikely(PageKsm(page
)))
1064 VM_BUG_ON(!PageLocked(page
));
1065 /* address might be in next vma when migration races vma_adjust */
1067 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1069 __page_check_anon_rmap(page
, vma
, address
);
1073 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1074 * @page: the page to add the mapping to
1075 * @vma: the vm area in which the mapping is added
1076 * @address: the user virtual address mapped
1078 * Same as page_add_anon_rmap but must only be called on *new* pages.
1079 * This means the inc-and-test can be bypassed.
1080 * Page does not have to be locked.
1082 void page_add_new_anon_rmap(struct page
*page
,
1083 struct vm_area_struct
*vma
, unsigned long address
)
1085 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1086 SetPageSwapBacked(page
);
1087 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1088 if (PageTransHuge(page
))
1089 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1090 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1091 hpage_nr_pages(page
));
1092 __page_set_anon_rmap(page
, vma
, address
, 1);
1093 if (!mlocked_vma_newpage(vma
, page
)) {
1094 SetPageActive(page
);
1095 lru_cache_add(page
);
1097 add_page_to_unevictable_list(page
);
1101 * page_add_file_rmap - add pte mapping to a file page
1102 * @page: the page to add the mapping to
1104 * The caller needs to hold the pte lock.
1106 void page_add_file_rmap(struct page
*page
)
1109 unsigned long flags
;
1111 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1112 if (atomic_inc_and_test(&page
->_mapcount
)) {
1113 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1114 mem_cgroup_inc_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1116 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1120 * page_remove_rmap - take down pte mapping from a page
1121 * @page: page to remove mapping from
1123 * The caller needs to hold the pte lock.
1125 void page_remove_rmap(struct page
*page
)
1127 bool anon
= PageAnon(page
);
1129 unsigned long flags
;
1132 * The anon case has no mem_cgroup page_stat to update; but may
1133 * uncharge_page() below, where the lock ordering can deadlock if
1134 * we hold the lock against page_stat move: so avoid it on anon.
1137 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1139 /* page still mapped by someone else? */
1140 if (!atomic_add_negative(-1, &page
->_mapcount
))
1144 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1145 * and not charged by memcg for now.
1147 if (unlikely(PageHuge(page
)))
1150 mem_cgroup_uncharge_page(page
);
1151 if (PageTransHuge(page
))
1152 __dec_zone_page_state(page
,
1153 NR_ANON_TRANSPARENT_HUGEPAGES
);
1154 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1155 -hpage_nr_pages(page
));
1157 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1158 mem_cgroup_dec_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1159 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1161 if (unlikely(PageMlocked(page
)))
1162 clear_page_mlock(page
);
1164 * It would be tidy to reset the PageAnon mapping here,
1165 * but that might overwrite a racing page_add_anon_rmap
1166 * which increments mapcount after us but sets mapping
1167 * before us: so leave the reset to free_hot_cold_page,
1168 * and remember that it's only reliable while mapped.
1169 * Leaving it set also helps swapoff to reinstate ptes
1170 * faster for those pages still in swapcache.
1175 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1179 * Subfunctions of try_to_unmap: try_to_unmap_one called
1180 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1182 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1183 unsigned long address
, enum ttu_flags flags
)
1185 struct mm_struct
*mm
= vma
->vm_mm
;
1189 int ret
= SWAP_AGAIN
;
1191 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1196 * If the page is mlock()d, we cannot swap it out.
1197 * If it's recently referenced (perhaps page_referenced
1198 * skipped over this mm) then we should reactivate it.
1200 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1201 if (vma
->vm_flags
& VM_LOCKED
)
1204 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1207 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1208 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1214 /* Nuke the page table entry. */
1215 flush_cache_page(vma
, address
, page_to_pfn(page
));
1216 pteval
= ptep_clear_flush(vma
, address
, pte
);
1218 /* Move the dirty bit to the physical page now the pte is gone. */
1219 if (pte_dirty(pteval
))
1220 set_page_dirty(page
);
1222 /* Update high watermark before we lower rss */
1223 update_hiwater_rss(mm
);
1225 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1226 if (!PageHuge(page
)) {
1228 dec_mm_counter(mm
, MM_ANONPAGES
);
1230 dec_mm_counter(mm
, MM_FILEPAGES
);
1232 set_pte_at(mm
, address
, pte
,
1233 swp_entry_to_pte(make_hwpoison_entry(page
)));
1234 } else if (PageAnon(page
)) {
1235 swp_entry_t entry
= { .val
= page_private(page
) };
1238 if (PageSwapCache(page
)) {
1240 * Store the swap location in the pte.
1241 * See handle_pte_fault() ...
1243 if (swap_duplicate(entry
) < 0) {
1244 set_pte_at(mm
, address
, pte
, pteval
);
1248 if (list_empty(&mm
->mmlist
)) {
1249 spin_lock(&mmlist_lock
);
1250 if (list_empty(&mm
->mmlist
))
1251 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1252 spin_unlock(&mmlist_lock
);
1254 dec_mm_counter(mm
, MM_ANONPAGES
);
1255 inc_mm_counter(mm
, MM_SWAPENTS
);
1256 } else if (IS_ENABLED(CONFIG_MIGRATION
)) {
1258 * Store the pfn of the page in a special migration
1259 * pte. do_swap_page() will wait until the migration
1260 * pte is removed and then restart fault handling.
1262 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
1263 entry
= make_migration_entry(page
, pte_write(pteval
));
1265 swp_pte
= swp_entry_to_pte(entry
);
1266 if (pte_soft_dirty(pteval
))
1267 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1268 set_pte_at(mm
, address
, pte
, swp_pte
);
1269 BUG_ON(pte_file(*pte
));
1270 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1271 (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
1272 /* Establish migration entry for a file page */
1274 entry
= make_migration_entry(page
, pte_write(pteval
));
1275 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1277 dec_mm_counter(mm
, MM_FILEPAGES
);
1279 page_remove_rmap(page
);
1280 page_cache_release(page
);
1283 pte_unmap_unlock(pte
, ptl
);
1284 if (ret
!= SWAP_FAIL
)
1285 mmu_notifier_invalidate_page(mm
, address
);
1290 pte_unmap_unlock(pte
, ptl
);
1294 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1295 * unstable result and race. Plus, We can't wait here because
1296 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1297 * if trylock failed, the page remain in evictable lru and later
1298 * vmscan could retry to move the page to unevictable lru if the
1299 * page is actually mlocked.
1301 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1302 if (vma
->vm_flags
& VM_LOCKED
) {
1303 mlock_vma_page(page
);
1306 up_read(&vma
->vm_mm
->mmap_sem
);
1312 * objrmap doesn't work for nonlinear VMAs because the assumption that
1313 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1314 * Consequently, given a particular page and its ->index, we cannot locate the
1315 * ptes which are mapping that page without an exhaustive linear search.
1317 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1318 * maps the file to which the target page belongs. The ->vm_private_data field
1319 * holds the current cursor into that scan. Successive searches will circulate
1320 * around the vma's virtual address space.
1322 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1323 * more scanning pressure is placed against them as well. Eventually pages
1324 * will become fully unmapped and are eligible for eviction.
1326 * For very sparsely populated VMAs this is a little inefficient - chances are
1327 * there there won't be many ptes located within the scan cluster. In this case
1328 * maybe we could scan further - to the end of the pte page, perhaps.
1330 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1331 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1332 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1333 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1335 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1336 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1338 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1339 struct vm_area_struct
*vma
, struct page
*check_page
)
1341 struct mm_struct
*mm
= vma
->vm_mm
;
1347 unsigned long address
;
1348 unsigned long mmun_start
; /* For mmu_notifiers */
1349 unsigned long mmun_end
; /* For mmu_notifiers */
1351 int ret
= SWAP_AGAIN
;
1354 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1355 end
= address
+ CLUSTER_SIZE
;
1356 if (address
< vma
->vm_start
)
1357 address
= vma
->vm_start
;
1358 if (end
> vma
->vm_end
)
1361 pmd
= mm_find_pmd(mm
, address
);
1365 mmun_start
= address
;
1367 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1370 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1371 * keep the sem while scanning the cluster for mlocking pages.
1373 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1374 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1376 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1379 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1381 /* Update high watermark before we lower rss */
1382 update_hiwater_rss(mm
);
1384 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1385 if (!pte_present(*pte
))
1387 page
= vm_normal_page(vma
, address
, *pte
);
1388 BUG_ON(!page
|| PageAnon(page
));
1391 mlock_vma_page(page
); /* no-op if already mlocked */
1392 if (page
== check_page
)
1394 continue; /* don't unmap */
1397 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1400 /* Nuke the page table entry. */
1401 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1402 pteval
= ptep_clear_flush(vma
, address
, pte
);
1404 /* If nonlinear, store the file page offset in the pte. */
1405 if (page
->index
!= linear_page_index(vma
, address
)) {
1406 pte_t ptfile
= pgoff_to_pte(page
->index
);
1407 if (pte_soft_dirty(pteval
))
1408 pte_file_mksoft_dirty(ptfile
);
1409 set_pte_at(mm
, address
, pte
, ptfile
);
1412 /* Move the dirty bit to the physical page now the pte is gone. */
1413 if (pte_dirty(pteval
))
1414 set_page_dirty(page
);
1416 page_remove_rmap(page
);
1417 page_cache_release(page
);
1418 dec_mm_counter(mm
, MM_FILEPAGES
);
1421 pte_unmap_unlock(pte
- 1, ptl
);
1422 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1424 up_read(&vma
->vm_mm
->mmap_sem
);
1428 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1430 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1435 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1436 VM_STACK_INCOMPLETE_SETUP
)
1443 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1445 * @page: the page to unmap/unlock
1446 * @flags: action and flags
1448 * Find all the mappings of a page using the mapping pointer and the vma chains
1449 * contained in the anon_vma struct it points to.
1451 * This function is only called from try_to_unmap/try_to_munlock for
1453 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1454 * where the page was found will be held for write. So, we won't recheck
1455 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1458 static int try_to_unmap_anon(struct page
*page
, enum ttu_flags flags
)
1460 struct anon_vma
*anon_vma
;
1462 struct anon_vma_chain
*avc
;
1463 int ret
= SWAP_AGAIN
;
1465 anon_vma
= page_lock_anon_vma_read(page
);
1469 pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1470 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1471 struct vm_area_struct
*vma
= avc
->vma
;
1472 unsigned long address
;
1475 * During exec, a temporary VMA is setup and later moved.
1476 * The VMA is moved under the anon_vma lock but not the
1477 * page tables leading to a race where migration cannot
1478 * find the migration ptes. Rather than increasing the
1479 * locking requirements of exec(), migration skips
1480 * temporary VMAs until after exec() completes.
1482 if (IS_ENABLED(CONFIG_MIGRATION
) && (flags
& TTU_MIGRATION
) &&
1483 is_vma_temporary_stack(vma
))
1486 address
= vma_address(page
, vma
);
1487 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1488 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1492 page_unlock_anon_vma_read(anon_vma
);
1497 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1498 * @page: the page to unmap/unlock
1499 * @flags: action and flags
1501 * Find all the mappings of a page using the mapping pointer and the vma chains
1502 * contained in the address_space struct it points to.
1504 * This function is only called from try_to_unmap/try_to_munlock for
1505 * object-based pages.
1506 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1507 * where the page was found will be held for write. So, we won't recheck
1508 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1511 static int try_to_unmap_file(struct page
*page
, enum ttu_flags flags
)
1513 struct address_space
*mapping
= page
->mapping
;
1514 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1515 struct vm_area_struct
*vma
;
1516 int ret
= SWAP_AGAIN
;
1517 unsigned long cursor
;
1518 unsigned long max_nl_cursor
= 0;
1519 unsigned long max_nl_size
= 0;
1520 unsigned int mapcount
;
1523 pgoff
= page
->index
<< compound_order(page
);
1525 mutex_lock(&mapping
->i_mmap_mutex
);
1526 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1527 unsigned long address
= vma_address(page
, vma
);
1528 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1529 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1533 if (list_empty(&mapping
->i_mmap_nonlinear
))
1537 * We don't bother to try to find the munlocked page in nonlinears.
1538 * It's costly. Instead, later, page reclaim logic may call
1539 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1541 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1544 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1546 cursor
= (unsigned long) vma
->vm_private_data
;
1547 if (cursor
> max_nl_cursor
)
1548 max_nl_cursor
= cursor
;
1549 cursor
= vma
->vm_end
- vma
->vm_start
;
1550 if (cursor
> max_nl_size
)
1551 max_nl_size
= cursor
;
1554 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1560 * We don't try to search for this page in the nonlinear vmas,
1561 * and page_referenced wouldn't have found it anyway. Instead
1562 * just walk the nonlinear vmas trying to age and unmap some.
1563 * The mapcount of the page we came in with is irrelevant,
1564 * but even so use it as a guide to how hard we should try?
1566 mapcount
= page_mapcount(page
);
1571 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1572 if (max_nl_cursor
== 0)
1573 max_nl_cursor
= CLUSTER_SIZE
;
1576 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1578 cursor
= (unsigned long) vma
->vm_private_data
;
1579 while ( cursor
< max_nl_cursor
&&
1580 cursor
< vma
->vm_end
- vma
->vm_start
) {
1581 if (try_to_unmap_cluster(cursor
, &mapcount
,
1582 vma
, page
) == SWAP_MLOCK
)
1584 cursor
+= CLUSTER_SIZE
;
1585 vma
->vm_private_data
= (void *) cursor
;
1586 if ((int)mapcount
<= 0)
1589 vma
->vm_private_data
= (void *) max_nl_cursor
;
1592 max_nl_cursor
+= CLUSTER_SIZE
;
1593 } while (max_nl_cursor
<= max_nl_size
);
1596 * Don't loop forever (perhaps all the remaining pages are
1597 * in locked vmas). Reset cursor on all unreserved nonlinear
1598 * vmas, now forgetting on which ones it had fallen behind.
1600 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.nonlinear
)
1601 vma
->vm_private_data
= NULL
;
1603 mutex_unlock(&mapping
->i_mmap_mutex
);
1608 * try_to_unmap - try to remove all page table mappings to a page
1609 * @page: the page to get unmapped
1610 * @flags: action and flags
1612 * Tries to remove all the page table entries which are mapping this
1613 * page, used in the pageout path. Caller must hold the page lock.
1614 * Return values are:
1616 * SWAP_SUCCESS - we succeeded in removing all mappings
1617 * SWAP_AGAIN - we missed a mapping, try again later
1618 * SWAP_FAIL - the page is unswappable
1619 * SWAP_MLOCK - page is mlocked.
1621 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1625 BUG_ON(!PageLocked(page
));
1626 VM_BUG_ON(!PageHuge(page
) && PageTransHuge(page
));
1628 if (unlikely(PageKsm(page
)))
1629 ret
= try_to_unmap_ksm(page
, flags
);
1630 else if (PageAnon(page
))
1631 ret
= try_to_unmap_anon(page
, flags
);
1633 ret
= try_to_unmap_file(page
, flags
);
1634 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1640 * try_to_munlock - try to munlock a page
1641 * @page: the page to be munlocked
1643 * Called from munlock code. Checks all of the VMAs mapping the page
1644 * to make sure nobody else has this page mlocked. The page will be
1645 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1647 * Return values are:
1649 * SWAP_AGAIN - no vma is holding page mlocked, or,
1650 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1651 * SWAP_FAIL - page cannot be located at present
1652 * SWAP_MLOCK - page is now mlocked.
1654 int try_to_munlock(struct page
*page
)
1656 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1658 if (unlikely(PageKsm(page
)))
1659 return try_to_unmap_ksm(page
, TTU_MUNLOCK
);
1660 else if (PageAnon(page
))
1661 return try_to_unmap_anon(page
, TTU_MUNLOCK
);
1663 return try_to_unmap_file(page
, TTU_MUNLOCK
);
1666 void __put_anon_vma(struct anon_vma
*anon_vma
)
1668 struct anon_vma
*root
= anon_vma
->root
;
1670 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1671 anon_vma_free(root
);
1673 anon_vma_free(anon_vma
);
1676 #ifdef CONFIG_MIGRATION
1678 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1679 * Called by migrate.c to remove migration ptes, but might be used more later.
1681 static int rmap_walk_anon(struct page
*page
, int (*rmap_one
)(struct page
*,
1682 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1684 struct anon_vma
*anon_vma
;
1685 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1686 struct anon_vma_chain
*avc
;
1687 int ret
= SWAP_AGAIN
;
1690 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1691 * because that depends on page_mapped(); but not all its usages
1692 * are holding mmap_sem. Users without mmap_sem are required to
1693 * take a reference count to prevent the anon_vma disappearing
1695 anon_vma
= page_anon_vma(page
);
1698 anon_vma_lock_read(anon_vma
);
1699 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1700 struct vm_area_struct
*vma
= avc
->vma
;
1701 unsigned long address
= vma_address(page
, vma
);
1702 ret
= rmap_one(page
, vma
, address
, arg
);
1703 if (ret
!= SWAP_AGAIN
)
1706 anon_vma_unlock_read(anon_vma
);
1710 static int rmap_walk_file(struct page
*page
, int (*rmap_one
)(struct page
*,
1711 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1713 struct address_space
*mapping
= page
->mapping
;
1714 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1715 struct vm_area_struct
*vma
;
1716 int ret
= SWAP_AGAIN
;
1720 mutex_lock(&mapping
->i_mmap_mutex
);
1721 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1722 unsigned long address
= vma_address(page
, vma
);
1723 ret
= rmap_one(page
, vma
, address
, arg
);
1724 if (ret
!= SWAP_AGAIN
)
1728 * No nonlinear handling: being always shared, nonlinear vmas
1729 * never contain migration ptes. Decide what to do about this
1730 * limitation to linear when we need rmap_walk() on nonlinear.
1732 mutex_unlock(&mapping
->i_mmap_mutex
);
1736 int rmap_walk(struct page
*page
, int (*rmap_one
)(struct page
*,
1737 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1739 VM_BUG_ON(!PageLocked(page
));
1741 if (unlikely(PageKsm(page
)))
1742 return rmap_walk_ksm(page
, rmap_one
, arg
);
1743 else if (PageAnon(page
))
1744 return rmap_walk_anon(page
, rmap_one
, arg
);
1746 return rmap_walk_file(page
, rmap_one
, arg
);
1748 #endif /* CONFIG_MIGRATION */
1750 #ifdef CONFIG_HUGETLB_PAGE
1752 * The following three functions are for anonymous (private mapped) hugepages.
1753 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1754 * and no lru code, because we handle hugepages differently from common pages.
1756 static void __hugepage_set_anon_rmap(struct page
*page
,
1757 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1759 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1766 anon_vma
= anon_vma
->root
;
1768 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1769 page
->mapping
= (struct address_space
*) anon_vma
;
1770 page
->index
= linear_page_index(vma
, address
);
1773 void hugepage_add_anon_rmap(struct page
*page
,
1774 struct vm_area_struct
*vma
, unsigned long address
)
1776 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1779 BUG_ON(!PageLocked(page
));
1781 /* address might be in next vma when migration races vma_adjust */
1782 first
= atomic_inc_and_test(&page
->_mapcount
);
1784 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1787 void hugepage_add_new_anon_rmap(struct page
*page
,
1788 struct vm_area_struct
*vma
, unsigned long address
)
1790 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1791 atomic_set(&page
->_mapcount
, 0);
1792 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1794 #endif /* CONFIG_HUGETLB_PAGE */