2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
53 #include <asm/cpufeature.h>
56 static struct extent_io_ops btree_extent_io_ops
;
57 static void end_workqueue_fn(struct btrfs_work
*work
);
58 static void free_fs_root(struct btrfs_root
*root
);
59 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction
*t
,
62 struct btrfs_root
*root
);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
65 struct btrfs_root
*root
);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction
*t
);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
68 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
69 struct extent_io_tree
*dirty_pages
,
71 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
72 struct extent_io_tree
*pinned_extents
);
73 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
74 static void btrfs_error_commit_super(struct btrfs_root
*root
);
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
85 struct btrfs_fs_info
*info
;
88 struct list_head list
;
89 struct btrfs_work work
;
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
97 struct async_submit_bio
{
100 struct list_head list
;
101 extent_submit_bio_hook_t
*submit_bio_start
;
102 extent_submit_bio_hook_t
*submit_bio_done
;
105 unsigned long bio_flags
;
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
111 struct btrfs_work work
;
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
143 static struct btrfs_lockdep_keyset
{
144 u64 id
; /* root objectid */
145 const char *name_stem
; /* lock name stem */
146 char names
[BTRFS_MAX_LEVEL
+ 1][20];
147 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
148 } btrfs_lockdep_keysets
[] = {
149 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
150 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
151 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
152 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
153 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
154 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
155 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
156 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
157 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
158 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
159 { .id
= 0, .name_stem
= "tree" },
162 void __init
btrfs_init_lockdep(void)
166 /* initialize lockdep class names */
167 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
168 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
170 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
171 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
172 "btrfs-%s-%02d", ks
->name_stem
, j
);
176 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
179 struct btrfs_lockdep_keyset
*ks
;
181 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
185 if (ks
->id
== objectid
)
188 lockdep_set_class_and_name(&eb
->lock
,
189 &ks
->keys
[level
], ks
->names
[level
]);
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
198 static struct extent_map
*btree_get_extent(struct inode
*inode
,
199 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
202 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
203 struct extent_map
*em
;
206 read_lock(&em_tree
->lock
);
207 em
= lookup_extent_mapping(em_tree
, start
, len
);
210 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
211 read_unlock(&em_tree
->lock
);
214 read_unlock(&em_tree
->lock
);
216 em
= alloc_extent_map();
218 em
= ERR_PTR(-ENOMEM
);
223 em
->block_len
= (u64
)-1;
225 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
227 write_lock(&em_tree
->lock
);
228 ret
= add_extent_mapping(em_tree
, em
, 0);
229 if (ret
== -EEXIST
) {
231 em
= lookup_extent_mapping(em_tree
, start
, len
);
238 write_unlock(&em_tree
->lock
);
244 u32
btrfs_csum_data(char *data
, u32 seed
, size_t len
)
246 return crc32c(seed
, data
, len
);
249 void btrfs_csum_final(u32 crc
, char *result
)
251 put_unaligned_le32(~crc
, result
);
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
258 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
261 u16 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
264 unsigned long cur_len
;
265 unsigned long offset
= BTRFS_CSUM_SIZE
;
267 unsigned long map_start
;
268 unsigned long map_len
;
271 unsigned long inline_result
;
273 len
= buf
->len
- offset
;
275 err
= map_private_extent_buffer(buf
, offset
, 32,
276 &kaddr
, &map_start
, &map_len
);
279 cur_len
= min(len
, map_len
- (offset
- map_start
));
280 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
285 if (csum_size
> sizeof(inline_result
)) {
286 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
290 result
= (char *)&inline_result
;
293 btrfs_csum_final(crc
, result
);
296 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
299 memcpy(&found
, result
, csum_size
);
301 read_extent_buffer(buf
, &val
, 0, csum_size
);
302 printk_ratelimited(KERN_INFO
"btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
305 root
->fs_info
->sb
->s_id
,
306 (unsigned long long)buf
->start
, val
, found
,
307 btrfs_header_level(buf
));
308 if (result
!= (char *)&inline_result
)
313 write_extent_buffer(buf
, result
, 0, csum_size
);
315 if (result
!= (char *)&inline_result
)
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
326 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
327 struct extent_buffer
*eb
, u64 parent_transid
,
330 struct extent_state
*cached_state
= NULL
;
333 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
339 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
341 if (extent_buffer_uptodate(eb
) &&
342 btrfs_header_generation(eb
) == parent_transid
) {
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
348 (unsigned long long)eb
->start
,
349 (unsigned long long)parent_transid
,
350 (unsigned long long)btrfs_header_generation(eb
));
352 clear_extent_buffer_uptodate(eb
);
354 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
355 &cached_state
, GFP_NOFS
);
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
363 static int btrfs_check_super_csum(char *raw_disk_sb
)
365 struct btrfs_super_block
*disk_sb
=
366 (struct btrfs_super_block
*)raw_disk_sb
;
367 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
370 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
372 const int csum_size
= sizeof(crc
);
373 char result
[csum_size
];
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 * is filled with zeros and is included in the checkum.
380 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
381 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
382 btrfs_csum_final(crc
, result
);
384 if (memcmp(raw_disk_sb
, result
, csum_size
))
387 if (ret
&& btrfs_super_generation(disk_sb
) < 10) {
388 printk(KERN_WARNING
"btrfs: super block crcs don't match, older mkfs detected\n");
393 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
394 printk(KERN_ERR
"btrfs: unsupported checksum algorithm %u\n",
403 * helper to read a given tree block, doing retries as required when
404 * the checksums don't match and we have alternate mirrors to try.
406 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
407 struct extent_buffer
*eb
,
408 u64 start
, u64 parent_transid
)
410 struct extent_io_tree
*io_tree
;
415 int failed_mirror
= 0;
417 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
418 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
420 ret
= read_extent_buffer_pages(io_tree
, eb
, start
,
422 btree_get_extent
, mirror_num
);
424 if (!verify_parent_transid(io_tree
, eb
,
432 * This buffer's crc is fine, but its contents are corrupted, so
433 * there is no reason to read the other copies, they won't be
436 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
439 num_copies
= btrfs_num_copies(root
->fs_info
,
444 if (!failed_mirror
) {
446 failed_mirror
= eb
->read_mirror
;
450 if (mirror_num
== failed_mirror
)
453 if (mirror_num
> num_copies
)
457 if (failed
&& !ret
&& failed_mirror
)
458 repair_eb_io_failure(root
, eb
, failed_mirror
);
464 * checksum a dirty tree block before IO. This has extra checks to make sure
465 * we only fill in the checksum field in the first page of a multi-page block
468 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
470 struct extent_io_tree
*tree
;
471 u64 start
= page_offset(page
);
473 struct extent_buffer
*eb
;
475 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
477 eb
= (struct extent_buffer
*)page
->private;
478 if (page
!= eb
->pages
[0])
480 found_start
= btrfs_header_bytenr(eb
);
481 if (found_start
!= start
) {
485 if (!PageUptodate(page
)) {
489 csum_tree_block(root
, eb
, 0);
493 static int check_tree_block_fsid(struct btrfs_root
*root
,
494 struct extent_buffer
*eb
)
496 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
497 u8 fsid
[BTRFS_UUID_SIZE
];
500 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
503 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
507 fs_devices
= fs_devices
->seed
;
512 #define CORRUPT(reason, eb, root, slot) \
513 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514 "root=%llu, slot=%d\n", reason, \
515 (unsigned long long)btrfs_header_bytenr(eb), \
516 (unsigned long long)root->objectid, slot)
518 static noinline
int check_leaf(struct btrfs_root
*root
,
519 struct extent_buffer
*leaf
)
521 struct btrfs_key key
;
522 struct btrfs_key leaf_key
;
523 u32 nritems
= btrfs_header_nritems(leaf
);
529 /* Check the 0 item */
530 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
531 BTRFS_LEAF_DATA_SIZE(root
)) {
532 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
537 * Check to make sure each items keys are in the correct order and their
538 * offsets make sense. We only have to loop through nritems-1 because
539 * we check the current slot against the next slot, which verifies the
540 * next slot's offset+size makes sense and that the current's slot
543 for (slot
= 0; slot
< nritems
- 1; slot
++) {
544 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
545 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
547 /* Make sure the keys are in the right order */
548 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
549 CORRUPT("bad key order", leaf
, root
, slot
);
554 * Make sure the offset and ends are right, remember that the
555 * item data starts at the end of the leaf and grows towards the
558 if (btrfs_item_offset_nr(leaf
, slot
) !=
559 btrfs_item_end_nr(leaf
, slot
+ 1)) {
560 CORRUPT("slot offset bad", leaf
, root
, slot
);
565 * Check to make sure that we don't point outside of the leaf,
566 * just incase all the items are consistent to eachother, but
567 * all point outside of the leaf.
569 if (btrfs_item_end_nr(leaf
, slot
) >
570 BTRFS_LEAF_DATA_SIZE(root
)) {
571 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
579 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
580 struct extent_state
*state
, int mirror
)
582 struct extent_io_tree
*tree
;
585 struct extent_buffer
*eb
;
586 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
593 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
594 eb
= (struct extent_buffer
*)page
->private;
596 /* the pending IO might have been the only thing that kept this buffer
597 * in memory. Make sure we have a ref for all this other checks
599 extent_buffer_get(eb
);
601 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
605 eb
->read_mirror
= mirror
;
606 if (test_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
)) {
611 found_start
= btrfs_header_bytenr(eb
);
612 if (found_start
!= eb
->start
) {
613 printk_ratelimited(KERN_INFO
"btrfs bad tree block start "
615 (unsigned long long)found_start
,
616 (unsigned long long)eb
->start
);
620 if (check_tree_block_fsid(root
, eb
)) {
621 printk_ratelimited(KERN_INFO
"btrfs bad fsid on block %llu\n",
622 (unsigned long long)eb
->start
);
626 found_level
= btrfs_header_level(eb
);
627 if (found_level
>= BTRFS_MAX_LEVEL
) {
628 btrfs_info(root
->fs_info
, "bad tree block level %d\n",
629 (int)btrfs_header_level(eb
));
634 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
637 ret
= csum_tree_block(root
, eb
, 1);
644 * If this is a leaf block and it is corrupt, set the corrupt bit so
645 * that we don't try and read the other copies of this block, just
648 if (found_level
== 0 && check_leaf(root
, eb
)) {
649 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
654 set_extent_buffer_uptodate(eb
);
657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
658 btree_readahead_hook(root
, eb
, eb
->start
, ret
);
662 * our io error hook is going to dec the io pages
663 * again, we have to make sure it has something
666 atomic_inc(&eb
->io_pages
);
667 clear_extent_buffer_uptodate(eb
);
669 free_extent_buffer(eb
);
674 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
676 struct extent_buffer
*eb
;
677 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
679 eb
= (struct extent_buffer
*)page
->private;
680 set_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
681 eb
->read_mirror
= failed_mirror
;
682 atomic_dec(&eb
->io_pages
);
683 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
684 btree_readahead_hook(root
, eb
, eb
->start
, -EIO
);
685 return -EIO
; /* we fixed nothing */
688 static void end_workqueue_bio(struct bio
*bio
, int err
)
690 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
691 struct btrfs_fs_info
*fs_info
;
693 fs_info
= end_io_wq
->info
;
694 end_io_wq
->error
= err
;
695 end_io_wq
->work
.func
= end_workqueue_fn
;
696 end_io_wq
->work
.flags
= 0;
698 if (bio
->bi_rw
& REQ_WRITE
) {
699 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
)
700 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
702 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
)
703 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
705 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
706 btrfs_queue_worker(&fs_info
->endio_raid56_workers
,
709 btrfs_queue_worker(&fs_info
->endio_write_workers
,
712 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
713 btrfs_queue_worker(&fs_info
->endio_raid56_workers
,
715 else if (end_io_wq
->metadata
)
716 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
719 btrfs_queue_worker(&fs_info
->endio_workers
,
725 * For the metadata arg you want
728 * 1 - if normal metadta
729 * 2 - if writing to the free space cache area
730 * 3 - raid parity work
732 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
735 struct end_io_wq
*end_io_wq
;
736 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
740 end_io_wq
->private = bio
->bi_private
;
741 end_io_wq
->end_io
= bio
->bi_end_io
;
742 end_io_wq
->info
= info
;
743 end_io_wq
->error
= 0;
744 end_io_wq
->bio
= bio
;
745 end_io_wq
->metadata
= metadata
;
747 bio
->bi_private
= end_io_wq
;
748 bio
->bi_end_io
= end_workqueue_bio
;
752 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
754 unsigned long limit
= min_t(unsigned long,
755 info
->workers
.max_workers
,
756 info
->fs_devices
->open_devices
);
760 static void run_one_async_start(struct btrfs_work
*work
)
762 struct async_submit_bio
*async
;
765 async
= container_of(work
, struct async_submit_bio
, work
);
766 ret
= async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
767 async
->mirror_num
, async
->bio_flags
,
773 static void run_one_async_done(struct btrfs_work
*work
)
775 struct btrfs_fs_info
*fs_info
;
776 struct async_submit_bio
*async
;
779 async
= container_of(work
, struct async_submit_bio
, work
);
780 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
782 limit
= btrfs_async_submit_limit(fs_info
);
783 limit
= limit
* 2 / 3;
785 if (atomic_dec_return(&fs_info
->nr_async_submits
) < limit
&&
786 waitqueue_active(&fs_info
->async_submit_wait
))
787 wake_up(&fs_info
->async_submit_wait
);
789 /* If an error occured we just want to clean up the bio and move on */
791 bio_endio(async
->bio
, async
->error
);
795 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
796 async
->mirror_num
, async
->bio_flags
,
800 static void run_one_async_free(struct btrfs_work
*work
)
802 struct async_submit_bio
*async
;
804 async
= container_of(work
, struct async_submit_bio
, work
);
808 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
809 int rw
, struct bio
*bio
, int mirror_num
,
810 unsigned long bio_flags
,
812 extent_submit_bio_hook_t
*submit_bio_start
,
813 extent_submit_bio_hook_t
*submit_bio_done
)
815 struct async_submit_bio
*async
;
817 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
821 async
->inode
= inode
;
824 async
->mirror_num
= mirror_num
;
825 async
->submit_bio_start
= submit_bio_start
;
826 async
->submit_bio_done
= submit_bio_done
;
828 async
->work
.func
= run_one_async_start
;
829 async
->work
.ordered_func
= run_one_async_done
;
830 async
->work
.ordered_free
= run_one_async_free
;
832 async
->work
.flags
= 0;
833 async
->bio_flags
= bio_flags
;
834 async
->bio_offset
= bio_offset
;
838 atomic_inc(&fs_info
->nr_async_submits
);
841 btrfs_set_work_high_prio(&async
->work
);
843 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
845 while (atomic_read(&fs_info
->async_submit_draining
) &&
846 atomic_read(&fs_info
->nr_async_submits
)) {
847 wait_event(fs_info
->async_submit_wait
,
848 (atomic_read(&fs_info
->nr_async_submits
) == 0));
854 static int btree_csum_one_bio(struct bio
*bio
)
856 struct bio_vec
*bvec
= bio
->bi_io_vec
;
858 struct btrfs_root
*root
;
861 WARN_ON(bio
->bi_vcnt
<= 0);
862 while (bio_index
< bio
->bi_vcnt
) {
863 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
864 ret
= csum_dirty_buffer(root
, bvec
->bv_page
);
873 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
874 struct bio
*bio
, int mirror_num
,
875 unsigned long bio_flags
,
879 * when we're called for a write, we're already in the async
880 * submission context. Just jump into btrfs_map_bio
882 return btree_csum_one_bio(bio
);
885 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
886 int mirror_num
, unsigned long bio_flags
,
892 * when we're called for a write, we're already in the async
893 * submission context. Just jump into btrfs_map_bio
895 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
901 static int check_async_write(struct inode
*inode
, unsigned long bio_flags
)
903 if (bio_flags
& EXTENT_BIO_TREE_LOG
)
912 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
913 int mirror_num
, unsigned long bio_flags
,
916 int async
= check_async_write(inode
, bio_flags
);
919 if (!(rw
& REQ_WRITE
)) {
921 * called for a read, do the setup so that checksum validation
922 * can happen in the async kernel threads
924 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
928 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
931 ret
= btree_csum_one_bio(bio
);
934 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
938 * kthread helpers are used to submit writes so that
939 * checksumming can happen in parallel across all CPUs
941 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
942 inode
, rw
, bio
, mirror_num
, 0,
944 __btree_submit_bio_start
,
945 __btree_submit_bio_done
);
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space
*mapping
,
957 struct page
*newpage
, struct page
*page
,
958 enum migrate_mode mode
)
961 * we can't safely write a btree page from here,
962 * we haven't done the locking hook
967 * Buffers may be managed in a filesystem specific way.
968 * We must have no buffers or drop them.
970 if (page_has_private(page
) &&
971 !try_to_release_page(page
, GFP_KERNEL
))
973 return migrate_page(mapping
, newpage
, page
, mode
);
978 static int btree_writepages(struct address_space
*mapping
,
979 struct writeback_control
*wbc
)
981 struct extent_io_tree
*tree
;
982 struct btrfs_fs_info
*fs_info
;
985 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
986 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
988 if (wbc
->for_kupdate
)
991 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
992 /* this is a bit racy, but that's ok */
993 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
994 BTRFS_DIRTY_METADATA_THRESH
);
998 return btree_write_cache_pages(mapping
, wbc
);
1001 static int btree_readpage(struct file
*file
, struct page
*page
)
1003 struct extent_io_tree
*tree
;
1004 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1005 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
1008 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
1010 if (PageWriteback(page
) || PageDirty(page
))
1013 return try_release_extent_buffer(page
);
1016 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
1017 unsigned int length
)
1019 struct extent_io_tree
*tree
;
1020 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1021 extent_invalidatepage(tree
, page
, offset
);
1022 btree_releasepage(page
, GFP_NOFS
);
1023 if (PagePrivate(page
)) {
1024 printk(KERN_WARNING
"btrfs warning page private not zero "
1025 "on page %llu\n", (unsigned long long)page_offset(page
));
1026 ClearPagePrivate(page
);
1027 set_page_private(page
, 0);
1028 page_cache_release(page
);
1032 static int btree_set_page_dirty(struct page
*page
)
1035 struct extent_buffer
*eb
;
1037 BUG_ON(!PagePrivate(page
));
1038 eb
= (struct extent_buffer
*)page
->private;
1040 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1041 BUG_ON(!atomic_read(&eb
->refs
));
1042 btrfs_assert_tree_locked(eb
);
1044 return __set_page_dirty_nobuffers(page
);
1047 static const struct address_space_operations btree_aops
= {
1048 .readpage
= btree_readpage
,
1049 .writepages
= btree_writepages
,
1050 .releasepage
= btree_releasepage
,
1051 .invalidatepage
= btree_invalidatepage
,
1052 #ifdef CONFIG_MIGRATION
1053 .migratepage
= btree_migratepage
,
1055 .set_page_dirty
= btree_set_page_dirty
,
1058 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1061 struct extent_buffer
*buf
= NULL
;
1062 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1065 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1068 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1069 buf
, 0, WAIT_NONE
, btree_get_extent
, 0);
1070 free_extent_buffer(buf
);
1074 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1075 int mirror_num
, struct extent_buffer
**eb
)
1077 struct extent_buffer
*buf
= NULL
;
1078 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1079 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1082 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1086 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1088 ret
= read_extent_buffer_pages(io_tree
, buf
, 0, WAIT_PAGE_LOCK
,
1089 btree_get_extent
, mirror_num
);
1091 free_extent_buffer(buf
);
1095 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1096 free_extent_buffer(buf
);
1098 } else if (extent_buffer_uptodate(buf
)) {
1101 free_extent_buffer(buf
);
1106 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
1107 u64 bytenr
, u32 blocksize
)
1109 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1110 struct extent_buffer
*eb
;
1111 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1116 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1117 u64 bytenr
, u32 blocksize
)
1119 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1120 struct extent_buffer
*eb
;
1122 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1128 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1130 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1131 buf
->start
+ buf
->len
- 1);
1134 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1136 return filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1137 buf
->start
, buf
->start
+ buf
->len
- 1);
1140 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1141 u32 blocksize
, u64 parent_transid
)
1143 struct extent_buffer
*buf
= NULL
;
1146 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1150 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1155 void clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1156 struct extent_buffer
*buf
)
1158 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1160 if (btrfs_header_generation(buf
) ==
1161 fs_info
->running_transaction
->transid
) {
1162 btrfs_assert_tree_locked(buf
);
1164 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1165 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
1167 fs_info
->dirty_metadata_batch
);
1168 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1169 btrfs_set_lock_blocking(buf
);
1170 clear_extent_buffer_dirty(buf
);
1175 static void __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
1176 u32 stripesize
, struct btrfs_root
*root
,
1177 struct btrfs_fs_info
*fs_info
,
1181 root
->commit_root
= NULL
;
1182 root
->sectorsize
= sectorsize
;
1183 root
->nodesize
= nodesize
;
1184 root
->leafsize
= leafsize
;
1185 root
->stripesize
= stripesize
;
1187 root
->track_dirty
= 0;
1189 root
->orphan_item_inserted
= 0;
1190 root
->orphan_cleanup_state
= 0;
1192 root
->objectid
= objectid
;
1193 root
->last_trans
= 0;
1194 root
->highest_objectid
= 0;
1195 root
->nr_delalloc_inodes
= 0;
1196 root
->nr_ordered_extents
= 0;
1198 root
->inode_tree
= RB_ROOT
;
1199 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1200 root
->block_rsv
= NULL
;
1201 root
->orphan_block_rsv
= NULL
;
1203 INIT_LIST_HEAD(&root
->dirty_list
);
1204 INIT_LIST_HEAD(&root
->root_list
);
1205 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1206 INIT_LIST_HEAD(&root
->delalloc_root
);
1207 INIT_LIST_HEAD(&root
->ordered_extents
);
1208 INIT_LIST_HEAD(&root
->ordered_root
);
1209 INIT_LIST_HEAD(&root
->logged_list
[0]);
1210 INIT_LIST_HEAD(&root
->logged_list
[1]);
1211 spin_lock_init(&root
->orphan_lock
);
1212 spin_lock_init(&root
->inode_lock
);
1213 spin_lock_init(&root
->delalloc_lock
);
1214 spin_lock_init(&root
->ordered_extent_lock
);
1215 spin_lock_init(&root
->accounting_lock
);
1216 spin_lock_init(&root
->log_extents_lock
[0]);
1217 spin_lock_init(&root
->log_extents_lock
[1]);
1218 mutex_init(&root
->objectid_mutex
);
1219 mutex_init(&root
->log_mutex
);
1220 init_waitqueue_head(&root
->log_writer_wait
);
1221 init_waitqueue_head(&root
->log_commit_wait
[0]);
1222 init_waitqueue_head(&root
->log_commit_wait
[1]);
1223 atomic_set(&root
->log_commit
[0], 0);
1224 atomic_set(&root
->log_commit
[1], 0);
1225 atomic_set(&root
->log_writers
, 0);
1226 atomic_set(&root
->log_batch
, 0);
1227 atomic_set(&root
->orphan_inodes
, 0);
1228 atomic_set(&root
->refs
, 1);
1229 root
->log_transid
= 0;
1230 root
->last_log_commit
= 0;
1231 extent_io_tree_init(&root
->dirty_log_pages
,
1232 fs_info
->btree_inode
->i_mapping
);
1234 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1235 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1236 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1237 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1238 root
->defrag_trans_start
= fs_info
->generation
;
1239 init_completion(&root
->kobj_unregister
);
1240 root
->defrag_running
= 0;
1241 root
->root_key
.objectid
= objectid
;
1244 spin_lock_init(&root
->root_item_lock
);
1247 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
)
1249 struct btrfs_root
*root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1251 root
->fs_info
= fs_info
;
1255 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1256 struct btrfs_fs_info
*fs_info
,
1259 struct extent_buffer
*leaf
;
1260 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1261 struct btrfs_root
*root
;
1262 struct btrfs_key key
;
1267 root
= btrfs_alloc_root(fs_info
);
1269 return ERR_PTR(-ENOMEM
);
1271 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1272 tree_root
->sectorsize
, tree_root
->stripesize
,
1273 root
, fs_info
, objectid
);
1274 root
->root_key
.objectid
= objectid
;
1275 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1276 root
->root_key
.offset
= 0;
1278 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
1279 0, objectid
, NULL
, 0, 0, 0);
1281 ret
= PTR_ERR(leaf
);
1286 bytenr
= leaf
->start
;
1287 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1288 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1289 btrfs_set_header_generation(leaf
, trans
->transid
);
1290 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1291 btrfs_set_header_owner(leaf
, objectid
);
1294 write_extent_buffer(leaf
, fs_info
->fsid
,
1295 (unsigned long)btrfs_header_fsid(leaf
),
1297 write_extent_buffer(leaf
, fs_info
->chunk_tree_uuid
,
1298 (unsigned long)btrfs_header_chunk_tree_uuid(leaf
),
1300 btrfs_mark_buffer_dirty(leaf
);
1302 root
->commit_root
= btrfs_root_node(root
);
1303 root
->track_dirty
= 1;
1306 root
->root_item
.flags
= 0;
1307 root
->root_item
.byte_limit
= 0;
1308 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1309 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1310 btrfs_set_root_level(&root
->root_item
, 0);
1311 btrfs_set_root_refs(&root
->root_item
, 1);
1312 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1313 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1314 btrfs_set_root_dirid(&root
->root_item
, 0);
1316 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1317 root
->root_item
.drop_level
= 0;
1319 key
.objectid
= objectid
;
1320 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1322 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1326 btrfs_tree_unlock(leaf
);
1332 btrfs_tree_unlock(leaf
);
1333 free_extent_buffer(leaf
);
1337 return ERR_PTR(ret
);
1340 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1341 struct btrfs_fs_info
*fs_info
)
1343 struct btrfs_root
*root
;
1344 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1345 struct extent_buffer
*leaf
;
1347 root
= btrfs_alloc_root(fs_info
);
1349 return ERR_PTR(-ENOMEM
);
1351 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1352 tree_root
->sectorsize
, tree_root
->stripesize
,
1353 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1355 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1356 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1357 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1359 * log trees do not get reference counted because they go away
1360 * before a real commit is actually done. They do store pointers
1361 * to file data extents, and those reference counts still get
1362 * updated (along with back refs to the log tree).
1366 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1367 BTRFS_TREE_LOG_OBJECTID
, NULL
,
1371 return ERR_CAST(leaf
);
1374 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1375 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1376 btrfs_set_header_generation(leaf
, trans
->transid
);
1377 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1378 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1381 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1382 (unsigned long)btrfs_header_fsid(root
->node
),
1384 btrfs_mark_buffer_dirty(root
->node
);
1385 btrfs_tree_unlock(root
->node
);
1389 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1390 struct btrfs_fs_info
*fs_info
)
1392 struct btrfs_root
*log_root
;
1394 log_root
= alloc_log_tree(trans
, fs_info
);
1395 if (IS_ERR(log_root
))
1396 return PTR_ERR(log_root
);
1397 WARN_ON(fs_info
->log_root_tree
);
1398 fs_info
->log_root_tree
= log_root
;
1402 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1403 struct btrfs_root
*root
)
1405 struct btrfs_root
*log_root
;
1406 struct btrfs_inode_item
*inode_item
;
1408 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1409 if (IS_ERR(log_root
))
1410 return PTR_ERR(log_root
);
1412 log_root
->last_trans
= trans
->transid
;
1413 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1415 inode_item
= &log_root
->root_item
.inode
;
1416 inode_item
->generation
= cpu_to_le64(1);
1417 inode_item
->size
= cpu_to_le64(3);
1418 inode_item
->nlink
= cpu_to_le32(1);
1419 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1420 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1422 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1424 WARN_ON(root
->log_root
);
1425 root
->log_root
= log_root
;
1426 root
->log_transid
= 0;
1427 root
->last_log_commit
= 0;
1431 struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1432 struct btrfs_key
*key
)
1434 struct btrfs_root
*root
;
1435 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1436 struct btrfs_path
*path
;
1441 path
= btrfs_alloc_path();
1443 return ERR_PTR(-ENOMEM
);
1445 root
= btrfs_alloc_root(fs_info
);
1451 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1452 tree_root
->sectorsize
, tree_root
->stripesize
,
1453 root
, fs_info
, key
->objectid
);
1455 ret
= btrfs_find_root(tree_root
, key
, path
,
1456 &root
->root_item
, &root
->root_key
);
1463 generation
= btrfs_root_generation(&root
->root_item
);
1464 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1465 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1466 blocksize
, generation
);
1470 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1474 root
->commit_root
= btrfs_root_node(root
);
1476 btrfs_free_path(path
);
1480 free_extent_buffer(root
->node
);
1484 root
= ERR_PTR(ret
);
1488 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1489 struct btrfs_key
*location
)
1491 struct btrfs_root
*root
;
1493 root
= btrfs_read_tree_root(tree_root
, location
);
1497 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1499 btrfs_check_and_init_root_item(&root
->root_item
);
1505 int btrfs_init_fs_root(struct btrfs_root
*root
)
1509 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1510 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1512 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1517 btrfs_init_free_ino_ctl(root
);
1518 mutex_init(&root
->fs_commit_mutex
);
1519 spin_lock_init(&root
->cache_lock
);
1520 init_waitqueue_head(&root
->cache_wait
);
1522 ret
= get_anon_bdev(&root
->anon_dev
);
1527 kfree(root
->free_ino_ctl
);
1528 kfree(root
->free_ino_pinned
);
1532 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1535 struct btrfs_root
*root
;
1537 spin_lock(&fs_info
->fs_roots_radix_lock
);
1538 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1539 (unsigned long)root_id
);
1540 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1544 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1545 struct btrfs_root
*root
)
1549 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1553 spin_lock(&fs_info
->fs_roots_radix_lock
);
1554 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1555 (unsigned long)root
->root_key
.objectid
,
1559 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1560 radix_tree_preload_end();
1565 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1566 struct btrfs_key
*location
)
1568 struct btrfs_root
*root
;
1571 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1572 return fs_info
->tree_root
;
1573 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1574 return fs_info
->extent_root
;
1575 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1576 return fs_info
->chunk_root
;
1577 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1578 return fs_info
->dev_root
;
1579 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1580 return fs_info
->csum_root
;
1581 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1582 return fs_info
->quota_root
? fs_info
->quota_root
:
1585 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1589 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1593 if (btrfs_root_refs(&root
->root_item
) == 0) {
1598 ret
= btrfs_init_fs_root(root
);
1602 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1606 root
->orphan_item_inserted
= 1;
1608 ret
= btrfs_insert_fs_root(fs_info
, root
);
1610 if (ret
== -EEXIST
) {
1619 return ERR_PTR(ret
);
1622 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1624 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1626 struct btrfs_device
*device
;
1627 struct backing_dev_info
*bdi
;
1630 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1633 bdi
= blk_get_backing_dev_info(device
->bdev
);
1634 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1644 * If this fails, caller must call bdi_destroy() to get rid of the
1647 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1651 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1652 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1656 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1657 bdi
->congested_fn
= btrfs_congested_fn
;
1658 bdi
->congested_data
= info
;
1663 * called by the kthread helper functions to finally call the bio end_io
1664 * functions. This is where read checksum verification actually happens
1666 static void end_workqueue_fn(struct btrfs_work
*work
)
1669 struct end_io_wq
*end_io_wq
;
1670 struct btrfs_fs_info
*fs_info
;
1673 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1674 bio
= end_io_wq
->bio
;
1675 fs_info
= end_io_wq
->info
;
1677 error
= end_io_wq
->error
;
1678 bio
->bi_private
= end_io_wq
->private;
1679 bio
->bi_end_io
= end_io_wq
->end_io
;
1681 bio_endio(bio
, error
);
1684 static int cleaner_kthread(void *arg
)
1686 struct btrfs_root
*root
= arg
;
1692 /* Make the cleaner go to sleep early. */
1693 if (btrfs_need_cleaner_sleep(root
))
1696 if (!mutex_trylock(&root
->fs_info
->cleaner_mutex
))
1700 * Avoid the problem that we change the status of the fs
1701 * during the above check and trylock.
1703 if (btrfs_need_cleaner_sleep(root
)) {
1704 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1708 btrfs_run_delayed_iputs(root
);
1709 again
= btrfs_clean_one_deleted_snapshot(root
);
1710 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1713 * The defragger has dealt with the R/O remount and umount,
1714 * needn't do anything special here.
1716 btrfs_run_defrag_inodes(root
->fs_info
);
1718 if (!try_to_freeze() && !again
) {
1719 set_current_state(TASK_INTERRUPTIBLE
);
1720 if (!kthread_should_stop())
1722 __set_current_state(TASK_RUNNING
);
1724 } while (!kthread_should_stop());
1728 static int transaction_kthread(void *arg
)
1730 struct btrfs_root
*root
= arg
;
1731 struct btrfs_trans_handle
*trans
;
1732 struct btrfs_transaction
*cur
;
1735 unsigned long delay
;
1739 cannot_commit
= false;
1741 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1743 spin_lock(&root
->fs_info
->trans_lock
);
1744 cur
= root
->fs_info
->running_transaction
;
1746 spin_unlock(&root
->fs_info
->trans_lock
);
1750 now
= get_seconds();
1751 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1752 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1753 spin_unlock(&root
->fs_info
->trans_lock
);
1757 transid
= cur
->transid
;
1758 spin_unlock(&root
->fs_info
->trans_lock
);
1760 /* If the file system is aborted, this will always fail. */
1761 trans
= btrfs_attach_transaction(root
);
1762 if (IS_ERR(trans
)) {
1763 if (PTR_ERR(trans
) != -ENOENT
)
1764 cannot_commit
= true;
1767 if (transid
== trans
->transid
) {
1768 btrfs_commit_transaction(trans
, root
);
1770 btrfs_end_transaction(trans
, root
);
1773 wake_up_process(root
->fs_info
->cleaner_kthread
);
1774 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1776 if (!try_to_freeze()) {
1777 set_current_state(TASK_INTERRUPTIBLE
);
1778 if (!kthread_should_stop() &&
1779 (!btrfs_transaction_blocked(root
->fs_info
) ||
1781 schedule_timeout(delay
);
1782 __set_current_state(TASK_RUNNING
);
1784 } while (!kthread_should_stop());
1789 * this will find the highest generation in the array of
1790 * root backups. The index of the highest array is returned,
1791 * or -1 if we can't find anything.
1793 * We check to make sure the array is valid by comparing the
1794 * generation of the latest root in the array with the generation
1795 * in the super block. If they don't match we pitch it.
1797 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1800 int newest_index
= -1;
1801 struct btrfs_root_backup
*root_backup
;
1804 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1805 root_backup
= info
->super_copy
->super_roots
+ i
;
1806 cur
= btrfs_backup_tree_root_gen(root_backup
);
1807 if (cur
== newest_gen
)
1811 /* check to see if we actually wrapped around */
1812 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1813 root_backup
= info
->super_copy
->super_roots
;
1814 cur
= btrfs_backup_tree_root_gen(root_backup
);
1815 if (cur
== newest_gen
)
1818 return newest_index
;
1823 * find the oldest backup so we know where to store new entries
1824 * in the backup array. This will set the backup_root_index
1825 * field in the fs_info struct
1827 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1830 int newest_index
= -1;
1832 newest_index
= find_newest_super_backup(info
, newest_gen
);
1833 /* if there was garbage in there, just move along */
1834 if (newest_index
== -1) {
1835 info
->backup_root_index
= 0;
1837 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1842 * copy all the root pointers into the super backup array.
1843 * this will bump the backup pointer by one when it is
1846 static void backup_super_roots(struct btrfs_fs_info
*info
)
1849 struct btrfs_root_backup
*root_backup
;
1852 next_backup
= info
->backup_root_index
;
1853 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1854 BTRFS_NUM_BACKUP_ROOTS
;
1857 * just overwrite the last backup if we're at the same generation
1858 * this happens only at umount
1860 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1861 if (btrfs_backup_tree_root_gen(root_backup
) ==
1862 btrfs_header_generation(info
->tree_root
->node
))
1863 next_backup
= last_backup
;
1865 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1868 * make sure all of our padding and empty slots get zero filled
1869 * regardless of which ones we use today
1871 memset(root_backup
, 0, sizeof(*root_backup
));
1873 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1875 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1876 btrfs_set_backup_tree_root_gen(root_backup
,
1877 btrfs_header_generation(info
->tree_root
->node
));
1879 btrfs_set_backup_tree_root_level(root_backup
,
1880 btrfs_header_level(info
->tree_root
->node
));
1882 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1883 btrfs_set_backup_chunk_root_gen(root_backup
,
1884 btrfs_header_generation(info
->chunk_root
->node
));
1885 btrfs_set_backup_chunk_root_level(root_backup
,
1886 btrfs_header_level(info
->chunk_root
->node
));
1888 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1889 btrfs_set_backup_extent_root_gen(root_backup
,
1890 btrfs_header_generation(info
->extent_root
->node
));
1891 btrfs_set_backup_extent_root_level(root_backup
,
1892 btrfs_header_level(info
->extent_root
->node
));
1895 * we might commit during log recovery, which happens before we set
1896 * the fs_root. Make sure it is valid before we fill it in.
1898 if (info
->fs_root
&& info
->fs_root
->node
) {
1899 btrfs_set_backup_fs_root(root_backup
,
1900 info
->fs_root
->node
->start
);
1901 btrfs_set_backup_fs_root_gen(root_backup
,
1902 btrfs_header_generation(info
->fs_root
->node
));
1903 btrfs_set_backup_fs_root_level(root_backup
,
1904 btrfs_header_level(info
->fs_root
->node
));
1907 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1908 btrfs_set_backup_dev_root_gen(root_backup
,
1909 btrfs_header_generation(info
->dev_root
->node
));
1910 btrfs_set_backup_dev_root_level(root_backup
,
1911 btrfs_header_level(info
->dev_root
->node
));
1913 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1914 btrfs_set_backup_csum_root_gen(root_backup
,
1915 btrfs_header_generation(info
->csum_root
->node
));
1916 btrfs_set_backup_csum_root_level(root_backup
,
1917 btrfs_header_level(info
->csum_root
->node
));
1919 btrfs_set_backup_total_bytes(root_backup
,
1920 btrfs_super_total_bytes(info
->super_copy
));
1921 btrfs_set_backup_bytes_used(root_backup
,
1922 btrfs_super_bytes_used(info
->super_copy
));
1923 btrfs_set_backup_num_devices(root_backup
,
1924 btrfs_super_num_devices(info
->super_copy
));
1927 * if we don't copy this out to the super_copy, it won't get remembered
1928 * for the next commit
1930 memcpy(&info
->super_copy
->super_roots
,
1931 &info
->super_for_commit
->super_roots
,
1932 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1936 * this copies info out of the root backup array and back into
1937 * the in-memory super block. It is meant to help iterate through
1938 * the array, so you send it the number of backups you've already
1939 * tried and the last backup index you used.
1941 * this returns -1 when it has tried all the backups
1943 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
1944 struct btrfs_super_block
*super
,
1945 int *num_backups_tried
, int *backup_index
)
1947 struct btrfs_root_backup
*root_backup
;
1948 int newest
= *backup_index
;
1950 if (*num_backups_tried
== 0) {
1951 u64 gen
= btrfs_super_generation(super
);
1953 newest
= find_newest_super_backup(info
, gen
);
1957 *backup_index
= newest
;
1958 *num_backups_tried
= 1;
1959 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
1960 /* we've tried all the backups, all done */
1963 /* jump to the next oldest backup */
1964 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1965 BTRFS_NUM_BACKUP_ROOTS
;
1966 *backup_index
= newest
;
1967 *num_backups_tried
+= 1;
1969 root_backup
= super
->super_roots
+ newest
;
1971 btrfs_set_super_generation(super
,
1972 btrfs_backup_tree_root_gen(root_backup
));
1973 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1974 btrfs_set_super_root_level(super
,
1975 btrfs_backup_tree_root_level(root_backup
));
1976 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1979 * fixme: the total bytes and num_devices need to match or we should
1982 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1983 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1987 /* helper to cleanup workers */
1988 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
1990 btrfs_stop_workers(&fs_info
->generic_worker
);
1991 btrfs_stop_workers(&fs_info
->fixup_workers
);
1992 btrfs_stop_workers(&fs_info
->delalloc_workers
);
1993 btrfs_stop_workers(&fs_info
->workers
);
1994 btrfs_stop_workers(&fs_info
->endio_workers
);
1995 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
1996 btrfs_stop_workers(&fs_info
->endio_raid56_workers
);
1997 btrfs_stop_workers(&fs_info
->rmw_workers
);
1998 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
1999 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2000 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2001 btrfs_stop_workers(&fs_info
->submit_workers
);
2002 btrfs_stop_workers(&fs_info
->delayed_workers
);
2003 btrfs_stop_workers(&fs_info
->caching_workers
);
2004 btrfs_stop_workers(&fs_info
->readahead_workers
);
2005 btrfs_stop_workers(&fs_info
->flush_workers
);
2006 btrfs_stop_workers(&fs_info
->qgroup_rescan_workers
);
2009 /* helper to cleanup tree roots */
2010 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2012 free_extent_buffer(info
->tree_root
->node
);
2013 free_extent_buffer(info
->tree_root
->commit_root
);
2014 info
->tree_root
->node
= NULL
;
2015 info
->tree_root
->commit_root
= NULL
;
2017 if (info
->dev_root
) {
2018 free_extent_buffer(info
->dev_root
->node
);
2019 free_extent_buffer(info
->dev_root
->commit_root
);
2020 info
->dev_root
->node
= NULL
;
2021 info
->dev_root
->commit_root
= NULL
;
2023 if (info
->extent_root
) {
2024 free_extent_buffer(info
->extent_root
->node
);
2025 free_extent_buffer(info
->extent_root
->commit_root
);
2026 info
->extent_root
->node
= NULL
;
2027 info
->extent_root
->commit_root
= NULL
;
2029 if (info
->csum_root
) {
2030 free_extent_buffer(info
->csum_root
->node
);
2031 free_extent_buffer(info
->csum_root
->commit_root
);
2032 info
->csum_root
->node
= NULL
;
2033 info
->csum_root
->commit_root
= NULL
;
2035 if (info
->quota_root
) {
2036 free_extent_buffer(info
->quota_root
->node
);
2037 free_extent_buffer(info
->quota_root
->commit_root
);
2038 info
->quota_root
->node
= NULL
;
2039 info
->quota_root
->commit_root
= NULL
;
2042 free_extent_buffer(info
->chunk_root
->node
);
2043 free_extent_buffer(info
->chunk_root
->commit_root
);
2044 info
->chunk_root
->node
= NULL
;
2045 info
->chunk_root
->commit_root
= NULL
;
2049 static void del_fs_roots(struct btrfs_fs_info
*fs_info
)
2052 struct btrfs_root
*gang
[8];
2055 while (!list_empty(&fs_info
->dead_roots
)) {
2056 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2057 struct btrfs_root
, root_list
);
2058 list_del(&gang
[0]->root_list
);
2060 if (gang
[0]->in_radix
) {
2061 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2063 free_extent_buffer(gang
[0]->node
);
2064 free_extent_buffer(gang
[0]->commit_root
);
2065 btrfs_put_fs_root(gang
[0]);
2070 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2075 for (i
= 0; i
< ret
; i
++)
2076 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2080 int open_ctree(struct super_block
*sb
,
2081 struct btrfs_fs_devices
*fs_devices
,
2091 struct btrfs_key location
;
2092 struct buffer_head
*bh
;
2093 struct btrfs_super_block
*disk_super
;
2094 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2095 struct btrfs_root
*tree_root
;
2096 struct btrfs_root
*extent_root
;
2097 struct btrfs_root
*csum_root
;
2098 struct btrfs_root
*chunk_root
;
2099 struct btrfs_root
*dev_root
;
2100 struct btrfs_root
*quota_root
;
2101 struct btrfs_root
*log_tree_root
;
2104 int num_backups_tried
= 0;
2105 int backup_index
= 0;
2107 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
);
2108 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
);
2109 if (!tree_root
|| !chunk_root
) {
2114 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2120 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
2126 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0);
2131 fs_info
->dirty_metadata_batch
= PAGE_CACHE_SIZE
*
2132 (1 + ilog2(nr_cpu_ids
));
2134 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0);
2137 goto fail_dirty_metadata_bytes
;
2140 fs_info
->btree_inode
= new_inode(sb
);
2141 if (!fs_info
->btree_inode
) {
2143 goto fail_delalloc_bytes
;
2146 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2148 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2149 INIT_LIST_HEAD(&fs_info
->trans_list
);
2150 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2151 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2152 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2153 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2154 spin_lock_init(&fs_info
->delalloc_root_lock
);
2155 spin_lock_init(&fs_info
->trans_lock
);
2156 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2157 spin_lock_init(&fs_info
->delayed_iput_lock
);
2158 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2159 spin_lock_init(&fs_info
->free_chunk_lock
);
2160 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2161 spin_lock_init(&fs_info
->super_lock
);
2162 rwlock_init(&fs_info
->tree_mod_log_lock
);
2163 mutex_init(&fs_info
->reloc_mutex
);
2164 seqlock_init(&fs_info
->profiles_lock
);
2166 init_completion(&fs_info
->kobj_unregister
);
2167 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2168 INIT_LIST_HEAD(&fs_info
->space_info
);
2169 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2170 btrfs_mapping_init(&fs_info
->mapping_tree
);
2171 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2172 BTRFS_BLOCK_RSV_GLOBAL
);
2173 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
,
2174 BTRFS_BLOCK_RSV_DELALLOC
);
2175 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2176 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2177 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2178 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2179 BTRFS_BLOCK_RSV_DELOPS
);
2180 atomic_set(&fs_info
->nr_async_submits
, 0);
2181 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2182 atomic_set(&fs_info
->async_submit_draining
, 0);
2183 atomic_set(&fs_info
->nr_async_bios
, 0);
2184 atomic_set(&fs_info
->defrag_running
, 0);
2185 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2187 fs_info
->max_inline
= 8192 * 1024;
2188 fs_info
->metadata_ratio
= 0;
2189 fs_info
->defrag_inodes
= RB_ROOT
;
2190 fs_info
->free_chunk_space
= 0;
2191 fs_info
->tree_mod_log
= RB_ROOT
;
2193 /* readahead state */
2194 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_WAIT
);
2195 spin_lock_init(&fs_info
->reada_lock
);
2197 fs_info
->thread_pool_size
= min_t(unsigned long,
2198 num_online_cpus() + 2, 8);
2200 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2201 spin_lock_init(&fs_info
->ordered_root_lock
);
2202 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2204 if (!fs_info
->delayed_root
) {
2208 btrfs_init_delayed_root(fs_info
->delayed_root
);
2210 mutex_init(&fs_info
->scrub_lock
);
2211 atomic_set(&fs_info
->scrubs_running
, 0);
2212 atomic_set(&fs_info
->scrub_pause_req
, 0);
2213 atomic_set(&fs_info
->scrubs_paused
, 0);
2214 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2215 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2216 init_rwsem(&fs_info
->scrub_super_lock
);
2217 fs_info
->scrub_workers_refcnt
= 0;
2218 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2219 fs_info
->check_integrity_print_mask
= 0;
2222 spin_lock_init(&fs_info
->balance_lock
);
2223 mutex_init(&fs_info
->balance_mutex
);
2224 atomic_set(&fs_info
->balance_running
, 0);
2225 atomic_set(&fs_info
->balance_pause_req
, 0);
2226 atomic_set(&fs_info
->balance_cancel_req
, 0);
2227 fs_info
->balance_ctl
= NULL
;
2228 init_waitqueue_head(&fs_info
->balance_wait_q
);
2230 sb
->s_blocksize
= 4096;
2231 sb
->s_blocksize_bits
= blksize_bits(4096);
2232 sb
->s_bdi
= &fs_info
->bdi
;
2234 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2235 set_nlink(fs_info
->btree_inode
, 1);
2237 * we set the i_size on the btree inode to the max possible int.
2238 * the real end of the address space is determined by all of
2239 * the devices in the system
2241 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2242 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2243 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
2245 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2246 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2247 fs_info
->btree_inode
->i_mapping
);
2248 BTRFS_I(fs_info
->btree_inode
)->io_tree
.track_uptodate
= 0;
2249 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2251 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2253 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2254 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2255 sizeof(struct btrfs_key
));
2256 set_bit(BTRFS_INODE_DUMMY
,
2257 &BTRFS_I(fs_info
->btree_inode
)->runtime_flags
);
2258 insert_inode_hash(fs_info
->btree_inode
);
2260 spin_lock_init(&fs_info
->block_group_cache_lock
);
2261 fs_info
->block_group_cache_tree
= RB_ROOT
;
2262 fs_info
->first_logical_byte
= (u64
)-1;
2264 extent_io_tree_init(&fs_info
->freed_extents
[0],
2265 fs_info
->btree_inode
->i_mapping
);
2266 extent_io_tree_init(&fs_info
->freed_extents
[1],
2267 fs_info
->btree_inode
->i_mapping
);
2268 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2269 fs_info
->do_barriers
= 1;
2272 mutex_init(&fs_info
->ordered_operations_mutex
);
2273 mutex_init(&fs_info
->tree_log_mutex
);
2274 mutex_init(&fs_info
->chunk_mutex
);
2275 mutex_init(&fs_info
->transaction_kthread_mutex
);
2276 mutex_init(&fs_info
->cleaner_mutex
);
2277 mutex_init(&fs_info
->volume_mutex
);
2278 init_rwsem(&fs_info
->extent_commit_sem
);
2279 init_rwsem(&fs_info
->cleanup_work_sem
);
2280 init_rwsem(&fs_info
->subvol_sem
);
2281 fs_info
->dev_replace
.lock_owner
= 0;
2282 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2283 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2284 mutex_init(&fs_info
->dev_replace
.lock_management_lock
);
2285 mutex_init(&fs_info
->dev_replace
.lock
);
2287 spin_lock_init(&fs_info
->qgroup_lock
);
2288 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2289 fs_info
->qgroup_tree
= RB_ROOT
;
2290 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2291 fs_info
->qgroup_seq
= 1;
2292 fs_info
->quota_enabled
= 0;
2293 fs_info
->pending_quota_state
= 0;
2294 fs_info
->qgroup_ulist
= NULL
;
2295 mutex_init(&fs_info
->qgroup_rescan_lock
);
2297 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2298 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2300 init_waitqueue_head(&fs_info
->transaction_throttle
);
2301 init_waitqueue_head(&fs_info
->transaction_wait
);
2302 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2303 init_waitqueue_head(&fs_info
->async_submit_wait
);
2305 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2311 __setup_root(4096, 4096, 4096, 4096, tree_root
,
2312 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2314 invalidate_bdev(fs_devices
->latest_bdev
);
2317 * Read super block and check the signature bytes only
2319 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2326 * We want to check superblock checksum, the type is stored inside.
2327 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2329 if (btrfs_check_super_csum(bh
->b_data
)) {
2330 printk(KERN_ERR
"btrfs: superblock checksum mismatch\n");
2336 * super_copy is zeroed at allocation time and we never touch the
2337 * following bytes up to INFO_SIZE, the checksum is calculated from
2338 * the whole block of INFO_SIZE
2340 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2341 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2342 sizeof(*fs_info
->super_for_commit
));
2345 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2347 ret
= btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2349 printk(KERN_ERR
"btrfs: superblock contains fatal errors\n");
2354 disk_super
= fs_info
->super_copy
;
2355 if (!btrfs_super_root(disk_super
))
2358 /* check FS state, whether FS is broken. */
2359 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2360 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2363 * run through our array of backup supers and setup
2364 * our ring pointer to the oldest one
2366 generation
= btrfs_super_generation(disk_super
);
2367 find_oldest_super_backup(fs_info
, generation
);
2370 * In the long term, we'll store the compression type in the super
2371 * block, and it'll be used for per file compression control.
2373 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2375 ret
= btrfs_parse_options(tree_root
, options
);
2381 features
= btrfs_super_incompat_flags(disk_super
) &
2382 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2384 printk(KERN_ERR
"BTRFS: couldn't mount because of "
2385 "unsupported optional features (%Lx).\n",
2386 (unsigned long long)features
);
2391 if (btrfs_super_leafsize(disk_super
) !=
2392 btrfs_super_nodesize(disk_super
)) {
2393 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2394 "blocksizes don't match. node %d leaf %d\n",
2395 btrfs_super_nodesize(disk_super
),
2396 btrfs_super_leafsize(disk_super
));
2400 if (btrfs_super_leafsize(disk_super
) > BTRFS_MAX_METADATA_BLOCKSIZE
) {
2401 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2402 "blocksize (%d) was too large\n",
2403 btrfs_super_leafsize(disk_super
));
2408 features
= btrfs_super_incompat_flags(disk_super
);
2409 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2410 if (tree_root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2411 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2413 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2414 printk(KERN_ERR
"btrfs: has skinny extents\n");
2417 * flag our filesystem as having big metadata blocks if
2418 * they are bigger than the page size
2420 if (btrfs_super_leafsize(disk_super
) > PAGE_CACHE_SIZE
) {
2421 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2422 printk(KERN_INFO
"btrfs flagging fs with big metadata feature\n");
2423 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2426 nodesize
= btrfs_super_nodesize(disk_super
);
2427 leafsize
= btrfs_super_leafsize(disk_super
);
2428 sectorsize
= btrfs_super_sectorsize(disk_super
);
2429 stripesize
= btrfs_super_stripesize(disk_super
);
2430 fs_info
->dirty_metadata_batch
= leafsize
* (1 + ilog2(nr_cpu_ids
));
2431 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2434 * mixed block groups end up with duplicate but slightly offset
2435 * extent buffers for the same range. It leads to corruptions
2437 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2438 (sectorsize
!= leafsize
)) {
2439 printk(KERN_WARNING
"btrfs: unequal leaf/node/sector sizes "
2440 "are not allowed for mixed block groups on %s\n",
2446 * Needn't use the lock because there is no other task which will
2449 btrfs_set_super_incompat_flags(disk_super
, features
);
2451 features
= btrfs_super_compat_ro_flags(disk_super
) &
2452 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2453 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2454 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
2455 "unsupported option features (%Lx).\n",
2456 (unsigned long long)features
);
2461 btrfs_init_workers(&fs_info
->generic_worker
,
2462 "genwork", 1, NULL
);
2464 btrfs_init_workers(&fs_info
->workers
, "worker",
2465 fs_info
->thread_pool_size
,
2466 &fs_info
->generic_worker
);
2468 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
2469 fs_info
->thread_pool_size
,
2470 &fs_info
->generic_worker
);
2472 btrfs_init_workers(&fs_info
->flush_workers
, "flush_delalloc",
2473 fs_info
->thread_pool_size
,
2474 &fs_info
->generic_worker
);
2476 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
2477 min_t(u64
, fs_devices
->num_devices
,
2478 fs_info
->thread_pool_size
),
2479 &fs_info
->generic_worker
);
2481 btrfs_init_workers(&fs_info
->caching_workers
, "cache",
2482 2, &fs_info
->generic_worker
);
2484 /* a higher idle thresh on the submit workers makes it much more
2485 * likely that bios will be send down in a sane order to the
2488 fs_info
->submit_workers
.idle_thresh
= 64;
2490 fs_info
->workers
.idle_thresh
= 16;
2491 fs_info
->workers
.ordered
= 1;
2493 fs_info
->delalloc_workers
.idle_thresh
= 2;
2494 fs_info
->delalloc_workers
.ordered
= 1;
2496 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
2497 &fs_info
->generic_worker
);
2498 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
2499 fs_info
->thread_pool_size
,
2500 &fs_info
->generic_worker
);
2501 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
2502 fs_info
->thread_pool_size
,
2503 &fs_info
->generic_worker
);
2504 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
2505 "endio-meta-write", fs_info
->thread_pool_size
,
2506 &fs_info
->generic_worker
);
2507 btrfs_init_workers(&fs_info
->endio_raid56_workers
,
2508 "endio-raid56", fs_info
->thread_pool_size
,
2509 &fs_info
->generic_worker
);
2510 btrfs_init_workers(&fs_info
->rmw_workers
,
2511 "rmw", fs_info
->thread_pool_size
,
2512 &fs_info
->generic_worker
);
2513 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
2514 fs_info
->thread_pool_size
,
2515 &fs_info
->generic_worker
);
2516 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
2517 1, &fs_info
->generic_worker
);
2518 btrfs_init_workers(&fs_info
->delayed_workers
, "delayed-meta",
2519 fs_info
->thread_pool_size
,
2520 &fs_info
->generic_worker
);
2521 btrfs_init_workers(&fs_info
->readahead_workers
, "readahead",
2522 fs_info
->thread_pool_size
,
2523 &fs_info
->generic_worker
);
2524 btrfs_init_workers(&fs_info
->qgroup_rescan_workers
, "qgroup-rescan", 1,
2525 &fs_info
->generic_worker
);
2528 * endios are largely parallel and should have a very
2531 fs_info
->endio_workers
.idle_thresh
= 4;
2532 fs_info
->endio_meta_workers
.idle_thresh
= 4;
2533 fs_info
->endio_raid56_workers
.idle_thresh
= 4;
2534 fs_info
->rmw_workers
.idle_thresh
= 2;
2536 fs_info
->endio_write_workers
.idle_thresh
= 2;
2537 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
2538 fs_info
->readahead_workers
.idle_thresh
= 2;
2541 * btrfs_start_workers can really only fail because of ENOMEM so just
2542 * return -ENOMEM if any of these fail.
2544 ret
= btrfs_start_workers(&fs_info
->workers
);
2545 ret
|= btrfs_start_workers(&fs_info
->generic_worker
);
2546 ret
|= btrfs_start_workers(&fs_info
->submit_workers
);
2547 ret
|= btrfs_start_workers(&fs_info
->delalloc_workers
);
2548 ret
|= btrfs_start_workers(&fs_info
->fixup_workers
);
2549 ret
|= btrfs_start_workers(&fs_info
->endio_workers
);
2550 ret
|= btrfs_start_workers(&fs_info
->endio_meta_workers
);
2551 ret
|= btrfs_start_workers(&fs_info
->rmw_workers
);
2552 ret
|= btrfs_start_workers(&fs_info
->endio_raid56_workers
);
2553 ret
|= btrfs_start_workers(&fs_info
->endio_meta_write_workers
);
2554 ret
|= btrfs_start_workers(&fs_info
->endio_write_workers
);
2555 ret
|= btrfs_start_workers(&fs_info
->endio_freespace_worker
);
2556 ret
|= btrfs_start_workers(&fs_info
->delayed_workers
);
2557 ret
|= btrfs_start_workers(&fs_info
->caching_workers
);
2558 ret
|= btrfs_start_workers(&fs_info
->readahead_workers
);
2559 ret
|= btrfs_start_workers(&fs_info
->flush_workers
);
2560 ret
|= btrfs_start_workers(&fs_info
->qgroup_rescan_workers
);
2563 goto fail_sb_buffer
;
2566 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2567 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2568 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
2570 tree_root
->nodesize
= nodesize
;
2571 tree_root
->leafsize
= leafsize
;
2572 tree_root
->sectorsize
= sectorsize
;
2573 tree_root
->stripesize
= stripesize
;
2575 sb
->s_blocksize
= sectorsize
;
2576 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2578 if (disk_super
->magic
!= cpu_to_le64(BTRFS_MAGIC
)) {
2579 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
2580 goto fail_sb_buffer
;
2583 if (sectorsize
!= PAGE_SIZE
) {
2584 printk(KERN_WARNING
"btrfs: Incompatible sector size(%lu) "
2585 "found on %s\n", (unsigned long)sectorsize
, sb
->s_id
);
2586 goto fail_sb_buffer
;
2589 mutex_lock(&fs_info
->chunk_mutex
);
2590 ret
= btrfs_read_sys_array(tree_root
);
2591 mutex_unlock(&fs_info
->chunk_mutex
);
2593 printk(KERN_WARNING
"btrfs: failed to read the system "
2594 "array on %s\n", sb
->s_id
);
2595 goto fail_sb_buffer
;
2598 blocksize
= btrfs_level_size(tree_root
,
2599 btrfs_super_chunk_root_level(disk_super
));
2600 generation
= btrfs_super_chunk_root_generation(disk_super
);
2602 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2603 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2605 chunk_root
->node
= read_tree_block(chunk_root
,
2606 btrfs_super_chunk_root(disk_super
),
2607 blocksize
, generation
);
2608 if (!chunk_root
->node
||
2609 !test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
2610 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
2612 goto fail_tree_roots
;
2614 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2615 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2617 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2618 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
2621 ret
= btrfs_read_chunk_tree(chunk_root
);
2623 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
2625 goto fail_tree_roots
;
2629 * keep the device that is marked to be the target device for the
2630 * dev_replace procedure
2632 btrfs_close_extra_devices(fs_info
, fs_devices
, 0);
2634 if (!fs_devices
->latest_bdev
) {
2635 printk(KERN_CRIT
"btrfs: failed to read devices on %s\n",
2637 goto fail_tree_roots
;
2641 blocksize
= btrfs_level_size(tree_root
,
2642 btrfs_super_root_level(disk_super
));
2643 generation
= btrfs_super_generation(disk_super
);
2645 tree_root
->node
= read_tree_block(tree_root
,
2646 btrfs_super_root(disk_super
),
2647 blocksize
, generation
);
2648 if (!tree_root
->node
||
2649 !test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
2650 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
2653 goto recovery_tree_root
;
2656 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2657 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2659 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2660 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2661 location
.offset
= 0;
2663 extent_root
= btrfs_read_tree_root(tree_root
, &location
);
2664 if (IS_ERR(extent_root
)) {
2665 ret
= PTR_ERR(extent_root
);
2666 goto recovery_tree_root
;
2668 extent_root
->track_dirty
= 1;
2669 fs_info
->extent_root
= extent_root
;
2671 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2672 dev_root
= btrfs_read_tree_root(tree_root
, &location
);
2673 if (IS_ERR(dev_root
)) {
2674 ret
= PTR_ERR(dev_root
);
2675 goto recovery_tree_root
;
2677 dev_root
->track_dirty
= 1;
2678 fs_info
->dev_root
= dev_root
;
2679 btrfs_init_devices_late(fs_info
);
2681 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2682 csum_root
= btrfs_read_tree_root(tree_root
, &location
);
2683 if (IS_ERR(csum_root
)) {
2684 ret
= PTR_ERR(csum_root
);
2685 goto recovery_tree_root
;
2687 csum_root
->track_dirty
= 1;
2688 fs_info
->csum_root
= csum_root
;
2690 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2691 quota_root
= btrfs_read_tree_root(tree_root
, &location
);
2692 if (!IS_ERR(quota_root
)) {
2693 quota_root
->track_dirty
= 1;
2694 fs_info
->quota_enabled
= 1;
2695 fs_info
->pending_quota_state
= 1;
2696 fs_info
->quota_root
= quota_root
;
2699 fs_info
->generation
= generation
;
2700 fs_info
->last_trans_committed
= generation
;
2702 ret
= btrfs_recover_balance(fs_info
);
2704 printk(KERN_WARNING
"btrfs: failed to recover balance\n");
2705 goto fail_block_groups
;
2708 ret
= btrfs_init_dev_stats(fs_info
);
2710 printk(KERN_ERR
"btrfs: failed to init dev_stats: %d\n",
2712 goto fail_block_groups
;
2715 ret
= btrfs_init_dev_replace(fs_info
);
2717 pr_err("btrfs: failed to init dev_replace: %d\n", ret
);
2718 goto fail_block_groups
;
2721 btrfs_close_extra_devices(fs_info
, fs_devices
, 1);
2723 ret
= btrfs_init_space_info(fs_info
);
2725 printk(KERN_ERR
"Failed to initial space info: %d\n", ret
);
2726 goto fail_block_groups
;
2729 ret
= btrfs_read_block_groups(extent_root
);
2731 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
2732 goto fail_block_groups
;
2734 fs_info
->num_tolerated_disk_barrier_failures
=
2735 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
2736 if (fs_info
->fs_devices
->missing_devices
>
2737 fs_info
->num_tolerated_disk_barrier_failures
&&
2738 !(sb
->s_flags
& MS_RDONLY
)) {
2740 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2741 goto fail_block_groups
;
2744 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2746 if (IS_ERR(fs_info
->cleaner_kthread
))
2747 goto fail_block_groups
;
2749 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2751 "btrfs-transaction");
2752 if (IS_ERR(fs_info
->transaction_kthread
))
2755 if (!btrfs_test_opt(tree_root
, SSD
) &&
2756 !btrfs_test_opt(tree_root
, NOSSD
) &&
2757 !fs_info
->fs_devices
->rotating
) {
2758 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
2760 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2763 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2764 if (btrfs_test_opt(tree_root
, CHECK_INTEGRITY
)) {
2765 ret
= btrfsic_mount(tree_root
, fs_devices
,
2766 btrfs_test_opt(tree_root
,
2767 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
2769 fs_info
->check_integrity_print_mask
);
2771 printk(KERN_WARNING
"btrfs: failed to initialize"
2772 " integrity check module %s\n", sb
->s_id
);
2775 ret
= btrfs_read_qgroup_config(fs_info
);
2777 goto fail_trans_kthread
;
2779 /* do not make disk changes in broken FS */
2780 if (btrfs_super_log_root(disk_super
) != 0) {
2781 u64 bytenr
= btrfs_super_log_root(disk_super
);
2783 if (fs_devices
->rw_devices
== 0) {
2784 printk(KERN_WARNING
"Btrfs log replay required "
2790 btrfs_level_size(tree_root
,
2791 btrfs_super_log_root_level(disk_super
));
2793 log_tree_root
= btrfs_alloc_root(fs_info
);
2794 if (!log_tree_root
) {
2799 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2800 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2802 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2805 if (!log_tree_root
->node
||
2806 !extent_buffer_uptodate(log_tree_root
->node
)) {
2807 printk(KERN_ERR
"btrfs: failed to read log tree\n");
2808 free_extent_buffer(log_tree_root
->node
);
2809 kfree(log_tree_root
);
2810 goto fail_trans_kthread
;
2812 /* returns with log_tree_root freed on success */
2813 ret
= btrfs_recover_log_trees(log_tree_root
);
2815 btrfs_error(tree_root
->fs_info
, ret
,
2816 "Failed to recover log tree");
2817 free_extent_buffer(log_tree_root
->node
);
2818 kfree(log_tree_root
);
2819 goto fail_trans_kthread
;
2822 if (sb
->s_flags
& MS_RDONLY
) {
2823 ret
= btrfs_commit_super(tree_root
);
2825 goto fail_trans_kthread
;
2829 ret
= btrfs_find_orphan_roots(tree_root
);
2831 goto fail_trans_kthread
;
2833 if (!(sb
->s_flags
& MS_RDONLY
)) {
2834 ret
= btrfs_cleanup_fs_roots(fs_info
);
2836 goto fail_trans_kthread
;
2838 ret
= btrfs_recover_relocation(tree_root
);
2841 "btrfs: failed to recover relocation\n");
2847 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2848 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2849 location
.offset
= 0;
2851 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2852 if (IS_ERR(fs_info
->fs_root
)) {
2853 err
= PTR_ERR(fs_info
->fs_root
);
2857 if (sb
->s_flags
& MS_RDONLY
)
2860 down_read(&fs_info
->cleanup_work_sem
);
2861 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
2862 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
2863 up_read(&fs_info
->cleanup_work_sem
);
2864 close_ctree(tree_root
);
2867 up_read(&fs_info
->cleanup_work_sem
);
2869 ret
= btrfs_resume_balance_async(fs_info
);
2871 printk(KERN_WARNING
"btrfs: failed to resume balance\n");
2872 close_ctree(tree_root
);
2876 ret
= btrfs_resume_dev_replace_async(fs_info
);
2878 pr_warn("btrfs: failed to resume dev_replace\n");
2879 close_ctree(tree_root
);
2883 btrfs_qgroup_rescan_resume(fs_info
);
2888 btrfs_free_qgroup_config(fs_info
);
2890 kthread_stop(fs_info
->transaction_kthread
);
2891 btrfs_cleanup_transaction(fs_info
->tree_root
);
2892 del_fs_roots(fs_info
);
2894 kthread_stop(fs_info
->cleaner_kthread
);
2897 * make sure we're done with the btree inode before we stop our
2900 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2903 btrfs_put_block_group_cache(fs_info
);
2904 btrfs_free_block_groups(fs_info
);
2907 free_root_pointers(fs_info
, 1);
2908 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2911 btrfs_stop_all_workers(fs_info
);
2914 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2916 iput(fs_info
->btree_inode
);
2917 fail_delalloc_bytes
:
2918 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
2919 fail_dirty_metadata_bytes
:
2920 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
2922 bdi_destroy(&fs_info
->bdi
);
2924 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2926 btrfs_free_stripe_hash_table(fs_info
);
2927 btrfs_close_devices(fs_info
->fs_devices
);
2931 if (!btrfs_test_opt(tree_root
, RECOVERY
))
2932 goto fail_tree_roots
;
2934 free_root_pointers(fs_info
, 0);
2936 /* don't use the log in recovery mode, it won't be valid */
2937 btrfs_set_super_log_root(disk_super
, 0);
2939 /* we can't trust the free space cache either */
2940 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2942 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
2943 &num_backups_tried
, &backup_index
);
2945 goto fail_block_groups
;
2946 goto retry_root_backup
;
2949 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2952 set_buffer_uptodate(bh
);
2954 struct btrfs_device
*device
= (struct btrfs_device
*)
2957 printk_ratelimited_in_rcu(KERN_WARNING
"lost page write due to "
2958 "I/O error on %s\n",
2959 rcu_str_deref(device
->name
));
2960 /* note, we dont' set_buffer_write_io_error because we have
2961 * our own ways of dealing with the IO errors
2963 clear_buffer_uptodate(bh
);
2964 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
2970 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2972 struct buffer_head
*bh
;
2973 struct buffer_head
*latest
= NULL
;
2974 struct btrfs_super_block
*super
;
2979 /* we would like to check all the supers, but that would make
2980 * a btrfs mount succeed after a mkfs from a different FS.
2981 * So, we need to add a special mount option to scan for
2982 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2984 for (i
= 0; i
< 1; i
++) {
2985 bytenr
= btrfs_sb_offset(i
);
2986 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2988 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2992 super
= (struct btrfs_super_block
*)bh
->b_data
;
2993 if (btrfs_super_bytenr(super
) != bytenr
||
2994 super
->magic
!= cpu_to_le64(BTRFS_MAGIC
)) {
2999 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3002 transid
= btrfs_super_generation(super
);
3011 * this should be called twice, once with wait == 0 and
3012 * once with wait == 1. When wait == 0 is done, all the buffer heads
3013 * we write are pinned.
3015 * They are released when wait == 1 is done.
3016 * max_mirrors must be the same for both runs, and it indicates how
3017 * many supers on this one device should be written.
3019 * max_mirrors == 0 means to write them all.
3021 static int write_dev_supers(struct btrfs_device
*device
,
3022 struct btrfs_super_block
*sb
,
3023 int do_barriers
, int wait
, int max_mirrors
)
3025 struct buffer_head
*bh
;
3032 if (max_mirrors
== 0)
3033 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3035 for (i
= 0; i
< max_mirrors
; i
++) {
3036 bytenr
= btrfs_sb_offset(i
);
3037 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
3041 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
3042 BTRFS_SUPER_INFO_SIZE
);
3048 if (!buffer_uptodate(bh
))
3051 /* drop our reference */
3054 /* drop the reference from the wait == 0 run */
3058 btrfs_set_super_bytenr(sb
, bytenr
);
3061 crc
= btrfs_csum_data((char *)sb
+
3062 BTRFS_CSUM_SIZE
, crc
,
3063 BTRFS_SUPER_INFO_SIZE
-
3065 btrfs_csum_final(crc
, sb
->csum
);
3068 * one reference for us, and we leave it for the
3071 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
3072 BTRFS_SUPER_INFO_SIZE
);
3074 printk(KERN_ERR
"btrfs: couldn't get super "
3075 "buffer head for bytenr %Lu\n", bytenr
);
3080 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3082 /* one reference for submit_bh */
3085 set_buffer_uptodate(bh
);
3087 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3088 bh
->b_private
= device
;
3092 * we fua the first super. The others we allow
3095 ret
= btrfsic_submit_bh(WRITE_FUA
, bh
);
3099 return errors
< i
? 0 : -1;
3103 * endio for the write_dev_flush, this will wake anyone waiting
3104 * for the barrier when it is done
3106 static void btrfs_end_empty_barrier(struct bio
*bio
, int err
)
3109 if (err
== -EOPNOTSUPP
)
3110 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
3111 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3113 if (bio
->bi_private
)
3114 complete(bio
->bi_private
);
3119 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3120 * sent down. With wait == 1, it waits for the previous flush.
3122 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3125 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
3130 if (device
->nobarriers
)
3134 bio
= device
->flush_bio
;
3138 wait_for_completion(&device
->flush_wait
);
3140 if (bio_flagged(bio
, BIO_EOPNOTSUPP
)) {
3141 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3142 rcu_str_deref(device
->name
));
3143 device
->nobarriers
= 1;
3144 } else if (!bio_flagged(bio
, BIO_UPTODATE
)) {
3146 btrfs_dev_stat_inc_and_print(device
,
3147 BTRFS_DEV_STAT_FLUSH_ERRS
);
3150 /* drop the reference from the wait == 0 run */
3152 device
->flush_bio
= NULL
;
3158 * one reference for us, and we leave it for the
3161 device
->flush_bio
= NULL
;
3162 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
3166 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3167 bio
->bi_bdev
= device
->bdev
;
3168 init_completion(&device
->flush_wait
);
3169 bio
->bi_private
= &device
->flush_wait
;
3170 device
->flush_bio
= bio
;
3173 btrfsic_submit_bio(WRITE_FLUSH
, bio
);
3179 * send an empty flush down to each device in parallel,
3180 * then wait for them
3182 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3184 struct list_head
*head
;
3185 struct btrfs_device
*dev
;
3186 int errors_send
= 0;
3187 int errors_wait
= 0;
3190 /* send down all the barriers */
3191 head
= &info
->fs_devices
->devices
;
3192 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3197 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3200 ret
= write_dev_flush(dev
, 0);
3205 /* wait for all the barriers */
3206 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3211 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3214 ret
= write_dev_flush(dev
, 1);
3218 if (errors_send
> info
->num_tolerated_disk_barrier_failures
||
3219 errors_wait
> info
->num_tolerated_disk_barrier_failures
)
3224 int btrfs_calc_num_tolerated_disk_barrier_failures(
3225 struct btrfs_fs_info
*fs_info
)
3227 struct btrfs_ioctl_space_info space
;
3228 struct btrfs_space_info
*sinfo
;
3229 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3230 BTRFS_BLOCK_GROUP_SYSTEM
,
3231 BTRFS_BLOCK_GROUP_METADATA
,
3232 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3236 int num_tolerated_disk_barrier_failures
=
3237 (int)fs_info
->fs_devices
->num_devices
;
3239 for (i
= 0; i
< num_types
; i
++) {
3240 struct btrfs_space_info
*tmp
;
3244 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
, list
) {
3245 if (tmp
->flags
== types
[i
]) {
3255 down_read(&sinfo
->groups_sem
);
3256 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3257 if (!list_empty(&sinfo
->block_groups
[c
])) {
3260 btrfs_get_block_group_info(
3261 &sinfo
->block_groups
[c
], &space
);
3262 if (space
.total_bytes
== 0 ||
3263 space
.used_bytes
== 0)
3265 flags
= space
.flags
;
3268 * 0: if dup, single or RAID0 is configured for
3269 * any of metadata, system or data, else
3270 * 1: if RAID5 is configured, or if RAID1 or
3271 * RAID10 is configured and only two mirrors
3273 * 2: if RAID6 is configured, else
3274 * num_mirrors - 1: if RAID1 or RAID10 is
3275 * configured and more than
3276 * 2 mirrors are used.
3278 if (num_tolerated_disk_barrier_failures
> 0 &&
3279 ((flags
& (BTRFS_BLOCK_GROUP_DUP
|
3280 BTRFS_BLOCK_GROUP_RAID0
)) ||
3281 ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
)
3283 num_tolerated_disk_barrier_failures
= 0;
3284 else if (num_tolerated_disk_barrier_failures
> 1) {
3285 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3286 BTRFS_BLOCK_GROUP_RAID5
|
3287 BTRFS_BLOCK_GROUP_RAID10
)) {
3288 num_tolerated_disk_barrier_failures
= 1;
3290 BTRFS_BLOCK_GROUP_RAID6
) {
3291 num_tolerated_disk_barrier_failures
= 2;
3296 up_read(&sinfo
->groups_sem
);
3299 return num_tolerated_disk_barrier_failures
;
3302 static int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
3304 struct list_head
*head
;
3305 struct btrfs_device
*dev
;
3306 struct btrfs_super_block
*sb
;
3307 struct btrfs_dev_item
*dev_item
;
3311 int total_errors
= 0;
3314 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
3315 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
3316 backup_super_roots(root
->fs_info
);
3318 sb
= root
->fs_info
->super_for_commit
;
3319 dev_item
= &sb
->dev_item
;
3321 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3322 head
= &root
->fs_info
->fs_devices
->devices
;
3325 ret
= barrier_all_devices(root
->fs_info
);
3328 &root
->fs_info
->fs_devices
->device_list_mutex
);
3329 btrfs_error(root
->fs_info
, ret
,
3330 "errors while submitting device barriers.");
3335 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3340 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3343 btrfs_set_stack_device_generation(dev_item
, 0);
3344 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3345 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3346 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
3347 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
3348 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3349 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3350 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3351 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3352 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
3354 flags
= btrfs_super_flags(sb
);
3355 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3357 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
3361 if (total_errors
> max_errors
) {
3362 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
3365 /* This shouldn't happen. FUA is masked off if unsupported */
3370 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3373 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3376 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
3380 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3381 if (total_errors
> max_errors
) {
3382 btrfs_error(root
->fs_info
, -EIO
,
3383 "%d errors while writing supers", total_errors
);
3389 int write_ctree_super(struct btrfs_trans_handle
*trans
,
3390 struct btrfs_root
*root
, int max_mirrors
)
3394 ret
= write_all_supers(root
, max_mirrors
);
3398 /* Drop a fs root from the radix tree and free it. */
3399 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3400 struct btrfs_root
*root
)
3402 spin_lock(&fs_info
->fs_roots_radix_lock
);
3403 radix_tree_delete(&fs_info
->fs_roots_radix
,
3404 (unsigned long)root
->root_key
.objectid
);
3405 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3407 if (btrfs_root_refs(&root
->root_item
) == 0)
3408 synchronize_srcu(&fs_info
->subvol_srcu
);
3410 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3411 btrfs_free_log(NULL
, root
);
3412 btrfs_free_log_root_tree(NULL
, fs_info
);
3415 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3416 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3420 static void free_fs_root(struct btrfs_root
*root
)
3422 iput(root
->cache_inode
);
3423 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3425 free_anon_bdev(root
->anon_dev
);
3426 free_extent_buffer(root
->node
);
3427 free_extent_buffer(root
->commit_root
);
3428 kfree(root
->free_ino_ctl
);
3429 kfree(root
->free_ino_pinned
);
3431 btrfs_put_fs_root(root
);
3434 void btrfs_free_fs_root(struct btrfs_root
*root
)
3439 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3441 u64 root_objectid
= 0;
3442 struct btrfs_root
*gang
[8];
3447 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3448 (void **)gang
, root_objectid
,
3453 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3454 for (i
= 0; i
< ret
; i
++) {
3457 root_objectid
= gang
[i
]->root_key
.objectid
;
3458 err
= btrfs_orphan_cleanup(gang
[i
]);
3467 int btrfs_commit_super(struct btrfs_root
*root
)
3469 struct btrfs_trans_handle
*trans
;
3472 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3473 btrfs_run_delayed_iputs(root
);
3474 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3475 wake_up_process(root
->fs_info
->cleaner_kthread
);
3477 /* wait until ongoing cleanup work done */
3478 down_write(&root
->fs_info
->cleanup_work_sem
);
3479 up_write(&root
->fs_info
->cleanup_work_sem
);
3481 trans
= btrfs_join_transaction(root
);
3483 return PTR_ERR(trans
);
3484 ret
= btrfs_commit_transaction(trans
, root
);
3487 /* run commit again to drop the original snapshot */
3488 trans
= btrfs_join_transaction(root
);
3490 return PTR_ERR(trans
);
3491 ret
= btrfs_commit_transaction(trans
, root
);
3494 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
3496 btrfs_error(root
->fs_info
, ret
,
3497 "Failed to sync btree inode to disk.");
3501 ret
= write_ctree_super(NULL
, root
, 0);
3505 int close_ctree(struct btrfs_root
*root
)
3507 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3510 fs_info
->closing
= 1;
3513 /* pause restriper - we want to resume on mount */
3514 btrfs_pause_balance(fs_info
);
3516 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3518 btrfs_scrub_cancel(fs_info
);
3520 /* wait for any defraggers to finish */
3521 wait_event(fs_info
->transaction_wait
,
3522 (atomic_read(&fs_info
->defrag_running
) == 0));
3524 /* clear out the rbtree of defraggable inodes */
3525 btrfs_cleanup_defrag_inodes(fs_info
);
3527 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3528 ret
= btrfs_commit_super(root
);
3530 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
3533 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3534 btrfs_error_commit_super(root
);
3536 btrfs_put_block_group_cache(fs_info
);
3538 kthread_stop(fs_info
->transaction_kthread
);
3539 kthread_stop(fs_info
->cleaner_kthread
);
3541 fs_info
->closing
= 2;
3544 btrfs_free_qgroup_config(root
->fs_info
);
3546 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3547 printk(KERN_INFO
"btrfs: at unmount delalloc count %lld\n",
3548 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3551 btrfs_free_block_groups(fs_info
);
3553 btrfs_stop_all_workers(fs_info
);
3555 del_fs_roots(fs_info
);
3557 free_root_pointers(fs_info
, 1);
3559 iput(fs_info
->btree_inode
);
3561 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3562 if (btrfs_test_opt(root
, CHECK_INTEGRITY
))
3563 btrfsic_unmount(root
, fs_info
->fs_devices
);
3566 btrfs_close_devices(fs_info
->fs_devices
);
3567 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3569 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3570 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3571 bdi_destroy(&fs_info
->bdi
);
3572 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3574 btrfs_free_stripe_hash_table(fs_info
);
3579 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
3583 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
3585 ret
= extent_buffer_uptodate(buf
);
3589 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3590 parent_transid
, atomic
);
3596 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
3598 return set_extent_buffer_uptodate(buf
);
3601 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3603 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3604 u64 transid
= btrfs_header_generation(buf
);
3607 btrfs_assert_tree_locked(buf
);
3608 if (transid
!= root
->fs_info
->generation
)
3609 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, "
3610 "found %llu running %llu\n",
3611 (unsigned long long)buf
->start
,
3612 (unsigned long long)transid
,
3613 (unsigned long long)root
->fs_info
->generation
);
3614 was_dirty
= set_extent_buffer_dirty(buf
);
3616 __percpu_counter_add(&root
->fs_info
->dirty_metadata_bytes
,
3618 root
->fs_info
->dirty_metadata_batch
);
3621 static void __btrfs_btree_balance_dirty(struct btrfs_root
*root
,
3625 * looks as though older kernels can get into trouble with
3626 * this code, they end up stuck in balance_dirty_pages forever
3630 if (current
->flags
& PF_MEMALLOC
)
3634 btrfs_balance_delayed_items(root
);
3636 ret
= percpu_counter_compare(&root
->fs_info
->dirty_metadata_bytes
,
3637 BTRFS_DIRTY_METADATA_THRESH
);
3639 balance_dirty_pages_ratelimited(
3640 root
->fs_info
->btree_inode
->i_mapping
);
3645 void btrfs_btree_balance_dirty(struct btrfs_root
*root
)
3647 __btrfs_btree_balance_dirty(root
, 1);
3650 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root
*root
)
3652 __btrfs_btree_balance_dirty(root
, 0);
3655 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
3657 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3658 return btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
3661 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
3665 * Placeholder for checks
3670 static void btrfs_error_commit_super(struct btrfs_root
*root
)
3672 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3673 btrfs_run_delayed_iputs(root
);
3674 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3676 down_write(&root
->fs_info
->cleanup_work_sem
);
3677 up_write(&root
->fs_info
->cleanup_work_sem
);
3679 /* cleanup FS via transaction */
3680 btrfs_cleanup_transaction(root
);
3683 static void btrfs_destroy_ordered_operations(struct btrfs_transaction
*t
,
3684 struct btrfs_root
*root
)
3686 struct btrfs_inode
*btrfs_inode
;
3687 struct list_head splice
;
3689 INIT_LIST_HEAD(&splice
);
3691 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
3692 spin_lock(&root
->fs_info
->ordered_root_lock
);
3694 list_splice_init(&t
->ordered_operations
, &splice
);
3695 while (!list_empty(&splice
)) {
3696 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3697 ordered_operations
);
3699 list_del_init(&btrfs_inode
->ordered_operations
);
3700 spin_unlock(&root
->fs_info
->ordered_root_lock
);
3702 btrfs_invalidate_inodes(btrfs_inode
->root
);
3704 spin_lock(&root
->fs_info
->ordered_root_lock
);
3707 spin_unlock(&root
->fs_info
->ordered_root_lock
);
3708 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
3711 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
3713 struct btrfs_ordered_extent
*ordered
;
3715 spin_lock(&root
->ordered_extent_lock
);
3717 * This will just short circuit the ordered completion stuff which will
3718 * make sure the ordered extent gets properly cleaned up.
3720 list_for_each_entry(ordered
, &root
->ordered_extents
,
3722 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
3723 spin_unlock(&root
->ordered_extent_lock
);
3726 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
3728 struct btrfs_root
*root
;
3729 struct list_head splice
;
3731 INIT_LIST_HEAD(&splice
);
3733 spin_lock(&fs_info
->ordered_root_lock
);
3734 list_splice_init(&fs_info
->ordered_roots
, &splice
);
3735 while (!list_empty(&splice
)) {
3736 root
= list_first_entry(&splice
, struct btrfs_root
,
3738 list_del_init(&root
->ordered_root
);
3740 btrfs_destroy_ordered_extents(root
);
3742 cond_resched_lock(&fs_info
->ordered_root_lock
);
3744 spin_unlock(&fs_info
->ordered_root_lock
);
3747 int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
3748 struct btrfs_root
*root
)
3750 struct rb_node
*node
;
3751 struct btrfs_delayed_ref_root
*delayed_refs
;
3752 struct btrfs_delayed_ref_node
*ref
;
3755 delayed_refs
= &trans
->delayed_refs
;
3757 spin_lock(&delayed_refs
->lock
);
3758 if (delayed_refs
->num_entries
== 0) {
3759 spin_unlock(&delayed_refs
->lock
);
3760 printk(KERN_INFO
"delayed_refs has NO entry\n");
3764 while ((node
= rb_first(&delayed_refs
->root
)) != NULL
) {
3765 struct btrfs_delayed_ref_head
*head
= NULL
;
3766 bool pin_bytes
= false;
3768 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
3769 atomic_set(&ref
->refs
, 1);
3770 if (btrfs_delayed_ref_is_head(ref
)) {
3772 head
= btrfs_delayed_node_to_head(ref
);
3773 if (!mutex_trylock(&head
->mutex
)) {
3774 atomic_inc(&ref
->refs
);
3775 spin_unlock(&delayed_refs
->lock
);
3777 /* Need to wait for the delayed ref to run */
3778 mutex_lock(&head
->mutex
);
3779 mutex_unlock(&head
->mutex
);
3780 btrfs_put_delayed_ref(ref
);
3782 spin_lock(&delayed_refs
->lock
);
3786 if (head
->must_insert_reserved
)
3788 btrfs_free_delayed_extent_op(head
->extent_op
);
3789 delayed_refs
->num_heads
--;
3790 if (list_empty(&head
->cluster
))
3791 delayed_refs
->num_heads_ready
--;
3792 list_del_init(&head
->cluster
);
3796 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
3797 delayed_refs
->num_entries
--;
3798 spin_unlock(&delayed_refs
->lock
);
3801 btrfs_pin_extent(root
, ref
->bytenr
,
3803 mutex_unlock(&head
->mutex
);
3805 btrfs_put_delayed_ref(ref
);
3808 spin_lock(&delayed_refs
->lock
);
3811 spin_unlock(&delayed_refs
->lock
);
3816 static void btrfs_evict_pending_snapshots(struct btrfs_transaction
*t
)
3818 struct btrfs_pending_snapshot
*snapshot
;
3819 struct list_head splice
;
3821 INIT_LIST_HEAD(&splice
);
3823 list_splice_init(&t
->pending_snapshots
, &splice
);
3825 while (!list_empty(&splice
)) {
3826 snapshot
= list_entry(splice
.next
,
3827 struct btrfs_pending_snapshot
,
3829 snapshot
->error
= -ECANCELED
;
3830 list_del_init(&snapshot
->list
);
3834 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
3836 struct btrfs_inode
*btrfs_inode
;
3837 struct list_head splice
;
3839 INIT_LIST_HEAD(&splice
);
3841 spin_lock(&root
->delalloc_lock
);
3842 list_splice_init(&root
->delalloc_inodes
, &splice
);
3844 while (!list_empty(&splice
)) {
3845 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
3848 list_del_init(&btrfs_inode
->delalloc_inodes
);
3849 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
3850 &btrfs_inode
->runtime_flags
);
3851 spin_unlock(&root
->delalloc_lock
);
3853 btrfs_invalidate_inodes(btrfs_inode
->root
);
3855 spin_lock(&root
->delalloc_lock
);
3858 spin_unlock(&root
->delalloc_lock
);
3861 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
3863 struct btrfs_root
*root
;
3864 struct list_head splice
;
3866 INIT_LIST_HEAD(&splice
);
3868 spin_lock(&fs_info
->delalloc_root_lock
);
3869 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
3870 while (!list_empty(&splice
)) {
3871 root
= list_first_entry(&splice
, struct btrfs_root
,
3873 list_del_init(&root
->delalloc_root
);
3874 root
= btrfs_grab_fs_root(root
);
3876 spin_unlock(&fs_info
->delalloc_root_lock
);
3878 btrfs_destroy_delalloc_inodes(root
);
3879 btrfs_put_fs_root(root
);
3881 spin_lock(&fs_info
->delalloc_root_lock
);
3883 spin_unlock(&fs_info
->delalloc_root_lock
);
3886 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
3887 struct extent_io_tree
*dirty_pages
,
3891 struct extent_buffer
*eb
;
3896 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
3901 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
3902 while (start
<= end
) {
3903 eb
= btrfs_find_tree_block(root
, start
,
3905 start
+= root
->leafsize
;
3908 wait_on_extent_buffer_writeback(eb
);
3910 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
3912 clear_extent_buffer_dirty(eb
);
3913 free_extent_buffer_stale(eb
);
3920 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
3921 struct extent_io_tree
*pinned_extents
)
3923 struct extent_io_tree
*unpin
;
3929 unpin
= pinned_extents
;
3932 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3933 EXTENT_DIRTY
, NULL
);
3938 if (btrfs_test_opt(root
, DISCARD
))
3939 ret
= btrfs_error_discard_extent(root
, start
,
3943 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3944 btrfs_error_unpin_extent_range(root
, start
, end
);
3949 if (unpin
== &root
->fs_info
->freed_extents
[0])
3950 unpin
= &root
->fs_info
->freed_extents
[1];
3952 unpin
= &root
->fs_info
->freed_extents
[0];
3960 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
3961 struct btrfs_root
*root
)
3963 btrfs_destroy_delayed_refs(cur_trans
, root
);
3964 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
3965 cur_trans
->dirty_pages
.dirty_bytes
);
3967 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
3968 wake_up(&root
->fs_info
->transaction_blocked_wait
);
3970 btrfs_evict_pending_snapshots(cur_trans
);
3972 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
3973 wake_up(&root
->fs_info
->transaction_wait
);
3975 btrfs_destroy_delayed_inodes(root
);
3976 btrfs_assert_delayed_root_empty(root
);
3978 btrfs_destroy_marked_extents(root
, &cur_trans
->dirty_pages
,
3980 btrfs_destroy_pinned_extent(root
,
3981 root
->fs_info
->pinned_extents
);
3983 cur_trans
->state
=TRANS_STATE_COMPLETED
;
3984 wake_up(&cur_trans
->commit_wait
);
3987 memset(cur_trans, 0, sizeof(*cur_trans));
3988 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3992 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
3994 struct btrfs_transaction
*t
;
3997 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
3999 spin_lock(&root
->fs_info
->trans_lock
);
4000 list_splice_init(&root
->fs_info
->trans_list
, &list
);
4001 root
->fs_info
->running_transaction
= NULL
;
4002 spin_unlock(&root
->fs_info
->trans_lock
);
4004 while (!list_empty(&list
)) {
4005 t
= list_entry(list
.next
, struct btrfs_transaction
, list
);
4007 btrfs_destroy_ordered_operations(t
, root
);
4009 btrfs_destroy_all_ordered_extents(root
->fs_info
);
4011 btrfs_destroy_delayed_refs(t
, root
);
4014 * FIXME: cleanup wait for commit
4015 * We needn't acquire the lock here, because we are during
4016 * the umount, there is no other task which will change it.
4018 t
->state
= TRANS_STATE_COMMIT_START
;
4020 if (waitqueue_active(&root
->fs_info
->transaction_blocked_wait
))
4021 wake_up(&root
->fs_info
->transaction_blocked_wait
);
4023 btrfs_evict_pending_snapshots(t
);
4025 t
->state
= TRANS_STATE_UNBLOCKED
;
4027 if (waitqueue_active(&root
->fs_info
->transaction_wait
))
4028 wake_up(&root
->fs_info
->transaction_wait
);
4030 btrfs_destroy_delayed_inodes(root
);
4031 btrfs_assert_delayed_root_empty(root
);
4033 btrfs_destroy_all_delalloc_inodes(root
->fs_info
);
4035 btrfs_destroy_marked_extents(root
, &t
->dirty_pages
,
4038 btrfs_destroy_pinned_extent(root
,
4039 root
->fs_info
->pinned_extents
);
4041 t
->state
= TRANS_STATE_COMPLETED
;
4043 if (waitqueue_active(&t
->commit_wait
))
4044 wake_up(&t
->commit_wait
);
4046 atomic_set(&t
->use_count
, 0);
4047 list_del_init(&t
->list
);
4048 memset(t
, 0, sizeof(*t
));
4049 kmem_cache_free(btrfs_transaction_cachep
, t
);
4052 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
4057 static struct extent_io_ops btree_extent_io_ops
= {
4058 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4059 .readpage_io_failed_hook
= btree_io_failed_hook
,
4060 .submit_bio_hook
= btree_submit_bio_hook
,
4061 /* note we're sharing with inode.c for the merge bio hook */
4062 .merge_bio_hook
= btrfs_merge_bio_hook
,