USB: s3c-hsotg: Fix max EP0 IN request length
[linux-2.6.git] / drivers / usb / gadget / s3c-hsotg.c
blob1020006ecfc1eda160e897be70806dca5a1c1074
1 /* linux/drivers/usb/gadget/s3c-hsotg.c
3 * Copyright 2008 Openmoko, Inc.
4 * Copyright 2008 Simtec Electronics
5 * Ben Dooks <ben@simtec.co.uk>
6 * http://armlinux.simtec.co.uk/
8 * S3C USB2.0 High-speed / OtG driver
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
15 #define DEBUG
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
29 #include <linux/usb/ch9.h>
30 #include <linux/usb/gadget.h>
32 #include <mach/map.h>
34 #include <plat/regs-usb-hsotg-phy.h>
35 #include <plat/regs-usb-hsotg.h>
36 #include <mach/regs-sys.h>
37 #include <plat/udc-hs.h>
39 #define DMA_ADDR_INVALID (~((dma_addr_t)0))
41 /* EP0_MPS_LIMIT
43 * Unfortunately there seems to be a limit of the amount of data that can
44 * be transfered by IN transactions on EP0. This is either 127 bytes or 3
45 * packets (which practially means 1 packet and 63 bytes of data) when the
46 * MPS is set to 64.
48 * This means if we are wanting to move >127 bytes of data, we need to
49 * split the transactions up, but just doing one packet at a time does
50 * not work (this may be an implicit DATA0 PID on first packet of the
51 * transaction) and doing 2 packets is outside the controller's limits.
53 * If we try to lower the MPS size for EP0, then no transfers work properly
54 * for EP0, and the system will fail basic enumeration. As no cause for this
55 * has currently been found, we cannot support any large IN transfers for
56 * EP0.
58 #define EP0_MPS_LIMIT 64
60 struct s3c_hsotg;
61 struct s3c_hsotg_req;
63 /**
64 * struct s3c_hsotg_ep - driver endpoint definition.
65 * @ep: The gadget layer representation of the endpoint.
66 * @name: The driver generated name for the endpoint.
67 * @queue: Queue of requests for this endpoint.
68 * @parent: Reference back to the parent device structure.
69 * @req: The current request that the endpoint is processing. This is
70 * used to indicate an request has been loaded onto the endpoint
71 * and has yet to be completed (maybe due to data move, or simply
72 * awaiting an ack from the core all the data has been completed).
73 * @debugfs: File entry for debugfs file for this endpoint.
74 * @lock: State lock to protect contents of endpoint.
75 * @dir_in: Set to true if this endpoint is of the IN direction, which
76 * means that it is sending data to the Host.
77 * @index: The index for the endpoint registers.
78 * @name: The name array passed to the USB core.
79 * @halted: Set if the endpoint has been halted.
80 * @periodic: Set if this is a periodic ep, such as Interrupt
81 * @sent_zlp: Set if we've sent a zero-length packet.
82 * @total_data: The total number of data bytes done.
83 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
84 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
85 * @last_load: The offset of data for the last start of request.
86 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
88 * This is the driver's state for each registered enpoint, allowing it
89 * to keep track of transactions that need doing. Each endpoint has a
90 * lock to protect the state, to try and avoid using an overall lock
91 * for the host controller as much as possible.
93 * For periodic IN endpoints, we have fifo_size and fifo_load to try
94 * and keep track of the amount of data in the periodic FIFO for each
95 * of these as we don't have a status register that tells us how much
96 * is in each of them. (note, this may actually be useless information
97 * as in shared-fifo mode periodic in acts like a single-frame packet
98 * buffer than a fifo)
100 struct s3c_hsotg_ep {
101 struct usb_ep ep;
102 struct list_head queue;
103 struct s3c_hsotg *parent;
104 struct s3c_hsotg_req *req;
105 struct dentry *debugfs;
107 spinlock_t lock;
109 unsigned long total_data;
110 unsigned int size_loaded;
111 unsigned int last_load;
112 unsigned int fifo_load;
113 unsigned short fifo_size;
115 unsigned char dir_in;
116 unsigned char index;
118 unsigned int halted:1;
119 unsigned int periodic:1;
120 unsigned int sent_zlp:1;
122 char name[10];
125 #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
128 * struct s3c_hsotg - driver state.
129 * @dev: The parent device supplied to the probe function
130 * @driver: USB gadget driver
131 * @plat: The platform specific configuration data.
132 * @regs: The memory area mapped for accessing registers.
133 * @regs_res: The resource that was allocated when claiming register space.
134 * @irq: The IRQ number we are using
135 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
136 * @debug_root: root directrory for debugfs.
137 * @debug_file: main status file for debugfs.
138 * @debug_fifo: FIFO status file for debugfs.
139 * @ep0_reply: Request used for ep0 reply.
140 * @ep0_buff: Buffer for EP0 reply data, if needed.
141 * @ctrl_buff: Buffer for EP0 control requests.
142 * @ctrl_req: Request for EP0 control packets.
143 * @eps: The endpoints being supplied to the gadget framework
145 struct s3c_hsotg {
146 struct device *dev;
147 struct usb_gadget_driver *driver;
148 struct s3c_hsotg_plat *plat;
150 void __iomem *regs;
151 struct resource *regs_res;
152 int irq;
154 unsigned int dedicated_fifos:1;
156 struct dentry *debug_root;
157 struct dentry *debug_file;
158 struct dentry *debug_fifo;
160 struct usb_request *ep0_reply;
161 struct usb_request *ctrl_req;
162 u8 ep0_buff[8];
163 u8 ctrl_buff[8];
165 struct usb_gadget gadget;
166 struct s3c_hsotg_ep eps[];
170 * struct s3c_hsotg_req - data transfer request
171 * @req: The USB gadget request
172 * @queue: The list of requests for the endpoint this is queued for.
173 * @in_progress: Has already had size/packets written to core
174 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
176 struct s3c_hsotg_req {
177 struct usb_request req;
178 struct list_head queue;
179 unsigned char in_progress;
180 unsigned char mapped;
183 /* conversion functions */
184 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
186 return container_of(req, struct s3c_hsotg_req, req);
189 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
191 return container_of(ep, struct s3c_hsotg_ep, ep);
194 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
196 return container_of(gadget, struct s3c_hsotg, gadget);
199 static inline void __orr32(void __iomem *ptr, u32 val)
201 writel(readl(ptr) | val, ptr);
204 static inline void __bic32(void __iomem *ptr, u32 val)
206 writel(readl(ptr) & ~val, ptr);
209 /* forward decleration of functions */
210 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
213 * using_dma - return the DMA status of the driver.
214 * @hsotg: The driver state.
216 * Return true if we're using DMA.
218 * Currently, we have the DMA support code worked into everywhere
219 * that needs it, but the AMBA DMA implementation in the hardware can
220 * only DMA from 32bit aligned addresses. This means that gadgets such
221 * as the CDC Ethernet cannot work as they often pass packets which are
222 * not 32bit aligned.
224 * Unfortunately the choice to use DMA or not is global to the controller
225 * and seems to be only settable when the controller is being put through
226 * a core reset. This means we either need to fix the gadgets to take
227 * account of DMA alignment, or add bounce buffers (yuerk).
229 * Until this issue is sorted out, we always return 'false'.
231 static inline bool using_dma(struct s3c_hsotg *hsotg)
233 return false; /* support is not complete */
237 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
238 * @hsotg: The device state
239 * @ints: A bitmask of the interrupts to enable
241 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
243 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
244 u32 new_gsintmsk;
246 new_gsintmsk = gsintmsk | ints;
248 if (new_gsintmsk != gsintmsk) {
249 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
250 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
255 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
256 * @hsotg: The device state
257 * @ints: A bitmask of the interrupts to enable
259 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
261 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
262 u32 new_gsintmsk;
264 new_gsintmsk = gsintmsk & ~ints;
266 if (new_gsintmsk != gsintmsk)
267 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
271 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
272 * @hsotg: The device state
273 * @ep: The endpoint index
274 * @dir_in: True if direction is in.
275 * @en: The enable value, true to enable
277 * Set or clear the mask for an individual endpoint's interrupt
278 * request.
280 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
281 unsigned int ep, unsigned int dir_in,
282 unsigned int en)
284 unsigned long flags;
285 u32 bit = 1 << ep;
286 u32 daint;
288 if (!dir_in)
289 bit <<= 16;
291 local_irq_save(flags);
292 daint = readl(hsotg->regs + S3C_DAINTMSK);
293 if (en)
294 daint |= bit;
295 else
296 daint &= ~bit;
297 writel(daint, hsotg->regs + S3C_DAINTMSK);
298 local_irq_restore(flags);
302 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
303 * @hsotg: The device instance.
305 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
307 unsigned int ep;
308 unsigned int addr;
309 unsigned int size;
310 int timeout;
311 u32 val;
313 /* the ryu 2.6.24 release ahs
314 writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
315 writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
316 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
317 hsotg->regs + S3C_GNPTXFSIZ);
320 /* set FIFO sizes to 2048/1024 */
322 writel(2048, hsotg->regs + S3C_GRXFSIZ);
323 writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
324 S3C_GNPTXFSIZ_NPTxFDep(1024),
325 hsotg->regs + S3C_GNPTXFSIZ);
327 /* arange all the rest of the TX FIFOs, as some versions of this
328 * block have overlapping default addresses. This also ensures
329 * that if the settings have been changed, then they are set to
330 * known values. */
332 /* start at the end of the GNPTXFSIZ, rounded up */
333 addr = 2048 + 1024;
334 size = 768;
336 /* currently we allocate TX FIFOs for all possible endpoints,
337 * and assume that they are all the same size. */
339 for (ep = 0; ep <= 15; ep++) {
340 val = addr;
341 val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
342 addr += size;
344 writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
347 /* according to p428 of the design guide, we need to ensure that
348 * all fifos are flushed before continuing */
350 writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
351 S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
353 /* wait until the fifos are both flushed */
354 timeout = 100;
355 while (1) {
356 val = readl(hsotg->regs + S3C_GRSTCTL);
358 if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
359 break;
361 if (--timeout == 0) {
362 dev_err(hsotg->dev,
363 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
364 __func__, val);
367 udelay(1);
370 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
374 * @ep: USB endpoint to allocate request for.
375 * @flags: Allocation flags
377 * Allocate a new USB request structure appropriate for the specified endpoint
379 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
380 gfp_t flags)
382 struct s3c_hsotg_req *req;
384 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
385 if (!req)
386 return NULL;
388 INIT_LIST_HEAD(&req->queue);
390 req->req.dma = DMA_ADDR_INVALID;
391 return &req->req;
395 * is_ep_periodic - return true if the endpoint is in periodic mode.
396 * @hs_ep: The endpoint to query.
398 * Returns true if the endpoint is in periodic mode, meaning it is being
399 * used for an Interrupt or ISO transfer.
401 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
403 return hs_ep->periodic;
407 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
408 * @hsotg: The device state.
409 * @hs_ep: The endpoint for the request
410 * @hs_req: The request being processed.
412 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
413 * of a request to ensure the buffer is ready for access by the caller.
415 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
416 struct s3c_hsotg_ep *hs_ep,
417 struct s3c_hsotg_req *hs_req)
419 struct usb_request *req = &hs_req->req;
420 enum dma_data_direction dir;
422 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
424 /* ignore this if we're not moving any data */
425 if (hs_req->req.length == 0)
426 return;
428 if (hs_req->mapped) {
429 /* we mapped this, so unmap and remove the dma */
431 dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
433 req->dma = DMA_ADDR_INVALID;
434 hs_req->mapped = 0;
435 } else {
436 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
441 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
442 * @hsotg: The controller state.
443 * @hs_ep: The endpoint we're going to write for.
444 * @hs_req: The request to write data for.
446 * This is called when the TxFIFO has some space in it to hold a new
447 * transmission and we have something to give it. The actual setup of
448 * the data size is done elsewhere, so all we have to do is to actually
449 * write the data.
451 * The return value is zero if there is more space (or nothing was done)
452 * otherwise -ENOSPC is returned if the FIFO space was used up.
454 * This routine is only needed for PIO
456 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
457 struct s3c_hsotg_ep *hs_ep,
458 struct s3c_hsotg_req *hs_req)
460 bool periodic = is_ep_periodic(hs_ep);
461 u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
462 int buf_pos = hs_req->req.actual;
463 int to_write = hs_ep->size_loaded;
464 void *data;
465 int can_write;
466 int pkt_round;
468 to_write -= (buf_pos - hs_ep->last_load);
470 /* if there's nothing to write, get out early */
471 if (to_write == 0)
472 return 0;
474 if (periodic && !hsotg->dedicated_fifos) {
475 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
476 int size_left;
477 int size_done;
479 /* work out how much data was loaded so we can calculate
480 * how much data is left in the fifo. */
482 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
484 /* if shared fifo, we cannot write anything until the
485 * previous data has been completely sent.
487 if (hs_ep->fifo_load != 0) {
488 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
489 return -ENOSPC;
492 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
493 __func__, size_left,
494 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
496 /* how much of the data has moved */
497 size_done = hs_ep->size_loaded - size_left;
499 /* how much data is left in the fifo */
500 can_write = hs_ep->fifo_load - size_done;
501 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
502 __func__, can_write);
504 can_write = hs_ep->fifo_size - can_write;
505 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
506 __func__, can_write);
508 if (can_write <= 0) {
509 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
510 return -ENOSPC;
512 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
513 can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
515 can_write &= 0xffff;
516 can_write *= 4;
517 } else {
518 if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
519 dev_dbg(hsotg->dev,
520 "%s: no queue slots available (0x%08x)\n",
521 __func__, gnptxsts);
523 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
524 return -ENOSPC;
527 can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
528 can_write *= 4; /* fifo size is in 32bit quantities. */
531 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
532 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
534 /* limit to 512 bytes of data, it seems at least on the non-periodic
535 * FIFO, requests of >512 cause the endpoint to get stuck with a
536 * fragment of the end of the transfer in it.
538 if (can_write > 512)
539 can_write = 512;
541 /* limit the write to one max-packet size worth of data, but allow
542 * the transfer to return that it did not run out of fifo space
543 * doing it. */
544 if (to_write > hs_ep->ep.maxpacket) {
545 to_write = hs_ep->ep.maxpacket;
547 s3c_hsotg_en_gsint(hsotg,
548 periodic ? S3C_GINTSTS_PTxFEmp :
549 S3C_GINTSTS_NPTxFEmp);
552 /* see if we can write data */
554 if (to_write > can_write) {
555 to_write = can_write;
556 pkt_round = to_write % hs_ep->ep.maxpacket;
558 /* Not sure, but we probably shouldn't be writing partial
559 * packets into the FIFO, so round the write down to an
560 * exact number of packets.
562 * Note, we do not currently check to see if we can ever
563 * write a full packet or not to the FIFO.
566 if (pkt_round)
567 to_write -= pkt_round;
569 /* enable correct FIFO interrupt to alert us when there
570 * is more room left. */
572 s3c_hsotg_en_gsint(hsotg,
573 periodic ? S3C_GINTSTS_PTxFEmp :
574 S3C_GINTSTS_NPTxFEmp);
577 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
578 to_write, hs_req->req.length, can_write, buf_pos);
580 if (to_write <= 0)
581 return -ENOSPC;
583 hs_req->req.actual = buf_pos + to_write;
584 hs_ep->total_data += to_write;
586 if (periodic)
587 hs_ep->fifo_load += to_write;
589 to_write = DIV_ROUND_UP(to_write, 4);
590 data = hs_req->req.buf + buf_pos;
592 writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
594 return (to_write >= can_write) ? -ENOSPC : 0;
598 * get_ep_limit - get the maximum data legnth for this endpoint
599 * @hs_ep: The endpoint
601 * Return the maximum data that can be queued in one go on a given endpoint
602 * so that transfers that are too long can be split.
604 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
606 int index = hs_ep->index;
607 unsigned maxsize;
608 unsigned maxpkt;
610 if (index != 0) {
611 maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
612 maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
613 } else {
614 if (hs_ep->dir_in) {
615 maxsize = 64+64;
616 maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
617 } else {
618 maxsize = 0x3f;
619 maxpkt = 2;
623 /* we made the constant loading easier above by using +1 */
624 maxpkt--;
625 maxsize--;
627 /* constrain by packet count if maxpkts*pktsize is greater
628 * than the length register size. */
630 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
631 maxsize = maxpkt * hs_ep->ep.maxpacket;
633 return maxsize;
637 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
638 * @hsotg: The controller state.
639 * @hs_ep: The endpoint to process a request for
640 * @hs_req: The request to start.
641 * @continuing: True if we are doing more for the current request.
643 * Start the given request running by setting the endpoint registers
644 * appropriately, and writing any data to the FIFOs.
646 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
647 struct s3c_hsotg_ep *hs_ep,
648 struct s3c_hsotg_req *hs_req,
649 bool continuing)
651 struct usb_request *ureq = &hs_req->req;
652 int index = hs_ep->index;
653 int dir_in = hs_ep->dir_in;
654 u32 epctrl_reg;
655 u32 epsize_reg;
656 u32 epsize;
657 u32 ctrl;
658 unsigned length;
659 unsigned packets;
660 unsigned maxreq;
662 if (index != 0) {
663 if (hs_ep->req && !continuing) {
664 dev_err(hsotg->dev, "%s: active request\n", __func__);
665 WARN_ON(1);
666 return;
667 } else if (hs_ep->req != hs_req && continuing) {
668 dev_err(hsotg->dev,
669 "%s: continue different req\n", __func__);
670 WARN_ON(1);
671 return;
675 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
676 epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
678 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
679 __func__, readl(hsotg->regs + epctrl_reg), index,
680 hs_ep->dir_in ? "in" : "out");
682 length = ureq->length - ureq->actual;
684 if (0)
685 dev_dbg(hsotg->dev,
686 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
687 ureq->buf, length, ureq->dma,
688 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
690 maxreq = get_ep_limit(hs_ep);
691 if (length > maxreq) {
692 int round = maxreq % hs_ep->ep.maxpacket;
694 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
695 __func__, length, maxreq, round);
697 /* round down to multiple of packets */
698 if (round)
699 maxreq -= round;
701 length = maxreq;
704 if (length)
705 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
706 else
707 packets = 1; /* send one packet if length is zero. */
709 if (dir_in && index != 0)
710 epsize = S3C_DxEPTSIZ_MC(1);
711 else
712 epsize = 0;
714 if (index != 0 && ureq->zero) {
715 /* test for the packets being exactly right for the
716 * transfer */
718 if (length == (packets * hs_ep->ep.maxpacket))
719 packets++;
722 epsize |= S3C_DxEPTSIZ_PktCnt(packets);
723 epsize |= S3C_DxEPTSIZ_XferSize(length);
725 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
726 __func__, packets, length, ureq->length, epsize, epsize_reg);
728 /* store the request as the current one we're doing */
729 hs_ep->req = hs_req;
731 /* write size / packets */
732 writel(epsize, hsotg->regs + epsize_reg);
734 ctrl = readl(hsotg->regs + epctrl_reg);
736 if (ctrl & S3C_DxEPCTL_Stall) {
737 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
739 /* not sure what we can do here, if it is EP0 then we should
740 * get this cleared once the endpoint has transmitted the
741 * STALL packet, otherwise it needs to be cleared by the
742 * host.
746 if (using_dma(hsotg)) {
747 unsigned int dma_reg;
749 /* write DMA address to control register, buffer already
750 * synced by s3c_hsotg_ep_queue(). */
752 dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
753 writel(ureq->dma, hsotg->regs + dma_reg);
755 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
756 __func__, ureq->dma, dma_reg);
759 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
760 ctrl |= S3C_DxEPCTL_USBActEp;
761 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
763 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
764 writel(ctrl, hsotg->regs + epctrl_reg);
766 /* set these, it seems that DMA support increments past the end
767 * of the packet buffer so we need to calculate the length from
768 * this information. */
769 hs_ep->size_loaded = length;
770 hs_ep->last_load = ureq->actual;
772 if (dir_in && !using_dma(hsotg)) {
773 /* set these anyway, we may need them for non-periodic in */
774 hs_ep->fifo_load = 0;
776 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
779 /* clear the INTknTXFEmpMsk when we start request, more as a aide
780 * to debugging to see what is going on. */
781 if (dir_in)
782 writel(S3C_DIEPMSK_INTknTXFEmpMsk,
783 hsotg->regs + S3C_DIEPINT(index));
785 /* Note, trying to clear the NAK here causes problems with transmit
786 * on the S3C6400 ending up with the TXFIFO becomming full. */
788 /* check ep is enabled */
789 if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
790 dev_warn(hsotg->dev,
791 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
792 index, readl(hsotg->regs + epctrl_reg));
794 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
795 __func__, readl(hsotg->regs + epctrl_reg));
799 * s3c_hsotg_map_dma - map the DMA memory being used for the request
800 * @hsotg: The device state.
801 * @hs_ep: The endpoint the request is on.
802 * @req: The request being processed.
804 * We've been asked to queue a request, so ensure that the memory buffer
805 * is correctly setup for DMA. If we've been passed an extant DMA address
806 * then ensure the buffer has been synced to memory. If our buffer has no
807 * DMA memory, then we map the memory and mark our request to allow us to
808 * cleanup on completion.
810 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
811 struct s3c_hsotg_ep *hs_ep,
812 struct usb_request *req)
814 enum dma_data_direction dir;
815 struct s3c_hsotg_req *hs_req = our_req(req);
817 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
819 /* if the length is zero, ignore the DMA data */
820 if (hs_req->req.length == 0)
821 return 0;
823 if (req->dma == DMA_ADDR_INVALID) {
824 dma_addr_t dma;
826 dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
828 if (unlikely(dma_mapping_error(hsotg->dev, dma)))
829 goto dma_error;
831 if (dma & 3) {
832 dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
833 __func__);
835 dma_unmap_single(hsotg->dev, dma, req->length, dir);
836 return -EINVAL;
839 hs_req->mapped = 1;
840 req->dma = dma;
841 } else {
842 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
843 hs_req->mapped = 0;
846 return 0;
848 dma_error:
849 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
850 __func__, req->buf, req->length);
852 return -EIO;
855 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
856 gfp_t gfp_flags)
858 struct s3c_hsotg_req *hs_req = our_req(req);
859 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
860 struct s3c_hsotg *hs = hs_ep->parent;
861 unsigned long irqflags;
862 bool first;
864 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
865 ep->name, req, req->length, req->buf, req->no_interrupt,
866 req->zero, req->short_not_ok);
868 /* initialise status of the request */
869 INIT_LIST_HEAD(&hs_req->queue);
870 req->actual = 0;
871 req->status = -EINPROGRESS;
873 /* if we're using DMA, sync the buffers as necessary */
874 if (using_dma(hs)) {
875 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
876 if (ret)
877 return ret;
880 spin_lock_irqsave(&hs_ep->lock, irqflags);
882 first = list_empty(&hs_ep->queue);
883 list_add_tail(&hs_req->queue, &hs_ep->queue);
885 if (first)
886 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
888 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
890 return 0;
893 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
894 struct usb_request *req)
896 struct s3c_hsotg_req *hs_req = our_req(req);
898 kfree(hs_req);
902 * s3c_hsotg_complete_oursetup - setup completion callback
903 * @ep: The endpoint the request was on.
904 * @req: The request completed.
906 * Called on completion of any requests the driver itself
907 * submitted that need cleaning up.
909 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
910 struct usb_request *req)
912 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
913 struct s3c_hsotg *hsotg = hs_ep->parent;
915 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
917 s3c_hsotg_ep_free_request(ep, req);
921 * ep_from_windex - convert control wIndex value to endpoint
922 * @hsotg: The driver state.
923 * @windex: The control request wIndex field (in host order).
925 * Convert the given wIndex into a pointer to an driver endpoint
926 * structure, or return NULL if it is not a valid endpoint.
928 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
929 u32 windex)
931 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
932 int dir = (windex & USB_DIR_IN) ? 1 : 0;
933 int idx = windex & 0x7F;
935 if (windex >= 0x100)
936 return NULL;
938 if (idx > S3C_HSOTG_EPS)
939 return NULL;
941 if (idx && ep->dir_in != dir)
942 return NULL;
944 return ep;
948 * s3c_hsotg_send_reply - send reply to control request
949 * @hsotg: The device state
950 * @ep: Endpoint 0
951 * @buff: Buffer for request
952 * @length: Length of reply.
954 * Create a request and queue it on the given endpoint. This is useful as
955 * an internal method of sending replies to certain control requests, etc.
957 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
958 struct s3c_hsotg_ep *ep,
959 void *buff,
960 int length)
962 struct usb_request *req;
963 int ret;
965 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
967 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
968 hsotg->ep0_reply = req;
969 if (!req) {
970 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
971 return -ENOMEM;
974 req->buf = hsotg->ep0_buff;
975 req->length = length;
976 req->zero = 1; /* always do zero-length final transfer */
977 req->complete = s3c_hsotg_complete_oursetup;
979 if (length)
980 memcpy(req->buf, buff, length);
981 else
982 ep->sent_zlp = 1;
984 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
985 if (ret) {
986 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
987 return ret;
990 return 0;
994 * s3c_hsotg_process_req_status - process request GET_STATUS
995 * @hsotg: The device state
996 * @ctrl: USB control request
998 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
999 struct usb_ctrlrequest *ctrl)
1001 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1002 struct s3c_hsotg_ep *ep;
1003 __le16 reply;
1004 int ret;
1006 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1008 if (!ep0->dir_in) {
1009 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1010 return -EINVAL;
1013 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1014 case USB_RECIP_DEVICE:
1015 reply = cpu_to_le16(0); /* bit 0 => self powered,
1016 * bit 1 => remote wakeup */
1017 break;
1019 case USB_RECIP_INTERFACE:
1020 /* currently, the data result should be zero */
1021 reply = cpu_to_le16(0);
1022 break;
1024 case USB_RECIP_ENDPOINT:
1025 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1026 if (!ep)
1027 return -ENOENT;
1029 reply = cpu_to_le16(ep->halted ? 1 : 0);
1030 break;
1032 default:
1033 return 0;
1036 if (le16_to_cpu(ctrl->wLength) != 2)
1037 return -EINVAL;
1039 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1040 if (ret) {
1041 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1042 return ret;
1045 return 1;
1048 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1051 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1052 * @hsotg: The device state
1053 * @ctrl: USB control request
1055 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1056 struct usb_ctrlrequest *ctrl)
1058 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1059 struct s3c_hsotg_ep *ep;
1061 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1062 __func__, set ? "SET" : "CLEAR");
1064 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1065 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1066 if (!ep) {
1067 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1068 __func__, le16_to_cpu(ctrl->wIndex));
1069 return -ENOENT;
1072 switch (le16_to_cpu(ctrl->wValue)) {
1073 case USB_ENDPOINT_HALT:
1074 s3c_hsotg_ep_sethalt(&ep->ep, set);
1075 break;
1077 default:
1078 return -ENOENT;
1080 } else
1081 return -ENOENT; /* currently only deal with endpoint */
1083 return 1;
1087 * s3c_hsotg_process_control - process a control request
1088 * @hsotg: The device state
1089 * @ctrl: The control request received
1091 * The controller has received the SETUP phase of a control request, and
1092 * needs to work out what to do next (and whether to pass it on to the
1093 * gadget driver).
1095 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1096 struct usb_ctrlrequest *ctrl)
1098 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1099 int ret = 0;
1100 u32 dcfg;
1102 ep0->sent_zlp = 0;
1104 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1105 ctrl->bRequest, ctrl->bRequestType,
1106 ctrl->wValue, ctrl->wLength);
1108 /* record the direction of the request, for later use when enquing
1109 * packets onto EP0. */
1111 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1112 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1114 /* if we've no data with this request, then the last part of the
1115 * transaction is going to implicitly be IN. */
1116 if (ctrl->wLength == 0)
1117 ep0->dir_in = 1;
1119 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1120 switch (ctrl->bRequest) {
1121 case USB_REQ_SET_ADDRESS:
1122 dcfg = readl(hsotg->regs + S3C_DCFG);
1123 dcfg &= ~S3C_DCFG_DevAddr_MASK;
1124 dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1125 writel(dcfg, hsotg->regs + S3C_DCFG);
1127 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1129 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1130 return;
1132 case USB_REQ_GET_STATUS:
1133 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1134 break;
1136 case USB_REQ_CLEAR_FEATURE:
1137 case USB_REQ_SET_FEATURE:
1138 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1139 break;
1143 /* as a fallback, try delivering it to the driver to deal with */
1145 if (ret == 0 && hsotg->driver) {
1146 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1147 if (ret < 0)
1148 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1151 if (ret > 0) {
1152 if (!ep0->dir_in) {
1153 /* need to generate zlp in reply or take data */
1154 /* todo - deal with any data we might be sent? */
1155 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1159 /* the request is either unhandlable, or is not formatted correctly
1160 * so respond with a STALL for the status stage to indicate failure.
1163 if (ret < 0) {
1164 u32 reg;
1165 u32 ctrl;
1167 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1168 reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1170 /* S3C_DxEPCTL_Stall will be cleared by EP once it has
1171 * taken effect, so no need to clear later. */
1173 ctrl = readl(hsotg->regs + reg);
1174 ctrl |= S3C_DxEPCTL_Stall;
1175 ctrl |= S3C_DxEPCTL_CNAK;
1176 writel(ctrl, hsotg->regs + reg);
1178 dev_dbg(hsotg->dev,
1179 "writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1180 ctrl, reg, readl(hsotg->regs + reg));
1182 /* don't belive we need to anything more to get the EP
1183 * to reply with a STALL packet */
1187 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1190 * s3c_hsotg_complete_setup - completion of a setup transfer
1191 * @ep: The endpoint the request was on.
1192 * @req: The request completed.
1194 * Called on completion of any requests the driver itself submitted for
1195 * EP0 setup packets
1197 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1198 struct usb_request *req)
1200 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1201 struct s3c_hsotg *hsotg = hs_ep->parent;
1203 if (req->status < 0) {
1204 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1205 return;
1208 if (req->actual == 0)
1209 s3c_hsotg_enqueue_setup(hsotg);
1210 else
1211 s3c_hsotg_process_control(hsotg, req->buf);
1215 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1216 * @hsotg: The device state.
1218 * Enqueue a request on EP0 if necessary to received any SETUP packets
1219 * received from the host.
1221 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1223 struct usb_request *req = hsotg->ctrl_req;
1224 struct s3c_hsotg_req *hs_req = our_req(req);
1225 int ret;
1227 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1229 req->zero = 0;
1230 req->length = 8;
1231 req->buf = hsotg->ctrl_buff;
1232 req->complete = s3c_hsotg_complete_setup;
1234 if (!list_empty(&hs_req->queue)) {
1235 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1236 return;
1239 hsotg->eps[0].dir_in = 0;
1241 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1242 if (ret < 0) {
1243 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1244 /* Don't think there's much we can do other than watch the
1245 * driver fail. */
1250 * get_ep_head - return the first request on the endpoint
1251 * @hs_ep: The controller endpoint to get
1253 * Get the first request on the endpoint.
1255 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1257 if (list_empty(&hs_ep->queue))
1258 return NULL;
1260 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1264 * s3c_hsotg_complete_request - complete a request given to us
1265 * @hsotg: The device state.
1266 * @hs_ep: The endpoint the request was on.
1267 * @hs_req: The request to complete.
1268 * @result: The result code (0 => Ok, otherwise errno)
1270 * The given request has finished, so call the necessary completion
1271 * if it has one and then look to see if we can start a new request
1272 * on the endpoint.
1274 * Note, expects the ep to already be locked as appropriate.
1276 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1277 struct s3c_hsotg_ep *hs_ep,
1278 struct s3c_hsotg_req *hs_req,
1279 int result)
1281 bool restart;
1283 if (!hs_req) {
1284 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1285 return;
1288 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1289 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1291 /* only replace the status if we've not already set an error
1292 * from a previous transaction */
1294 if (hs_req->req.status == -EINPROGRESS)
1295 hs_req->req.status = result;
1297 hs_ep->req = NULL;
1298 list_del_init(&hs_req->queue);
1300 if (using_dma(hsotg))
1301 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1303 /* call the complete request with the locks off, just in case the
1304 * request tries to queue more work for this endpoint. */
1306 if (hs_req->req.complete) {
1307 spin_unlock(&hs_ep->lock);
1308 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1309 spin_lock(&hs_ep->lock);
1312 /* Look to see if there is anything else to do. Note, the completion
1313 * of the previous request may have caused a new request to be started
1314 * so be careful when doing this. */
1316 if (!hs_ep->req && result >= 0) {
1317 restart = !list_empty(&hs_ep->queue);
1318 if (restart) {
1319 hs_req = get_ep_head(hs_ep);
1320 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1326 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1327 * @hsotg: The device state.
1328 * @hs_ep: The endpoint the request was on.
1329 * @hs_req: The request to complete.
1330 * @result: The result code (0 => Ok, otherwise errno)
1332 * See s3c_hsotg_complete_request(), but called with the endpoint's
1333 * lock held.
1335 static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1336 struct s3c_hsotg_ep *hs_ep,
1337 struct s3c_hsotg_req *hs_req,
1338 int result)
1340 unsigned long flags;
1342 spin_lock_irqsave(&hs_ep->lock, flags);
1343 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1344 spin_unlock_irqrestore(&hs_ep->lock, flags);
1348 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1349 * @hsotg: The device state.
1350 * @ep_idx: The endpoint index for the data
1351 * @size: The size of data in the fifo, in bytes
1353 * The FIFO status shows there is data to read from the FIFO for a given
1354 * endpoint, so sort out whether we need to read the data into a request
1355 * that has been made for that endpoint.
1357 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1359 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1360 struct s3c_hsotg_req *hs_req = hs_ep->req;
1361 void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1362 int to_read;
1363 int max_req;
1364 int read_ptr;
1366 if (!hs_req) {
1367 u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1368 int ptr;
1370 dev_warn(hsotg->dev,
1371 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1372 __func__, size, ep_idx, epctl);
1374 /* dump the data from the FIFO, we've nothing we can do */
1375 for (ptr = 0; ptr < size; ptr += 4)
1376 (void)readl(fifo);
1378 return;
1381 spin_lock(&hs_ep->lock);
1383 to_read = size;
1384 read_ptr = hs_req->req.actual;
1385 max_req = hs_req->req.length - read_ptr;
1387 if (to_read > max_req) {
1388 /* more data appeared than we where willing
1389 * to deal with in this request.
1392 /* currently we don't deal this */
1393 WARN_ON_ONCE(1);
1396 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1397 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1399 hs_ep->total_data += to_read;
1400 hs_req->req.actual += to_read;
1401 to_read = DIV_ROUND_UP(to_read, 4);
1403 /* note, we might over-write the buffer end by 3 bytes depending on
1404 * alignment of the data. */
1405 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1407 spin_unlock(&hs_ep->lock);
1411 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1412 * @hsotg: The device instance
1413 * @req: The request currently on this endpoint
1415 * Generate a zero-length IN packet request for terminating a SETUP
1416 * transaction.
1418 * Note, since we don't write any data to the TxFIFO, then it is
1419 * currently belived that we do not need to wait for any space in
1420 * the TxFIFO.
1422 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1423 struct s3c_hsotg_req *req)
1425 u32 ctrl;
1427 if (!req) {
1428 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1429 return;
1432 if (req->req.length == 0) {
1433 hsotg->eps[0].sent_zlp = 1;
1434 s3c_hsotg_enqueue_setup(hsotg);
1435 return;
1438 hsotg->eps[0].dir_in = 1;
1439 hsotg->eps[0].sent_zlp = 1;
1441 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1443 /* issue a zero-sized packet to terminate this */
1444 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1445 S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1447 ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1448 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
1449 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1450 ctrl |= S3C_DxEPCTL_USBActEp;
1451 writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1455 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1456 * @hsotg: The device instance
1457 * @epnum: The endpoint received from
1458 * @was_setup: Set if processing a SetupDone event.
1460 * The RXFIFO has delivered an OutDone event, which means that the data
1461 * transfer for an OUT endpoint has been completed, either by a short
1462 * packet or by the finish of a transfer.
1464 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1465 int epnum, bool was_setup)
1467 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1468 struct s3c_hsotg_req *hs_req = hs_ep->req;
1469 struct usb_request *req = &hs_req->req;
1470 int result = 0;
1472 if (!hs_req) {
1473 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1474 return;
1477 if (using_dma(hsotg)) {
1478 u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
1479 unsigned size_done;
1480 unsigned size_left;
1482 /* Calculate the size of the transfer by checking how much
1483 * is left in the endpoint size register and then working it
1484 * out from the amount we loaded for the transfer.
1486 * We need to do this as DMA pointers are always 32bit aligned
1487 * so may overshoot/undershoot the transfer.
1490 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1492 size_done = hs_ep->size_loaded - size_left;
1493 size_done += hs_ep->last_load;
1495 req->actual = size_done;
1498 if (req->actual < req->length && req->short_not_ok) {
1499 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1500 __func__, req->actual, req->length);
1502 /* todo - what should we return here? there's no one else
1503 * even bothering to check the status. */
1506 if (epnum == 0) {
1507 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1508 s3c_hsotg_send_zlp(hsotg, hs_req);
1511 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1515 * s3c_hsotg_read_frameno - read current frame number
1516 * @hsotg: The device instance
1518 * Return the current frame number
1520 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1522 u32 dsts;
1524 dsts = readl(hsotg->regs + S3C_DSTS);
1525 dsts &= S3C_DSTS_SOFFN_MASK;
1526 dsts >>= S3C_DSTS_SOFFN_SHIFT;
1528 return dsts;
1532 * s3c_hsotg_handle_rx - RX FIFO has data
1533 * @hsotg: The device instance
1535 * The IRQ handler has detected that the RX FIFO has some data in it
1536 * that requires processing, so find out what is in there and do the
1537 * appropriate read.
1539 * The RXFIFO is a true FIFO, the packets comming out are still in packet
1540 * chunks, so if you have x packets received on an endpoint you'll get x
1541 * FIFO events delivered, each with a packet's worth of data in it.
1543 * When using DMA, we should not be processing events from the RXFIFO
1544 * as the actual data should be sent to the memory directly and we turn
1545 * on the completion interrupts to get notifications of transfer completion.
1547 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1549 u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1550 u32 epnum, status, size;
1552 WARN_ON(using_dma(hsotg));
1554 epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1555 status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1557 size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1558 size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1560 if (1)
1561 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1562 __func__, grxstsr, size, epnum);
1564 #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1566 switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1567 case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1568 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1569 break;
1571 case __status(S3C_GRXSTS_PktSts_OutDone):
1572 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1573 s3c_hsotg_read_frameno(hsotg));
1575 if (!using_dma(hsotg))
1576 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1577 break;
1579 case __status(S3C_GRXSTS_PktSts_SetupDone):
1580 dev_dbg(hsotg->dev,
1581 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1582 s3c_hsotg_read_frameno(hsotg),
1583 readl(hsotg->regs + S3C_DOEPCTL(0)));
1585 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1586 break;
1588 case __status(S3C_GRXSTS_PktSts_OutRX):
1589 s3c_hsotg_rx_data(hsotg, epnum, size);
1590 break;
1592 case __status(S3C_GRXSTS_PktSts_SetupRX):
1593 dev_dbg(hsotg->dev,
1594 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1595 s3c_hsotg_read_frameno(hsotg),
1596 readl(hsotg->regs + S3C_DOEPCTL(0)));
1598 s3c_hsotg_rx_data(hsotg, epnum, size);
1599 break;
1601 default:
1602 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1603 __func__, grxstsr);
1605 s3c_hsotg_dump(hsotg);
1606 break;
1611 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1612 * @mps: The maximum packet size in bytes.
1614 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1616 switch (mps) {
1617 case 64:
1618 return S3C_D0EPCTL_MPS_64;
1619 case 32:
1620 return S3C_D0EPCTL_MPS_32;
1621 case 16:
1622 return S3C_D0EPCTL_MPS_16;
1623 case 8:
1624 return S3C_D0EPCTL_MPS_8;
1627 /* bad max packet size, warn and return invalid result */
1628 WARN_ON(1);
1629 return (u32)-1;
1633 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1634 * @hsotg: The driver state.
1635 * @ep: The index number of the endpoint
1636 * @mps: The maximum packet size in bytes
1638 * Configure the maximum packet size for the given endpoint, updating
1639 * the hardware control registers to reflect this.
1641 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1642 unsigned int ep, unsigned int mps)
1644 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1645 void __iomem *regs = hsotg->regs;
1646 u32 mpsval;
1647 u32 reg;
1649 if (ep == 0) {
1650 /* EP0 is a special case */
1651 mpsval = s3c_hsotg_ep0_mps(mps);
1652 if (mpsval > 3)
1653 goto bad_mps;
1654 } else {
1655 if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1656 goto bad_mps;
1658 mpsval = mps;
1661 hs_ep->ep.maxpacket = mps;
1663 /* update both the in and out endpoint controldir_ registers, even
1664 * if one of the directions may not be in use. */
1666 reg = readl(regs + S3C_DIEPCTL(ep));
1667 reg &= ~S3C_DxEPCTL_MPS_MASK;
1668 reg |= mpsval;
1669 writel(reg, regs + S3C_DIEPCTL(ep));
1671 reg = readl(regs + S3C_DOEPCTL(ep));
1672 reg &= ~S3C_DxEPCTL_MPS_MASK;
1673 reg |= mpsval;
1674 writel(reg, regs + S3C_DOEPCTL(ep));
1676 return;
1678 bad_mps:
1679 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1684 * s3c_hsotg_trytx - check to see if anything needs transmitting
1685 * @hsotg: The driver state
1686 * @hs_ep: The driver endpoint to check.
1688 * Check to see if there is a request that has data to send, and if so
1689 * make an attempt to write data into the FIFO.
1691 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1692 struct s3c_hsotg_ep *hs_ep)
1694 struct s3c_hsotg_req *hs_req = hs_ep->req;
1696 if (!hs_ep->dir_in || !hs_req)
1697 return 0;
1699 if (hs_req->req.actual < hs_req->req.length) {
1700 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1701 hs_ep->index);
1702 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1705 return 0;
1709 * s3c_hsotg_complete_in - complete IN transfer
1710 * @hsotg: The device state.
1711 * @hs_ep: The endpoint that has just completed.
1713 * An IN transfer has been completed, update the transfer's state and then
1714 * call the relevant completion routines.
1716 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1717 struct s3c_hsotg_ep *hs_ep)
1719 struct s3c_hsotg_req *hs_req = hs_ep->req;
1720 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1721 int size_left, size_done;
1723 if (!hs_req) {
1724 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1725 return;
1728 /* Calculate the size of the transfer by checking how much is left
1729 * in the endpoint size register and then working it out from
1730 * the amount we loaded for the transfer.
1732 * We do this even for DMA, as the transfer may have incremented
1733 * past the end of the buffer (DMA transfers are always 32bit
1734 * aligned).
1737 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1739 size_done = hs_ep->size_loaded - size_left;
1740 size_done += hs_ep->last_load;
1742 if (hs_req->req.actual != size_done)
1743 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1744 __func__, hs_req->req.actual, size_done);
1746 hs_req->req.actual = size_done;
1748 /* if we did all of the transfer, and there is more data left
1749 * around, then try restarting the rest of the request */
1751 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1752 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1753 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1754 } else
1755 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1759 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1760 * @hsotg: The driver state
1761 * @idx: The index for the endpoint (0..15)
1762 * @dir_in: Set if this is an IN endpoint
1764 * Process and clear any interrupt pending for an individual endpoint
1766 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1767 int dir_in)
1769 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1770 u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1771 u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1772 u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1773 u32 ints;
1774 u32 clear = 0;
1776 ints = readl(hsotg->regs + epint_reg);
1778 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1779 __func__, idx, dir_in ? "in" : "out", ints);
1781 if (ints & S3C_DxEPINT_XferCompl) {
1782 dev_dbg(hsotg->dev,
1783 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1784 __func__, readl(hsotg->regs + epctl_reg),
1785 readl(hsotg->regs + epsiz_reg));
1787 /* we get OutDone from the FIFO, so we only need to look
1788 * at completing IN requests here */
1789 if (dir_in) {
1790 s3c_hsotg_complete_in(hsotg, hs_ep);
1792 if (idx == 0 && !hs_ep->req)
1793 s3c_hsotg_enqueue_setup(hsotg);
1794 } else if (using_dma(hsotg)) {
1795 /* We're using DMA, we need to fire an OutDone here
1796 * as we ignore the RXFIFO. */
1798 s3c_hsotg_handle_outdone(hsotg, idx, false);
1801 clear |= S3C_DxEPINT_XferCompl;
1804 if (ints & S3C_DxEPINT_EPDisbld) {
1805 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1806 clear |= S3C_DxEPINT_EPDisbld;
1809 if (ints & S3C_DxEPINT_AHBErr) {
1810 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1811 clear |= S3C_DxEPINT_AHBErr;
1814 if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
1815 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
1817 if (using_dma(hsotg) && idx == 0) {
1818 /* this is the notification we've received a
1819 * setup packet. In non-DMA mode we'd get this
1820 * from the RXFIFO, instead we need to process
1821 * the setup here. */
1823 if (dir_in)
1824 WARN_ON_ONCE(1);
1825 else
1826 s3c_hsotg_handle_outdone(hsotg, 0, true);
1829 clear |= S3C_DxEPINT_Setup;
1832 if (ints & S3C_DxEPINT_Back2BackSetup) {
1833 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1834 clear |= S3C_DxEPINT_Back2BackSetup;
1837 if (dir_in) {
1838 /* not sure if this is important, but we'll clear it anyway
1840 if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1841 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1842 __func__, idx);
1843 clear |= S3C_DIEPMSK_INTknTXFEmpMsk;
1846 /* this probably means something bad is happening */
1847 if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1848 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1849 __func__, idx);
1850 clear |= S3C_DIEPMSK_INTknEPMisMsk;
1853 /* FIFO has space or is empty (see GAHBCFG) */
1854 if (hsotg->dedicated_fifos &&
1855 ints & S3C_DIEPMSK_TxFIFOEmpty) {
1856 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1857 __func__, idx);
1858 s3c_hsotg_trytx(hsotg, hs_ep);
1859 clear |= S3C_DIEPMSK_TxFIFOEmpty;
1863 writel(clear, hsotg->regs + epint_reg);
1867 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1868 * @hsotg: The device state.
1870 * Handle updating the device settings after the enumeration phase has
1871 * been completed.
1873 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1875 u32 dsts = readl(hsotg->regs + S3C_DSTS);
1876 int ep0_mps = 0, ep_mps;
1878 /* This should signal the finish of the enumeration phase
1879 * of the USB handshaking, so we should now know what rate
1880 * we connected at. */
1882 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1884 /* note, since we're limited by the size of transfer on EP0, and
1885 * it seems IN transfers must be a even number of packets we do
1886 * not advertise a 64byte MPS on EP0. */
1888 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1889 switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1890 case S3C_DSTS_EnumSpd_FS:
1891 case S3C_DSTS_EnumSpd_FS48:
1892 hsotg->gadget.speed = USB_SPEED_FULL;
1893 dev_info(hsotg->dev, "new device is full-speed\n");
1895 ep0_mps = EP0_MPS_LIMIT;
1896 ep_mps = 64;
1897 break;
1899 case S3C_DSTS_EnumSpd_HS:
1900 dev_info(hsotg->dev, "new device is high-speed\n");
1901 hsotg->gadget.speed = USB_SPEED_HIGH;
1903 ep0_mps = EP0_MPS_LIMIT;
1904 ep_mps = 512;
1905 break;
1907 case S3C_DSTS_EnumSpd_LS:
1908 hsotg->gadget.speed = USB_SPEED_LOW;
1909 dev_info(hsotg->dev, "new device is low-speed\n");
1911 /* note, we don't actually support LS in this driver at the
1912 * moment, and the documentation seems to imply that it isn't
1913 * supported by the PHYs on some of the devices.
1915 break;
1918 /* we should now know the maximum packet size for an
1919 * endpoint, so set the endpoints to a default value. */
1921 if (ep0_mps) {
1922 int i;
1923 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1924 for (i = 1; i < S3C_HSOTG_EPS; i++)
1925 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1928 /* ensure after enumeration our EP0 is active */
1930 s3c_hsotg_enqueue_setup(hsotg);
1932 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1933 readl(hsotg->regs + S3C_DIEPCTL0),
1934 readl(hsotg->regs + S3C_DOEPCTL0));
1938 * kill_all_requests - remove all requests from the endpoint's queue
1939 * @hsotg: The device state.
1940 * @ep: The endpoint the requests may be on.
1941 * @result: The result code to use.
1942 * @force: Force removal of any current requests
1944 * Go through the requests on the given endpoint and mark them
1945 * completed with the given result code.
1947 static void kill_all_requests(struct s3c_hsotg *hsotg,
1948 struct s3c_hsotg_ep *ep,
1949 int result, bool force)
1951 struct s3c_hsotg_req *req, *treq;
1952 unsigned long flags;
1954 spin_lock_irqsave(&ep->lock, flags);
1956 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1957 /* currently, we can't do much about an already
1958 * running request on an in endpoint */
1960 if (ep->req == req && ep->dir_in && !force)
1961 continue;
1963 s3c_hsotg_complete_request(hsotg, ep, req,
1964 result);
1967 spin_unlock_irqrestore(&ep->lock, flags);
1970 #define call_gadget(_hs, _entry) \
1971 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
1972 (_hs)->driver && (_hs)->driver->_entry) \
1973 (_hs)->driver->_entry(&(_hs)->gadget);
1976 * s3c_hsotg_disconnect_irq - disconnect irq service
1977 * @hsotg: The device state.
1979 * A disconnect IRQ has been received, meaning that the host has
1980 * lost contact with the bus. Remove all current transactions
1981 * and signal the gadget driver that this has happened.
1983 static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
1985 unsigned ep;
1987 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
1988 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
1990 call_gadget(hsotg, disconnect);
1994 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
1995 * @hsotg: The device state:
1996 * @periodic: True if this is a periodic FIFO interrupt
1998 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2000 struct s3c_hsotg_ep *ep;
2001 int epno, ret;
2003 /* look through for any more data to transmit */
2005 for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
2006 ep = &hsotg->eps[epno];
2008 if (!ep->dir_in)
2009 continue;
2011 if ((periodic && !ep->periodic) ||
2012 (!periodic && ep->periodic))
2013 continue;
2015 ret = s3c_hsotg_trytx(hsotg, ep);
2016 if (ret < 0)
2017 break;
2021 static struct s3c_hsotg *our_hsotg;
2023 /* IRQ flags which will trigger a retry around the IRQ loop */
2024 #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
2025 S3C_GINTSTS_PTxFEmp | \
2026 S3C_GINTSTS_RxFLvl)
2029 * s3c_hsotg_irq - handle device interrupt
2030 * @irq: The IRQ number triggered
2031 * @pw: The pw value when registered the handler.
2033 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2035 struct s3c_hsotg *hsotg = pw;
2036 int retry_count = 8;
2037 u32 gintsts;
2038 u32 gintmsk;
2040 irq_retry:
2041 gintsts = readl(hsotg->regs + S3C_GINTSTS);
2042 gintmsk = readl(hsotg->regs + S3C_GINTMSK);
2044 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2045 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2047 gintsts &= gintmsk;
2049 if (gintsts & S3C_GINTSTS_OTGInt) {
2050 u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
2052 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2054 writel(otgint, hsotg->regs + S3C_GOTGINT);
2055 writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS);
2058 if (gintsts & S3C_GINTSTS_DisconnInt) {
2059 dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
2060 writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
2062 s3c_hsotg_disconnect_irq(hsotg);
2065 if (gintsts & S3C_GINTSTS_SessReqInt) {
2066 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2067 writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
2070 if (gintsts & S3C_GINTSTS_EnumDone) {
2071 s3c_hsotg_irq_enumdone(hsotg);
2072 writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
2075 if (gintsts & S3C_GINTSTS_ConIDStsChng) {
2076 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2077 readl(hsotg->regs + S3C_DSTS),
2078 readl(hsotg->regs + S3C_GOTGCTL));
2080 writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
2083 if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
2084 u32 daint = readl(hsotg->regs + S3C_DAINT);
2085 u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
2086 u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
2087 int ep;
2089 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2091 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2092 if (daint_out & 1)
2093 s3c_hsotg_epint(hsotg, ep, 0);
2096 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2097 if (daint_in & 1)
2098 s3c_hsotg_epint(hsotg, ep, 1);
2101 writel(daint, hsotg->regs + S3C_DAINT);
2102 writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt),
2103 hsotg->regs + S3C_GINTSTS);
2106 if (gintsts & S3C_GINTSTS_USBRst) {
2107 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2108 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2109 readl(hsotg->regs + S3C_GNPTXSTS));
2111 kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2113 /* it seems after a reset we can end up with a situation
2114 * where the TXFIFO still has data in it... the docs
2115 * suggest resetting all the fifos, so use the init_fifo
2116 * code to relayout and flush the fifos.
2119 s3c_hsotg_init_fifo(hsotg);
2121 s3c_hsotg_enqueue_setup(hsotg);
2123 writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2126 /* check both FIFOs */
2128 if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2129 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2131 /* Disable the interrupt to stop it happening again
2132 * unless one of these endpoint routines decides that
2133 * it needs re-enabling */
2135 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2136 s3c_hsotg_irq_fifoempty(hsotg, false);
2138 writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS);
2141 if (gintsts & S3C_GINTSTS_PTxFEmp) {
2142 dev_dbg(hsotg->dev, "PTxFEmp\n");
2144 /* See note in S3C_GINTSTS_NPTxFEmp */
2146 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2147 s3c_hsotg_irq_fifoempty(hsotg, true);
2149 writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS);
2152 if (gintsts & S3C_GINTSTS_RxFLvl) {
2153 /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2154 * we need to retry s3c_hsotg_handle_rx if this is still
2155 * set. */
2157 s3c_hsotg_handle_rx(hsotg);
2158 writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS);
2161 if (gintsts & S3C_GINTSTS_ModeMis) {
2162 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2163 writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2166 if (gintsts & S3C_GINTSTS_USBSusp) {
2167 dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2168 writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2170 call_gadget(hsotg, suspend);
2173 if (gintsts & S3C_GINTSTS_WkUpInt) {
2174 dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2175 writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2177 call_gadget(hsotg, resume);
2180 if (gintsts & S3C_GINTSTS_ErlySusp) {
2181 dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2182 writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2185 /* these next two seem to crop-up occasionally causing the core
2186 * to shutdown the USB transfer, so try clearing them and logging
2187 * the occurence. */
2189 if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2190 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2192 s3c_hsotg_dump(hsotg);
2194 writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
2195 writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS);
2198 if (gintsts & S3C_GINTSTS_GINNakEff) {
2199 dev_info(hsotg->dev, "GINNakEff triggered\n");
2201 s3c_hsotg_dump(hsotg);
2203 writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
2204 writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS);
2207 /* if we've had fifo events, we should try and go around the
2208 * loop again to see if there's any point in returning yet. */
2210 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2211 goto irq_retry;
2213 return IRQ_HANDLED;
2217 * s3c_hsotg_ep_enable - enable the given endpoint
2218 * @ep: The USB endpint to configure
2219 * @desc: The USB endpoint descriptor to configure with.
2221 * This is called from the USB gadget code's usb_ep_enable().
2223 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2224 const struct usb_endpoint_descriptor *desc)
2226 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2227 struct s3c_hsotg *hsotg = hs_ep->parent;
2228 unsigned long flags;
2229 int index = hs_ep->index;
2230 u32 epctrl_reg;
2231 u32 epctrl;
2232 u32 mps;
2233 int dir_in;
2234 int ret = 0;
2236 dev_dbg(hsotg->dev,
2237 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2238 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2239 desc->wMaxPacketSize, desc->bInterval);
2241 /* not to be called for EP0 */
2242 WARN_ON(index == 0);
2244 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2245 if (dir_in != hs_ep->dir_in) {
2246 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2247 return -EINVAL;
2250 mps = le16_to_cpu(desc->wMaxPacketSize);
2252 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2254 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2255 epctrl = readl(hsotg->regs + epctrl_reg);
2257 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2258 __func__, epctrl, epctrl_reg);
2260 spin_lock_irqsave(&hs_ep->lock, flags);
2262 epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2263 epctrl |= S3C_DxEPCTL_MPS(mps);
2265 /* mark the endpoint as active, otherwise the core may ignore
2266 * transactions entirely for this endpoint */
2267 epctrl |= S3C_DxEPCTL_USBActEp;
2269 /* set the NAK status on the endpoint, otherwise we might try and
2270 * do something with data that we've yet got a request to process
2271 * since the RXFIFO will take data for an endpoint even if the
2272 * size register hasn't been set.
2275 epctrl |= S3C_DxEPCTL_SNAK;
2277 /* update the endpoint state */
2278 hs_ep->ep.maxpacket = mps;
2280 /* default, set to non-periodic */
2281 hs_ep->periodic = 0;
2283 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2284 case USB_ENDPOINT_XFER_ISOC:
2285 dev_err(hsotg->dev, "no current ISOC support\n");
2286 ret = -EINVAL;
2287 goto out;
2289 case USB_ENDPOINT_XFER_BULK:
2290 epctrl |= S3C_DxEPCTL_EPType_Bulk;
2291 break;
2293 case USB_ENDPOINT_XFER_INT:
2294 if (dir_in) {
2295 /* Allocate our TxFNum by simply using the index
2296 * of the endpoint for the moment. We could do
2297 * something better if the host indicates how
2298 * many FIFOs we are expecting to use. */
2300 hs_ep->periodic = 1;
2301 epctrl |= S3C_DxEPCTL_TxFNum(index);
2304 epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2305 break;
2307 case USB_ENDPOINT_XFER_CONTROL:
2308 epctrl |= S3C_DxEPCTL_EPType_Control;
2309 break;
2312 /* if the hardware has dedicated fifos, we must give each IN EP
2313 * a unique tx-fifo even if it is non-periodic.
2315 if (dir_in && hsotg->dedicated_fifos)
2316 epctrl |= S3C_DxEPCTL_TxFNum(index);
2318 /* for non control endpoints, set PID to D0 */
2319 if (index)
2320 epctrl |= S3C_DxEPCTL_SetD0PID;
2322 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2323 __func__, epctrl);
2325 writel(epctrl, hsotg->regs + epctrl_reg);
2326 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2327 __func__, readl(hsotg->regs + epctrl_reg));
2329 /* enable the endpoint interrupt */
2330 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2332 out:
2333 spin_unlock_irqrestore(&hs_ep->lock, flags);
2334 return ret;
2337 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2339 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2340 struct s3c_hsotg *hsotg = hs_ep->parent;
2341 int dir_in = hs_ep->dir_in;
2342 int index = hs_ep->index;
2343 unsigned long flags;
2344 u32 epctrl_reg;
2345 u32 ctrl;
2347 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2349 if (ep == &hsotg->eps[0].ep) {
2350 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2351 return -EINVAL;
2354 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2356 /* terminate all requests with shutdown */
2357 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2359 spin_lock_irqsave(&hs_ep->lock, flags);
2361 ctrl = readl(hsotg->regs + epctrl_reg);
2362 ctrl &= ~S3C_DxEPCTL_EPEna;
2363 ctrl &= ~S3C_DxEPCTL_USBActEp;
2364 ctrl |= S3C_DxEPCTL_SNAK;
2366 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2367 writel(ctrl, hsotg->regs + epctrl_reg);
2369 /* disable endpoint interrupts */
2370 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2372 spin_unlock_irqrestore(&hs_ep->lock, flags);
2373 return 0;
2377 * on_list - check request is on the given endpoint
2378 * @ep: The endpoint to check.
2379 * @test: The request to test if it is on the endpoint.
2381 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2383 struct s3c_hsotg_req *req, *treq;
2385 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2386 if (req == test)
2387 return true;
2390 return false;
2393 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2395 struct s3c_hsotg_req *hs_req = our_req(req);
2396 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2397 struct s3c_hsotg *hs = hs_ep->parent;
2398 unsigned long flags;
2400 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2402 if (hs_req == hs_ep->req) {
2403 dev_dbg(hs->dev, "%s: already in progress\n", __func__);
2404 return -EINPROGRESS;
2407 spin_lock_irqsave(&hs_ep->lock, flags);
2409 if (!on_list(hs_ep, hs_req)) {
2410 spin_unlock_irqrestore(&hs_ep->lock, flags);
2411 return -EINVAL;
2414 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2415 spin_unlock_irqrestore(&hs_ep->lock, flags);
2417 return 0;
2420 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2422 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2423 struct s3c_hsotg *hs = hs_ep->parent;
2424 int index = hs_ep->index;
2425 unsigned long irqflags;
2426 u32 epreg;
2427 u32 epctl;
2429 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2431 spin_lock_irqsave(&hs_ep->lock, irqflags);
2433 /* write both IN and OUT control registers */
2435 epreg = S3C_DIEPCTL(index);
2436 epctl = readl(hs->regs + epreg);
2438 if (value)
2439 epctl |= S3C_DxEPCTL_Stall;
2440 else
2441 epctl &= ~S3C_DxEPCTL_Stall;
2443 writel(epctl, hs->regs + epreg);
2445 epreg = S3C_DOEPCTL(index);
2446 epctl = readl(hs->regs + epreg);
2448 if (value)
2449 epctl |= S3C_DxEPCTL_Stall;
2450 else
2451 epctl &= ~S3C_DxEPCTL_Stall;
2453 writel(epctl, hs->regs + epreg);
2455 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2457 return 0;
2460 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2461 .enable = s3c_hsotg_ep_enable,
2462 .disable = s3c_hsotg_ep_disable,
2463 .alloc_request = s3c_hsotg_ep_alloc_request,
2464 .free_request = s3c_hsotg_ep_free_request,
2465 .queue = s3c_hsotg_ep_queue,
2466 .dequeue = s3c_hsotg_ep_dequeue,
2467 .set_halt = s3c_hsotg_ep_sethalt,
2468 /* note, don't belive we have any call for the fifo routines */
2472 * s3c_hsotg_corereset - issue softreset to the core
2473 * @hsotg: The device state
2475 * Issue a soft reset to the core, and await the core finishing it.
2477 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2479 int timeout;
2480 u32 grstctl;
2482 dev_dbg(hsotg->dev, "resetting core\n");
2484 /* issue soft reset */
2485 writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2487 timeout = 1000;
2488 do {
2489 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2490 } while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
2492 if (!(grstctl & S3C_GRSTCTL_CSftRst)) {
2493 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2494 return -EINVAL;
2497 timeout = 1000;
2499 while (1) {
2500 u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2502 if (timeout-- < 0) {
2503 dev_info(hsotg->dev,
2504 "%s: reset failed, GRSTCTL=%08x\n",
2505 __func__, grstctl);
2506 return -ETIMEDOUT;
2509 if (grstctl & S3C_GRSTCTL_CSftRst)
2510 continue;
2512 if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2513 continue;
2515 break; /* reset done */
2518 dev_dbg(hsotg->dev, "reset successful\n");
2519 return 0;
2522 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
2524 struct s3c_hsotg *hsotg = our_hsotg;
2525 int ret;
2527 if (!hsotg) {
2528 printk(KERN_ERR "%s: called with no device\n", __func__);
2529 return -ENODEV;
2532 if (!driver) {
2533 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2534 return -EINVAL;
2537 if (driver->speed != USB_SPEED_HIGH &&
2538 driver->speed != USB_SPEED_FULL) {
2539 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2542 if (!driver->bind || !driver->setup) {
2543 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2544 return -EINVAL;
2547 WARN_ON(hsotg->driver);
2549 driver->driver.bus = NULL;
2550 hsotg->driver = driver;
2551 hsotg->gadget.dev.driver = &driver->driver;
2552 hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2553 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2555 ret = device_add(&hsotg->gadget.dev);
2556 if (ret) {
2557 dev_err(hsotg->dev, "failed to register gadget device\n");
2558 goto err;
2561 ret = driver->bind(&hsotg->gadget);
2562 if (ret) {
2563 dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2565 hsotg->gadget.dev.driver = NULL;
2566 hsotg->driver = NULL;
2567 goto err;
2570 /* we must now enable ep0 ready for host detection and then
2571 * set configuration. */
2573 s3c_hsotg_corereset(hsotg);
2575 /* set the PLL on, remove the HNP/SRP and set the PHY */
2576 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2577 (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2579 /* looks like soft-reset changes state of FIFOs */
2580 s3c_hsotg_init_fifo(hsotg);
2582 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2584 writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
2586 writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2587 S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2588 S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2589 S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2590 S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2591 S3C_GINTSTS_ErlySusp,
2592 hsotg->regs + S3C_GINTMSK);
2594 if (using_dma(hsotg))
2595 writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2596 S3C_GAHBCFG_HBstLen_Incr4,
2597 hsotg->regs + S3C_GAHBCFG);
2598 else
2599 writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2601 /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2602 * up being flooded with interrupts if the host is polling the
2603 * endpoint to try and read data. */
2605 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2606 S3C_DIEPMSK_INTknEPMisMsk |
2607 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
2608 ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
2609 hsotg->regs + S3C_DIEPMSK);
2611 /* don't need XferCompl, we get that from RXFIFO in slave mode. In
2612 * DMA mode we may need this. */
2613 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2614 S3C_DOEPMSK_EPDisbldMsk |
2615 (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2616 S3C_DIEPMSK_TimeOUTMsk) : 0),
2617 hsotg->regs + S3C_DOEPMSK);
2619 writel(0, hsotg->regs + S3C_DAINTMSK);
2621 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2622 readl(hsotg->regs + S3C_DIEPCTL0),
2623 readl(hsotg->regs + S3C_DOEPCTL0));
2625 /* enable in and out endpoint interrupts */
2626 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2628 /* Enable the RXFIFO when in slave mode, as this is how we collect
2629 * the data. In DMA mode, we get events from the FIFO but also
2630 * things we cannot process, so do not use it. */
2631 if (!using_dma(hsotg))
2632 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2634 /* Enable interrupts for EP0 in and out */
2635 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2636 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2638 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2639 udelay(10); /* see openiboot */
2640 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2642 dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2644 /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2645 writing to the EPCTL register.. */
2647 /* set to read 1 8byte packet */
2648 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2649 S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2651 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2652 S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2653 S3C_DxEPCTL_USBActEp,
2654 hsotg->regs + S3C_DOEPCTL0);
2656 /* enable, but don't activate EP0in */
2657 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2658 S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2660 s3c_hsotg_enqueue_setup(hsotg);
2662 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2663 readl(hsotg->regs + S3C_DIEPCTL0),
2664 readl(hsotg->regs + S3C_DOEPCTL0));
2666 /* clear global NAKs */
2667 writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2668 hsotg->regs + S3C_DCTL);
2670 /* must be at-least 3ms to allow bus to see disconnect */
2671 msleep(3);
2673 /* remove the soft-disconnect and let's go */
2674 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2676 /* report to the user, and return */
2678 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2679 return 0;
2681 err:
2682 hsotg->driver = NULL;
2683 hsotg->gadget.dev.driver = NULL;
2684 return ret;
2686 EXPORT_SYMBOL(usb_gadget_register_driver);
2688 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2690 struct s3c_hsotg *hsotg = our_hsotg;
2691 int ep;
2693 if (!hsotg)
2694 return -ENODEV;
2696 if (!driver || driver != hsotg->driver || !driver->unbind)
2697 return -EINVAL;
2699 /* all endpoints should be shutdown */
2700 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2701 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2703 call_gadget(hsotg, disconnect);
2705 driver->unbind(&hsotg->gadget);
2706 hsotg->driver = NULL;
2707 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2709 device_del(&hsotg->gadget.dev);
2711 dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2712 driver->driver.name);
2714 return 0;
2716 EXPORT_SYMBOL(usb_gadget_unregister_driver);
2718 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2720 return s3c_hsotg_read_frameno(to_hsotg(gadget));
2723 static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2724 .get_frame = s3c_hsotg_gadget_getframe,
2728 * s3c_hsotg_initep - initialise a single endpoint
2729 * @hsotg: The device state.
2730 * @hs_ep: The endpoint to be initialised.
2731 * @epnum: The endpoint number
2733 * Initialise the given endpoint (as part of the probe and device state
2734 * creation) to give to the gadget driver. Setup the endpoint name, any
2735 * direction information and other state that may be required.
2737 static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2738 struct s3c_hsotg_ep *hs_ep,
2739 int epnum)
2741 u32 ptxfifo;
2742 char *dir;
2744 if (epnum == 0)
2745 dir = "";
2746 else if ((epnum % 2) == 0) {
2747 dir = "out";
2748 } else {
2749 dir = "in";
2750 hs_ep->dir_in = 1;
2753 hs_ep->index = epnum;
2755 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2757 INIT_LIST_HEAD(&hs_ep->queue);
2758 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2760 spin_lock_init(&hs_ep->lock);
2762 /* add to the list of endpoints known by the gadget driver */
2763 if (epnum)
2764 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2766 hs_ep->parent = hsotg;
2767 hs_ep->ep.name = hs_ep->name;
2768 hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2769 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2771 /* Read the FIFO size for the Periodic TX FIFO, even if we're
2772 * an OUT endpoint, we may as well do this if in future the
2773 * code is changed to make each endpoint's direction changeable.
2776 ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
2777 hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
2779 /* if we're using dma, we need to set the next-endpoint pointer
2780 * to be something valid.
2783 if (using_dma(hsotg)) {
2784 u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2785 writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2786 writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2791 * s3c_hsotg_otgreset - reset the OtG phy block
2792 * @hsotg: The host state.
2794 * Power up the phy, set the basic configuration and start the PHY.
2796 static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2798 u32 osc;
2800 writel(0, S3C_PHYPWR);
2801 mdelay(1);
2803 osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2805 writel(osc | 0x10, S3C_PHYCLK);
2807 /* issue a full set of resets to the otg and core */
2809 writel(S3C_RSTCON_PHY, S3C_RSTCON);
2810 udelay(20); /* at-least 10uS */
2811 writel(0, S3C_RSTCON);
2815 static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2817 u32 cfg4;
2819 /* unmask subset of endpoint interrupts */
2821 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2822 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2823 hsotg->regs + S3C_DIEPMSK);
2825 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2826 S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2827 hsotg->regs + S3C_DOEPMSK);
2829 writel(0, hsotg->regs + S3C_DAINTMSK);
2831 /* Be in disconnected state until gadget is registered */
2832 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2834 if (0) {
2835 /* post global nak until we're ready */
2836 writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2837 hsotg->regs + S3C_DCTL);
2840 /* setup fifos */
2842 dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2843 readl(hsotg->regs + S3C_GRXFSIZ),
2844 readl(hsotg->regs + S3C_GNPTXFSIZ));
2846 s3c_hsotg_init_fifo(hsotg);
2848 /* set the PLL on, remove the HNP/SRP and set the PHY */
2849 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2850 hsotg->regs + S3C_GUSBCFG);
2852 writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2853 hsotg->regs + S3C_GAHBCFG);
2855 /* check hardware configuration */
2857 cfg4 = readl(hsotg->regs + 0x50);
2858 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
2860 dev_info(hsotg->dev, "%s fifos\n",
2861 hsotg->dedicated_fifos ? "dedicated" : "shared");
2864 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2866 struct device *dev = hsotg->dev;
2867 void __iomem *regs = hsotg->regs;
2868 u32 val;
2869 int idx;
2871 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2872 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2873 readl(regs + S3C_DIEPMSK));
2875 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2876 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2878 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2879 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2881 /* show periodic fifo settings */
2883 for (idx = 1; idx <= 15; idx++) {
2884 val = readl(regs + S3C_DPTXFSIZn(idx));
2885 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2886 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2887 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2890 for (idx = 0; idx < 15; idx++) {
2891 dev_info(dev,
2892 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2893 readl(regs + S3C_DIEPCTL(idx)),
2894 readl(regs + S3C_DIEPTSIZ(idx)),
2895 readl(regs + S3C_DIEPDMA(idx)));
2897 val = readl(regs + S3C_DOEPCTL(idx));
2898 dev_info(dev,
2899 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2900 idx, readl(regs + S3C_DOEPCTL(idx)),
2901 readl(regs + S3C_DOEPTSIZ(idx)),
2902 readl(regs + S3C_DOEPDMA(idx)));
2906 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2907 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2912 * state_show - debugfs: show overall driver and device state.
2913 * @seq: The seq file to write to.
2914 * @v: Unused parameter.
2916 * This debugfs entry shows the overall state of the hardware and
2917 * some general information about each of the endpoints available
2918 * to the system.
2920 static int state_show(struct seq_file *seq, void *v)
2922 struct s3c_hsotg *hsotg = seq->private;
2923 void __iomem *regs = hsotg->regs;
2924 int idx;
2926 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
2927 readl(regs + S3C_DCFG),
2928 readl(regs + S3C_DCTL),
2929 readl(regs + S3C_DSTS));
2931 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
2932 readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
2934 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
2935 readl(regs + S3C_GINTMSK),
2936 readl(regs + S3C_GINTSTS));
2938 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
2939 readl(regs + S3C_DAINTMSK),
2940 readl(regs + S3C_DAINT));
2942 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
2943 readl(regs + S3C_GNPTXSTS),
2944 readl(regs + S3C_GRXSTSR));
2946 seq_printf(seq, "\nEndpoint status:\n");
2948 for (idx = 0; idx < 15; idx++) {
2949 u32 in, out;
2951 in = readl(regs + S3C_DIEPCTL(idx));
2952 out = readl(regs + S3C_DOEPCTL(idx));
2954 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
2955 idx, in, out);
2957 in = readl(regs + S3C_DIEPTSIZ(idx));
2958 out = readl(regs + S3C_DOEPTSIZ(idx));
2960 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
2961 in, out);
2963 seq_printf(seq, "\n");
2966 return 0;
2969 static int state_open(struct inode *inode, struct file *file)
2971 return single_open(file, state_show, inode->i_private);
2974 static const struct file_operations state_fops = {
2975 .owner = THIS_MODULE,
2976 .open = state_open,
2977 .read = seq_read,
2978 .llseek = seq_lseek,
2979 .release = single_release,
2983 * fifo_show - debugfs: show the fifo information
2984 * @seq: The seq_file to write data to.
2985 * @v: Unused parameter.
2987 * Show the FIFO information for the overall fifo and all the
2988 * periodic transmission FIFOs.
2990 static int fifo_show(struct seq_file *seq, void *v)
2992 struct s3c_hsotg *hsotg = seq->private;
2993 void __iomem *regs = hsotg->regs;
2994 u32 val;
2995 int idx;
2997 seq_printf(seq, "Non-periodic FIFOs:\n");
2998 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
3000 val = readl(regs + S3C_GNPTXFSIZ);
3001 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3002 val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
3003 val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
3005 seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3007 for (idx = 1; idx <= 15; idx++) {
3008 val = readl(regs + S3C_DPTXFSIZn(idx));
3010 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3011 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
3012 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
3015 return 0;
3018 static int fifo_open(struct inode *inode, struct file *file)
3020 return single_open(file, fifo_show, inode->i_private);
3023 static const struct file_operations fifo_fops = {
3024 .owner = THIS_MODULE,
3025 .open = fifo_open,
3026 .read = seq_read,
3027 .llseek = seq_lseek,
3028 .release = single_release,
3032 static const char *decode_direction(int is_in)
3034 return is_in ? "in" : "out";
3038 * ep_show - debugfs: show the state of an endpoint.
3039 * @seq: The seq_file to write data to.
3040 * @v: Unused parameter.
3042 * This debugfs entry shows the state of the given endpoint (one is
3043 * registered for each available).
3045 static int ep_show(struct seq_file *seq, void *v)
3047 struct s3c_hsotg_ep *ep = seq->private;
3048 struct s3c_hsotg *hsotg = ep->parent;
3049 struct s3c_hsotg_req *req;
3050 void __iomem *regs = hsotg->regs;
3051 int index = ep->index;
3052 int show_limit = 15;
3053 unsigned long flags;
3055 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3056 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3058 /* first show the register state */
3060 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3061 readl(regs + S3C_DIEPCTL(index)),
3062 readl(regs + S3C_DOEPCTL(index)));
3064 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3065 readl(regs + S3C_DIEPDMA(index)),
3066 readl(regs + S3C_DOEPDMA(index)));
3068 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3069 readl(regs + S3C_DIEPINT(index)),
3070 readl(regs + S3C_DOEPINT(index)));
3072 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3073 readl(regs + S3C_DIEPTSIZ(index)),
3074 readl(regs + S3C_DOEPTSIZ(index)));
3076 seq_printf(seq, "\n");
3077 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3078 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3080 seq_printf(seq, "request list (%p,%p):\n",
3081 ep->queue.next, ep->queue.prev);
3083 spin_lock_irqsave(&ep->lock, flags);
3085 list_for_each_entry(req, &ep->queue, queue) {
3086 if (--show_limit < 0) {
3087 seq_printf(seq, "not showing more requests...\n");
3088 break;
3091 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3092 req == ep->req ? '*' : ' ',
3093 req, req->req.length, req->req.buf);
3094 seq_printf(seq, "%d done, res %d\n",
3095 req->req.actual, req->req.status);
3098 spin_unlock_irqrestore(&ep->lock, flags);
3100 return 0;
3103 static int ep_open(struct inode *inode, struct file *file)
3105 return single_open(file, ep_show, inode->i_private);
3108 static const struct file_operations ep_fops = {
3109 .owner = THIS_MODULE,
3110 .open = ep_open,
3111 .read = seq_read,
3112 .llseek = seq_lseek,
3113 .release = single_release,
3117 * s3c_hsotg_create_debug - create debugfs directory and files
3118 * @hsotg: The driver state
3120 * Create the debugfs files to allow the user to get information
3121 * about the state of the system. The directory name is created
3122 * with the same name as the device itself, in case we end up
3123 * with multiple blocks in future systems.
3125 static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3127 struct dentry *root;
3128 unsigned epidx;
3130 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3131 hsotg->debug_root = root;
3132 if (IS_ERR(root)) {
3133 dev_err(hsotg->dev, "cannot create debug root\n");
3134 return;
3137 /* create general state file */
3139 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3140 hsotg, &state_fops);
3142 if (IS_ERR(hsotg->debug_file))
3143 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3145 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3146 hsotg, &fifo_fops);
3148 if (IS_ERR(hsotg->debug_fifo))
3149 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3151 /* create one file for each endpoint */
3153 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3154 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3156 ep->debugfs = debugfs_create_file(ep->name, 0444,
3157 root, ep, &ep_fops);
3159 if (IS_ERR(ep->debugfs))
3160 dev_err(hsotg->dev, "failed to create %s debug file\n",
3161 ep->name);
3166 * s3c_hsotg_delete_debug - cleanup debugfs entries
3167 * @hsotg: The driver state
3169 * Cleanup (remove) the debugfs files for use on module exit.
3171 static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3173 unsigned epidx;
3175 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3176 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3177 debugfs_remove(ep->debugfs);
3180 debugfs_remove(hsotg->debug_file);
3181 debugfs_remove(hsotg->debug_fifo);
3182 debugfs_remove(hsotg->debug_root);
3186 * s3c_hsotg_gate - set the hardware gate for the block
3187 * @pdev: The device we bound to
3188 * @on: On or off.
3190 * Set the hardware gate setting into the block. If we end up on
3191 * something other than an S3C64XX, then we might need to change this
3192 * to using a platform data callback, or some other mechanism.
3194 static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3196 unsigned long flags;
3197 u32 others;
3199 local_irq_save(flags);
3201 others = __raw_readl(S3C64XX_OTHERS);
3202 if (on)
3203 others |= S3C64XX_OTHERS_USBMASK;
3204 else
3205 others &= ~S3C64XX_OTHERS_USBMASK;
3206 __raw_writel(others, S3C64XX_OTHERS);
3208 local_irq_restore(flags);
3211 static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
3213 static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3215 struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3216 struct device *dev = &pdev->dev;
3217 struct s3c_hsotg *hsotg;
3218 struct resource *res;
3219 int epnum;
3220 int ret;
3222 if (!plat)
3223 plat = &s3c_hsotg_default_pdata;
3225 hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3226 sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3227 GFP_KERNEL);
3228 if (!hsotg) {
3229 dev_err(dev, "cannot get memory\n");
3230 return -ENOMEM;
3233 hsotg->dev = dev;
3234 hsotg->plat = plat;
3236 platform_set_drvdata(pdev, hsotg);
3238 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3239 if (!res) {
3240 dev_err(dev, "cannot find register resource 0\n");
3241 ret = -EINVAL;
3242 goto err_mem;
3245 hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3246 dev_name(dev));
3247 if (!hsotg->regs_res) {
3248 dev_err(dev, "cannot reserve registers\n");
3249 ret = -ENOENT;
3250 goto err_mem;
3253 hsotg->regs = ioremap(res->start, resource_size(res));
3254 if (!hsotg->regs) {
3255 dev_err(dev, "cannot map registers\n");
3256 ret = -ENXIO;
3257 goto err_regs_res;
3260 ret = platform_get_irq(pdev, 0);
3261 if (ret < 0) {
3262 dev_err(dev, "cannot find IRQ\n");
3263 goto err_regs;
3266 hsotg->irq = ret;
3268 ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3269 if (ret < 0) {
3270 dev_err(dev, "cannot claim IRQ\n");
3271 goto err_regs;
3274 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3276 device_initialize(&hsotg->gadget.dev);
3278 dev_set_name(&hsotg->gadget.dev, "gadget");
3280 hsotg->gadget.is_dualspeed = 1;
3281 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3282 hsotg->gadget.name = dev_name(dev);
3284 hsotg->gadget.dev.parent = dev;
3285 hsotg->gadget.dev.dma_mask = dev->dma_mask;
3287 /* setup endpoint information */
3289 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3290 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3292 /* allocate EP0 request */
3294 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3295 GFP_KERNEL);
3296 if (!hsotg->ctrl_req) {
3297 dev_err(dev, "failed to allocate ctrl req\n");
3298 goto err_regs;
3301 /* reset the system */
3303 s3c_hsotg_gate(pdev, true);
3305 s3c_hsotg_otgreset(hsotg);
3306 s3c_hsotg_corereset(hsotg);
3307 s3c_hsotg_init(hsotg);
3309 /* initialise the endpoints now the core has been initialised */
3310 for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3311 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3313 s3c_hsotg_create_debug(hsotg);
3315 s3c_hsotg_dump(hsotg);
3317 our_hsotg = hsotg;
3318 return 0;
3320 err_regs:
3321 iounmap(hsotg->regs);
3323 err_regs_res:
3324 release_resource(hsotg->regs_res);
3325 kfree(hsotg->regs_res);
3327 err_mem:
3328 kfree(hsotg);
3329 return ret;
3332 static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3334 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3336 s3c_hsotg_delete_debug(hsotg);
3338 usb_gadget_unregister_driver(hsotg->driver);
3340 free_irq(hsotg->irq, hsotg);
3341 iounmap(hsotg->regs);
3343 release_resource(hsotg->regs_res);
3344 kfree(hsotg->regs_res);
3346 s3c_hsotg_gate(pdev, false);
3348 kfree(hsotg);
3349 return 0;
3352 #if 1
3353 #define s3c_hsotg_suspend NULL
3354 #define s3c_hsotg_resume NULL
3355 #endif
3357 static struct platform_driver s3c_hsotg_driver = {
3358 .driver = {
3359 .name = "s3c-hsotg",
3360 .owner = THIS_MODULE,
3362 .probe = s3c_hsotg_probe,
3363 .remove = __devexit_p(s3c_hsotg_remove),
3364 .suspend = s3c_hsotg_suspend,
3365 .resume = s3c_hsotg_resume,
3368 static int __init s3c_hsotg_modinit(void)
3370 return platform_driver_register(&s3c_hsotg_driver);
3373 static void __exit s3c_hsotg_modexit(void)
3375 platform_driver_unregister(&s3c_hsotg_driver);
3378 module_init(s3c_hsotg_modinit);
3379 module_exit(s3c_hsotg_modexit);
3381 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3382 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3383 MODULE_LICENSE("GPL");
3384 MODULE_ALIAS("platform:s3c-hsotg");