4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr
;
81 EXPORT_SYMBOL(max_mapnr
);
82 EXPORT_SYMBOL(mem_map
);
85 unsigned long num_physpages
;
87 * A number of key systems in x86 including ioremap() rely on the assumption
88 * that high_memory defines the upper bound on direct map memory, then end
89 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
90 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
95 EXPORT_SYMBOL(num_physpages
);
96 EXPORT_SYMBOL(high_memory
);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly
=
105 #ifdef CONFIG_COMPAT_BRK
111 static int __init
disable_randmaps(char *s
)
113 randomize_va_space
= 0;
116 __setup("norandmaps", disable_randmaps
);
118 unsigned long zero_pfn __read_mostly
;
119 unsigned long highest_memmap_pfn __read_mostly
;
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
124 static int __init
init_zero_pfn(void)
126 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
129 core_initcall(init_zero_pfn
);
132 #if defined(SPLIT_RSS_COUNTING)
134 void sync_mm_rss(struct mm_struct
*mm
)
138 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
139 if (current
->rss_stat
.count
[i
]) {
140 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
141 current
->rss_stat
.count
[i
] = 0;
144 current
->rss_stat
.events
= 0;
147 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
149 struct task_struct
*task
= current
;
151 if (likely(task
->mm
== mm
))
152 task
->rss_stat
.count
[member
] += val
;
154 add_mm_counter(mm
, member
, val
);
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct
*task
)
163 if (unlikely(task
!= current
))
165 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
166 sync_mm_rss(task
->mm
);
168 #else /* SPLIT_RSS_COUNTING */
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
173 static void check_sync_rss_stat(struct task_struct
*task
)
177 #endif /* SPLIT_RSS_COUNTING */
179 #ifdef HAVE_GENERIC_MMU_GATHER
181 static int tlb_next_batch(struct mmu_gather
*tlb
)
183 struct mmu_gather_batch
*batch
;
187 tlb
->active
= batch
->next
;
191 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
194 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
201 batch
->max
= MAX_GATHER_BATCH
;
203 tlb
->active
->next
= batch
;
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
214 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, bool fullmm
)
218 tlb
->fullmm
= fullmm
;
222 tlb
->fast_mode
= (num_possible_cpus() == 1);
223 tlb
->local
.next
= NULL
;
225 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
226 tlb
->active
= &tlb
->local
;
227 tlb
->batch_count
= 0;
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 void tlb_flush_mmu(struct mmu_gather
*tlb
)
236 struct mmu_gather_batch
*batch
;
238 if (!tlb
->need_flush
)
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 tlb_table_flush(tlb
);
246 if (tlb_fast_mode(tlb
))
249 for (batch
= &tlb
->local
; batch
; batch
= batch
->next
) {
250 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
253 tlb
->active
= &tlb
->local
;
257 * Called at the end of the shootdown operation to free up any resources
258 * that were required.
260 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
262 struct mmu_gather_batch
*batch
, *next
;
268 /* keep the page table cache within bounds */
271 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
273 free_pages((unsigned long)batch
, 0);
275 tlb
->local
.next
= NULL
;
279 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
280 * handling the additional races in SMP caused by other CPUs caching valid
281 * mappings in their TLBs. Returns the number of free page slots left.
282 * When out of page slots we must call tlb_flush_mmu().
284 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
286 struct mmu_gather_batch
*batch
;
288 VM_BUG_ON(!tlb
->need_flush
);
290 if (tlb_fast_mode(tlb
)) {
291 free_page_and_swap_cache(page
);
292 return 1; /* avoid calling tlb_flush_mmu() */
296 batch
->pages
[batch
->nr
++] = page
;
297 if (batch
->nr
== batch
->max
) {
298 if (!tlb_next_batch(tlb
))
302 VM_BUG_ON(batch
->nr
> batch
->max
);
304 return batch
->max
- batch
->nr
;
307 #endif /* HAVE_GENERIC_MMU_GATHER */
309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312 * See the comment near struct mmu_table_batch.
315 static void tlb_remove_table_smp_sync(void *arg
)
317 /* Simply deliver the interrupt */
320 static void tlb_remove_table_one(void *table
)
323 * This isn't an RCU grace period and hence the page-tables cannot be
324 * assumed to be actually RCU-freed.
326 * It is however sufficient for software page-table walkers that rely on
327 * IRQ disabling. See the comment near struct mmu_table_batch.
329 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
330 __tlb_remove_table(table
);
333 static void tlb_remove_table_rcu(struct rcu_head
*head
)
335 struct mmu_table_batch
*batch
;
338 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
340 for (i
= 0; i
< batch
->nr
; i
++)
341 __tlb_remove_table(batch
->tables
[i
]);
343 free_page((unsigned long)batch
);
346 void tlb_table_flush(struct mmu_gather
*tlb
)
348 struct mmu_table_batch
**batch
= &tlb
->batch
;
351 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
356 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
358 struct mmu_table_batch
**batch
= &tlb
->batch
;
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
366 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
367 __tlb_remove_table(table
);
371 if (*batch
== NULL
) {
372 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
373 if (*batch
== NULL
) {
374 tlb_remove_table_one(table
);
379 (*batch
)->tables
[(*batch
)->nr
++] = table
;
380 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
381 tlb_table_flush(tlb
);
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387 * If a p?d_bad entry is found while walking page tables, report
388 * the error, before resetting entry to p?d_none. Usually (but
389 * very seldom) called out from the p?d_none_or_clear_bad macros.
392 void pgd_clear_bad(pgd_t
*pgd
)
398 void pud_clear_bad(pud_t
*pud
)
404 void pmd_clear_bad(pmd_t
*pmd
)
411 * Note: this doesn't free the actual pages themselves. That
412 * has been handled earlier when unmapping all the memory regions.
414 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
417 pgtable_t token
= pmd_pgtable(*pmd
);
419 pte_free_tlb(tlb
, token
, addr
);
423 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
424 unsigned long addr
, unsigned long end
,
425 unsigned long floor
, unsigned long ceiling
)
432 pmd
= pmd_offset(pud
, addr
);
434 next
= pmd_addr_end(addr
, end
);
435 if (pmd_none_or_clear_bad(pmd
))
437 free_pte_range(tlb
, pmd
, addr
);
438 } while (pmd
++, addr
= next
, addr
!= end
);
448 if (end
- 1 > ceiling
- 1)
451 pmd
= pmd_offset(pud
, start
);
453 pmd_free_tlb(tlb
, pmd
, start
);
456 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
457 unsigned long addr
, unsigned long end
,
458 unsigned long floor
, unsigned long ceiling
)
465 pud
= pud_offset(pgd
, addr
);
467 next
= pud_addr_end(addr
, end
);
468 if (pud_none_or_clear_bad(pud
))
470 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
471 } while (pud
++, addr
= next
, addr
!= end
);
477 ceiling
&= PGDIR_MASK
;
481 if (end
- 1 > ceiling
- 1)
484 pud
= pud_offset(pgd
, start
);
486 pud_free_tlb(tlb
, pud
, start
);
490 * This function frees user-level page tables of a process.
492 * Must be called with pagetable lock held.
494 void free_pgd_range(struct mmu_gather
*tlb
,
495 unsigned long addr
, unsigned long end
,
496 unsigned long floor
, unsigned long ceiling
)
502 * The next few lines have given us lots of grief...
504 * Why are we testing PMD* at this top level? Because often
505 * there will be no work to do at all, and we'd prefer not to
506 * go all the way down to the bottom just to discover that.
508 * Why all these "- 1"s? Because 0 represents both the bottom
509 * of the address space and the top of it (using -1 for the
510 * top wouldn't help much: the masks would do the wrong thing).
511 * The rule is that addr 0 and floor 0 refer to the bottom of
512 * the address space, but end 0 and ceiling 0 refer to the top
513 * Comparisons need to use "end - 1" and "ceiling - 1" (though
514 * that end 0 case should be mythical).
516 * Wherever addr is brought up or ceiling brought down, we must
517 * be careful to reject "the opposite 0" before it confuses the
518 * subsequent tests. But what about where end is brought down
519 * by PMD_SIZE below? no, end can't go down to 0 there.
521 * Whereas we round start (addr) and ceiling down, by different
522 * masks at different levels, in order to test whether a table
523 * now has no other vmas using it, so can be freed, we don't
524 * bother to round floor or end up - the tests don't need that.
538 if (end
- 1 > ceiling
- 1)
543 pgd
= pgd_offset(tlb
->mm
, addr
);
545 next
= pgd_addr_end(addr
, end
);
546 if (pgd_none_or_clear_bad(pgd
))
548 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
549 } while (pgd
++, addr
= next
, addr
!= end
);
552 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
553 unsigned long floor
, unsigned long ceiling
)
556 struct vm_area_struct
*next
= vma
->vm_next
;
557 unsigned long addr
= vma
->vm_start
;
560 * Hide vma from rmap and truncate_pagecache before freeing
563 unlink_anon_vmas(vma
);
564 unlink_file_vma(vma
);
566 if (is_vm_hugetlb_page(vma
)) {
567 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
568 floor
, next
? next
->vm_start
: ceiling
);
571 * Optimization: gather nearby vmas into one call down
573 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
574 && !is_vm_hugetlb_page(next
)) {
577 unlink_anon_vmas(vma
);
578 unlink_file_vma(vma
);
580 free_pgd_range(tlb
, addr
, vma
->vm_end
,
581 floor
, next
? next
->vm_start
: ceiling
);
587 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
588 pmd_t
*pmd
, unsigned long address
)
590 pgtable_t
new = pte_alloc_one(mm
, address
);
591 int wait_split_huge_page
;
596 * Ensure all pte setup (eg. pte page lock and page clearing) are
597 * visible before the pte is made visible to other CPUs by being
598 * put into page tables.
600 * The other side of the story is the pointer chasing in the page
601 * table walking code (when walking the page table without locking;
602 * ie. most of the time). Fortunately, these data accesses consist
603 * of a chain of data-dependent loads, meaning most CPUs (alpha
604 * being the notable exception) will already guarantee loads are
605 * seen in-order. See the alpha page table accessors for the
606 * smp_read_barrier_depends() barriers in page table walking code.
608 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
610 spin_lock(&mm
->page_table_lock
);
611 wait_split_huge_page
= 0;
612 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
614 pmd_populate(mm
, pmd
, new);
616 } else if (unlikely(pmd_trans_splitting(*pmd
)))
617 wait_split_huge_page
= 1;
618 spin_unlock(&mm
->page_table_lock
);
621 if (wait_split_huge_page
)
622 wait_split_huge_page(vma
->anon_vma
, pmd
);
626 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
628 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
632 smp_wmb(); /* See comment in __pte_alloc */
634 spin_lock(&init_mm
.page_table_lock
);
635 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
636 pmd_populate_kernel(&init_mm
, pmd
, new);
639 VM_BUG_ON(pmd_trans_splitting(*pmd
));
640 spin_unlock(&init_mm
.page_table_lock
);
642 pte_free_kernel(&init_mm
, new);
646 static inline void init_rss_vec(int *rss
)
648 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
651 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
655 if (current
->mm
== mm
)
657 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
659 add_mm_counter(mm
, i
, rss
[i
]);
663 * This function is called to print an error when a bad pte
664 * is found. For example, we might have a PFN-mapped pte in
665 * a region that doesn't allow it.
667 * The calling function must still handle the error.
669 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
670 pte_t pte
, struct page
*page
)
672 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
673 pud_t
*pud
= pud_offset(pgd
, addr
);
674 pmd_t
*pmd
= pmd_offset(pud
, addr
);
675 struct address_space
*mapping
;
677 static unsigned long resume
;
678 static unsigned long nr_shown
;
679 static unsigned long nr_unshown
;
682 * Allow a burst of 60 reports, then keep quiet for that minute;
683 * or allow a steady drip of one report per second.
685 if (nr_shown
== 60) {
686 if (time_before(jiffies
, resume
)) {
692 "BUG: Bad page map: %lu messages suppressed\n",
699 resume
= jiffies
+ 60 * HZ
;
701 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
702 index
= linear_page_index(vma
, addr
);
705 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
707 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
711 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
712 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
714 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
717 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
718 (unsigned long)vma
->vm_ops
->fault
);
719 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
720 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
721 (unsigned long)vma
->vm_file
->f_op
->mmap
);
723 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
726 static inline bool is_cow_mapping(vm_flags_t flags
)
728 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
732 * vm_normal_page -- This function gets the "struct page" associated with a pte.
734 * "Special" mappings do not wish to be associated with a "struct page" (either
735 * it doesn't exist, or it exists but they don't want to touch it). In this
736 * case, NULL is returned here. "Normal" mappings do have a struct page.
738 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
739 * pte bit, in which case this function is trivial. Secondly, an architecture
740 * may not have a spare pte bit, which requires a more complicated scheme,
743 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
744 * special mapping (even if there are underlying and valid "struct pages").
745 * COWed pages of a VM_PFNMAP are always normal.
747 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
748 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
749 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
750 * mapping will always honor the rule
752 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
754 * And for normal mappings this is false.
756 * This restricts such mappings to be a linear translation from virtual address
757 * to pfn. To get around this restriction, we allow arbitrary mappings so long
758 * as the vma is not a COW mapping; in that case, we know that all ptes are
759 * special (because none can have been COWed).
762 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
764 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
765 * page" backing, however the difference is that _all_ pages with a struct
766 * page (that is, those where pfn_valid is true) are refcounted and considered
767 * normal pages by the VM. The disadvantage is that pages are refcounted
768 * (which can be slower and simply not an option for some PFNMAP users). The
769 * advantage is that we don't have to follow the strict linearity rule of
770 * PFNMAP mappings in order to support COWable mappings.
773 #ifdef __HAVE_ARCH_PTE_SPECIAL
774 # define HAVE_PTE_SPECIAL 1
776 # define HAVE_PTE_SPECIAL 0
778 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
781 unsigned long pfn
= pte_pfn(pte
);
783 if (HAVE_PTE_SPECIAL
) {
784 if (likely(!pte_special(pte
)))
786 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
788 if (!is_zero_pfn(pfn
))
789 print_bad_pte(vma
, addr
, pte
, NULL
);
793 /* !HAVE_PTE_SPECIAL case follows: */
795 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
796 if (vma
->vm_flags
& VM_MIXEDMAP
) {
802 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
803 if (pfn
== vma
->vm_pgoff
+ off
)
805 if (!is_cow_mapping(vma
->vm_flags
))
810 if (is_zero_pfn(pfn
))
813 if (unlikely(pfn
> highest_memmap_pfn
)) {
814 print_bad_pte(vma
, addr
, pte
, NULL
);
819 * NOTE! We still have PageReserved() pages in the page tables.
820 * eg. VDSO mappings can cause them to exist.
823 return pfn_to_page(pfn
);
827 * copy one vm_area from one task to the other. Assumes the page tables
828 * already present in the new task to be cleared in the whole range
829 * covered by this vma.
832 static inline unsigned long
833 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
834 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
835 unsigned long addr
, int *rss
)
837 unsigned long vm_flags
= vma
->vm_flags
;
838 pte_t pte
= *src_pte
;
841 /* pte contains position in swap or file, so copy. */
842 if (unlikely(!pte_present(pte
))) {
843 if (!pte_file(pte
)) {
844 swp_entry_t entry
= pte_to_swp_entry(pte
);
846 if (swap_duplicate(entry
) < 0)
849 /* make sure dst_mm is on swapoff's mmlist. */
850 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
851 spin_lock(&mmlist_lock
);
852 if (list_empty(&dst_mm
->mmlist
))
853 list_add(&dst_mm
->mmlist
,
855 spin_unlock(&mmlist_lock
);
857 if (likely(!non_swap_entry(entry
)))
859 else if (is_migration_entry(entry
)) {
860 page
= migration_entry_to_page(entry
);
867 if (is_write_migration_entry(entry
) &&
868 is_cow_mapping(vm_flags
)) {
870 * COW mappings require pages in both
871 * parent and child to be set to read.
873 make_migration_entry_read(&entry
);
874 pte
= swp_entry_to_pte(entry
);
875 set_pte_at(src_mm
, addr
, src_pte
, pte
);
883 * If it's a COW mapping, write protect it both
884 * in the parent and the child
886 if (is_cow_mapping(vm_flags
)) {
887 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
888 pte
= pte_wrprotect(pte
);
892 * If it's a shared mapping, mark it clean in
895 if (vm_flags
& VM_SHARED
)
896 pte
= pte_mkclean(pte
);
897 pte
= pte_mkold(pte
);
899 page
= vm_normal_page(vma
, addr
, pte
);
910 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
914 int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
915 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
916 unsigned long addr
, unsigned long end
)
918 pte_t
*orig_src_pte
, *orig_dst_pte
;
919 pte_t
*src_pte
, *dst_pte
;
920 spinlock_t
*src_ptl
, *dst_ptl
;
922 int rss
[NR_MM_COUNTERS
];
923 swp_entry_t entry
= (swp_entry_t
){0};
928 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
931 src_pte
= pte_offset_map(src_pmd
, addr
);
932 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
933 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
934 orig_src_pte
= src_pte
;
935 orig_dst_pte
= dst_pte
;
936 arch_enter_lazy_mmu_mode();
940 * We are holding two locks at this point - either of them
941 * could generate latencies in another task on another CPU.
943 if (progress
>= 32) {
945 if (need_resched() ||
946 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
949 if (pte_none(*src_pte
)) {
953 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
958 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
960 arch_leave_lazy_mmu_mode();
961 spin_unlock(src_ptl
);
962 pte_unmap(orig_src_pte
);
963 add_mm_rss_vec(dst_mm
, rss
);
964 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
968 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
977 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
978 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
979 unsigned long addr
, unsigned long end
)
981 pmd_t
*src_pmd
, *dst_pmd
;
984 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
987 src_pmd
= pmd_offset(src_pud
, addr
);
989 next
= pmd_addr_end(addr
, end
);
990 if (pmd_trans_huge(*src_pmd
)) {
992 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
993 err
= copy_huge_pmd(dst_mm
, src_mm
,
994 dst_pmd
, src_pmd
, addr
, vma
);
1001 if (pmd_none_or_clear_bad(src_pmd
))
1003 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1006 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1010 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1011 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1012 unsigned long addr
, unsigned long end
)
1014 pud_t
*src_pud
, *dst_pud
;
1017 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
1020 src_pud
= pud_offset(src_pgd
, addr
);
1022 next
= pud_addr_end(addr
, end
);
1023 if (pud_none_or_clear_bad(src_pud
))
1025 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1028 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1032 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1033 struct vm_area_struct
*vma
)
1035 pgd_t
*src_pgd
, *dst_pgd
;
1037 unsigned long addr
= vma
->vm_start
;
1038 unsigned long end
= vma
->vm_end
;
1039 unsigned long mmun_start
; /* For mmu_notifiers */
1040 unsigned long mmun_end
; /* For mmu_notifiers */
1045 * Don't copy ptes where a page fault will fill them correctly.
1046 * Fork becomes much lighter when there are big shared or private
1047 * readonly mappings. The tradeoff is that copy_page_range is more
1048 * efficient than faulting.
1050 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_NONLINEAR
|
1051 VM_PFNMAP
| VM_MIXEDMAP
))) {
1056 if (is_vm_hugetlb_page(vma
))
1057 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1059 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1061 * We do not free on error cases below as remove_vma
1062 * gets called on error from higher level routine
1064 ret
= track_pfn_copy(vma
);
1070 * We need to invalidate the secondary MMU mappings only when
1071 * there could be a permission downgrade on the ptes of the
1072 * parent mm. And a permission downgrade will only happen if
1073 * is_cow_mapping() returns true.
1075 is_cow
= is_cow_mapping(vma
->vm_flags
);
1079 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1083 dst_pgd
= pgd_offset(dst_mm
, addr
);
1084 src_pgd
= pgd_offset(src_mm
, addr
);
1086 next
= pgd_addr_end(addr
, end
);
1087 if (pgd_none_or_clear_bad(src_pgd
))
1089 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1090 vma
, addr
, next
))) {
1094 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1097 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1101 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1102 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1103 unsigned long addr
, unsigned long end
,
1104 struct zap_details
*details
)
1106 struct mm_struct
*mm
= tlb
->mm
;
1107 int force_flush
= 0;
1108 int rss
[NR_MM_COUNTERS
];
1115 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1117 arch_enter_lazy_mmu_mode();
1120 if (pte_none(ptent
)) {
1124 if (pte_present(ptent
)) {
1127 page
= vm_normal_page(vma
, addr
, ptent
);
1128 if (unlikely(details
) && page
) {
1130 * unmap_shared_mapping_pages() wants to
1131 * invalidate cache without truncating:
1132 * unmap shared but keep private pages.
1134 if (details
->check_mapping
&&
1135 details
->check_mapping
!= page
->mapping
)
1138 * Each page->index must be checked when
1139 * invalidating or truncating nonlinear.
1141 if (details
->nonlinear_vma
&&
1142 (page
->index
< details
->first_index
||
1143 page
->index
> details
->last_index
))
1146 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1148 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1149 if (unlikely(!page
))
1151 if (unlikely(details
) && details
->nonlinear_vma
1152 && linear_page_index(details
->nonlinear_vma
,
1153 addr
) != page
->index
)
1154 set_pte_at(mm
, addr
, pte
,
1155 pgoff_to_pte(page
->index
));
1157 rss
[MM_ANONPAGES
]--;
1159 if (pte_dirty(ptent
))
1160 set_page_dirty(page
);
1161 if (pte_young(ptent
) &&
1162 likely(!VM_SequentialReadHint(vma
)))
1163 mark_page_accessed(page
);
1164 rss
[MM_FILEPAGES
]--;
1166 page_remove_rmap(page
);
1167 if (unlikely(page_mapcount(page
) < 0))
1168 print_bad_pte(vma
, addr
, ptent
, page
);
1169 force_flush
= !__tlb_remove_page(tlb
, page
);
1175 * If details->check_mapping, we leave swap entries;
1176 * if details->nonlinear_vma, we leave file entries.
1178 if (unlikely(details
))
1180 if (pte_file(ptent
)) {
1181 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1182 print_bad_pte(vma
, addr
, ptent
, NULL
);
1184 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1186 if (!non_swap_entry(entry
))
1188 else if (is_migration_entry(entry
)) {
1191 page
= migration_entry_to_page(entry
);
1194 rss
[MM_ANONPAGES
]--;
1196 rss
[MM_FILEPAGES
]--;
1198 if (unlikely(!free_swap_and_cache(entry
)))
1199 print_bad_pte(vma
, addr
, ptent
, NULL
);
1201 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1202 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1204 add_mm_rss_vec(mm
, rss
);
1205 arch_leave_lazy_mmu_mode();
1206 pte_unmap_unlock(start_pte
, ptl
);
1209 * mmu_gather ran out of room to batch pages, we break out of
1210 * the PTE lock to avoid doing the potential expensive TLB invalidate
1211 * and page-free while holding it.
1216 #ifdef HAVE_GENERIC_MMU_GATHER
1228 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1229 struct vm_area_struct
*vma
, pud_t
*pud
,
1230 unsigned long addr
, unsigned long end
,
1231 struct zap_details
*details
)
1236 pmd
= pmd_offset(pud
, addr
);
1238 next
= pmd_addr_end(addr
, end
);
1239 if (pmd_trans_huge(*pmd
)) {
1240 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1241 #ifdef CONFIG_DEBUG_VM
1242 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1243 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1244 __func__
, addr
, end
,
1250 split_huge_page_pmd(vma
, addr
, pmd
);
1251 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1256 * Here there can be other concurrent MADV_DONTNEED or
1257 * trans huge page faults running, and if the pmd is
1258 * none or trans huge it can change under us. This is
1259 * because MADV_DONTNEED holds the mmap_sem in read
1262 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1264 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1267 } while (pmd
++, addr
= next
, addr
!= end
);
1272 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1273 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1274 unsigned long addr
, unsigned long end
,
1275 struct zap_details
*details
)
1280 pud
= pud_offset(pgd
, addr
);
1282 next
= pud_addr_end(addr
, end
);
1283 if (pud_none_or_clear_bad(pud
))
1285 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1286 } while (pud
++, addr
= next
, addr
!= end
);
1291 static void unmap_page_range(struct mmu_gather
*tlb
,
1292 struct vm_area_struct
*vma
,
1293 unsigned long addr
, unsigned long end
,
1294 struct zap_details
*details
)
1299 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1302 BUG_ON(addr
>= end
);
1303 mem_cgroup_uncharge_start();
1304 tlb_start_vma(tlb
, vma
);
1305 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1307 next
= pgd_addr_end(addr
, end
);
1308 if (pgd_none_or_clear_bad(pgd
))
1310 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1311 } while (pgd
++, addr
= next
, addr
!= end
);
1312 tlb_end_vma(tlb
, vma
);
1313 mem_cgroup_uncharge_end();
1317 static void unmap_single_vma(struct mmu_gather
*tlb
,
1318 struct vm_area_struct
*vma
, unsigned long start_addr
,
1319 unsigned long end_addr
,
1320 struct zap_details
*details
)
1322 unsigned long start
= max(vma
->vm_start
, start_addr
);
1325 if (start
>= vma
->vm_end
)
1327 end
= min(vma
->vm_end
, end_addr
);
1328 if (end
<= vma
->vm_start
)
1332 uprobe_munmap(vma
, start
, end
);
1334 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1335 untrack_pfn(vma
, 0, 0);
1338 if (unlikely(is_vm_hugetlb_page(vma
))) {
1340 * It is undesirable to test vma->vm_file as it
1341 * should be non-null for valid hugetlb area.
1342 * However, vm_file will be NULL in the error
1343 * cleanup path of do_mmap_pgoff. When
1344 * hugetlbfs ->mmap method fails,
1345 * do_mmap_pgoff() nullifies vma->vm_file
1346 * before calling this function to clean up.
1347 * Since no pte has actually been setup, it is
1348 * safe to do nothing in this case.
1351 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1352 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1353 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1356 unmap_page_range(tlb
, vma
, start
, end
, details
);
1361 * unmap_vmas - unmap a range of memory covered by a list of vma's
1362 * @tlb: address of the caller's struct mmu_gather
1363 * @vma: the starting vma
1364 * @start_addr: virtual address at which to start unmapping
1365 * @end_addr: virtual address at which to end unmapping
1367 * Unmap all pages in the vma list.
1369 * Only addresses between `start' and `end' will be unmapped.
1371 * The VMA list must be sorted in ascending virtual address order.
1373 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1374 * range after unmap_vmas() returns. So the only responsibility here is to
1375 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1376 * drops the lock and schedules.
1378 void unmap_vmas(struct mmu_gather
*tlb
,
1379 struct vm_area_struct
*vma
, unsigned long start_addr
,
1380 unsigned long end_addr
)
1382 struct mm_struct
*mm
= vma
->vm_mm
;
1384 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1385 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1386 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1387 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1391 * zap_page_range - remove user pages in a given range
1392 * @vma: vm_area_struct holding the applicable pages
1393 * @start: starting address of pages to zap
1394 * @size: number of bytes to zap
1395 * @details: details of nonlinear truncation or shared cache invalidation
1397 * Caller must protect the VMA list
1399 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1400 unsigned long size
, struct zap_details
*details
)
1402 struct mm_struct
*mm
= vma
->vm_mm
;
1403 struct mmu_gather tlb
;
1404 unsigned long end
= start
+ size
;
1407 tlb_gather_mmu(&tlb
, mm
, 0);
1408 update_hiwater_rss(mm
);
1409 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1410 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1411 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1412 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1413 tlb_finish_mmu(&tlb
, start
, end
);
1417 * zap_page_range_single - remove user pages in a given range
1418 * @vma: vm_area_struct holding the applicable pages
1419 * @address: starting address of pages to zap
1420 * @size: number of bytes to zap
1421 * @details: details of nonlinear truncation or shared cache invalidation
1423 * The range must fit into one VMA.
1425 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1426 unsigned long size
, struct zap_details
*details
)
1428 struct mm_struct
*mm
= vma
->vm_mm
;
1429 struct mmu_gather tlb
;
1430 unsigned long end
= address
+ size
;
1433 tlb_gather_mmu(&tlb
, mm
, 0);
1434 update_hiwater_rss(mm
);
1435 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1436 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1437 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1438 tlb_finish_mmu(&tlb
, address
, end
);
1442 * zap_vma_ptes - remove ptes mapping the vma
1443 * @vma: vm_area_struct holding ptes to be zapped
1444 * @address: starting address of pages to zap
1445 * @size: number of bytes to zap
1447 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1449 * The entire address range must be fully contained within the vma.
1451 * Returns 0 if successful.
1453 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1456 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1457 !(vma
->vm_flags
& VM_PFNMAP
))
1459 zap_page_range_single(vma
, address
, size
, NULL
);
1462 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1465 * follow_page_mask - look up a page descriptor from a user-virtual address
1466 * @vma: vm_area_struct mapping @address
1467 * @address: virtual address to look up
1468 * @flags: flags modifying lookup behaviour
1469 * @page_mask: on output, *page_mask is set according to the size of the page
1471 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1473 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1474 * an error pointer if there is a mapping to something not represented
1475 * by a page descriptor (see also vm_normal_page()).
1477 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1478 unsigned long address
, unsigned int flags
,
1479 unsigned int *page_mask
)
1487 struct mm_struct
*mm
= vma
->vm_mm
;
1491 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1492 if (!IS_ERR(page
)) {
1493 BUG_ON(flags
& FOLL_GET
);
1498 pgd
= pgd_offset(mm
, address
);
1499 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1502 pud
= pud_offset(pgd
, address
);
1505 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
1506 BUG_ON(flags
& FOLL_GET
);
1507 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1510 if (unlikely(pud_bad(*pud
)))
1513 pmd
= pmd_offset(pud
, address
);
1516 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
1517 BUG_ON(flags
& FOLL_GET
);
1518 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1521 if ((flags
& FOLL_NUMA
) && pmd_numa(*pmd
))
1523 if (pmd_trans_huge(*pmd
)) {
1524 if (flags
& FOLL_SPLIT
) {
1525 split_huge_page_pmd(vma
, address
, pmd
);
1526 goto split_fallthrough
;
1528 spin_lock(&mm
->page_table_lock
);
1529 if (likely(pmd_trans_huge(*pmd
))) {
1530 if (unlikely(pmd_trans_splitting(*pmd
))) {
1531 spin_unlock(&mm
->page_table_lock
);
1532 wait_split_huge_page(vma
->anon_vma
, pmd
);
1534 page
= follow_trans_huge_pmd(vma
, address
,
1536 spin_unlock(&mm
->page_table_lock
);
1537 *page_mask
= HPAGE_PMD_NR
- 1;
1541 spin_unlock(&mm
->page_table_lock
);
1545 if (unlikely(pmd_bad(*pmd
)))
1548 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1551 if (!pte_present(pte
)) {
1554 * KSM's break_ksm() relies upon recognizing a ksm page
1555 * even while it is being migrated, so for that case we
1556 * need migration_entry_wait().
1558 if (likely(!(flags
& FOLL_MIGRATION
)))
1560 if (pte_none(pte
) || pte_file(pte
))
1562 entry
= pte_to_swp_entry(pte
);
1563 if (!is_migration_entry(entry
))
1565 pte_unmap_unlock(ptep
, ptl
);
1566 migration_entry_wait(mm
, pmd
, address
);
1567 goto split_fallthrough
;
1569 if ((flags
& FOLL_NUMA
) && pte_numa(pte
))
1571 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1574 page
= vm_normal_page(vma
, address
, pte
);
1575 if (unlikely(!page
)) {
1576 if ((flags
& FOLL_DUMP
) ||
1577 !is_zero_pfn(pte_pfn(pte
)))
1579 page
= pte_page(pte
);
1582 if (flags
& FOLL_GET
)
1583 get_page_foll(page
);
1584 if (flags
& FOLL_TOUCH
) {
1585 if ((flags
& FOLL_WRITE
) &&
1586 !pte_dirty(pte
) && !PageDirty(page
))
1587 set_page_dirty(page
);
1589 * pte_mkyoung() would be more correct here, but atomic care
1590 * is needed to avoid losing the dirty bit: it is easier to use
1591 * mark_page_accessed().
1593 mark_page_accessed(page
);
1595 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1597 * The preliminary mapping check is mainly to avoid the
1598 * pointless overhead of lock_page on the ZERO_PAGE
1599 * which might bounce very badly if there is contention.
1601 * If the page is already locked, we don't need to
1602 * handle it now - vmscan will handle it later if and
1603 * when it attempts to reclaim the page.
1605 if (page
->mapping
&& trylock_page(page
)) {
1606 lru_add_drain(); /* push cached pages to LRU */
1608 * Because we lock page here, and migration is
1609 * blocked by the pte's page reference, and we
1610 * know the page is still mapped, we don't even
1611 * need to check for file-cache page truncation.
1613 mlock_vma_page(page
);
1618 pte_unmap_unlock(ptep
, ptl
);
1623 pte_unmap_unlock(ptep
, ptl
);
1624 return ERR_PTR(-EFAULT
);
1627 pte_unmap_unlock(ptep
, ptl
);
1633 * When core dumping an enormous anonymous area that nobody
1634 * has touched so far, we don't want to allocate unnecessary pages or
1635 * page tables. Return error instead of NULL to skip handle_mm_fault,
1636 * then get_dump_page() will return NULL to leave a hole in the dump.
1637 * But we can only make this optimization where a hole would surely
1638 * be zero-filled if handle_mm_fault() actually did handle it.
1640 if ((flags
& FOLL_DUMP
) &&
1641 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1642 return ERR_PTR(-EFAULT
);
1646 static inline int stack_guard_page(struct vm_area_struct
*vma
, unsigned long addr
)
1648 return stack_guard_page_start(vma
, addr
) ||
1649 stack_guard_page_end(vma
, addr
+PAGE_SIZE
);
1653 * __get_user_pages() - pin user pages in memory
1654 * @tsk: task_struct of target task
1655 * @mm: mm_struct of target mm
1656 * @start: starting user address
1657 * @nr_pages: number of pages from start to pin
1658 * @gup_flags: flags modifying pin behaviour
1659 * @pages: array that receives pointers to the pages pinned.
1660 * Should be at least nr_pages long. Or NULL, if caller
1661 * only intends to ensure the pages are faulted in.
1662 * @vmas: array of pointers to vmas corresponding to each page.
1663 * Or NULL if the caller does not require them.
1664 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1666 * Returns number of pages pinned. This may be fewer than the number
1667 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1668 * were pinned, returns -errno. Each page returned must be released
1669 * with a put_page() call when it is finished with. vmas will only
1670 * remain valid while mmap_sem is held.
1672 * Must be called with mmap_sem held for read or write.
1674 * __get_user_pages walks a process's page tables and takes a reference to
1675 * each struct page that each user address corresponds to at a given
1676 * instant. That is, it takes the page that would be accessed if a user
1677 * thread accesses the given user virtual address at that instant.
1679 * This does not guarantee that the page exists in the user mappings when
1680 * __get_user_pages returns, and there may even be a completely different
1681 * page there in some cases (eg. if mmapped pagecache has been invalidated
1682 * and subsequently re faulted). However it does guarantee that the page
1683 * won't be freed completely. And mostly callers simply care that the page
1684 * contains data that was valid *at some point in time*. Typically, an IO
1685 * or similar operation cannot guarantee anything stronger anyway because
1686 * locks can't be held over the syscall boundary.
1688 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1689 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1690 * appropriate) must be called after the page is finished with, and
1691 * before put_page is called.
1693 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1694 * or mmap_sem contention, and if waiting is needed to pin all pages,
1695 * *@nonblocking will be set to 0.
1697 * In most cases, get_user_pages or get_user_pages_fast should be used
1698 * instead of __get_user_pages. __get_user_pages should be used only if
1699 * you need some special @gup_flags.
1701 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1702 unsigned long start
, unsigned long nr_pages
,
1703 unsigned int gup_flags
, struct page
**pages
,
1704 struct vm_area_struct
**vmas
, int *nonblocking
)
1707 unsigned long vm_flags
;
1708 unsigned int page_mask
;
1713 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1716 * Require read or write permissions.
1717 * If FOLL_FORCE is set, we only require the "MAY" flags.
1719 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1720 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1721 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1722 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1725 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1726 * would be called on PROT_NONE ranges. We must never invoke
1727 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1728 * page faults would unprotect the PROT_NONE ranges if
1729 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1730 * bitflag. So to avoid that, don't set FOLL_NUMA if
1731 * FOLL_FORCE is set.
1733 if (!(gup_flags
& FOLL_FORCE
))
1734 gup_flags
|= FOLL_NUMA
;
1739 struct vm_area_struct
*vma
;
1741 vma
= find_extend_vma(mm
, start
);
1742 if (!vma
&& in_gate_area(mm
, start
)) {
1743 unsigned long pg
= start
& PAGE_MASK
;
1749 /* user gate pages are read-only */
1750 if (gup_flags
& FOLL_WRITE
)
1751 return i
? : -EFAULT
;
1753 pgd
= pgd_offset_k(pg
);
1755 pgd
= pgd_offset_gate(mm
, pg
);
1756 BUG_ON(pgd_none(*pgd
));
1757 pud
= pud_offset(pgd
, pg
);
1758 BUG_ON(pud_none(*pud
));
1759 pmd
= pmd_offset(pud
, pg
);
1761 return i
? : -EFAULT
;
1762 VM_BUG_ON(pmd_trans_huge(*pmd
));
1763 pte
= pte_offset_map(pmd
, pg
);
1764 if (pte_none(*pte
)) {
1766 return i
? : -EFAULT
;
1768 vma
= get_gate_vma(mm
);
1772 page
= vm_normal_page(vma
, start
, *pte
);
1774 if (!(gup_flags
& FOLL_DUMP
) &&
1775 is_zero_pfn(pte_pfn(*pte
)))
1776 page
= pte_page(*pte
);
1779 return i
? : -EFAULT
;
1791 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1792 !(vm_flags
& vma
->vm_flags
))
1793 return i
? : -EFAULT
;
1795 if (is_vm_hugetlb_page(vma
)) {
1796 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1797 &start
, &nr_pages
, i
, gup_flags
);
1803 unsigned int foll_flags
= gup_flags
;
1804 unsigned int page_increm
;
1807 * If we have a pending SIGKILL, don't keep faulting
1808 * pages and potentially allocating memory.
1810 if (unlikely(fatal_signal_pending(current
)))
1811 return i
? i
: -ERESTARTSYS
;
1814 while (!(page
= follow_page_mask(vma
, start
,
1815 foll_flags
, &page_mask
))) {
1817 unsigned int fault_flags
= 0;
1819 /* For mlock, just skip the stack guard page. */
1820 if (foll_flags
& FOLL_MLOCK
) {
1821 if (stack_guard_page(vma
, start
))
1824 if (foll_flags
& FOLL_WRITE
)
1825 fault_flags
|= FAULT_FLAG_WRITE
;
1827 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
1828 if (foll_flags
& FOLL_NOWAIT
)
1829 fault_flags
|= (FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
);
1831 ret
= handle_mm_fault(mm
, vma
, start
,
1834 if (ret
& VM_FAULT_ERROR
) {
1835 if (ret
& VM_FAULT_OOM
)
1836 return i
? i
: -ENOMEM
;
1837 if (ret
& (VM_FAULT_HWPOISON
|
1838 VM_FAULT_HWPOISON_LARGE
)) {
1841 else if (gup_flags
& FOLL_HWPOISON
)
1846 if (ret
& VM_FAULT_SIGBUS
)
1847 return i
? i
: -EFAULT
;
1852 if (ret
& VM_FAULT_MAJOR
)
1858 if (ret
& VM_FAULT_RETRY
) {
1865 * The VM_FAULT_WRITE bit tells us that
1866 * do_wp_page has broken COW when necessary,
1867 * even if maybe_mkwrite decided not to set
1868 * pte_write. We can thus safely do subsequent
1869 * page lookups as if they were reads. But only
1870 * do so when looping for pte_write is futile:
1871 * in some cases userspace may also be wanting
1872 * to write to the gotten user page, which a
1873 * read fault here might prevent (a readonly
1874 * page might get reCOWed by userspace write).
1876 if ((ret
& VM_FAULT_WRITE
) &&
1877 !(vma
->vm_flags
& VM_WRITE
))
1878 foll_flags
&= ~FOLL_WRITE
;
1883 return i
? i
: PTR_ERR(page
);
1887 flush_anon_page(vma
, page
, start
);
1888 flush_dcache_page(page
);
1896 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
1897 if (page_increm
> nr_pages
)
1898 page_increm
= nr_pages
;
1900 start
+= page_increm
* PAGE_SIZE
;
1901 nr_pages
-= page_increm
;
1902 } while (nr_pages
&& start
< vma
->vm_end
);
1906 EXPORT_SYMBOL(__get_user_pages
);
1909 * fixup_user_fault() - manually resolve a user page fault
1910 * @tsk: the task_struct to use for page fault accounting, or
1911 * NULL if faults are not to be recorded.
1912 * @mm: mm_struct of target mm
1913 * @address: user address
1914 * @fault_flags:flags to pass down to handle_mm_fault()
1916 * This is meant to be called in the specific scenario where for locking reasons
1917 * we try to access user memory in atomic context (within a pagefault_disable()
1918 * section), this returns -EFAULT, and we want to resolve the user fault before
1921 * Typically this is meant to be used by the futex code.
1923 * The main difference with get_user_pages() is that this function will
1924 * unconditionally call handle_mm_fault() which will in turn perform all the
1925 * necessary SW fixup of the dirty and young bits in the PTE, while
1926 * handle_mm_fault() only guarantees to update these in the struct page.
1928 * This is important for some architectures where those bits also gate the
1929 * access permission to the page because they are maintained in software. On
1930 * such architectures, gup() will not be enough to make a subsequent access
1933 * This should be called with the mm_sem held for read.
1935 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
1936 unsigned long address
, unsigned int fault_flags
)
1938 struct vm_area_struct
*vma
;
1941 vma
= find_extend_vma(mm
, address
);
1942 if (!vma
|| address
< vma
->vm_start
)
1945 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
1946 if (ret
& VM_FAULT_ERROR
) {
1947 if (ret
& VM_FAULT_OOM
)
1949 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
1951 if (ret
& VM_FAULT_SIGBUS
)
1956 if (ret
& VM_FAULT_MAJOR
)
1965 * get_user_pages() - pin user pages in memory
1966 * @tsk: the task_struct to use for page fault accounting, or
1967 * NULL if faults are not to be recorded.
1968 * @mm: mm_struct of target mm
1969 * @start: starting user address
1970 * @nr_pages: number of pages from start to pin
1971 * @write: whether pages will be written to by the caller
1972 * @force: whether to force write access even if user mapping is
1973 * readonly. This will result in the page being COWed even
1974 * in MAP_SHARED mappings. You do not want this.
1975 * @pages: array that receives pointers to the pages pinned.
1976 * Should be at least nr_pages long. Or NULL, if caller
1977 * only intends to ensure the pages are faulted in.
1978 * @vmas: array of pointers to vmas corresponding to each page.
1979 * Or NULL if the caller does not require them.
1981 * Returns number of pages pinned. This may be fewer than the number
1982 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1983 * were pinned, returns -errno. Each page returned must be released
1984 * with a put_page() call when it is finished with. vmas will only
1985 * remain valid while mmap_sem is held.
1987 * Must be called with mmap_sem held for read or write.
1989 * get_user_pages walks a process's page tables and takes a reference to
1990 * each struct page that each user address corresponds to at a given
1991 * instant. That is, it takes the page that would be accessed if a user
1992 * thread accesses the given user virtual address at that instant.
1994 * This does not guarantee that the page exists in the user mappings when
1995 * get_user_pages returns, and there may even be a completely different
1996 * page there in some cases (eg. if mmapped pagecache has been invalidated
1997 * and subsequently re faulted). However it does guarantee that the page
1998 * won't be freed completely. And mostly callers simply care that the page
1999 * contains data that was valid *at some point in time*. Typically, an IO
2000 * or similar operation cannot guarantee anything stronger anyway because
2001 * locks can't be held over the syscall boundary.
2003 * If write=0, the page must not be written to. If the page is written to,
2004 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2005 * after the page is finished with, and before put_page is called.
2007 * get_user_pages is typically used for fewer-copy IO operations, to get a
2008 * handle on the memory by some means other than accesses via the user virtual
2009 * addresses. The pages may be submitted for DMA to devices or accessed via
2010 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2011 * use the correct cache flushing APIs.
2013 * See also get_user_pages_fast, for performance critical applications.
2015 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
2016 unsigned long start
, unsigned long nr_pages
, int write
,
2017 int force
, struct page
**pages
, struct vm_area_struct
**vmas
)
2019 int flags
= FOLL_TOUCH
;
2024 flags
|= FOLL_WRITE
;
2026 flags
|= FOLL_FORCE
;
2028 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
2031 EXPORT_SYMBOL(get_user_pages
);
2034 * get_dump_page() - pin user page in memory while writing it to core dump
2035 * @addr: user address
2037 * Returns struct page pointer of user page pinned for dump,
2038 * to be freed afterwards by page_cache_release() or put_page().
2040 * Returns NULL on any kind of failure - a hole must then be inserted into
2041 * the corefile, to preserve alignment with its headers; and also returns
2042 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2043 * allowing a hole to be left in the corefile to save diskspace.
2045 * Called without mmap_sem, but after all other threads have been killed.
2047 #ifdef CONFIG_ELF_CORE
2048 struct page
*get_dump_page(unsigned long addr
)
2050 struct vm_area_struct
*vma
;
2053 if (__get_user_pages(current
, current
->mm
, addr
, 1,
2054 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
2057 flush_cache_page(vma
, addr
, page_to_pfn(page
));
2060 #endif /* CONFIG_ELF_CORE */
2062 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
2065 pgd_t
* pgd
= pgd_offset(mm
, addr
);
2066 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
2068 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
2070 VM_BUG_ON(pmd_trans_huge(*pmd
));
2071 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
2078 * This is the old fallback for page remapping.
2080 * For historical reasons, it only allows reserved pages. Only
2081 * old drivers should use this, and they needed to mark their
2082 * pages reserved for the old functions anyway.
2084 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2085 struct page
*page
, pgprot_t prot
)
2087 struct mm_struct
*mm
= vma
->vm_mm
;
2096 flush_dcache_page(page
);
2097 pte
= get_locked_pte(mm
, addr
, &ptl
);
2101 if (!pte_none(*pte
))
2104 /* Ok, finally just insert the thing.. */
2106 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
2107 page_add_file_rmap(page
);
2108 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
2111 pte_unmap_unlock(pte
, ptl
);
2114 pte_unmap_unlock(pte
, ptl
);
2120 * vm_insert_page - insert single page into user vma
2121 * @vma: user vma to map to
2122 * @addr: target user address of this page
2123 * @page: source kernel page
2125 * This allows drivers to insert individual pages they've allocated
2128 * The page has to be a nice clean _individual_ kernel allocation.
2129 * If you allocate a compound page, you need to have marked it as
2130 * such (__GFP_COMP), or manually just split the page up yourself
2131 * (see split_page()).
2133 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2134 * took an arbitrary page protection parameter. This doesn't allow
2135 * that. Your vma protection will have to be set up correctly, which
2136 * means that if you want a shared writable mapping, you'd better
2137 * ask for a shared writable mapping!
2139 * The page does not need to be reserved.
2141 * Usually this function is called from f_op->mmap() handler
2142 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2143 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2144 * function from other places, for example from page-fault handler.
2146 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2149 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2151 if (!page_count(page
))
2153 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
2154 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
2155 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2156 vma
->vm_flags
|= VM_MIXEDMAP
;
2158 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2160 EXPORT_SYMBOL(vm_insert_page
);
2162 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2163 unsigned long pfn
, pgprot_t prot
)
2165 struct mm_struct
*mm
= vma
->vm_mm
;
2171 pte
= get_locked_pte(mm
, addr
, &ptl
);
2175 if (!pte_none(*pte
))
2178 /* Ok, finally just insert the thing.. */
2179 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
2180 set_pte_at(mm
, addr
, pte
, entry
);
2181 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
2185 pte_unmap_unlock(pte
, ptl
);
2191 * vm_insert_pfn - insert single pfn into user vma
2192 * @vma: user vma to map to
2193 * @addr: target user address of this page
2194 * @pfn: source kernel pfn
2196 * Similar to vm_insert_page, this allows drivers to insert individual pages
2197 * they've allocated into a user vma. Same comments apply.
2199 * This function should only be called from a vm_ops->fault handler, and
2200 * in that case the handler should return NULL.
2202 * vma cannot be a COW mapping.
2204 * As this is called only for pages that do not currently exist, we
2205 * do not need to flush old virtual caches or the TLB.
2207 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2211 pgprot_t pgprot
= vma
->vm_page_prot
;
2213 * Technically, architectures with pte_special can avoid all these
2214 * restrictions (same for remap_pfn_range). However we would like
2215 * consistency in testing and feature parity among all, so we should
2216 * try to keep these invariants in place for everybody.
2218 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2219 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
2220 (VM_PFNMAP
|VM_MIXEDMAP
));
2221 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2222 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2224 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2226 if (track_pfn_insert(vma
, &pgprot
, pfn
))
2229 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
2233 EXPORT_SYMBOL(vm_insert_pfn
);
2235 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
2238 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
2240 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2244 * If we don't have pte special, then we have to use the pfn_valid()
2245 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2246 * refcount the page if pfn_valid is true (hence insert_page rather
2247 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2248 * without pte special, it would there be refcounted as a normal page.
2250 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
2253 page
= pfn_to_page(pfn
);
2254 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2256 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
2258 EXPORT_SYMBOL(vm_insert_mixed
);
2261 * maps a range of physical memory into the requested pages. the old
2262 * mappings are removed. any references to nonexistent pages results
2263 * in null mappings (currently treated as "copy-on-access")
2265 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2266 unsigned long addr
, unsigned long end
,
2267 unsigned long pfn
, pgprot_t prot
)
2272 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2275 arch_enter_lazy_mmu_mode();
2277 BUG_ON(!pte_none(*pte
));
2278 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2280 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2281 arch_leave_lazy_mmu_mode();
2282 pte_unmap_unlock(pte
- 1, ptl
);
2286 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2287 unsigned long addr
, unsigned long end
,
2288 unsigned long pfn
, pgprot_t prot
)
2293 pfn
-= addr
>> PAGE_SHIFT
;
2294 pmd
= pmd_alloc(mm
, pud
, addr
);
2297 VM_BUG_ON(pmd_trans_huge(*pmd
));
2299 next
= pmd_addr_end(addr
, end
);
2300 if (remap_pte_range(mm
, pmd
, addr
, next
,
2301 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2303 } while (pmd
++, addr
= next
, addr
!= end
);
2307 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2308 unsigned long addr
, unsigned long end
,
2309 unsigned long pfn
, pgprot_t prot
)
2314 pfn
-= addr
>> PAGE_SHIFT
;
2315 pud
= pud_alloc(mm
, pgd
, addr
);
2319 next
= pud_addr_end(addr
, end
);
2320 if (remap_pmd_range(mm
, pud
, addr
, next
,
2321 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2323 } while (pud
++, addr
= next
, addr
!= end
);
2328 * remap_pfn_range - remap kernel memory to userspace
2329 * @vma: user vma to map to
2330 * @addr: target user address to start at
2331 * @pfn: physical address of kernel memory
2332 * @size: size of map area
2333 * @prot: page protection flags for this mapping
2335 * Note: this is only safe if the mm semaphore is held when called.
2337 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2338 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2342 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2343 struct mm_struct
*mm
= vma
->vm_mm
;
2347 * Physically remapped pages are special. Tell the
2348 * rest of the world about it:
2349 * VM_IO tells people not to look at these pages
2350 * (accesses can have side effects).
2351 * VM_PFNMAP tells the core MM that the base pages are just
2352 * raw PFN mappings, and do not have a "struct page" associated
2355 * Disable vma merging and expanding with mremap().
2357 * Omit vma from core dump, even when VM_IO turned off.
2359 * There's a horrible special case to handle copy-on-write
2360 * behaviour that some programs depend on. We mark the "original"
2361 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2362 * See vm_normal_page() for details.
2364 if (is_cow_mapping(vma
->vm_flags
)) {
2365 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2367 vma
->vm_pgoff
= pfn
;
2370 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
2374 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2376 BUG_ON(addr
>= end
);
2377 pfn
-= addr
>> PAGE_SHIFT
;
2378 pgd
= pgd_offset(mm
, addr
);
2379 flush_cache_range(vma
, addr
, end
);
2381 next
= pgd_addr_end(addr
, end
);
2382 err
= remap_pud_range(mm
, pgd
, addr
, next
,
2383 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2386 } while (pgd
++, addr
= next
, addr
!= end
);
2389 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
2393 EXPORT_SYMBOL(remap_pfn_range
);
2395 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2396 unsigned long addr
, unsigned long end
,
2397 pte_fn_t fn
, void *data
)
2402 spinlock_t
*uninitialized_var(ptl
);
2404 pte
= (mm
== &init_mm
) ?
2405 pte_alloc_kernel(pmd
, addr
) :
2406 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2410 BUG_ON(pmd_huge(*pmd
));
2412 arch_enter_lazy_mmu_mode();
2414 token
= pmd_pgtable(*pmd
);
2417 err
= fn(pte
++, token
, addr
, data
);
2420 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2422 arch_leave_lazy_mmu_mode();
2425 pte_unmap_unlock(pte
-1, ptl
);
2429 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2430 unsigned long addr
, unsigned long end
,
2431 pte_fn_t fn
, void *data
)
2437 BUG_ON(pud_huge(*pud
));
2439 pmd
= pmd_alloc(mm
, pud
, addr
);
2443 next
= pmd_addr_end(addr
, end
);
2444 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2447 } while (pmd
++, addr
= next
, addr
!= end
);
2451 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2452 unsigned long addr
, unsigned long end
,
2453 pte_fn_t fn
, void *data
)
2459 pud
= pud_alloc(mm
, pgd
, addr
);
2463 next
= pud_addr_end(addr
, end
);
2464 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2467 } while (pud
++, addr
= next
, addr
!= end
);
2472 * Scan a region of virtual memory, filling in page tables as necessary
2473 * and calling a provided function on each leaf page table.
2475 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2476 unsigned long size
, pte_fn_t fn
, void *data
)
2480 unsigned long end
= addr
+ size
;
2483 BUG_ON(addr
>= end
);
2484 pgd
= pgd_offset(mm
, addr
);
2486 next
= pgd_addr_end(addr
, end
);
2487 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
2490 } while (pgd
++, addr
= next
, addr
!= end
);
2494 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2497 * handle_pte_fault chooses page fault handler according to an entry
2498 * which was read non-atomically. Before making any commitment, on
2499 * those architectures or configurations (e.g. i386 with PAE) which
2500 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2501 * must check under lock before unmapping the pte and proceeding
2502 * (but do_wp_page is only called after already making such a check;
2503 * and do_anonymous_page can safely check later on).
2505 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2506 pte_t
*page_table
, pte_t orig_pte
)
2509 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2510 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2511 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2513 same
= pte_same(*page_table
, orig_pte
);
2517 pte_unmap(page_table
);
2521 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2524 * If the source page was a PFN mapping, we don't have
2525 * a "struct page" for it. We do a best-effort copy by
2526 * just copying from the original user address. If that
2527 * fails, we just zero-fill it. Live with it.
2529 if (unlikely(!src
)) {
2530 void *kaddr
= kmap_atomic(dst
);
2531 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2534 * This really shouldn't fail, because the page is there
2535 * in the page tables. But it might just be unreadable,
2536 * in which case we just give up and fill the result with
2539 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2541 kunmap_atomic(kaddr
);
2542 flush_dcache_page(dst
);
2544 copy_user_highpage(dst
, src
, va
, vma
);
2548 * This routine handles present pages, when users try to write
2549 * to a shared page. It is done by copying the page to a new address
2550 * and decrementing the shared-page counter for the old page.
2552 * Note that this routine assumes that the protection checks have been
2553 * done by the caller (the low-level page fault routine in most cases).
2554 * Thus we can safely just mark it writable once we've done any necessary
2557 * We also mark the page dirty at this point even though the page will
2558 * change only once the write actually happens. This avoids a few races,
2559 * and potentially makes it more efficient.
2561 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2562 * but allow concurrent faults), with pte both mapped and locked.
2563 * We return with mmap_sem still held, but pte unmapped and unlocked.
2565 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2566 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2567 spinlock_t
*ptl
, pte_t orig_pte
)
2570 struct page
*old_page
, *new_page
= NULL
;
2573 int page_mkwrite
= 0;
2574 struct page
*dirty_page
= NULL
;
2575 unsigned long mmun_start
= 0; /* For mmu_notifiers */
2576 unsigned long mmun_end
= 0; /* For mmu_notifiers */
2578 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2581 * VM_MIXEDMAP !pfn_valid() case
2583 * We should not cow pages in a shared writeable mapping.
2584 * Just mark the pages writable as we can't do any dirty
2585 * accounting on raw pfn maps.
2587 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2588 (VM_WRITE
|VM_SHARED
))
2594 * Take out anonymous pages first, anonymous shared vmas are
2595 * not dirty accountable.
2597 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2598 if (!trylock_page(old_page
)) {
2599 page_cache_get(old_page
);
2600 pte_unmap_unlock(page_table
, ptl
);
2601 lock_page(old_page
);
2602 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2604 if (!pte_same(*page_table
, orig_pte
)) {
2605 unlock_page(old_page
);
2608 page_cache_release(old_page
);
2610 if (reuse_swap_page(old_page
)) {
2612 * The page is all ours. Move it to our anon_vma so
2613 * the rmap code will not search our parent or siblings.
2614 * Protected against the rmap code by the page lock.
2616 page_move_anon_rmap(old_page
, vma
, address
);
2617 unlock_page(old_page
);
2620 unlock_page(old_page
);
2621 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2622 (VM_WRITE
|VM_SHARED
))) {
2624 * Only catch write-faults on shared writable pages,
2625 * read-only shared pages can get COWed by
2626 * get_user_pages(.write=1, .force=1).
2628 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2629 struct vm_fault vmf
;
2632 vmf
.virtual_address
= (void __user
*)(address
&
2634 vmf
.pgoff
= old_page
->index
;
2635 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2636 vmf
.page
= old_page
;
2639 * Notify the address space that the page is about to
2640 * become writable so that it can prohibit this or wait
2641 * for the page to get into an appropriate state.
2643 * We do this without the lock held, so that it can
2644 * sleep if it needs to.
2646 page_cache_get(old_page
);
2647 pte_unmap_unlock(page_table
, ptl
);
2649 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2651 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2653 goto unwritable_page
;
2655 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2656 lock_page(old_page
);
2657 if (!old_page
->mapping
) {
2658 ret
= 0; /* retry the fault */
2659 unlock_page(old_page
);
2660 goto unwritable_page
;
2663 VM_BUG_ON(!PageLocked(old_page
));
2666 * Since we dropped the lock we need to revalidate
2667 * the PTE as someone else may have changed it. If
2668 * they did, we just return, as we can count on the
2669 * MMU to tell us if they didn't also make it writable.
2671 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2673 if (!pte_same(*page_table
, orig_pte
)) {
2674 unlock_page(old_page
);
2680 dirty_page
= old_page
;
2681 get_page(dirty_page
);
2684 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2685 entry
= pte_mkyoung(orig_pte
);
2686 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2687 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2688 update_mmu_cache(vma
, address
, page_table
);
2689 pte_unmap_unlock(page_table
, ptl
);
2690 ret
|= VM_FAULT_WRITE
;
2696 * Yes, Virginia, this is actually required to prevent a race
2697 * with clear_page_dirty_for_io() from clearing the page dirty
2698 * bit after it clear all dirty ptes, but before a racing
2699 * do_wp_page installs a dirty pte.
2701 * __do_fault is protected similarly.
2703 if (!page_mkwrite
) {
2704 wait_on_page_locked(dirty_page
);
2705 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2706 /* file_update_time outside page_lock */
2708 file_update_time(vma
->vm_file
);
2710 put_page(dirty_page
);
2712 struct address_space
*mapping
= dirty_page
->mapping
;
2714 set_page_dirty(dirty_page
);
2715 unlock_page(dirty_page
);
2716 page_cache_release(dirty_page
);
2719 * Some device drivers do not set page.mapping
2720 * but still dirty their pages
2722 balance_dirty_pages_ratelimited(mapping
);
2730 * Ok, we need to copy. Oh, well..
2732 page_cache_get(old_page
);
2734 pte_unmap_unlock(page_table
, ptl
);
2736 if (unlikely(anon_vma_prepare(vma
)))
2739 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2740 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2744 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2747 cow_user_page(new_page
, old_page
, address
, vma
);
2749 __SetPageUptodate(new_page
);
2751 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2754 mmun_start
= address
& PAGE_MASK
;
2755 mmun_end
= mmun_start
+ PAGE_SIZE
;
2756 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2759 * Re-check the pte - we dropped the lock
2761 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2762 if (likely(pte_same(*page_table
, orig_pte
))) {
2764 if (!PageAnon(old_page
)) {
2765 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2766 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2769 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2770 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2771 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2772 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2774 * Clear the pte entry and flush it first, before updating the
2775 * pte with the new entry. This will avoid a race condition
2776 * seen in the presence of one thread doing SMC and another
2779 ptep_clear_flush(vma
, address
, page_table
);
2780 page_add_new_anon_rmap(new_page
, vma
, address
);
2782 * We call the notify macro here because, when using secondary
2783 * mmu page tables (such as kvm shadow page tables), we want the
2784 * new page to be mapped directly into the secondary page table.
2786 set_pte_at_notify(mm
, address
, page_table
, entry
);
2787 update_mmu_cache(vma
, address
, page_table
);
2790 * Only after switching the pte to the new page may
2791 * we remove the mapcount here. Otherwise another
2792 * process may come and find the rmap count decremented
2793 * before the pte is switched to the new page, and
2794 * "reuse" the old page writing into it while our pte
2795 * here still points into it and can be read by other
2798 * The critical issue is to order this
2799 * page_remove_rmap with the ptp_clear_flush above.
2800 * Those stores are ordered by (if nothing else,)
2801 * the barrier present in the atomic_add_negative
2802 * in page_remove_rmap.
2804 * Then the TLB flush in ptep_clear_flush ensures that
2805 * no process can access the old page before the
2806 * decremented mapcount is visible. And the old page
2807 * cannot be reused until after the decremented
2808 * mapcount is visible. So transitively, TLBs to
2809 * old page will be flushed before it can be reused.
2811 page_remove_rmap(old_page
);
2814 /* Free the old page.. */
2815 new_page
= old_page
;
2816 ret
|= VM_FAULT_WRITE
;
2818 mem_cgroup_uncharge_page(new_page
);
2821 page_cache_release(new_page
);
2823 pte_unmap_unlock(page_table
, ptl
);
2824 if (mmun_end
> mmun_start
)
2825 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2828 * Don't let another task, with possibly unlocked vma,
2829 * keep the mlocked page.
2831 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2832 lock_page(old_page
); /* LRU manipulation */
2833 munlock_vma_page(old_page
);
2834 unlock_page(old_page
);
2836 page_cache_release(old_page
);
2840 page_cache_release(new_page
);
2843 page_cache_release(old_page
);
2844 return VM_FAULT_OOM
;
2847 page_cache_release(old_page
);
2851 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2852 unsigned long start_addr
, unsigned long end_addr
,
2853 struct zap_details
*details
)
2855 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2858 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2859 struct zap_details
*details
)
2861 struct vm_area_struct
*vma
;
2862 pgoff_t vba
, vea
, zba
, zea
;
2864 vma_interval_tree_foreach(vma
, root
,
2865 details
->first_index
, details
->last_index
) {
2867 vba
= vma
->vm_pgoff
;
2868 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2869 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2870 zba
= details
->first_index
;
2873 zea
= details
->last_index
;
2877 unmap_mapping_range_vma(vma
,
2878 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2879 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2884 static inline void unmap_mapping_range_list(struct list_head
*head
,
2885 struct zap_details
*details
)
2887 struct vm_area_struct
*vma
;
2890 * In nonlinear VMAs there is no correspondence between virtual address
2891 * offset and file offset. So we must perform an exhaustive search
2892 * across *all* the pages in each nonlinear VMA, not just the pages
2893 * whose virtual address lies outside the file truncation point.
2895 list_for_each_entry(vma
, head
, shared
.nonlinear
) {
2896 details
->nonlinear_vma
= vma
;
2897 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
2902 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2903 * @mapping: the address space containing mmaps to be unmapped.
2904 * @holebegin: byte in first page to unmap, relative to the start of
2905 * the underlying file. This will be rounded down to a PAGE_SIZE
2906 * boundary. Note that this is different from truncate_pagecache(), which
2907 * must keep the partial page. In contrast, we must get rid of
2909 * @holelen: size of prospective hole in bytes. This will be rounded
2910 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2912 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2913 * but 0 when invalidating pagecache, don't throw away private data.
2915 void unmap_mapping_range(struct address_space
*mapping
,
2916 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2918 struct zap_details details
;
2919 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2920 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2922 /* Check for overflow. */
2923 if (sizeof(holelen
) > sizeof(hlen
)) {
2925 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2926 if (holeend
& ~(long long)ULONG_MAX
)
2927 hlen
= ULONG_MAX
- hba
+ 1;
2930 details
.check_mapping
= even_cows
? NULL
: mapping
;
2931 details
.nonlinear_vma
= NULL
;
2932 details
.first_index
= hba
;
2933 details
.last_index
= hba
+ hlen
- 1;
2934 if (details
.last_index
< details
.first_index
)
2935 details
.last_index
= ULONG_MAX
;
2938 mutex_lock(&mapping
->i_mmap_mutex
);
2939 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2940 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2941 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2942 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2943 mutex_unlock(&mapping
->i_mmap_mutex
);
2945 EXPORT_SYMBOL(unmap_mapping_range
);
2948 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2949 * but allow concurrent faults), and pte mapped but not yet locked.
2950 * We return with mmap_sem still held, but pte unmapped and unlocked.
2952 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2953 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2954 unsigned int flags
, pte_t orig_pte
)
2957 struct page
*page
, *swapcache
;
2961 struct mem_cgroup
*ptr
;
2965 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2968 entry
= pte_to_swp_entry(orig_pte
);
2969 if (unlikely(non_swap_entry(entry
))) {
2970 if (is_migration_entry(entry
)) {
2971 migration_entry_wait(mm
, pmd
, address
);
2972 } else if (is_hwpoison_entry(entry
)) {
2973 ret
= VM_FAULT_HWPOISON
;
2975 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2976 ret
= VM_FAULT_SIGBUS
;
2980 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2981 page
= lookup_swap_cache(entry
);
2983 page
= swapin_readahead(entry
,
2984 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2987 * Back out if somebody else faulted in this pte
2988 * while we released the pte lock.
2990 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2991 if (likely(pte_same(*page_table
, orig_pte
)))
2993 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2997 /* Had to read the page from swap area: Major fault */
2998 ret
= VM_FAULT_MAJOR
;
2999 count_vm_event(PGMAJFAULT
);
3000 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
3001 } else if (PageHWPoison(page
)) {
3003 * hwpoisoned dirty swapcache pages are kept for killing
3004 * owner processes (which may be unknown at hwpoison time)
3006 ret
= VM_FAULT_HWPOISON
;
3007 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3013 locked
= lock_page_or_retry(page
, mm
, flags
);
3015 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3017 ret
|= VM_FAULT_RETRY
;
3022 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3023 * release the swapcache from under us. The page pin, and pte_same
3024 * test below, are not enough to exclude that. Even if it is still
3025 * swapcache, we need to check that the page's swap has not changed.
3027 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
3030 page
= ksm_might_need_to_copy(page
, vma
, address
);
3031 if (unlikely(!page
)) {
3037 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
3043 * Back out if somebody else already faulted in this pte.
3045 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3046 if (unlikely(!pte_same(*page_table
, orig_pte
)))
3049 if (unlikely(!PageUptodate(page
))) {
3050 ret
= VM_FAULT_SIGBUS
;
3055 * The page isn't present yet, go ahead with the fault.
3057 * Be careful about the sequence of operations here.
3058 * To get its accounting right, reuse_swap_page() must be called
3059 * while the page is counted on swap but not yet in mapcount i.e.
3060 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3061 * must be called after the swap_free(), or it will never succeed.
3062 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3063 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3064 * in page->private. In this case, a record in swap_cgroup is silently
3065 * discarded at swap_free().
3068 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3069 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
3070 pte
= mk_pte(page
, vma
->vm_page_prot
);
3071 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
3072 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3073 flags
&= ~FAULT_FLAG_WRITE
;
3074 ret
|= VM_FAULT_WRITE
;
3077 flush_icache_page(vma
, page
);
3078 set_pte_at(mm
, address
, page_table
, pte
);
3079 if (page
== swapcache
)
3080 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
3081 else /* ksm created a completely new copy */
3082 page_add_new_anon_rmap(page
, vma
, address
);
3083 /* It's better to call commit-charge after rmap is established */
3084 mem_cgroup_commit_charge_swapin(page
, ptr
);
3087 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3088 try_to_free_swap(page
);
3090 if (page
!= swapcache
) {
3092 * Hold the lock to avoid the swap entry to be reused
3093 * until we take the PT lock for the pte_same() check
3094 * (to avoid false positives from pte_same). For
3095 * further safety release the lock after the swap_free
3096 * so that the swap count won't change under a
3097 * parallel locked swapcache.
3099 unlock_page(swapcache
);
3100 page_cache_release(swapcache
);
3103 if (flags
& FAULT_FLAG_WRITE
) {
3104 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
3105 if (ret
& VM_FAULT_ERROR
)
3106 ret
&= VM_FAULT_ERROR
;
3110 /* No need to invalidate - it was non-present before */
3111 update_mmu_cache(vma
, address
, page_table
);
3113 pte_unmap_unlock(page_table
, ptl
);
3117 mem_cgroup_cancel_charge_swapin(ptr
);
3118 pte_unmap_unlock(page_table
, ptl
);
3122 page_cache_release(page
);
3123 if (page
!= swapcache
) {
3124 unlock_page(swapcache
);
3125 page_cache_release(swapcache
);
3131 * This is like a special single-page "expand_{down|up}wards()",
3132 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3133 * doesn't hit another vma.
3135 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
3137 address
&= PAGE_MASK
;
3138 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
3139 struct vm_area_struct
*prev
= vma
->vm_prev
;
3142 * Is there a mapping abutting this one below?
3144 * That's only ok if it's the same stack mapping
3145 * that has gotten split..
3147 if (prev
&& prev
->vm_end
== address
)
3148 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
3150 expand_downwards(vma
, address
- PAGE_SIZE
);
3152 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
3153 struct vm_area_struct
*next
= vma
->vm_next
;
3155 /* As VM_GROWSDOWN but s/below/above/ */
3156 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
3157 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
3159 expand_upwards(vma
, address
+ PAGE_SIZE
);
3165 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3166 * but allow concurrent faults), and pte mapped but not yet locked.
3167 * We return with mmap_sem still held, but pte unmapped and unlocked.
3169 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3170 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3177 pte_unmap(page_table
);
3179 /* Check if we need to add a guard page to the stack */
3180 if (check_stack_guard_page(vma
, address
) < 0)
3181 return VM_FAULT_SIGBUS
;
3183 /* Use the zero-page for reads */
3184 if (!(flags
& FAULT_FLAG_WRITE
)) {
3185 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
3186 vma
->vm_page_prot
));
3187 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3188 if (!pte_none(*page_table
))
3193 /* Allocate our own private page. */
3194 if (unlikely(anon_vma_prepare(vma
)))
3196 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
3199 __SetPageUptodate(page
);
3201 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
3204 entry
= mk_pte(page
, vma
->vm_page_prot
);
3205 if (vma
->vm_flags
& VM_WRITE
)
3206 entry
= pte_mkwrite(pte_mkdirty(entry
));
3208 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3209 if (!pte_none(*page_table
))
3212 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3213 page_add_new_anon_rmap(page
, vma
, address
);
3215 set_pte_at(mm
, address
, page_table
, entry
);
3217 /* No need to invalidate - it was non-present before */
3218 update_mmu_cache(vma
, address
, page_table
);
3220 pte_unmap_unlock(page_table
, ptl
);
3223 mem_cgroup_uncharge_page(page
);
3224 page_cache_release(page
);
3227 page_cache_release(page
);
3229 return VM_FAULT_OOM
;
3233 * __do_fault() tries to create a new page mapping. It aggressively
3234 * tries to share with existing pages, but makes a separate copy if
3235 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3236 * the next page fault.
3238 * As this is called only for pages that do not currently exist, we
3239 * do not need to flush old virtual caches or the TLB.
3241 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3242 * but allow concurrent faults), and pte neither mapped nor locked.
3243 * We return with mmap_sem still held, but pte unmapped and unlocked.
3245 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3246 unsigned long address
, pmd_t
*pmd
,
3247 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3252 struct page
*cow_page
;
3255 struct page
*dirty_page
= NULL
;
3256 struct vm_fault vmf
;
3258 int page_mkwrite
= 0;
3261 * If we do COW later, allocate page befor taking lock_page()
3262 * on the file cache page. This will reduce lock holding time.
3264 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3266 if (unlikely(anon_vma_prepare(vma
)))
3267 return VM_FAULT_OOM
;
3269 cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
3271 return VM_FAULT_OOM
;
3273 if (mem_cgroup_newpage_charge(cow_page
, mm
, GFP_KERNEL
)) {
3274 page_cache_release(cow_page
);
3275 return VM_FAULT_OOM
;
3280 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
3285 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
3286 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3290 if (unlikely(PageHWPoison(vmf
.page
))) {
3291 if (ret
& VM_FAULT_LOCKED
)
3292 unlock_page(vmf
.page
);
3293 ret
= VM_FAULT_HWPOISON
;
3298 * For consistency in subsequent calls, make the faulted page always
3301 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3302 lock_page(vmf
.page
);
3304 VM_BUG_ON(!PageLocked(vmf
.page
));
3307 * Should we do an early C-O-W break?
3310 if (flags
& FAULT_FLAG_WRITE
) {
3311 if (!(vma
->vm_flags
& VM_SHARED
)) {
3314 copy_user_highpage(page
, vmf
.page
, address
, vma
);
3315 __SetPageUptodate(page
);
3318 * If the page will be shareable, see if the backing
3319 * address space wants to know that the page is about
3320 * to become writable
3322 if (vma
->vm_ops
->page_mkwrite
) {
3326 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
3327 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
3329 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
3331 goto unwritable_page
;
3333 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
3335 if (!page
->mapping
) {
3336 ret
= 0; /* retry the fault */
3338 goto unwritable_page
;
3341 VM_BUG_ON(!PageLocked(page
));
3348 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3351 * This silly early PAGE_DIRTY setting removes a race
3352 * due to the bad i386 page protection. But it's valid
3353 * for other architectures too.
3355 * Note that if FAULT_FLAG_WRITE is set, we either now have
3356 * an exclusive copy of the page, or this is a shared mapping,
3357 * so we can make it writable and dirty to avoid having to
3358 * handle that later.
3360 /* Only go through if we didn't race with anybody else... */
3361 if (likely(pte_same(*page_table
, orig_pte
))) {
3362 flush_icache_page(vma
, page
);
3363 entry
= mk_pte(page
, vma
->vm_page_prot
);
3364 if (flags
& FAULT_FLAG_WRITE
)
3365 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3367 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3368 page_add_new_anon_rmap(page
, vma
, address
);
3370 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
3371 page_add_file_rmap(page
);
3372 if (flags
& FAULT_FLAG_WRITE
) {
3374 get_page(dirty_page
);
3377 set_pte_at(mm
, address
, page_table
, entry
);
3379 /* no need to invalidate: a not-present page won't be cached */
3380 update_mmu_cache(vma
, address
, page_table
);
3383 mem_cgroup_uncharge_page(cow_page
);
3385 page_cache_release(page
);
3387 anon
= 1; /* no anon but release faulted_page */
3390 pte_unmap_unlock(page_table
, ptl
);
3393 struct address_space
*mapping
= page
->mapping
;
3396 if (set_page_dirty(dirty_page
))
3398 unlock_page(dirty_page
);
3399 put_page(dirty_page
);
3400 if ((dirtied
|| page_mkwrite
) && mapping
) {
3402 * Some device drivers do not set page.mapping but still
3405 balance_dirty_pages_ratelimited(mapping
);
3408 /* file_update_time outside page_lock */
3409 if (vma
->vm_file
&& !page_mkwrite
)
3410 file_update_time(vma
->vm_file
);
3412 unlock_page(vmf
.page
);
3414 page_cache_release(vmf
.page
);
3420 page_cache_release(page
);
3423 /* fs's fault handler get error */
3425 mem_cgroup_uncharge_page(cow_page
);
3426 page_cache_release(cow_page
);
3431 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3432 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3433 unsigned int flags
, pte_t orig_pte
)
3435 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3436 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3438 pte_unmap(page_table
);
3439 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3443 * Fault of a previously existing named mapping. Repopulate the pte
3444 * from the encoded file_pte if possible. This enables swappable
3447 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3448 * but allow concurrent faults), and pte mapped but not yet locked.
3449 * We return with mmap_sem still held, but pte unmapped and unlocked.
3451 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3452 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3453 unsigned int flags
, pte_t orig_pte
)
3457 flags
|= FAULT_FLAG_NONLINEAR
;
3459 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3462 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3464 * Page table corrupted: show pte and kill process.
3466 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3467 return VM_FAULT_SIGBUS
;
3470 pgoff
= pte_to_pgoff(orig_pte
);
3471 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3474 int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3475 unsigned long addr
, int current_nid
)
3479 count_vm_numa_event(NUMA_HINT_FAULTS
);
3480 if (current_nid
== numa_node_id())
3481 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3483 return mpol_misplaced(page
, vma
, addr
);
3486 int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3487 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3489 struct page
*page
= NULL
;
3491 int current_nid
= -1;
3493 bool migrated
= false;
3496 * The "pte" at this point cannot be used safely without
3497 * validation through pte_unmap_same(). It's of NUMA type but
3498 * the pfn may be screwed if the read is non atomic.
3500 * ptep_modify_prot_start is not called as this is clearing
3501 * the _PAGE_NUMA bit and it is not really expected that there
3502 * would be concurrent hardware modifications to the PTE.
3504 ptl
= pte_lockptr(mm
, pmd
);
3506 if (unlikely(!pte_same(*ptep
, pte
))) {
3507 pte_unmap_unlock(ptep
, ptl
);
3511 pte
= pte_mknonnuma(pte
);
3512 set_pte_at(mm
, addr
, ptep
, pte
);
3513 update_mmu_cache(vma
, addr
, ptep
);
3515 page
= vm_normal_page(vma
, addr
, pte
);
3517 pte_unmap_unlock(ptep
, ptl
);
3521 current_nid
= page_to_nid(page
);
3522 target_nid
= numa_migrate_prep(page
, vma
, addr
, current_nid
);
3523 pte_unmap_unlock(ptep
, ptl
);
3524 if (target_nid
== -1) {
3526 * Account for the fault against the current node if it not
3527 * being replaced regardless of where the page is located.
3529 current_nid
= numa_node_id();
3534 /* Migrate to the requested node */
3535 migrated
= migrate_misplaced_page(page
, target_nid
);
3537 current_nid
= target_nid
;
3540 if (current_nid
!= -1)
3541 task_numa_fault(current_nid
, 1, migrated
);
3545 /* NUMA hinting page fault entry point for regular pmds */
3546 #ifdef CONFIG_NUMA_BALANCING
3547 static int do_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3548 unsigned long addr
, pmd_t
*pmdp
)
3551 pte_t
*pte
, *orig_pte
;
3552 unsigned long _addr
= addr
& PMD_MASK
;
3553 unsigned long offset
;
3556 int local_nid
= numa_node_id();
3558 spin_lock(&mm
->page_table_lock
);
3560 if (pmd_numa(pmd
)) {
3561 set_pmd_at(mm
, _addr
, pmdp
, pmd_mknonnuma(pmd
));
3564 spin_unlock(&mm
->page_table_lock
);
3569 /* we're in a page fault so some vma must be in the range */
3571 BUG_ON(vma
->vm_start
>= _addr
+ PMD_SIZE
);
3572 offset
= max(_addr
, vma
->vm_start
) & ~PMD_MASK
;
3573 VM_BUG_ON(offset
>= PMD_SIZE
);
3574 orig_pte
= pte
= pte_offset_map_lock(mm
, pmdp
, _addr
, &ptl
);
3575 pte
+= offset
>> PAGE_SHIFT
;
3576 for (addr
= _addr
+ offset
; addr
< _addr
+ PMD_SIZE
; pte
++, addr
+= PAGE_SIZE
) {
3577 pte_t pteval
= *pte
;
3579 int curr_nid
= local_nid
;
3582 if (!pte_present(pteval
))
3584 if (!pte_numa(pteval
))
3586 if (addr
>= vma
->vm_end
) {
3587 vma
= find_vma(mm
, addr
);
3588 /* there's a pte present so there must be a vma */
3590 BUG_ON(addr
< vma
->vm_start
);
3592 if (pte_numa(pteval
)) {
3593 pteval
= pte_mknonnuma(pteval
);
3594 set_pte_at(mm
, addr
, pte
, pteval
);
3596 page
= vm_normal_page(vma
, addr
, pteval
);
3597 if (unlikely(!page
))
3599 /* only check non-shared pages */
3600 if (unlikely(page_mapcount(page
) != 1))
3604 * Note that the NUMA fault is later accounted to either
3605 * the node that is currently running or where the page is
3608 curr_nid
= local_nid
;
3609 target_nid
= numa_migrate_prep(page
, vma
, addr
,
3611 if (target_nid
== -1) {
3616 /* Migrate to the requested node */
3617 pte_unmap_unlock(pte
, ptl
);
3618 migrated
= migrate_misplaced_page(page
, target_nid
);
3620 curr_nid
= target_nid
;
3621 task_numa_fault(curr_nid
, 1, migrated
);
3623 pte
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
3625 pte_unmap_unlock(orig_pte
, ptl
);
3630 static int do_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3631 unsigned long addr
, pmd_t
*pmdp
)
3636 #endif /* CONFIG_NUMA_BALANCING */
3639 * These routines also need to handle stuff like marking pages dirty
3640 * and/or accessed for architectures that don't do it in hardware (most
3641 * RISC architectures). The early dirtying is also good on the i386.
3643 * There is also a hook called "update_mmu_cache()" that architectures
3644 * with external mmu caches can use to update those (ie the Sparc or
3645 * PowerPC hashed page tables that act as extended TLBs).
3647 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3648 * but allow concurrent faults), and pte mapped but not yet locked.
3649 * We return with mmap_sem still held, but pte unmapped and unlocked.
3651 int handle_pte_fault(struct mm_struct
*mm
,
3652 struct vm_area_struct
*vma
, unsigned long address
,
3653 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3659 if (!pte_present(entry
)) {
3660 if (pte_none(entry
)) {
3662 if (likely(vma
->vm_ops
->fault
))
3663 return do_linear_fault(mm
, vma
, address
,
3664 pte
, pmd
, flags
, entry
);
3666 return do_anonymous_page(mm
, vma
, address
,
3669 if (pte_file(entry
))
3670 return do_nonlinear_fault(mm
, vma
, address
,
3671 pte
, pmd
, flags
, entry
);
3672 return do_swap_page(mm
, vma
, address
,
3673 pte
, pmd
, flags
, entry
);
3676 if (pte_numa(entry
))
3677 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3679 ptl
= pte_lockptr(mm
, pmd
);
3681 if (unlikely(!pte_same(*pte
, entry
)))
3683 if (flags
& FAULT_FLAG_WRITE
) {
3684 if (!pte_write(entry
))
3685 return do_wp_page(mm
, vma
, address
,
3686 pte
, pmd
, ptl
, entry
);
3687 entry
= pte_mkdirty(entry
);
3689 entry
= pte_mkyoung(entry
);
3690 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3691 update_mmu_cache(vma
, address
, pte
);
3694 * This is needed only for protection faults but the arch code
3695 * is not yet telling us if this is a protection fault or not.
3696 * This still avoids useless tlb flushes for .text page faults
3699 if (flags
& FAULT_FLAG_WRITE
)
3700 flush_tlb_fix_spurious_fault(vma
, address
);
3703 pte_unmap_unlock(pte
, ptl
);
3708 * By the time we get here, we already hold the mm semaphore
3710 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3711 unsigned long address
, unsigned int flags
)
3718 __set_current_state(TASK_RUNNING
);
3720 count_vm_event(PGFAULT
);
3721 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3723 /* do counter updates before entering really critical section. */
3724 check_sync_rss_stat(current
);
3726 if (unlikely(is_vm_hugetlb_page(vma
)))
3727 return hugetlb_fault(mm
, vma
, address
, flags
);
3730 pgd
= pgd_offset(mm
, address
);
3731 pud
= pud_alloc(mm
, pgd
, address
);
3733 return VM_FAULT_OOM
;
3734 pmd
= pmd_alloc(mm
, pud
, address
);
3736 return VM_FAULT_OOM
;
3737 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3739 return do_huge_pmd_anonymous_page(mm
, vma
, address
,
3742 pmd_t orig_pmd
= *pmd
;
3746 if (pmd_trans_huge(orig_pmd
)) {
3747 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3750 * If the pmd is splitting, return and retry the
3751 * the fault. Alternative: wait until the split
3752 * is done, and goto retry.
3754 if (pmd_trans_splitting(orig_pmd
))
3757 if (pmd_numa(orig_pmd
))
3758 return do_huge_pmd_numa_page(mm
, vma
, address
,
3761 if (dirty
&& !pmd_write(orig_pmd
)) {
3762 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3765 * If COW results in an oom, the huge pmd will
3766 * have been split, so retry the fault on the
3767 * pte for a smaller charge.
3769 if (unlikely(ret
& VM_FAULT_OOM
))
3773 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3782 return do_pmd_numa_page(mm
, vma
, address
, pmd
);
3785 * Use __pte_alloc instead of pte_alloc_map, because we can't
3786 * run pte_offset_map on the pmd, if an huge pmd could
3787 * materialize from under us from a different thread.
3789 if (unlikely(pmd_none(*pmd
)) &&
3790 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3791 return VM_FAULT_OOM
;
3792 /* if an huge pmd materialized from under us just retry later */
3793 if (unlikely(pmd_trans_huge(*pmd
)))
3796 * A regular pmd is established and it can't morph into a huge pmd
3797 * from under us anymore at this point because we hold the mmap_sem
3798 * read mode and khugepaged takes it in write mode. So now it's
3799 * safe to run pte_offset_map().
3801 pte
= pte_offset_map(pmd
, address
);
3803 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3806 #ifndef __PAGETABLE_PUD_FOLDED
3808 * Allocate page upper directory.
3809 * We've already handled the fast-path in-line.
3811 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3813 pud_t
*new = pud_alloc_one(mm
, address
);
3817 smp_wmb(); /* See comment in __pte_alloc */
3819 spin_lock(&mm
->page_table_lock
);
3820 if (pgd_present(*pgd
)) /* Another has populated it */
3823 pgd_populate(mm
, pgd
, new);
3824 spin_unlock(&mm
->page_table_lock
);
3827 #endif /* __PAGETABLE_PUD_FOLDED */
3829 #ifndef __PAGETABLE_PMD_FOLDED
3831 * Allocate page middle directory.
3832 * We've already handled the fast-path in-line.
3834 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3836 pmd_t
*new = pmd_alloc_one(mm
, address
);
3840 smp_wmb(); /* See comment in __pte_alloc */
3842 spin_lock(&mm
->page_table_lock
);
3843 #ifndef __ARCH_HAS_4LEVEL_HACK
3844 if (pud_present(*pud
)) /* Another has populated it */
3847 pud_populate(mm
, pud
, new);
3849 if (pgd_present(*pud
)) /* Another has populated it */
3852 pgd_populate(mm
, pud
, new);
3853 #endif /* __ARCH_HAS_4LEVEL_HACK */
3854 spin_unlock(&mm
->page_table_lock
);
3857 #endif /* __PAGETABLE_PMD_FOLDED */
3859 #if !defined(__HAVE_ARCH_GATE_AREA)
3861 #if defined(AT_SYSINFO_EHDR)
3862 static struct vm_area_struct gate_vma
;
3864 static int __init
gate_vma_init(void)
3866 gate_vma
.vm_mm
= NULL
;
3867 gate_vma
.vm_start
= FIXADDR_USER_START
;
3868 gate_vma
.vm_end
= FIXADDR_USER_END
;
3869 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3870 gate_vma
.vm_page_prot
= __P101
;
3874 __initcall(gate_vma_init
);
3877 struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
)
3879 #ifdef AT_SYSINFO_EHDR
3886 int in_gate_area_no_mm(unsigned long addr
)
3888 #ifdef AT_SYSINFO_EHDR
3889 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3895 #endif /* __HAVE_ARCH_GATE_AREA */
3897 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3898 pte_t
**ptepp
, spinlock_t
**ptlp
)
3905 pgd
= pgd_offset(mm
, address
);
3906 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3909 pud
= pud_offset(pgd
, address
);
3910 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3913 pmd
= pmd_offset(pud
, address
);
3914 VM_BUG_ON(pmd_trans_huge(*pmd
));
3915 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3918 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3922 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3925 if (!pte_present(*ptep
))
3930 pte_unmap_unlock(ptep
, *ptlp
);
3935 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3936 pte_t
**ptepp
, spinlock_t
**ptlp
)
3940 /* (void) is needed to make gcc happy */
3941 (void) __cond_lock(*ptlp
,
3942 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3947 * follow_pfn - look up PFN at a user virtual address
3948 * @vma: memory mapping
3949 * @address: user virtual address
3950 * @pfn: location to store found PFN
3952 * Only IO mappings and raw PFN mappings are allowed.
3954 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3956 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3963 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3966 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3969 *pfn
= pte_pfn(*ptep
);
3970 pte_unmap_unlock(ptep
, ptl
);
3973 EXPORT_SYMBOL(follow_pfn
);
3975 #ifdef CONFIG_HAVE_IOREMAP_PROT
3976 int follow_phys(struct vm_area_struct
*vma
,
3977 unsigned long address
, unsigned int flags
,
3978 unsigned long *prot
, resource_size_t
*phys
)
3984 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3987 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3991 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3994 *prot
= pgprot_val(pte_pgprot(pte
));
3995 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3999 pte_unmap_unlock(ptep
, ptl
);
4004 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4005 void *buf
, int len
, int write
)
4007 resource_size_t phys_addr
;
4008 unsigned long prot
= 0;
4009 void __iomem
*maddr
;
4010 int offset
= addr
& (PAGE_SIZE
-1);
4012 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4015 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
4017 memcpy_toio(maddr
+ offset
, buf
, len
);
4019 memcpy_fromio(buf
, maddr
+ offset
, len
);
4027 * Access another process' address space as given in mm. If non-NULL, use the
4028 * given task for page fault accounting.
4030 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4031 unsigned long addr
, void *buf
, int len
, int write
)
4033 struct vm_area_struct
*vma
;
4034 void *old_buf
= buf
;
4036 down_read(&mm
->mmap_sem
);
4037 /* ignore errors, just check how much was successfully transferred */
4039 int bytes
, ret
, offset
;
4041 struct page
*page
= NULL
;
4043 ret
= get_user_pages(tsk
, mm
, addr
, 1,
4044 write
, 1, &page
, &vma
);
4047 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4048 * we can access using slightly different code.
4050 #ifdef CONFIG_HAVE_IOREMAP_PROT
4051 vma
= find_vma(mm
, addr
);
4052 if (!vma
|| vma
->vm_start
> addr
)
4054 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4055 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4063 offset
= addr
& (PAGE_SIZE
-1);
4064 if (bytes
> PAGE_SIZE
-offset
)
4065 bytes
= PAGE_SIZE
-offset
;
4069 copy_to_user_page(vma
, page
, addr
,
4070 maddr
+ offset
, buf
, bytes
);
4071 set_page_dirty_lock(page
);
4073 copy_from_user_page(vma
, page
, addr
,
4074 buf
, maddr
+ offset
, bytes
);
4077 page_cache_release(page
);
4083 up_read(&mm
->mmap_sem
);
4085 return buf
- old_buf
;
4089 * access_remote_vm - access another process' address space
4090 * @mm: the mm_struct of the target address space
4091 * @addr: start address to access
4092 * @buf: source or destination buffer
4093 * @len: number of bytes to transfer
4094 * @write: whether the access is a write
4096 * The caller must hold a reference on @mm.
4098 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4099 void *buf
, int len
, int write
)
4101 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
4105 * Access another process' address space.
4106 * Source/target buffer must be kernel space,
4107 * Do not walk the page table directly, use get_user_pages
4109 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4110 void *buf
, int len
, int write
)
4112 struct mm_struct
*mm
;
4115 mm
= get_task_mm(tsk
);
4119 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
4126 * Print the name of a VMA.
4128 void print_vma_addr(char *prefix
, unsigned long ip
)
4130 struct mm_struct
*mm
= current
->mm
;
4131 struct vm_area_struct
*vma
;
4134 * Do not print if we are in atomic
4135 * contexts (in exception stacks, etc.):
4137 if (preempt_count())
4140 down_read(&mm
->mmap_sem
);
4141 vma
= find_vma(mm
, ip
);
4142 if (vma
&& vma
->vm_file
) {
4143 struct file
*f
= vma
->vm_file
;
4144 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4148 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
4151 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4153 vma
->vm_end
- vma
->vm_start
);
4154 free_page((unsigned long)buf
);
4157 up_read(&mm
->mmap_sem
);
4160 #ifdef CONFIG_PROVE_LOCKING
4161 void might_fault(void)
4164 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4165 * holding the mmap_sem, this is safe because kernel memory doesn't
4166 * get paged out, therefore we'll never actually fault, and the
4167 * below annotations will generate false positives.
4169 if (segment_eq(get_fs(), KERNEL_DS
))
4174 * it would be nicer only to annotate paths which are not under
4175 * pagefault_disable, however that requires a larger audit and
4176 * providing helpers like get_user_atomic.
4178 if (!in_atomic() && current
->mm
)
4179 might_lock_read(¤t
->mm
->mmap_sem
);
4181 EXPORT_SYMBOL(might_fault
);
4184 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4185 static void clear_gigantic_page(struct page
*page
,
4187 unsigned int pages_per_huge_page
)
4190 struct page
*p
= page
;
4193 for (i
= 0; i
< pages_per_huge_page
;
4194 i
++, p
= mem_map_next(p
, page
, i
)) {
4196 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4199 void clear_huge_page(struct page
*page
,
4200 unsigned long addr
, unsigned int pages_per_huge_page
)
4204 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4205 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4210 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4212 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4216 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4218 struct vm_area_struct
*vma
,
4219 unsigned int pages_per_huge_page
)
4222 struct page
*dst_base
= dst
;
4223 struct page
*src_base
= src
;
4225 for (i
= 0; i
< pages_per_huge_page
; ) {
4227 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4230 dst
= mem_map_next(dst
, dst_base
, i
);
4231 src
= mem_map_next(src
, src_base
, i
);
4235 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4236 unsigned long addr
, struct vm_area_struct
*vma
,
4237 unsigned int pages_per_huge_page
)
4241 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4242 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4243 pages_per_huge_page
);
4248 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4250 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4253 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */