2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
22 /* max queue in one round of service */
23 static const int cfq_quantum
= 8;
24 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max
= 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty
= 2;
29 static const int cfq_slice_sync
= HZ
/ 10;
30 static int cfq_slice_async
= HZ
/ 25;
31 static const int cfq_slice_async_rq
= 2;
32 static int cfq_slice_idle
= HZ
/ 125;
33 static int cfq_group_idle
= HZ
/ 125;
34 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
35 static const int cfq_hist_divisor
= 4;
38 * offset from end of service tree
40 #define CFQ_IDLE_DELAY (HZ / 5)
43 * below this threshold, we consider thinktime immediate
45 #define CFQ_MIN_TT (2)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 ((struct cfq_io_context *) (rq)->elevator_private)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
61 static struct kmem_cache
*cfq_pool
;
62 static struct kmem_cache
*cfq_ioc_pool
;
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
65 static struct completion
*ioc_gone
;
66 static DEFINE_SPINLOCK(ioc_gone_lock
);
68 static DEFINE_SPINLOCK(cic_index_lock
);
69 static DEFINE_IDA(cic_index_ida
);
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
88 unsigned total_weight
;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
95 * Per process-grouping structure
100 /* various state flags, see below */
102 /* parent cfq_data */
103 struct cfq_data
*cfqd
;
104 /* service_tree member */
105 struct rb_node rb_node
;
106 /* service_tree key */
107 unsigned long rb_key
;
108 /* prio tree member */
109 struct rb_node p_node
;
110 /* prio tree root we belong to, if any */
111 struct rb_root
*p_root
;
112 /* sorted list of pending requests */
113 struct rb_root sort_list
;
114 /* if fifo isn't expired, next request to serve */
115 struct request
*next_rq
;
116 /* requests queued in sort_list */
118 /* currently allocated requests */
120 /* fifo list of requests in sort_list */
121 struct list_head fifo
;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start
;
125 unsigned int allocated_slice
;
126 unsigned int slice_dispatch
;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start
;
129 unsigned long slice_end
;
132 /* pending metadata requests */
134 /* number of requests that are on the dispatch list or inside driver */
137 /* io prio of this group */
138 unsigned short ioprio
, org_ioprio
;
139 unsigned short ioprio_class
, org_ioprio_class
;
144 sector_t last_request_pos
;
146 struct cfq_rb_root
*service_tree
;
147 struct cfq_queue
*new_cfqq
;
148 struct cfq_group
*cfqg
;
149 struct cfq_group
*orig_cfqg
;
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors
;
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
166 * Second index in the service_trees.
170 SYNC_NOIDLE_WORKLOAD
= 1,
174 /* This is per cgroup per device grouping structure */
176 /* group service_tree member */
177 struct rb_node rb_node
;
179 /* group service_tree key */
183 /* number of cfqq currently on this group */
187 * Per group busy queus average. Useful for workload slice calc. We
188 * create the array for each prio class but at run time it is used
189 * only for RT and BE class and slot for IDLE class remains unused.
190 * This is primarily done to avoid confusion and a gcc warning.
192 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
194 * rr lists of queues with requests. We maintain service trees for
195 * RT and BE classes. These trees are subdivided in subclasses
196 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197 * class there is no subclassification and all the cfq queues go on
198 * a single tree service_tree_idle.
199 * Counts are embedded in the cfq_rb_root
201 struct cfq_rb_root service_trees
[2][3];
202 struct cfq_rb_root service_tree_idle
;
204 unsigned long saved_workload_slice
;
205 enum wl_type_t saved_workload
;
206 enum wl_prio_t saved_serving_prio
;
207 struct blkio_group blkg
;
208 #ifdef CONFIG_CFQ_GROUP_IOSCHED
209 struct hlist_node cfqd_node
;
212 /* number of requests that are on the dispatch list or inside driver */
217 * Per block device queue structure
220 struct request_queue
*queue
;
221 /* Root service tree for cfq_groups */
222 struct cfq_rb_root grp_service_tree
;
223 struct cfq_group root_group
;
226 * The priority currently being served
228 enum wl_prio_t serving_prio
;
229 enum wl_type_t serving_type
;
230 unsigned long workload_expires
;
231 struct cfq_group
*serving_group
;
234 * Each priority tree is sorted by next_request position. These
235 * trees are used when determining if two or more queues are
236 * interleaving requests (see cfq_close_cooperator).
238 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
240 unsigned int busy_queues
;
246 * queue-depth detection
252 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
253 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256 int hw_tag_est_depth
;
257 unsigned int hw_tag_samples
;
260 * idle window management
262 struct timer_list idle_slice_timer
;
263 struct work_struct unplug_work
;
265 struct cfq_queue
*active_queue
;
266 struct cfq_io_context
*active_cic
;
269 * async queue for each priority case
271 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
272 struct cfq_queue
*async_idle_cfqq
;
274 sector_t last_position
;
277 * tunables, see top of file
279 unsigned int cfq_quantum
;
280 unsigned int cfq_fifo_expire
[2];
281 unsigned int cfq_back_penalty
;
282 unsigned int cfq_back_max
;
283 unsigned int cfq_slice
[2];
284 unsigned int cfq_slice_async_rq
;
285 unsigned int cfq_slice_idle
;
286 unsigned int cfq_group_idle
;
287 unsigned int cfq_latency
;
288 unsigned int cfq_group_isolation
;
290 unsigned int cic_index
;
291 struct list_head cic_list
;
294 * Fallback dummy cfqq for extreme OOM conditions
296 struct cfq_queue oom_cfqq
;
298 unsigned long last_delayed_sync
;
300 /* List of cfq groups being managed on this device*/
301 struct hlist_head cfqg_list
;
305 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
307 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
314 if (prio
== IDLE_WORKLOAD
)
315 return &cfqg
->service_tree_idle
;
317 return &cfqg
->service_trees
[prio
][type
];
320 enum cfqq_state_flags
{
321 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
322 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
323 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
324 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
325 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
326 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
327 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
328 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
329 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
330 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
331 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
332 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
333 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
336 #define CFQ_CFQQ_FNS(name) \
337 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
339 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
341 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
343 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
345 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
347 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
351 CFQ_CFQQ_FNS(wait_request
);
352 CFQ_CFQQ_FNS(must_dispatch
);
353 CFQ_CFQQ_FNS(must_alloc_slice
);
354 CFQ_CFQQ_FNS(fifo_expire
);
355 CFQ_CFQQ_FNS(idle_window
);
356 CFQ_CFQQ_FNS(prio_changed
);
357 CFQ_CFQQ_FNS(slice_new
);
360 CFQ_CFQQ_FNS(split_coop
);
362 CFQ_CFQQ_FNS(wait_busy
);
365 #ifdef CONFIG_CFQ_GROUP_IOSCHED
366 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
367 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
368 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
369 blkg_path(&(cfqq)->cfqg->blkg), ##args);
371 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
372 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
373 blkg_path(&(cfqg)->blkg), ##args); \
376 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
377 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
378 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
380 #define cfq_log(cfqd, fmt, args...) \
381 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
383 /* Traverses through cfq group service trees */
384 #define for_each_cfqg_st(cfqg, i, j, st) \
385 for (i = 0; i <= IDLE_WORKLOAD; i++) \
386 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
387 : &cfqg->service_tree_idle; \
388 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
389 (i == IDLE_WORKLOAD && j == 0); \
390 j++, st = i < IDLE_WORKLOAD ? \
391 &cfqg->service_trees[i][j]: NULL) \
394 static inline bool iops_mode(struct cfq_data *cfqd)
397 * If we are not idling on queues and it is a NCQ drive, parallel
398 * execution of requests is on and measuring time is not possible
399 * in most of the cases until and unless we drive shallower queue
400 * depths and that becomes a performance bottleneck. In such cases
401 * switch to start providing fairness in terms of number of IOs.
403 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
409 static inline enum wl_prio_t
cfqq_prio(struct cfq_queue
*cfqq
)
411 if (cfq_class_idle(cfqq
))
412 return IDLE_WORKLOAD
;
413 if (cfq_class_rt(cfqq
))
419 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
421 if (!cfq_cfqq_sync(cfqq
))
422 return ASYNC_WORKLOAD
;
423 if (!cfq_cfqq_idle_window(cfqq
))
424 return SYNC_NOIDLE_WORKLOAD
;
425 return SYNC_WORKLOAD
;
428 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
429 struct cfq_data
*cfqd
,
430 struct cfq_group
*cfqg
)
432 if (wl
== IDLE_WORKLOAD
)
433 return cfqg
->service_tree_idle
.count
;
435 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
436 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
437 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
440 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
441 struct cfq_group
*cfqg
)
443 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
444 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
447 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
448 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
449 struct io_context
*, gfp_t
);
450 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
451 struct io_context
*);
453 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
456 return cic
->cfqq
[is_sync
];
459 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
460 struct cfq_queue
*cfqq
, bool is_sync
)
462 cic
->cfqq
[is_sync
] = cfqq
;
465 #define CIC_DEAD_KEY 1ul
466 #define CIC_DEAD_INDEX_SHIFT 1
468 static inline void *cfqd_dead_key(struct cfq_data
*cfqd
)
470 return (void *)(cfqd
->cic_index
<< CIC_DEAD_INDEX_SHIFT
| CIC_DEAD_KEY
);
473 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_context
*cic
)
475 struct cfq_data
*cfqd
= cic
->key
;
477 if (unlikely((unsigned long) cfqd
& CIC_DEAD_KEY
))
484 * We regard a request as SYNC, if it's either a read or has the SYNC bit
485 * set (in which case it could also be direct WRITE).
487 static inline bool cfq_bio_sync(struct bio
*bio
)
489 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
493 * scheduler run of queue, if there are requests pending and no one in the
494 * driver that will restart queueing
496 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
498 if (cfqd
->busy_queues
) {
499 cfq_log(cfqd
, "schedule dispatch");
500 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
504 static int cfq_queue_empty(struct request_queue
*q
)
506 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
508 return !cfqd
->rq_queued
;
512 * Scale schedule slice based on io priority. Use the sync time slice only
513 * if a queue is marked sync and has sync io queued. A sync queue with async
514 * io only, should not get full sync slice length.
516 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
519 const int base_slice
= cfqd
->cfq_slice
[sync
];
521 WARN_ON(prio
>= IOPRIO_BE_NR
);
523 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
527 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
529 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
532 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
534 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
536 d
= d
* BLKIO_WEIGHT_DEFAULT
;
537 do_div(d
, cfqg
->weight
);
541 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
543 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
545 min_vdisktime
= vdisktime
;
547 return min_vdisktime
;
550 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
552 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
554 min_vdisktime
= vdisktime
;
556 return min_vdisktime
;
559 static void update_min_vdisktime(struct cfq_rb_root
*st
)
561 u64 vdisktime
= st
->min_vdisktime
;
562 struct cfq_group
*cfqg
;
565 cfqg
= rb_entry_cfqg(st
->left
);
566 vdisktime
= min_vdisktime(vdisktime
, cfqg
->vdisktime
);
569 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
, vdisktime
);
573 * get averaged number of queues of RT/BE priority.
574 * average is updated, with a formula that gives more weight to higher numbers,
575 * to quickly follows sudden increases and decrease slowly
578 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
579 struct cfq_group
*cfqg
, bool rt
)
581 unsigned min_q
, max_q
;
582 unsigned mult
= cfq_hist_divisor
- 1;
583 unsigned round
= cfq_hist_divisor
/ 2;
584 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
586 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
587 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
588 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
590 return cfqg
->busy_queues_avg
[rt
];
593 static inline unsigned
594 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
596 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
598 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
601 static inline unsigned
602 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
604 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
605 if (cfqd
->cfq_latency
) {
607 * interested queues (we consider only the ones with the same
608 * priority class in the cfq group)
610 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
612 unsigned sync_slice
= cfqd
->cfq_slice
[1];
613 unsigned expect_latency
= sync_slice
* iq
;
614 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
616 if (expect_latency
> group_slice
) {
617 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
618 /* scale low_slice according to IO priority
619 * and sync vs async */
621 min(slice
, base_low_slice
* slice
/ sync_slice
);
622 /* the adapted slice value is scaled to fit all iqs
623 * into the target latency */
624 slice
= max(slice
* group_slice
/ expect_latency
,
632 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
634 unsigned slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
636 cfqq
->slice_start
= jiffies
;
637 cfqq
->slice_end
= jiffies
+ slice
;
638 cfqq
->allocated_slice
= slice
;
639 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
643 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
644 * isn't valid until the first request from the dispatch is activated
645 * and the slice time set.
647 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
649 if (cfq_cfqq_slice_new(cfqq
))
651 if (time_before(jiffies
, cfqq
->slice_end
))
658 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
659 * We choose the request that is closest to the head right now. Distance
660 * behind the head is penalized and only allowed to a certain extent.
662 static struct request
*
663 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
665 sector_t s1
, s2
, d1
= 0, d2
= 0;
666 unsigned long back_max
;
667 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
668 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
669 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
671 if (rq1
== NULL
|| rq1
== rq2
)
676 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
678 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
680 if ((rq1
->cmd_flags
& REQ_META
) && !(rq2
->cmd_flags
& REQ_META
))
682 else if ((rq2
->cmd_flags
& REQ_META
) &&
683 !(rq1
->cmd_flags
& REQ_META
))
686 s1
= blk_rq_pos(rq1
);
687 s2
= blk_rq_pos(rq2
);
690 * by definition, 1KiB is 2 sectors
692 back_max
= cfqd
->cfq_back_max
* 2;
695 * Strict one way elevator _except_ in the case where we allow
696 * short backward seeks which are biased as twice the cost of a
697 * similar forward seek.
701 else if (s1
+ back_max
>= last
)
702 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
704 wrap
|= CFQ_RQ1_WRAP
;
708 else if (s2
+ back_max
>= last
)
709 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
711 wrap
|= CFQ_RQ2_WRAP
;
713 /* Found required data */
716 * By doing switch() on the bit mask "wrap" we avoid having to
717 * check two variables for all permutations: --> faster!
720 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
736 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
739 * Since both rqs are wrapped,
740 * start with the one that's further behind head
741 * (--> only *one* back seek required),
742 * since back seek takes more time than forward.
752 * The below is leftmost cache rbtree addon
754 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
756 /* Service tree is empty */
761 root
->left
= rb_first(&root
->rb
);
764 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
769 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
772 root
->left
= rb_first(&root
->rb
);
775 return rb_entry_cfqg(root
->left
);
780 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
786 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
790 rb_erase_init(n
, &root
->rb
);
795 * would be nice to take fifo expire time into account as well
797 static struct request
*
798 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
799 struct request
*last
)
801 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
802 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
803 struct request
*next
= NULL
, *prev
= NULL
;
805 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
808 prev
= rb_entry_rq(rbprev
);
811 next
= rb_entry_rq(rbnext
);
813 rbnext
= rb_first(&cfqq
->sort_list
);
814 if (rbnext
&& rbnext
!= &last
->rb_node
)
815 next
= rb_entry_rq(rbnext
);
818 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
821 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
822 struct cfq_queue
*cfqq
)
825 * just an approximation, should be ok.
827 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
828 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
832 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
834 return cfqg
->vdisktime
- st
->min_vdisktime
;
838 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
840 struct rb_node
**node
= &st
->rb
.rb_node
;
841 struct rb_node
*parent
= NULL
;
842 struct cfq_group
*__cfqg
;
843 s64 key
= cfqg_key(st
, cfqg
);
846 while (*node
!= NULL
) {
848 __cfqg
= rb_entry_cfqg(parent
);
850 if (key
< cfqg_key(st
, __cfqg
))
851 node
= &parent
->rb_left
;
853 node
= &parent
->rb_right
;
859 st
->left
= &cfqg
->rb_node
;
861 rb_link_node(&cfqg
->rb_node
, parent
, node
);
862 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
866 cfq_group_service_tree_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
868 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
869 struct cfq_group
*__cfqg
;
873 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
877 * Currently put the group at the end. Later implement something
878 * so that groups get lesser vtime based on their weights, so that
879 * if group does not loose all if it was not continously backlogged.
881 n
= rb_last(&st
->rb
);
883 __cfqg
= rb_entry_cfqg(n
);
884 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
886 cfqg
->vdisktime
= st
->min_vdisktime
;
888 __cfq_group_service_tree_add(st
, cfqg
);
889 st
->total_weight
+= cfqg
->weight
;
893 cfq_group_service_tree_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
895 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
897 BUG_ON(cfqg
->nr_cfqq
< 1);
900 /* If there are other cfq queues under this group, don't delete it */
904 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
905 st
->total_weight
-= cfqg
->weight
;
906 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
907 cfq_rb_erase(&cfqg
->rb_node
, st
);
908 cfqg
->saved_workload_slice
= 0;
909 cfq_blkiocg_update_dequeue_stats(&cfqg
->blkg
, 1);
912 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
)
914 unsigned int slice_used
;
917 * Queue got expired before even a single request completed or
918 * got expired immediately after first request completion.
920 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
922 * Also charge the seek time incurred to the group, otherwise
923 * if there are mutiple queues in the group, each can dispatch
924 * a single request on seeky media and cause lots of seek time
925 * and group will never know it.
927 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
930 slice_used
= jiffies
- cfqq
->slice_start
;
931 if (slice_used
> cfqq
->allocated_slice
)
932 slice_used
= cfqq
->allocated_slice
;
938 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
939 struct cfq_queue
*cfqq
)
941 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
942 unsigned int used_sl
, charge
;
943 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
944 - cfqg
->service_tree_idle
.count
;
947 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
);
950 charge
= cfqq
->slice_dispatch
;
951 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
952 charge
= cfqq
->allocated_slice
;
954 /* Can't update vdisktime while group is on service tree */
955 cfq_rb_erase(&cfqg
->rb_node
, st
);
956 cfqg
->vdisktime
+= cfq_scale_slice(charge
, cfqg
);
957 __cfq_group_service_tree_add(st
, cfqg
);
959 /* This group is being expired. Save the context */
960 if (time_after(cfqd
->workload_expires
, jiffies
)) {
961 cfqg
->saved_workload_slice
= cfqd
->workload_expires
963 cfqg
->saved_workload
= cfqd
->serving_type
;
964 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
966 cfqg
->saved_workload_slice
= 0;
968 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
970 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u disp=%u charge=%u iops=%u"
971 " sect=%u", used_sl
, cfqq
->slice_dispatch
, charge
,
972 iops_mode(cfqd
), cfqq
->nr_sectors
);
973 cfq_blkiocg_update_timeslice_used(&cfqg
->blkg
, used_sl
);
974 cfq_blkiocg_set_start_empty_time(&cfqg
->blkg
);
977 #ifdef CONFIG_CFQ_GROUP_IOSCHED
978 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
981 return container_of(blkg
, struct cfq_group
, blkg
);
985 void cfq_update_blkio_group_weight(void *key
, struct blkio_group
*blkg
,
988 cfqg_of_blkg(blkg
)->weight
= weight
;
991 static struct cfq_group
*
992 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
994 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
995 struct cfq_group
*cfqg
= NULL
;
998 struct cfq_rb_root
*st
;
999 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
1000 unsigned int major
, minor
;
1002 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
1003 if (cfqg
&& !cfqg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
1004 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1005 cfqg
->blkg
.dev
= MKDEV(major
, minor
);
1008 if (cfqg
|| !create
)
1011 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
1015 for_each_cfqg_st(cfqg
, i
, j
, st
)
1017 RB_CLEAR_NODE(&cfqg
->rb_node
);
1020 * Take the initial reference that will be released on destroy
1021 * This can be thought of a joint reference by cgroup and
1022 * elevator which will be dropped by either elevator exit
1023 * or cgroup deletion path depending on who is exiting first.
1028 * Add group onto cgroup list. It might happen that bdi->dev is
1029 * not initialized yet. Initialize this new group without major
1030 * and minor info and this info will be filled in once a new thread
1031 * comes for IO. See code above.
1034 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1035 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
1036 MKDEV(major
, minor
));
1038 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
1041 cfqg
->weight
= blkcg_get_weight(blkcg
, cfqg
->blkg
.dev
);
1043 /* Add group on cfqd list */
1044 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
1051 * Search for the cfq group current task belongs to. If create = 1, then also
1052 * create the cfq group if it does not exist. request_queue lock must be held.
1054 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1056 struct cgroup
*cgroup
;
1057 struct cfq_group
*cfqg
= NULL
;
1060 cgroup
= task_cgroup(current
, blkio_subsys_id
);
1061 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
1062 if (!cfqg
&& create
)
1063 cfqg
= &cfqd
->root_group
;
1068 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1074 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1076 /* Currently, all async queues are mapped to root group */
1077 if (!cfq_cfqq_sync(cfqq
))
1078 cfqg
= &cfqq
->cfqd
->root_group
;
1081 /* cfqq reference on cfqg */
1085 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1087 struct cfq_rb_root
*st
;
1090 BUG_ON(cfqg
->ref
<= 0);
1094 for_each_cfqg_st(cfqg
, i
, j
, st
)
1095 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
));
1099 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1101 /* Something wrong if we are trying to remove same group twice */
1102 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1104 hlist_del_init(&cfqg
->cfqd_node
);
1107 * Put the reference taken at the time of creation so that when all
1108 * queues are gone, group can be destroyed.
1113 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1115 struct hlist_node
*pos
, *n
;
1116 struct cfq_group
*cfqg
;
1118 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1120 * If cgroup removal path got to blk_group first and removed
1121 * it from cgroup list, then it will take care of destroying
1124 if (!cfq_blkiocg_del_blkio_group(&cfqg
->blkg
))
1125 cfq_destroy_cfqg(cfqd
, cfqg
);
1130 * Blk cgroup controller notification saying that blkio_group object is being
1131 * delinked as associated cgroup object is going away. That also means that
1132 * no new IO will come in this group. So get rid of this group as soon as
1133 * any pending IO in the group is finished.
1135 * This function is called under rcu_read_lock(). key is the rcu protected
1136 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1139 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1140 * it should not be NULL as even if elevator was exiting, cgroup deltion
1141 * path got to it first.
1143 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1145 unsigned long flags
;
1146 struct cfq_data
*cfqd
= key
;
1148 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1149 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1150 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1153 #else /* GROUP_IOSCHED */
1154 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1156 return &cfqd
->root_group
;
1159 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1165 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1169 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1170 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1172 #endif /* GROUP_IOSCHED */
1175 * The cfqd->service_trees holds all pending cfq_queue's that have
1176 * requests waiting to be processed. It is sorted in the order that
1177 * we will service the queues.
1179 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1182 struct rb_node
**p
, *parent
;
1183 struct cfq_queue
*__cfqq
;
1184 unsigned long rb_key
;
1185 struct cfq_rb_root
*service_tree
;
1188 int group_changed
= 0;
1190 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1191 if (!cfqd
->cfq_group_isolation
1192 && cfqq_type(cfqq
) == SYNC_NOIDLE_WORKLOAD
1193 && cfqq
->cfqg
&& cfqq
->cfqg
!= &cfqd
->root_group
) {
1194 /* Move this cfq to root group */
1195 cfq_log_cfqq(cfqd
, cfqq
, "moving to root group");
1196 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1197 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1198 cfqq
->orig_cfqg
= cfqq
->cfqg
;
1199 cfqq
->cfqg
= &cfqd
->root_group
;
1200 cfqd
->root_group
.ref
++;
1202 } else if (!cfqd
->cfq_group_isolation
1203 && cfqq_type(cfqq
) == SYNC_WORKLOAD
&& cfqq
->orig_cfqg
) {
1204 /* cfqq is sequential now needs to go to its original group */
1205 BUG_ON(cfqq
->cfqg
!= &cfqd
->root_group
);
1206 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1207 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1208 cfq_put_cfqg(cfqq
->cfqg
);
1209 cfqq
->cfqg
= cfqq
->orig_cfqg
;
1210 cfqq
->orig_cfqg
= NULL
;
1212 cfq_log_cfqq(cfqd
, cfqq
, "moved to origin group");
1216 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1218 if (cfq_class_idle(cfqq
)) {
1219 rb_key
= CFQ_IDLE_DELAY
;
1220 parent
= rb_last(&service_tree
->rb
);
1221 if (parent
&& parent
!= &cfqq
->rb_node
) {
1222 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1223 rb_key
+= __cfqq
->rb_key
;
1226 } else if (!add_front
) {
1228 * Get our rb key offset. Subtract any residual slice
1229 * value carried from last service. A negative resid
1230 * count indicates slice overrun, and this should position
1231 * the next service time further away in the tree.
1233 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1234 rb_key
-= cfqq
->slice_resid
;
1235 cfqq
->slice_resid
= 0;
1238 __cfqq
= cfq_rb_first(service_tree
);
1239 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1242 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1245 * same position, nothing more to do
1247 if (rb_key
== cfqq
->rb_key
&&
1248 cfqq
->service_tree
== service_tree
)
1251 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1252 cfqq
->service_tree
= NULL
;
1257 cfqq
->service_tree
= service_tree
;
1258 p
= &service_tree
->rb
.rb_node
;
1263 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1266 * sort by key, that represents service time.
1268 if (time_before(rb_key
, __cfqq
->rb_key
))
1271 n
= &(*p
)->rb_right
;
1279 service_tree
->left
= &cfqq
->rb_node
;
1281 cfqq
->rb_key
= rb_key
;
1282 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1283 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1284 service_tree
->count
++;
1285 if ((add_front
|| !new_cfqq
) && !group_changed
)
1287 cfq_group_service_tree_add(cfqd
, cfqq
->cfqg
);
1290 static struct cfq_queue
*
1291 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1292 sector_t sector
, struct rb_node
**ret_parent
,
1293 struct rb_node
***rb_link
)
1295 struct rb_node
**p
, *parent
;
1296 struct cfq_queue
*cfqq
= NULL
;
1304 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1307 * Sort strictly based on sector. Smallest to the left,
1308 * largest to the right.
1310 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1311 n
= &(*p
)->rb_right
;
1312 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1320 *ret_parent
= parent
;
1326 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1328 struct rb_node
**p
, *parent
;
1329 struct cfq_queue
*__cfqq
;
1332 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1333 cfqq
->p_root
= NULL
;
1336 if (cfq_class_idle(cfqq
))
1341 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1342 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1343 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1345 rb_link_node(&cfqq
->p_node
, parent
, p
);
1346 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1348 cfqq
->p_root
= NULL
;
1352 * Update cfqq's position in the service tree.
1354 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1357 * Resorting requires the cfqq to be on the RR list already.
1359 if (cfq_cfqq_on_rr(cfqq
)) {
1360 cfq_service_tree_add(cfqd
, cfqq
, 0);
1361 cfq_prio_tree_add(cfqd
, cfqq
);
1366 * add to busy list of queues for service, trying to be fair in ordering
1367 * the pending list according to last request service
1369 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1371 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1372 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1373 cfq_mark_cfqq_on_rr(cfqq
);
1374 cfqd
->busy_queues
++;
1376 cfq_resort_rr_list(cfqd
, cfqq
);
1380 * Called when the cfqq no longer has requests pending, remove it from
1383 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1385 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1386 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1387 cfq_clear_cfqq_on_rr(cfqq
);
1389 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1390 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1391 cfqq
->service_tree
= NULL
;
1394 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1395 cfqq
->p_root
= NULL
;
1398 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1399 BUG_ON(!cfqd
->busy_queues
);
1400 cfqd
->busy_queues
--;
1404 * rb tree support functions
1406 static void cfq_del_rq_rb(struct request
*rq
)
1408 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1409 const int sync
= rq_is_sync(rq
);
1411 BUG_ON(!cfqq
->queued
[sync
]);
1412 cfqq
->queued
[sync
]--;
1414 elv_rb_del(&cfqq
->sort_list
, rq
);
1416 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1418 * Queue will be deleted from service tree when we actually
1419 * expire it later. Right now just remove it from prio tree
1423 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1424 cfqq
->p_root
= NULL
;
1429 static void cfq_add_rq_rb(struct request
*rq
)
1431 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1432 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1433 struct request
*__alias
, *prev
;
1435 cfqq
->queued
[rq_is_sync(rq
)]++;
1438 * looks a little odd, but the first insert might return an alias.
1439 * if that happens, put the alias on the dispatch list
1441 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1442 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1444 if (!cfq_cfqq_on_rr(cfqq
))
1445 cfq_add_cfqq_rr(cfqd
, cfqq
);
1448 * check if this request is a better next-serve candidate
1450 prev
= cfqq
->next_rq
;
1451 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1454 * adjust priority tree position, if ->next_rq changes
1456 if (prev
!= cfqq
->next_rq
)
1457 cfq_prio_tree_add(cfqd
, cfqq
);
1459 BUG_ON(!cfqq
->next_rq
);
1462 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1464 elv_rb_del(&cfqq
->sort_list
, rq
);
1465 cfqq
->queued
[rq_is_sync(rq
)]--;
1466 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1467 rq_data_dir(rq
), rq_is_sync(rq
));
1469 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
1470 &cfqq
->cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
1474 static struct request
*
1475 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1477 struct task_struct
*tsk
= current
;
1478 struct cfq_io_context
*cic
;
1479 struct cfq_queue
*cfqq
;
1481 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1485 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1487 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1489 return elv_rb_find(&cfqq
->sort_list
, sector
);
1495 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1497 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1499 cfqd
->rq_in_driver
++;
1500 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1501 cfqd
->rq_in_driver
);
1503 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1506 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1508 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1510 WARN_ON(!cfqd
->rq_in_driver
);
1511 cfqd
->rq_in_driver
--;
1512 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1513 cfqd
->rq_in_driver
);
1516 static void cfq_remove_request(struct request
*rq
)
1518 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1520 if (cfqq
->next_rq
== rq
)
1521 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1523 list_del_init(&rq
->queuelist
);
1526 cfqq
->cfqd
->rq_queued
--;
1527 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1528 rq_data_dir(rq
), rq_is_sync(rq
));
1529 if (rq
->cmd_flags
& REQ_META
) {
1530 WARN_ON(!cfqq
->meta_pending
);
1531 cfqq
->meta_pending
--;
1535 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1538 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1539 struct request
*__rq
;
1541 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1542 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1544 return ELEVATOR_FRONT_MERGE
;
1547 return ELEVATOR_NO_MERGE
;
1550 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1553 if (type
== ELEVATOR_FRONT_MERGE
) {
1554 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1556 cfq_reposition_rq_rb(cfqq
, req
);
1560 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
1563 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req
))->blkg
,
1564 bio_data_dir(bio
), cfq_bio_sync(bio
));
1568 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1569 struct request
*next
)
1571 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1573 * reposition in fifo if next is older than rq
1575 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1576 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1577 list_move(&rq
->queuelist
, &next
->queuelist
);
1578 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1581 if (cfqq
->next_rq
== next
)
1583 cfq_remove_request(next
);
1584 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq
))->blkg
,
1585 rq_data_dir(next
), rq_is_sync(next
));
1588 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1591 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1592 struct cfq_io_context
*cic
;
1593 struct cfq_queue
*cfqq
;
1596 * Disallow merge of a sync bio into an async request.
1598 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1602 * Lookup the cfqq that this bio will be queued with. Allow
1603 * merge only if rq is queued there.
1605 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1609 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1610 return cfqq
== RQ_CFQQ(rq
);
1613 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1615 del_timer(&cfqd
->idle_slice_timer
);
1616 cfq_blkiocg_update_idle_time_stats(&cfqq
->cfqg
->blkg
);
1619 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1620 struct cfq_queue
*cfqq
)
1623 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_prio:%d wl_type:%d",
1624 cfqd
->serving_prio
, cfqd
->serving_type
);
1625 cfq_blkiocg_update_avg_queue_size_stats(&cfqq
->cfqg
->blkg
);
1626 cfqq
->slice_start
= 0;
1627 cfqq
->dispatch_start
= jiffies
;
1628 cfqq
->allocated_slice
= 0;
1629 cfqq
->slice_end
= 0;
1630 cfqq
->slice_dispatch
= 0;
1631 cfqq
->nr_sectors
= 0;
1633 cfq_clear_cfqq_wait_request(cfqq
);
1634 cfq_clear_cfqq_must_dispatch(cfqq
);
1635 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1636 cfq_clear_cfqq_fifo_expire(cfqq
);
1637 cfq_mark_cfqq_slice_new(cfqq
);
1639 cfq_del_timer(cfqd
, cfqq
);
1642 cfqd
->active_queue
= cfqq
;
1646 * current cfqq expired its slice (or was too idle), select new one
1649 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1652 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1654 if (cfq_cfqq_wait_request(cfqq
))
1655 cfq_del_timer(cfqd
, cfqq
);
1657 cfq_clear_cfqq_wait_request(cfqq
);
1658 cfq_clear_cfqq_wait_busy(cfqq
);
1661 * If this cfqq is shared between multiple processes, check to
1662 * make sure that those processes are still issuing I/Os within
1663 * the mean seek distance. If not, it may be time to break the
1664 * queues apart again.
1666 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1667 cfq_mark_cfqq_split_coop(cfqq
);
1670 * store what was left of this slice, if the queue idled/timed out
1673 if (cfq_cfqq_slice_new(cfqq
))
1674 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1676 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1677 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1680 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1682 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1683 cfq_del_cfqq_rr(cfqd
, cfqq
);
1685 cfq_resort_rr_list(cfqd
, cfqq
);
1687 if (cfqq
== cfqd
->active_queue
)
1688 cfqd
->active_queue
= NULL
;
1690 if (cfqd
->active_cic
) {
1691 put_io_context(cfqd
->active_cic
->ioc
);
1692 cfqd
->active_cic
= NULL
;
1696 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1698 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1701 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1705 * Get next queue for service. Unless we have a queue preemption,
1706 * we'll simply select the first cfqq in the service tree.
1708 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1710 struct cfq_rb_root
*service_tree
=
1711 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1712 cfqd
->serving_type
);
1714 if (!cfqd
->rq_queued
)
1717 /* There is nothing to dispatch */
1720 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1722 return cfq_rb_first(service_tree
);
1725 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1727 struct cfq_group
*cfqg
;
1728 struct cfq_queue
*cfqq
;
1730 struct cfq_rb_root
*st
;
1732 if (!cfqd
->rq_queued
)
1735 cfqg
= cfq_get_next_cfqg(cfqd
);
1739 for_each_cfqg_st(cfqg
, i
, j
, st
)
1740 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1746 * Get and set a new active queue for service.
1748 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1749 struct cfq_queue
*cfqq
)
1752 cfqq
= cfq_get_next_queue(cfqd
);
1754 __cfq_set_active_queue(cfqd
, cfqq
);
1758 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1761 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1762 return blk_rq_pos(rq
) - cfqd
->last_position
;
1764 return cfqd
->last_position
- blk_rq_pos(rq
);
1767 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1770 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
1773 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1774 struct cfq_queue
*cur_cfqq
)
1776 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1777 struct rb_node
*parent
, *node
;
1778 struct cfq_queue
*__cfqq
;
1779 sector_t sector
= cfqd
->last_position
;
1781 if (RB_EMPTY_ROOT(root
))
1785 * First, if we find a request starting at the end of the last
1786 * request, choose it.
1788 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1793 * If the exact sector wasn't found, the parent of the NULL leaf
1794 * will contain the closest sector.
1796 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1797 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1800 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1801 node
= rb_next(&__cfqq
->p_node
);
1803 node
= rb_prev(&__cfqq
->p_node
);
1807 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1808 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1816 * cur_cfqq - passed in so that we don't decide that the current queue is
1817 * closely cooperating with itself.
1819 * So, basically we're assuming that that cur_cfqq has dispatched at least
1820 * one request, and that cfqd->last_position reflects a position on the disk
1821 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1824 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1825 struct cfq_queue
*cur_cfqq
)
1827 struct cfq_queue
*cfqq
;
1829 if (cfq_class_idle(cur_cfqq
))
1831 if (!cfq_cfqq_sync(cur_cfqq
))
1833 if (CFQQ_SEEKY(cur_cfqq
))
1837 * Don't search priority tree if it's the only queue in the group.
1839 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1843 * We should notice if some of the queues are cooperating, eg
1844 * working closely on the same area of the disk. In that case,
1845 * we can group them together and don't waste time idling.
1847 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1851 /* If new queue belongs to different cfq_group, don't choose it */
1852 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1856 * It only makes sense to merge sync queues.
1858 if (!cfq_cfqq_sync(cfqq
))
1860 if (CFQQ_SEEKY(cfqq
))
1864 * Do not merge queues of different priority classes
1866 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1873 * Determine whether we should enforce idle window for this queue.
1876 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1878 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1879 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1881 BUG_ON(!service_tree
);
1882 BUG_ON(!service_tree
->count
);
1884 if (!cfqd
->cfq_slice_idle
)
1887 /* We never do for idle class queues. */
1888 if (prio
== IDLE_WORKLOAD
)
1891 /* We do for queues that were marked with idle window flag. */
1892 if (cfq_cfqq_idle_window(cfqq
) &&
1893 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1897 * Otherwise, we do only if they are the last ones
1898 * in their service tree.
1900 if (service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
))
1902 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d",
1903 service_tree
->count
);
1907 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1909 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1910 struct cfq_io_context
*cic
;
1911 unsigned long sl
, group_idle
= 0;
1914 * SSD device without seek penalty, disable idling. But only do so
1915 * for devices that support queuing, otherwise we still have a problem
1916 * with sync vs async workloads.
1918 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1921 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1922 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1925 * idle is disabled, either manually or by past process history
1927 if (!cfq_should_idle(cfqd
, cfqq
)) {
1928 /* no queue idling. Check for group idling */
1929 if (cfqd
->cfq_group_idle
)
1930 group_idle
= cfqd
->cfq_group_idle
;
1936 * still active requests from this queue, don't idle
1938 if (cfqq
->dispatched
)
1942 * task has exited, don't wait
1944 cic
= cfqd
->active_cic
;
1945 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1949 * If our average think time is larger than the remaining time
1950 * slice, then don't idle. This avoids overrunning the allotted
1953 if (sample_valid(cic
->ttime_samples
) &&
1954 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
)) {
1955 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%d",
1960 /* There are other queues in the group, don't do group idle */
1961 if (group_idle
&& cfqq
->cfqg
->nr_cfqq
> 1)
1964 cfq_mark_cfqq_wait_request(cfqq
);
1967 sl
= cfqd
->cfq_group_idle
;
1969 sl
= cfqd
->cfq_slice_idle
;
1971 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1972 cfq_blkiocg_update_set_idle_time_stats(&cfqq
->cfqg
->blkg
);
1973 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
1974 group_idle
? 1 : 0);
1978 * Move request from internal lists to the request queue dispatch list.
1980 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1982 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1983 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1985 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1987 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1988 cfq_remove_request(rq
);
1990 (RQ_CFQG(rq
))->dispatched
++;
1991 elv_dispatch_sort(q
, rq
);
1993 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
1994 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
1995 cfq_blkiocg_update_dispatch_stats(&cfqq
->cfqg
->blkg
, blk_rq_bytes(rq
),
1996 rq_data_dir(rq
), rq_is_sync(rq
));
2000 * return expired entry, or NULL to just start from scratch in rbtree
2002 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
2004 struct request
*rq
= NULL
;
2006 if (cfq_cfqq_fifo_expire(cfqq
))
2009 cfq_mark_cfqq_fifo_expire(cfqq
);
2011 if (list_empty(&cfqq
->fifo
))
2014 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
2015 if (time_before(jiffies
, rq_fifo_time(rq
)))
2018 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
2023 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2025 const int base_rq
= cfqd
->cfq_slice_async_rq
;
2027 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
2029 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
2033 * Must be called with the queue_lock held.
2035 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
2037 int process_refs
, io_refs
;
2039 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
2040 process_refs
= cfqq
->ref
- io_refs
;
2041 BUG_ON(process_refs
< 0);
2042 return process_refs
;
2045 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
2047 int process_refs
, new_process_refs
;
2048 struct cfq_queue
*__cfqq
;
2051 * If there are no process references on the new_cfqq, then it is
2052 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2053 * chain may have dropped their last reference (not just their
2054 * last process reference).
2056 if (!cfqq_process_refs(new_cfqq
))
2059 /* Avoid a circular list and skip interim queue merges */
2060 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
2066 process_refs
= cfqq_process_refs(cfqq
);
2067 new_process_refs
= cfqq_process_refs(new_cfqq
);
2069 * If the process for the cfqq has gone away, there is no
2070 * sense in merging the queues.
2072 if (process_refs
== 0 || new_process_refs
== 0)
2076 * Merge in the direction of the lesser amount of work.
2078 if (new_process_refs
>= process_refs
) {
2079 cfqq
->new_cfqq
= new_cfqq
;
2080 new_cfqq
->ref
+= process_refs
;
2082 new_cfqq
->new_cfqq
= cfqq
;
2083 cfqq
->ref
+= new_process_refs
;
2087 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
2088 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
2090 struct cfq_queue
*queue
;
2092 bool key_valid
= false;
2093 unsigned long lowest_key
= 0;
2094 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
2096 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
2097 /* select the one with lowest rb_key */
2098 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
2100 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
2101 lowest_key
= queue
->rb_key
;
2110 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2114 struct cfq_rb_root
*st
;
2115 unsigned group_slice
;
2116 enum wl_prio_t original_prio
= cfqd
->serving_prio
;
2118 /* Choose next priority. RT > BE > IDLE */
2119 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2120 cfqd
->serving_prio
= RT_WORKLOAD
;
2121 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2122 cfqd
->serving_prio
= BE_WORKLOAD
;
2124 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2125 cfqd
->workload_expires
= jiffies
+ 1;
2129 if (original_prio
!= cfqd
->serving_prio
)
2133 * For RT and BE, we have to choose also the type
2134 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2137 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2141 * check workload expiration, and that we still have other queues ready
2143 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2147 /* otherwise select new workload type */
2148 cfqd
->serving_type
=
2149 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2150 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2154 * the workload slice is computed as a fraction of target latency
2155 * proportional to the number of queues in that workload, over
2156 * all the queues in the same priority class
2158 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2160 slice
= group_slice
* count
/
2161 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2162 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2164 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2168 * Async queues are currently system wide. Just taking
2169 * proportion of queues with-in same group will lead to higher
2170 * async ratio system wide as generally root group is going
2171 * to have higher weight. A more accurate thing would be to
2172 * calculate system wide asnc/sync ratio.
2174 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2175 tmp
= tmp
/cfqd
->busy_queues
;
2176 slice
= min_t(unsigned, slice
, tmp
);
2178 /* async workload slice is scaled down according to
2179 * the sync/async slice ratio. */
2180 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2182 /* sync workload slice is at least 2 * cfq_slice_idle */
2183 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2185 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2186 cfq_log(cfqd
, "workload slice:%d", slice
);
2187 cfqd
->workload_expires
= jiffies
+ slice
;
2190 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2192 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2193 struct cfq_group
*cfqg
;
2195 if (RB_EMPTY_ROOT(&st
->rb
))
2197 cfqg
= cfq_rb_first_group(st
);
2198 update_min_vdisktime(st
);
2202 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2204 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2206 cfqd
->serving_group
= cfqg
;
2208 /* Restore the workload type data */
2209 if (cfqg
->saved_workload_slice
) {
2210 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2211 cfqd
->serving_type
= cfqg
->saved_workload
;
2212 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2214 cfqd
->workload_expires
= jiffies
- 1;
2216 choose_service_tree(cfqd
, cfqg
);
2220 * Select a queue for service. If we have a current active queue,
2221 * check whether to continue servicing it, or retrieve and set a new one.
2223 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2225 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2227 cfqq
= cfqd
->active_queue
;
2231 if (!cfqd
->rq_queued
)
2235 * We were waiting for group to get backlogged. Expire the queue
2237 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2241 * The active queue has run out of time, expire it and select new.
2243 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2245 * If slice had not expired at the completion of last request
2246 * we might not have turned on wait_busy flag. Don't expire
2247 * the queue yet. Allow the group to get backlogged.
2249 * The very fact that we have used the slice, that means we
2250 * have been idling all along on this queue and it should be
2251 * ok to wait for this request to complete.
2253 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2254 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2258 goto check_group_idle
;
2262 * The active queue has requests and isn't expired, allow it to
2265 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2269 * If another queue has a request waiting within our mean seek
2270 * distance, let it run. The expire code will check for close
2271 * cooperators and put the close queue at the front of the service
2272 * tree. If possible, merge the expiring queue with the new cfqq.
2274 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2276 if (!cfqq
->new_cfqq
)
2277 cfq_setup_merge(cfqq
, new_cfqq
);
2282 * No requests pending. If the active queue still has requests in
2283 * flight or is idling for a new request, allow either of these
2284 * conditions to happen (or time out) before selecting a new queue.
2286 if (timer_pending(&cfqd
->idle_slice_timer
)) {
2292 * This is a deep seek queue, but the device is much faster than
2293 * the queue can deliver, don't idle
2295 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
2296 (cfq_cfqq_slice_new(cfqq
) ||
2297 (cfqq
->slice_end
- jiffies
> jiffies
- cfqq
->slice_start
))) {
2298 cfq_clear_cfqq_deep(cfqq
);
2299 cfq_clear_cfqq_idle_window(cfqq
);
2302 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2308 * If group idle is enabled and there are requests dispatched from
2309 * this group, wait for requests to complete.
2312 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1
2313 && cfqq
->cfqg
->dispatched
) {
2319 cfq_slice_expired(cfqd
, 0);
2322 * Current queue expired. Check if we have to switch to a new
2326 cfq_choose_cfqg(cfqd
);
2328 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2333 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2337 while (cfqq
->next_rq
) {
2338 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2342 BUG_ON(!list_empty(&cfqq
->fifo
));
2344 /* By default cfqq is not expired if it is empty. Do it explicitly */
2345 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2350 * Drain our current requests. Used for barriers and when switching
2351 * io schedulers on-the-fly.
2353 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2355 struct cfq_queue
*cfqq
;
2358 /* Expire the timeslice of the current active queue first */
2359 cfq_slice_expired(cfqd
, 0);
2360 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
2361 __cfq_set_active_queue(cfqd
, cfqq
);
2362 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2365 BUG_ON(cfqd
->busy_queues
);
2367 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2371 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2372 struct cfq_queue
*cfqq
)
2374 /* the queue hasn't finished any request, can't estimate */
2375 if (cfq_cfqq_slice_new(cfqq
))
2377 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2384 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2386 unsigned int max_dispatch
;
2389 * Drain async requests before we start sync IO
2391 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2395 * If this is an async queue and we have sync IO in flight, let it wait
2397 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2400 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2401 if (cfq_class_idle(cfqq
))
2405 * Does this cfqq already have too much IO in flight?
2407 if (cfqq
->dispatched
>= max_dispatch
) {
2409 * idle queue must always only have a single IO in flight
2411 if (cfq_class_idle(cfqq
))
2415 * We have other queues, don't allow more IO from this one
2417 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
))
2421 * Sole queue user, no limit
2423 if (cfqd
->busy_queues
== 1)
2427 * Normally we start throttling cfqq when cfq_quantum/2
2428 * requests have been dispatched. But we can drive
2429 * deeper queue depths at the beginning of slice
2430 * subjected to upper limit of cfq_quantum.
2432 max_dispatch
= cfqd
->cfq_quantum
;
2436 * Async queues must wait a bit before being allowed dispatch.
2437 * We also ramp up the dispatch depth gradually for async IO,
2438 * based on the last sync IO we serviced
2440 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2441 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2444 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2445 if (!depth
&& !cfqq
->dispatched
)
2447 if (depth
< max_dispatch
)
2448 max_dispatch
= depth
;
2452 * If we're below the current max, allow a dispatch
2454 return cfqq
->dispatched
< max_dispatch
;
2458 * Dispatch a request from cfqq, moving them to the request queue
2461 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2465 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2467 if (!cfq_may_dispatch(cfqd
, cfqq
))
2471 * follow expired path, else get first next available
2473 rq
= cfq_check_fifo(cfqq
);
2478 * insert request into driver dispatch list
2480 cfq_dispatch_insert(cfqd
->queue
, rq
);
2482 if (!cfqd
->active_cic
) {
2483 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2485 atomic_long_inc(&cic
->ioc
->refcount
);
2486 cfqd
->active_cic
= cic
;
2493 * Find the cfqq that we need to service and move a request from that to the
2496 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2498 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2499 struct cfq_queue
*cfqq
;
2501 if (!cfqd
->busy_queues
)
2504 if (unlikely(force
))
2505 return cfq_forced_dispatch(cfqd
);
2507 cfqq
= cfq_select_queue(cfqd
);
2512 * Dispatch a request from this cfqq, if it is allowed
2514 if (!cfq_dispatch_request(cfqd
, cfqq
))
2517 cfqq
->slice_dispatch
++;
2518 cfq_clear_cfqq_must_dispatch(cfqq
);
2521 * expire an async queue immediately if it has used up its slice. idle
2522 * queue always expire after 1 dispatch round.
2524 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2525 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2526 cfq_class_idle(cfqq
))) {
2527 cfqq
->slice_end
= jiffies
+ 1;
2528 cfq_slice_expired(cfqd
, 0);
2531 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2536 * task holds one reference to the queue, dropped when task exits. each rq
2537 * in-flight on this queue also holds a reference, dropped when rq is freed.
2539 * Each cfq queue took a reference on the parent group. Drop it now.
2540 * queue lock must be held here.
2542 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2544 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2545 struct cfq_group
*cfqg
, *orig_cfqg
;
2547 BUG_ON(cfqq
->ref
<= 0);
2553 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2554 BUG_ON(rb_first(&cfqq
->sort_list
));
2555 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2557 orig_cfqg
= cfqq
->orig_cfqg
;
2559 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2560 __cfq_slice_expired(cfqd
, cfqq
, 0);
2561 cfq_schedule_dispatch(cfqd
);
2564 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2565 kmem_cache_free(cfq_pool
, cfqq
);
2568 cfq_put_cfqg(orig_cfqg
);
2572 * Must always be called with the rcu_read_lock() held
2575 __call_for_each_cic(struct io_context
*ioc
,
2576 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2578 struct cfq_io_context
*cic
;
2579 struct hlist_node
*n
;
2581 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2586 * Call func for each cic attached to this ioc.
2589 call_for_each_cic(struct io_context
*ioc
,
2590 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2593 __call_for_each_cic(ioc
, func
);
2597 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2599 struct cfq_io_context
*cic
;
2601 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2603 kmem_cache_free(cfq_ioc_pool
, cic
);
2604 elv_ioc_count_dec(cfq_ioc_count
);
2608 * CFQ scheduler is exiting, grab exit lock and check
2609 * the pending io context count. If it hits zero,
2610 * complete ioc_gone and set it back to NULL
2612 spin_lock(&ioc_gone_lock
);
2613 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2617 spin_unlock(&ioc_gone_lock
);
2621 static void cfq_cic_free(struct cfq_io_context
*cic
)
2623 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2626 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2628 unsigned long flags
;
2629 unsigned long dead_key
= (unsigned long) cic
->key
;
2631 BUG_ON(!(dead_key
& CIC_DEAD_KEY
));
2633 spin_lock_irqsave(&ioc
->lock
, flags
);
2634 radix_tree_delete(&ioc
->radix_root
, dead_key
>> CIC_DEAD_INDEX_SHIFT
);
2635 hlist_del_rcu(&cic
->cic_list
);
2636 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2642 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2643 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2644 * and ->trim() which is called with the task lock held
2646 static void cfq_free_io_context(struct io_context
*ioc
)
2649 * ioc->refcount is zero here, or we are called from elv_unregister(),
2650 * so no more cic's are allowed to be linked into this ioc. So it
2651 * should be ok to iterate over the known list, we will see all cic's
2652 * since no new ones are added.
2654 __call_for_each_cic(ioc
, cic_free_func
);
2657 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
2659 struct cfq_queue
*__cfqq
, *next
;
2662 * If this queue was scheduled to merge with another queue, be
2663 * sure to drop the reference taken on that queue (and others in
2664 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2666 __cfqq
= cfqq
->new_cfqq
;
2668 if (__cfqq
== cfqq
) {
2669 WARN(1, "cfqq->new_cfqq loop detected\n");
2672 next
= __cfqq
->new_cfqq
;
2673 cfq_put_queue(__cfqq
);
2678 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2680 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2681 __cfq_slice_expired(cfqd
, cfqq
, 0);
2682 cfq_schedule_dispatch(cfqd
);
2685 cfq_put_cooperator(cfqq
);
2687 cfq_put_queue(cfqq
);
2690 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2691 struct cfq_io_context
*cic
)
2693 struct io_context
*ioc
= cic
->ioc
;
2695 list_del_init(&cic
->queue_list
);
2698 * Make sure dead mark is seen for dead queues
2701 cic
->key
= cfqd_dead_key(cfqd
);
2703 if (ioc
->ioc_data
== cic
)
2704 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2706 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2707 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2708 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2711 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2712 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2713 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2717 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2718 struct cfq_io_context
*cic
)
2720 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2723 struct request_queue
*q
= cfqd
->queue
;
2724 unsigned long flags
;
2726 spin_lock_irqsave(q
->queue_lock
, flags
);
2729 * Ensure we get a fresh copy of the ->key to prevent
2730 * race between exiting task and queue
2732 smp_read_barrier_depends();
2733 if (cic
->key
== cfqd
)
2734 __cfq_exit_single_io_context(cfqd
, cic
);
2736 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2741 * The process that ioc belongs to has exited, we need to clean up
2742 * and put the internal structures we have that belongs to that process.
2744 static void cfq_exit_io_context(struct io_context
*ioc
)
2746 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2749 static struct cfq_io_context
*
2750 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2752 struct cfq_io_context
*cic
;
2754 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2757 cic
->last_end_request
= jiffies
;
2758 INIT_LIST_HEAD(&cic
->queue_list
);
2759 INIT_HLIST_NODE(&cic
->cic_list
);
2760 cic
->dtor
= cfq_free_io_context
;
2761 cic
->exit
= cfq_exit_io_context
;
2762 elv_ioc_count_inc(cfq_ioc_count
);
2768 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2770 struct task_struct
*tsk
= current
;
2773 if (!cfq_cfqq_prio_changed(cfqq
))
2776 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2777 switch (ioprio_class
) {
2779 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2780 case IOPRIO_CLASS_NONE
:
2782 * no prio set, inherit CPU scheduling settings
2784 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2785 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2787 case IOPRIO_CLASS_RT
:
2788 cfqq
->ioprio
= task_ioprio(ioc
);
2789 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2791 case IOPRIO_CLASS_BE
:
2792 cfqq
->ioprio
= task_ioprio(ioc
);
2793 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2795 case IOPRIO_CLASS_IDLE
:
2796 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2798 cfq_clear_cfqq_idle_window(cfqq
);
2803 * keep track of original prio settings in case we have to temporarily
2804 * elevate the priority of this queue
2806 cfqq
->org_ioprio
= cfqq
->ioprio
;
2807 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2808 cfq_clear_cfqq_prio_changed(cfqq
);
2811 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2813 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2814 struct cfq_queue
*cfqq
;
2815 unsigned long flags
;
2817 if (unlikely(!cfqd
))
2820 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2822 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2824 struct cfq_queue
*new_cfqq
;
2825 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2828 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2829 cfq_put_queue(cfqq
);
2833 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2835 cfq_mark_cfqq_prio_changed(cfqq
);
2837 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2840 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2842 call_for_each_cic(ioc
, changed_ioprio
);
2843 ioc
->ioprio_changed
= 0;
2846 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2847 pid_t pid
, bool is_sync
)
2849 RB_CLEAR_NODE(&cfqq
->rb_node
);
2850 RB_CLEAR_NODE(&cfqq
->p_node
);
2851 INIT_LIST_HEAD(&cfqq
->fifo
);
2856 cfq_mark_cfqq_prio_changed(cfqq
);
2859 if (!cfq_class_idle(cfqq
))
2860 cfq_mark_cfqq_idle_window(cfqq
);
2861 cfq_mark_cfqq_sync(cfqq
);
2866 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2867 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2869 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2870 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2871 unsigned long flags
;
2872 struct request_queue
*q
;
2874 if (unlikely(!cfqd
))
2879 spin_lock_irqsave(q
->queue_lock
, flags
);
2883 * Drop reference to sync queue. A new sync queue will be
2884 * assigned in new group upon arrival of a fresh request.
2886 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2887 cic_set_cfqq(cic
, NULL
, 1);
2888 cfq_put_queue(sync_cfqq
);
2891 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2894 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2896 call_for_each_cic(ioc
, changed_cgroup
);
2897 ioc
->cgroup_changed
= 0;
2899 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2901 static struct cfq_queue
*
2902 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2903 struct io_context
*ioc
, gfp_t gfp_mask
)
2905 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2906 struct cfq_io_context
*cic
;
2907 struct cfq_group
*cfqg
;
2910 cfqg
= cfq_get_cfqg(cfqd
, 1);
2911 cic
= cfq_cic_lookup(cfqd
, ioc
);
2912 /* cic always exists here */
2913 cfqq
= cic_to_cfqq(cic
, is_sync
);
2916 * Always try a new alloc if we fell back to the OOM cfqq
2917 * originally, since it should just be a temporary situation.
2919 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2924 } else if (gfp_mask
& __GFP_WAIT
) {
2925 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2926 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2927 gfp_mask
| __GFP_ZERO
,
2929 spin_lock_irq(cfqd
->queue
->queue_lock
);
2933 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2934 gfp_mask
| __GFP_ZERO
,
2939 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2940 cfq_init_prio_data(cfqq
, ioc
);
2941 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2942 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2944 cfqq
= &cfqd
->oom_cfqq
;
2948 kmem_cache_free(cfq_pool
, new_cfqq
);
2953 static struct cfq_queue
**
2954 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2956 switch (ioprio_class
) {
2957 case IOPRIO_CLASS_RT
:
2958 return &cfqd
->async_cfqq
[0][ioprio
];
2959 case IOPRIO_CLASS_BE
:
2960 return &cfqd
->async_cfqq
[1][ioprio
];
2961 case IOPRIO_CLASS_IDLE
:
2962 return &cfqd
->async_idle_cfqq
;
2968 static struct cfq_queue
*
2969 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2972 const int ioprio
= task_ioprio(ioc
);
2973 const int ioprio_class
= task_ioprio_class(ioc
);
2974 struct cfq_queue
**async_cfqq
= NULL
;
2975 struct cfq_queue
*cfqq
= NULL
;
2978 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2983 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2986 * pin the queue now that it's allocated, scheduler exit will prune it
2988 if (!is_sync
&& !(*async_cfqq
)) {
2998 * We drop cfq io contexts lazily, so we may find a dead one.
3001 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
3002 struct cfq_io_context
*cic
)
3004 unsigned long flags
;
3006 WARN_ON(!list_empty(&cic
->queue_list
));
3007 BUG_ON(cic
->key
!= cfqd_dead_key(cfqd
));
3009 spin_lock_irqsave(&ioc
->lock
, flags
);
3011 BUG_ON(ioc
->ioc_data
== cic
);
3013 radix_tree_delete(&ioc
->radix_root
, cfqd
->cic_index
);
3014 hlist_del_rcu(&cic
->cic_list
);
3015 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3020 static struct cfq_io_context
*
3021 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
3023 struct cfq_io_context
*cic
;
3024 unsigned long flags
;
3032 * we maintain a last-hit cache, to avoid browsing over the tree
3034 cic
= rcu_dereference(ioc
->ioc_data
);
3035 if (cic
&& cic
->key
== cfqd
) {
3041 cic
= radix_tree_lookup(&ioc
->radix_root
, cfqd
->cic_index
);
3045 if (unlikely(cic
->key
!= cfqd
)) {
3046 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
3051 spin_lock_irqsave(&ioc
->lock
, flags
);
3052 rcu_assign_pointer(ioc
->ioc_data
, cic
);
3053 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3061 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3062 * the process specific cfq io context when entered from the block layer.
3063 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3065 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
3066 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
3068 unsigned long flags
;
3071 ret
= radix_tree_preload(gfp_mask
);
3076 spin_lock_irqsave(&ioc
->lock
, flags
);
3077 ret
= radix_tree_insert(&ioc
->radix_root
,
3078 cfqd
->cic_index
, cic
);
3080 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
3081 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3083 radix_tree_preload_end();
3086 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3087 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
3088 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3093 printk(KERN_ERR
"cfq: cic link failed!\n");
3099 * Setup general io context and cfq io context. There can be several cfq
3100 * io contexts per general io context, if this process is doing io to more
3101 * than one device managed by cfq.
3103 static struct cfq_io_context
*
3104 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
3106 struct io_context
*ioc
= NULL
;
3107 struct cfq_io_context
*cic
;
3109 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3111 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
3115 cic
= cfq_cic_lookup(cfqd
, ioc
);
3119 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
3123 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
3127 smp_read_barrier_depends();
3128 if (unlikely(ioc
->ioprio_changed
))
3129 cfq_ioc_set_ioprio(ioc
);
3131 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3132 if (unlikely(ioc
->cgroup_changed
))
3133 cfq_ioc_set_cgroup(ioc
);
3139 put_io_context(ioc
);
3144 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
3146 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
3147 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
3149 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
3150 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
3151 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
3155 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3159 sector_t n_sec
= blk_rq_sectors(rq
);
3160 if (cfqq
->last_request_pos
) {
3161 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3162 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3164 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3167 cfqq
->seek_history
<<= 1;
3168 if (blk_queue_nonrot(cfqd
->queue
))
3169 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3171 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3175 * Disable idle window if the process thinks too long or seeks so much that
3179 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3180 struct cfq_io_context
*cic
)
3182 int old_idle
, enable_idle
;
3185 * Don't idle for async or idle io prio class
3187 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3190 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3192 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3193 cfq_mark_cfqq_deep(cfqq
);
3195 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3197 else if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3198 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3200 else if (sample_valid(cic
->ttime_samples
)) {
3201 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3207 if (old_idle
!= enable_idle
) {
3208 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3210 cfq_mark_cfqq_idle_window(cfqq
);
3212 cfq_clear_cfqq_idle_window(cfqq
);
3217 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3218 * no or if we aren't sure, a 1 will cause a preempt.
3221 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3224 struct cfq_queue
*cfqq
;
3226 cfqq
= cfqd
->active_queue
;
3230 if (cfq_class_idle(new_cfqq
))
3233 if (cfq_class_idle(cfqq
))
3237 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3239 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3243 * if the new request is sync, but the currently running queue is
3244 * not, let the sync request have priority.
3246 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3249 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3252 if (cfq_slice_used(cfqq
))
3255 /* Allow preemption only if we are idling on sync-noidle tree */
3256 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3257 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3258 new_cfqq
->service_tree
->count
== 2 &&
3259 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3263 * So both queues are sync. Let the new request get disk time if
3264 * it's a metadata request and the current queue is doing regular IO.
3266 if ((rq
->cmd_flags
& REQ_META
) && !cfqq
->meta_pending
)
3270 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3272 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3275 /* An idle queue should not be idle now for some reason */
3276 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
3279 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3283 * if this request is as-good as one we would expect from the
3284 * current cfqq, let it preempt
3286 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3293 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3294 * let it have half of its nominal slice.
3296 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3298 struct cfq_queue
*old_cfqq
= cfqd
->active_queue
;
3300 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3301 cfq_slice_expired(cfqd
, 1);
3304 * workload type is changed, don't save slice, otherwise preempt
3307 if (cfqq_type(old_cfqq
) != cfqq_type(cfqq
))
3308 cfqq
->cfqg
->saved_workload_slice
= 0;
3311 * Put the new queue at the front of the of the current list,
3312 * so we know that it will be selected next.
3314 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3316 cfq_service_tree_add(cfqd
, cfqq
, 1);
3318 cfqq
->slice_end
= 0;
3319 cfq_mark_cfqq_slice_new(cfqq
);
3323 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3324 * something we should do about it
3327 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3330 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3333 if (rq
->cmd_flags
& REQ_META
)
3334 cfqq
->meta_pending
++;
3336 cfq_update_io_thinktime(cfqd
, cic
);
3337 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3338 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3340 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3342 if (cfqq
== cfqd
->active_queue
) {
3344 * Remember that we saw a request from this process, but
3345 * don't start queuing just yet. Otherwise we risk seeing lots
3346 * of tiny requests, because we disrupt the normal plugging
3347 * and merging. If the request is already larger than a single
3348 * page, let it rip immediately. For that case we assume that
3349 * merging is already done. Ditto for a busy system that
3350 * has other work pending, don't risk delaying until the
3351 * idle timer unplug to continue working.
3353 if (cfq_cfqq_wait_request(cfqq
)) {
3354 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3355 cfqd
->busy_queues
> 1) {
3356 cfq_del_timer(cfqd
, cfqq
);
3357 cfq_clear_cfqq_wait_request(cfqq
);
3358 __blk_run_queue(cfqd
->queue
);
3360 cfq_blkiocg_update_idle_time_stats(
3362 cfq_mark_cfqq_must_dispatch(cfqq
);
3365 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3367 * not the active queue - expire current slice if it is
3368 * idle and has expired it's mean thinktime or this new queue
3369 * has some old slice time left and is of higher priority or
3370 * this new queue is RT and the current one is BE
3372 cfq_preempt_queue(cfqd
, cfqq
);
3373 __blk_run_queue(cfqd
->queue
);
3377 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3379 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3380 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3382 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3383 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3385 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3386 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3388 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
3389 &cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
3391 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3395 * Update hw_tag based on peak queue depth over 50 samples under
3398 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3400 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3402 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3403 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3405 if (cfqd
->hw_tag
== 1)
3408 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3409 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3413 * If active queue hasn't enough requests and can idle, cfq might not
3414 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3417 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3418 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3419 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3422 if (cfqd
->hw_tag_samples
++ < 50)
3425 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3431 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3433 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3435 /* If the queue already has requests, don't wait */
3436 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3439 /* If there are other queues in the group, don't wait */
3440 if (cfqq
->cfqg
->nr_cfqq
> 1)
3443 if (cfq_slice_used(cfqq
))
3446 /* if slice left is less than think time, wait busy */
3447 if (cic
&& sample_valid(cic
->ttime_samples
)
3448 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3452 * If think times is less than a jiffy than ttime_mean=0 and above
3453 * will not be true. It might happen that slice has not expired yet
3454 * but will expire soon (4-5 ns) during select_queue(). To cover the
3455 * case where think time is less than a jiffy, mark the queue wait
3456 * busy if only 1 jiffy is left in the slice.
3458 if (cfqq
->slice_end
- jiffies
== 1)
3464 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3466 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3467 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3468 const int sync
= rq_is_sync(rq
);
3472 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
3473 !!(rq
->cmd_flags
& REQ_NOIDLE
));
3475 cfq_update_hw_tag(cfqd
);
3477 WARN_ON(!cfqd
->rq_in_driver
);
3478 WARN_ON(!cfqq
->dispatched
);
3479 cfqd
->rq_in_driver
--;
3481 (RQ_CFQG(rq
))->dispatched
--;
3482 cfq_blkiocg_update_completion_stats(&cfqq
->cfqg
->blkg
,
3483 rq_start_time_ns(rq
), rq_io_start_time_ns(rq
),
3484 rq_data_dir(rq
), rq_is_sync(rq
));
3486 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3489 RQ_CIC(rq
)->last_end_request
= now
;
3490 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3491 cfqd
->last_delayed_sync
= now
;
3495 * If this is the active queue, check if it needs to be expired,
3496 * or if we want to idle in case it has no pending requests.
3498 if (cfqd
->active_queue
== cfqq
) {
3499 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3501 if (cfq_cfqq_slice_new(cfqq
)) {
3502 cfq_set_prio_slice(cfqd
, cfqq
);
3503 cfq_clear_cfqq_slice_new(cfqq
);
3507 * Should we wait for next request to come in before we expire
3510 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3511 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
3512 if (!cfqd
->cfq_slice_idle
)
3513 extend_sl
= cfqd
->cfq_group_idle
;
3514 cfqq
->slice_end
= jiffies
+ extend_sl
;
3515 cfq_mark_cfqq_wait_busy(cfqq
);
3516 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
3520 * Idling is not enabled on:
3522 * - idle-priority queues
3524 * - queues with still some requests queued
3525 * - when there is a close cooperator
3527 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3528 cfq_slice_expired(cfqd
, 1);
3529 else if (sync
&& cfqq_empty
&&
3530 !cfq_close_cooperator(cfqd
, cfqq
)) {
3531 cfq_arm_slice_timer(cfqd
);
3535 if (!cfqd
->rq_in_driver
)
3536 cfq_schedule_dispatch(cfqd
);
3540 * we temporarily boost lower priority queues if they are holding fs exclusive
3541 * resources. they are boosted to normal prio (CLASS_BE/4)
3543 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3545 if (has_fs_excl()) {
3547 * boost idle prio on transactions that would lock out other
3548 * users of the filesystem
3550 if (cfq_class_idle(cfqq
))
3551 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3552 if (cfqq
->ioprio
> IOPRIO_NORM
)
3553 cfqq
->ioprio
= IOPRIO_NORM
;
3556 * unboost the queue (if needed)
3558 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3559 cfqq
->ioprio
= cfqq
->org_ioprio
;
3563 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3565 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3566 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3567 return ELV_MQUEUE_MUST
;
3570 return ELV_MQUEUE_MAY
;
3573 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3575 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3576 struct task_struct
*tsk
= current
;
3577 struct cfq_io_context
*cic
;
3578 struct cfq_queue
*cfqq
;
3581 * don't force setup of a queue from here, as a call to may_queue
3582 * does not necessarily imply that a request actually will be queued.
3583 * so just lookup a possibly existing queue, or return 'may queue'
3586 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3588 return ELV_MQUEUE_MAY
;
3590 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3592 cfq_init_prio_data(cfqq
, cic
->ioc
);
3593 cfq_prio_boost(cfqq
);
3595 return __cfq_may_queue(cfqq
);
3598 return ELV_MQUEUE_MAY
;
3602 * queue lock held here
3604 static void cfq_put_request(struct request
*rq
)
3606 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3609 const int rw
= rq_data_dir(rq
);
3611 BUG_ON(!cfqq
->allocated
[rw
]);
3612 cfqq
->allocated
[rw
]--;
3614 put_io_context(RQ_CIC(rq
)->ioc
);
3616 rq
->elevator_private
= NULL
;
3617 rq
->elevator_private2
= NULL
;
3619 /* Put down rq reference on cfqg */
3620 cfq_put_cfqg(RQ_CFQG(rq
));
3621 rq
->elevator_private3
= NULL
;
3623 cfq_put_queue(cfqq
);
3627 static struct cfq_queue
*
3628 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3629 struct cfq_queue
*cfqq
)
3631 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3632 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3633 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3634 cfq_put_queue(cfqq
);
3635 return cic_to_cfqq(cic
, 1);
3639 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3640 * was the last process referring to said cfqq.
3642 static struct cfq_queue
*
3643 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3645 if (cfqq_process_refs(cfqq
) == 1) {
3646 cfqq
->pid
= current
->pid
;
3647 cfq_clear_cfqq_coop(cfqq
);
3648 cfq_clear_cfqq_split_coop(cfqq
);
3652 cic_set_cfqq(cic
, NULL
, 1);
3654 cfq_put_cooperator(cfqq
);
3656 cfq_put_queue(cfqq
);
3660 * Allocate cfq data structures associated with this request.
3663 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3665 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3666 struct cfq_io_context
*cic
;
3667 const int rw
= rq_data_dir(rq
);
3668 const bool is_sync
= rq_is_sync(rq
);
3669 struct cfq_queue
*cfqq
;
3670 unsigned long flags
;
3672 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3674 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3676 spin_lock_irqsave(q
->queue_lock
, flags
);
3682 cfqq
= cic_to_cfqq(cic
, is_sync
);
3683 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3684 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3685 cic_set_cfqq(cic
, cfqq
, is_sync
);
3688 * If the queue was seeky for too long, break it apart.
3690 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3691 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3692 cfqq
= split_cfqq(cic
, cfqq
);
3698 * Check to see if this queue is scheduled to merge with
3699 * another, closely cooperating queue. The merging of
3700 * queues happens here as it must be done in process context.
3701 * The reference on new_cfqq was taken in merge_cfqqs.
3704 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3707 cfqq
->allocated
[rw
]++;
3709 rq
->elevator_private
= cic
;
3710 rq
->elevator_private2
= cfqq
;
3711 rq
->elevator_private3
= cfq_ref_get_cfqg(cfqq
->cfqg
);
3713 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3719 put_io_context(cic
->ioc
);
3721 cfq_schedule_dispatch(cfqd
);
3722 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3723 cfq_log(cfqd
, "set_request fail");
3727 static void cfq_kick_queue(struct work_struct
*work
)
3729 struct cfq_data
*cfqd
=
3730 container_of(work
, struct cfq_data
, unplug_work
);
3731 struct request_queue
*q
= cfqd
->queue
;
3733 spin_lock_irq(q
->queue_lock
);
3734 __blk_run_queue(cfqd
->queue
);
3735 spin_unlock_irq(q
->queue_lock
);
3739 * Timer running if the active_queue is currently idling inside its time slice
3741 static void cfq_idle_slice_timer(unsigned long data
)
3743 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3744 struct cfq_queue
*cfqq
;
3745 unsigned long flags
;
3748 cfq_log(cfqd
, "idle timer fired");
3750 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3752 cfqq
= cfqd
->active_queue
;
3757 * We saw a request before the queue expired, let it through
3759 if (cfq_cfqq_must_dispatch(cfqq
))
3765 if (cfq_slice_used(cfqq
))
3769 * only expire and reinvoke request handler, if there are
3770 * other queues with pending requests
3772 if (!cfqd
->busy_queues
)
3776 * not expired and it has a request pending, let it dispatch
3778 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3782 * Queue depth flag is reset only when the idle didn't succeed
3784 cfq_clear_cfqq_deep(cfqq
);
3787 cfq_slice_expired(cfqd
, timed_out
);
3789 cfq_schedule_dispatch(cfqd
);
3791 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3794 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3796 del_timer_sync(&cfqd
->idle_slice_timer
);
3797 cancel_work_sync(&cfqd
->unplug_work
);
3800 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3804 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3805 if (cfqd
->async_cfqq
[0][i
])
3806 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3807 if (cfqd
->async_cfqq
[1][i
])
3808 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3811 if (cfqd
->async_idle_cfqq
)
3812 cfq_put_queue(cfqd
->async_idle_cfqq
);
3815 static void cfq_cfqd_free(struct rcu_head
*head
)
3817 kfree(container_of(head
, struct cfq_data
, rcu
));
3820 static void cfq_exit_queue(struct elevator_queue
*e
)
3822 struct cfq_data
*cfqd
= e
->elevator_data
;
3823 struct request_queue
*q
= cfqd
->queue
;
3825 cfq_shutdown_timer_wq(cfqd
);
3827 spin_lock_irq(q
->queue_lock
);
3829 if (cfqd
->active_queue
)
3830 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3832 while (!list_empty(&cfqd
->cic_list
)) {
3833 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3834 struct cfq_io_context
,
3837 __cfq_exit_single_io_context(cfqd
, cic
);
3840 cfq_put_async_queues(cfqd
);
3841 cfq_release_cfq_groups(cfqd
);
3842 cfq_blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3844 spin_unlock_irq(q
->queue_lock
);
3846 cfq_shutdown_timer_wq(cfqd
);
3848 spin_lock(&cic_index_lock
);
3849 ida_remove(&cic_index_ida
, cfqd
->cic_index
);
3850 spin_unlock(&cic_index_lock
);
3852 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3853 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3856 static int cfq_alloc_cic_index(void)
3861 if (!ida_pre_get(&cic_index_ida
, GFP_KERNEL
))
3864 spin_lock(&cic_index_lock
);
3865 error
= ida_get_new(&cic_index_ida
, &index
);
3866 spin_unlock(&cic_index_lock
);
3867 if (error
&& error
!= -EAGAIN
)
3874 static void *cfq_init_queue(struct request_queue
*q
)
3876 struct cfq_data
*cfqd
;
3878 struct cfq_group
*cfqg
;
3879 struct cfq_rb_root
*st
;
3881 i
= cfq_alloc_cic_index();
3885 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3890 * Don't need take queue_lock in the routine, since we are
3891 * initializing the ioscheduler, and nobody is using cfqd
3893 cfqd
->cic_index
= i
;
3895 /* Init root service tree */
3896 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3898 /* Init root group */
3899 cfqg
= &cfqd
->root_group
;
3900 for_each_cfqg_st(cfqg
, i
, j
, st
)
3902 RB_CLEAR_NODE(&cfqg
->rb_node
);
3904 /* Give preference to root group over other groups */
3905 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3907 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3909 * Take a reference to root group which we never drop. This is just
3910 * to make sure that cfq_put_cfqg() does not try to kfree root group
3914 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
,
3919 * Not strictly needed (since RB_ROOT just clears the node and we
3920 * zeroed cfqd on alloc), but better be safe in case someone decides
3921 * to add magic to the rb code
3923 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3924 cfqd
->prio_trees
[i
] = RB_ROOT
;
3927 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3928 * Grab a permanent reference to it, so that the normal code flow
3929 * will not attempt to free it.
3931 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3932 cfqd
->oom_cfqq
.ref
++;
3933 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3935 INIT_LIST_HEAD(&cfqd
->cic_list
);
3939 init_timer(&cfqd
->idle_slice_timer
);
3940 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3941 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3943 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3945 cfqd
->cfq_quantum
= cfq_quantum
;
3946 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3947 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3948 cfqd
->cfq_back_max
= cfq_back_max
;
3949 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3950 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3951 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3952 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3953 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3954 cfqd
->cfq_group_idle
= cfq_group_idle
;
3955 cfqd
->cfq_latency
= 1;
3956 cfqd
->cfq_group_isolation
= 0;
3959 * we optimistically start assuming sync ops weren't delayed in last
3960 * second, in order to have larger depth for async operations.
3962 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3966 static void cfq_slab_kill(void)
3969 * Caller already ensured that pending RCU callbacks are completed,
3970 * so we should have no busy allocations at this point.
3973 kmem_cache_destroy(cfq_pool
);
3975 kmem_cache_destroy(cfq_ioc_pool
);
3978 static int __init
cfq_slab_setup(void)
3980 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3984 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3995 * sysfs parts below -->
3998 cfq_var_show(unsigned int var
, char *page
)
4000 return sprintf(page
, "%d\n", var
);
4004 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4006 char *p
= (char *) page
;
4008 *var
= simple_strtoul(p
, &p
, 10);
4012 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4013 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4015 struct cfq_data *cfqd = e->elevator_data; \
4016 unsigned int __data = __VAR; \
4018 __data = jiffies_to_msecs(__data); \
4019 return cfq_var_show(__data, (page)); \
4021 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4022 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4023 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4024 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4025 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4026 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4027 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4028 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4029 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4030 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4031 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4032 SHOW_FUNCTION(cfq_group_isolation_show
, cfqd
->cfq_group_isolation
, 0);
4033 #undef SHOW_FUNCTION
4035 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4036 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4038 struct cfq_data *cfqd = e->elevator_data; \
4039 unsigned int __data; \
4040 int ret = cfq_var_store(&__data, (page), count); \
4041 if (__data < (MIN)) \
4043 else if (__data > (MAX)) \
4046 *(__PTR) = msecs_to_jiffies(__data); \
4048 *(__PTR) = __data; \
4051 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4052 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4054 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4056 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4057 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4059 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4060 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4061 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4062 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4063 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4065 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4066 STORE_FUNCTION(cfq_group_isolation_store
, &cfqd
->cfq_group_isolation
, 0, 1, 0);
4067 #undef STORE_FUNCTION
4069 #define CFQ_ATTR(name) \
4070 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4072 static struct elv_fs_entry cfq_attrs
[] = {
4074 CFQ_ATTR(fifo_expire_sync
),
4075 CFQ_ATTR(fifo_expire_async
),
4076 CFQ_ATTR(back_seek_max
),
4077 CFQ_ATTR(back_seek_penalty
),
4078 CFQ_ATTR(slice_sync
),
4079 CFQ_ATTR(slice_async
),
4080 CFQ_ATTR(slice_async_rq
),
4081 CFQ_ATTR(slice_idle
),
4082 CFQ_ATTR(group_idle
),
4083 CFQ_ATTR(low_latency
),
4084 CFQ_ATTR(group_isolation
),
4088 static struct elevator_type iosched_cfq
= {
4090 .elevator_merge_fn
= cfq_merge
,
4091 .elevator_merged_fn
= cfq_merged_request
,
4092 .elevator_merge_req_fn
= cfq_merged_requests
,
4093 .elevator_allow_merge_fn
= cfq_allow_merge
,
4094 .elevator_bio_merged_fn
= cfq_bio_merged
,
4095 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4096 .elevator_add_req_fn
= cfq_insert_request
,
4097 .elevator_activate_req_fn
= cfq_activate_request
,
4098 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4099 .elevator_queue_empty_fn
= cfq_queue_empty
,
4100 .elevator_completed_req_fn
= cfq_completed_request
,
4101 .elevator_former_req_fn
= elv_rb_former_request
,
4102 .elevator_latter_req_fn
= elv_rb_latter_request
,
4103 .elevator_set_req_fn
= cfq_set_request
,
4104 .elevator_put_req_fn
= cfq_put_request
,
4105 .elevator_may_queue_fn
= cfq_may_queue
,
4106 .elevator_init_fn
= cfq_init_queue
,
4107 .elevator_exit_fn
= cfq_exit_queue
,
4108 .trim
= cfq_free_io_context
,
4110 .elevator_attrs
= cfq_attrs
,
4111 .elevator_name
= "cfq",
4112 .elevator_owner
= THIS_MODULE
,
4115 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4116 static struct blkio_policy_type blkio_policy_cfq
= {
4118 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
4119 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
4121 .plid
= BLKIO_POLICY_PROP
,
4124 static struct blkio_policy_type blkio_policy_cfq
;
4127 static int __init
cfq_init(void)
4130 * could be 0 on HZ < 1000 setups
4132 if (!cfq_slice_async
)
4133 cfq_slice_async
= 1;
4134 if (!cfq_slice_idle
)
4137 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4138 if (!cfq_group_idle
)
4143 if (cfq_slab_setup())
4146 elv_register(&iosched_cfq
);
4147 blkio_policy_register(&blkio_policy_cfq
);
4152 static void __exit
cfq_exit(void)
4154 DECLARE_COMPLETION_ONSTACK(all_gone
);
4155 blkio_policy_unregister(&blkio_policy_cfq
);
4156 elv_unregister(&iosched_cfq
);
4157 ioc_gone
= &all_gone
;
4158 /* ioc_gone's update must be visible before reading ioc_count */
4162 * this also protects us from entering cfq_slab_kill() with
4163 * pending RCU callbacks
4165 if (elv_ioc_count_read(cfq_ioc_count
))
4166 wait_for_completion(&all_gone
);
4167 ida_destroy(&cic_index_ida
);
4171 module_init(cfq_init
);
4172 module_exit(cfq_exit
);
4174 MODULE_AUTHOR("Jens Axboe");
4175 MODULE_LICENSE("GPL");
4176 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");