2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
23 /* max queue in one round of service */
24 static const int cfq_quantum
= 8;
25 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max
= 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty
= 2;
30 static const int cfq_slice_sync
= HZ
/ 10;
31 static int cfq_slice_async
= HZ
/ 25;
32 static const int cfq_slice_async_rq
= 2;
33 static int cfq_slice_idle
= HZ
/ 125;
34 static int cfq_group_idle
= HZ
/ 125;
35 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
36 static const int cfq_hist_divisor
= 4;
39 * offset from end of service tree
41 #define CFQ_IDLE_DELAY (HZ / 5)
44 * below this threshold, we consider thinktime immediate
46 #define CFQ_MIN_TT (2)
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
61 static struct kmem_cache
*cfq_pool
;
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71 unsigned long last_end_request
;
73 unsigned long ttime_total
;
74 unsigned long ttime_samples
;
75 unsigned long ttime_mean
;
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
88 unsigned total_weight
;
90 struct cfq_ttime ttime
;
92 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
96 * Per process-grouping structure
101 /* various state flags, see below */
103 /* parent cfq_data */
104 struct cfq_data
*cfqd
;
105 /* service_tree member */
106 struct rb_node rb_node
;
107 /* service_tree key */
108 unsigned long rb_key
;
109 /* prio tree member */
110 struct rb_node p_node
;
111 /* prio tree root we belong to, if any */
112 struct rb_root
*p_root
;
113 /* sorted list of pending requests */
114 struct rb_root sort_list
;
115 /* if fifo isn't expired, next request to serve */
116 struct request
*next_rq
;
117 /* requests queued in sort_list */
119 /* currently allocated requests */
121 /* fifo list of requests in sort_list */
122 struct list_head fifo
;
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start
;
126 unsigned int allocated_slice
;
127 unsigned int slice_dispatch
;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start
;
130 unsigned long slice_end
;
133 /* pending priority requests */
135 /* number of requests that are on the dispatch list or inside driver */
138 /* io prio of this group */
139 unsigned short ioprio
, org_ioprio
;
140 unsigned short ioprio_class
;
145 sector_t last_request_pos
;
147 struct cfq_rb_root
*service_tree
;
148 struct cfq_queue
*new_cfqq
;
149 struct cfq_group
*cfqg
;
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors
;
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
166 * Second index in the service_trees.
170 SYNC_NOIDLE_WORKLOAD
= 1,
174 /* This is per cgroup per device grouping structure */
176 /* group service_tree member */
177 struct rb_node rb_node
;
179 /* group service_tree key */
182 unsigned int new_weight
;
185 /* number of cfqq currently on this group */
189 * Per group busy queues average. Useful for workload slice calc. We
190 * create the array for each prio class but at run time it is used
191 * only for RT and BE class and slot for IDLE class remains unused.
192 * This is primarily done to avoid confusion and a gcc warning.
194 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
196 * rr lists of queues with requests. We maintain service trees for
197 * RT and BE classes. These trees are subdivided in subclasses
198 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199 * class there is no subclassification and all the cfq queues go on
200 * a single tree service_tree_idle.
201 * Counts are embedded in the cfq_rb_root
203 struct cfq_rb_root service_trees
[2][3];
204 struct cfq_rb_root service_tree_idle
;
206 unsigned long saved_workload_slice
;
207 enum wl_type_t saved_workload
;
208 enum wl_prio_t saved_serving_prio
;
209 struct blkio_group blkg
;
210 #ifdef CONFIG_CFQ_GROUP_IOSCHED
211 struct hlist_node cfqd_node
;
214 /* number of requests that are on the dispatch list or inside driver */
216 struct cfq_ttime ttime
;
220 struct io_cq icq
; /* must be the first member */
221 struct cfq_queue
*cfqq
[2];
222 struct cfq_ttime ttime
;
226 * Per block device queue structure
229 struct request_queue
*queue
;
230 /* Root service tree for cfq_groups */
231 struct cfq_rb_root grp_service_tree
;
232 struct cfq_group root_group
;
235 * The priority currently being served
237 enum wl_prio_t serving_prio
;
238 enum wl_type_t serving_type
;
239 unsigned long workload_expires
;
240 struct cfq_group
*serving_group
;
243 * Each priority tree is sorted by next_request position. These
244 * trees are used when determining if two or more queues are
245 * interleaving requests (see cfq_close_cooperator).
247 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
249 unsigned int busy_queues
;
250 unsigned int busy_sync_queues
;
256 * queue-depth detection
262 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
263 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
266 int hw_tag_est_depth
;
267 unsigned int hw_tag_samples
;
270 * idle window management
272 struct timer_list idle_slice_timer
;
273 struct work_struct unplug_work
;
275 struct cfq_queue
*active_queue
;
276 struct cfq_io_cq
*active_cic
;
279 * async queue for each priority case
281 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
282 struct cfq_queue
*async_idle_cfqq
;
284 sector_t last_position
;
287 * tunables, see top of file
289 unsigned int cfq_quantum
;
290 unsigned int cfq_fifo_expire
[2];
291 unsigned int cfq_back_penalty
;
292 unsigned int cfq_back_max
;
293 unsigned int cfq_slice
[2];
294 unsigned int cfq_slice_async_rq
;
295 unsigned int cfq_slice_idle
;
296 unsigned int cfq_group_idle
;
297 unsigned int cfq_latency
;
298 unsigned int cfq_target_latency
;
301 * Fallback dummy cfqq for extreme OOM conditions
303 struct cfq_queue oom_cfqq
;
305 unsigned long last_delayed_sync
;
307 /* List of cfq groups being managed on this device*/
308 struct hlist_head cfqg_list
;
310 /* Number of groups which are on blkcg->blkg_list */
311 unsigned int nr_blkcg_linked_grps
;
314 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
316 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
323 if (prio
== IDLE_WORKLOAD
)
324 return &cfqg
->service_tree_idle
;
326 return &cfqg
->service_trees
[prio
][type
];
329 enum cfqq_state_flags
{
330 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
331 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
332 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
333 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
334 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
335 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
336 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
337 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
338 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
339 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
340 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
341 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
342 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
345 #define CFQ_CFQQ_FNS(name) \
346 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
348 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
350 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
352 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
354 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
356 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
360 CFQ_CFQQ_FNS(wait_request
);
361 CFQ_CFQQ_FNS(must_dispatch
);
362 CFQ_CFQQ_FNS(must_alloc_slice
);
363 CFQ_CFQQ_FNS(fifo_expire
);
364 CFQ_CFQQ_FNS(idle_window
);
365 CFQ_CFQQ_FNS(prio_changed
);
366 CFQ_CFQQ_FNS(slice_new
);
369 CFQ_CFQQ_FNS(split_coop
);
371 CFQ_CFQQ_FNS(wait_busy
);
374 #ifdef CONFIG_CFQ_GROUP_IOSCHED
375 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
376 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
377 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
378 blkg_path(&(cfqq)->cfqg->blkg), ##args)
380 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
381 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
382 blkg_path(&(cfqg)->blkg), ##args) \
385 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
386 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
387 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
389 #define cfq_log(cfqd, fmt, args...) \
390 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
392 /* Traverses through cfq group service trees */
393 #define for_each_cfqg_st(cfqg, i, j, st) \
394 for (i = 0; i <= IDLE_WORKLOAD; i++) \
395 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
396 : &cfqg->service_tree_idle; \
397 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
398 (i == IDLE_WORKLOAD && j == 0); \
399 j++, st = i < IDLE_WORKLOAD ? \
400 &cfqg->service_trees[i][j]: NULL) \
402 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
403 struct cfq_ttime
*ttime
, bool group_idle
)
406 if (!sample_valid(ttime
->ttime_samples
))
409 slice
= cfqd
->cfq_group_idle
;
411 slice
= cfqd
->cfq_slice_idle
;
412 return ttime
->ttime_mean
> slice
;
415 static inline bool iops_mode(struct cfq_data
*cfqd
)
418 * If we are not idling on queues and it is a NCQ drive, parallel
419 * execution of requests is on and measuring time is not possible
420 * in most of the cases until and unless we drive shallower queue
421 * depths and that becomes a performance bottleneck. In such cases
422 * switch to start providing fairness in terms of number of IOs.
424 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
430 static inline enum wl_prio_t
cfqq_prio(struct cfq_queue
*cfqq
)
432 if (cfq_class_idle(cfqq
))
433 return IDLE_WORKLOAD
;
434 if (cfq_class_rt(cfqq
))
440 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
442 if (!cfq_cfqq_sync(cfqq
))
443 return ASYNC_WORKLOAD
;
444 if (!cfq_cfqq_idle_window(cfqq
))
445 return SYNC_NOIDLE_WORKLOAD
;
446 return SYNC_WORKLOAD
;
449 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
450 struct cfq_data
*cfqd
,
451 struct cfq_group
*cfqg
)
453 if (wl
== IDLE_WORKLOAD
)
454 return cfqg
->service_tree_idle
.count
;
456 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
457 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
458 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
461 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
462 struct cfq_group
*cfqg
)
464 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
465 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
468 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
469 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
470 struct io_context
*, gfp_t
);
472 static inline struct cfq_io_cq
*icq_to_cic(struct io_cq
*icq
)
474 /* cic->icq is the first member, %NULL will convert to %NULL */
475 return container_of(icq
, struct cfq_io_cq
, icq
);
478 static inline struct cfq_io_cq
*cfq_cic_lookup(struct cfq_data
*cfqd
,
479 struct io_context
*ioc
)
482 return icq_to_cic(ioc_lookup_icq(ioc
, cfqd
->queue
));
486 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_cq
*cic
, bool is_sync
)
488 return cic
->cfqq
[is_sync
];
491 static inline void cic_set_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
,
494 cic
->cfqq
[is_sync
] = cfqq
;
497 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_cq
*cic
)
499 return cic
->icq
.q
->elevator
->elevator_data
;
503 * We regard a request as SYNC, if it's either a read or has the SYNC bit
504 * set (in which case it could also be direct WRITE).
506 static inline bool cfq_bio_sync(struct bio
*bio
)
508 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
512 * scheduler run of queue, if there are requests pending and no one in the
513 * driver that will restart queueing
515 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
517 if (cfqd
->busy_queues
) {
518 cfq_log(cfqd
, "schedule dispatch");
519 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
524 * Scale schedule slice based on io priority. Use the sync time slice only
525 * if a queue is marked sync and has sync io queued. A sync queue with async
526 * io only, should not get full sync slice length.
528 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
531 const int base_slice
= cfqd
->cfq_slice
[sync
];
533 WARN_ON(prio
>= IOPRIO_BE_NR
);
535 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
539 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
541 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
544 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
546 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
548 d
= d
* BLKIO_WEIGHT_DEFAULT
;
549 do_div(d
, cfqg
->weight
);
553 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
555 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
557 min_vdisktime
= vdisktime
;
559 return min_vdisktime
;
562 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
564 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
566 min_vdisktime
= vdisktime
;
568 return min_vdisktime
;
571 static void update_min_vdisktime(struct cfq_rb_root
*st
)
573 struct cfq_group
*cfqg
;
576 cfqg
= rb_entry_cfqg(st
->left
);
577 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
583 * get averaged number of queues of RT/BE priority.
584 * average is updated, with a formula that gives more weight to higher numbers,
585 * to quickly follows sudden increases and decrease slowly
588 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
589 struct cfq_group
*cfqg
, bool rt
)
591 unsigned min_q
, max_q
;
592 unsigned mult
= cfq_hist_divisor
- 1;
593 unsigned round
= cfq_hist_divisor
/ 2;
594 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
596 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
597 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
598 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
600 return cfqg
->busy_queues_avg
[rt
];
603 static inline unsigned
604 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
606 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
608 return cfqd
->cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
611 static inline unsigned
612 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
614 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
615 if (cfqd
->cfq_latency
) {
617 * interested queues (we consider only the ones with the same
618 * priority class in the cfq group)
620 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
622 unsigned sync_slice
= cfqd
->cfq_slice
[1];
623 unsigned expect_latency
= sync_slice
* iq
;
624 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
626 if (expect_latency
> group_slice
) {
627 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
628 /* scale low_slice according to IO priority
629 * and sync vs async */
631 min(slice
, base_low_slice
* slice
/ sync_slice
);
632 /* the adapted slice value is scaled to fit all iqs
633 * into the target latency */
634 slice
= max(slice
* group_slice
/ expect_latency
,
642 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
644 unsigned slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
646 cfqq
->slice_start
= jiffies
;
647 cfqq
->slice_end
= jiffies
+ slice
;
648 cfqq
->allocated_slice
= slice
;
649 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
653 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
654 * isn't valid until the first request from the dispatch is activated
655 * and the slice time set.
657 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
659 if (cfq_cfqq_slice_new(cfqq
))
661 if (time_before(jiffies
, cfqq
->slice_end
))
668 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
669 * We choose the request that is closest to the head right now. Distance
670 * behind the head is penalized and only allowed to a certain extent.
672 static struct request
*
673 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
675 sector_t s1
, s2
, d1
= 0, d2
= 0;
676 unsigned long back_max
;
677 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
678 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
679 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
681 if (rq1
== NULL
|| rq1
== rq2
)
686 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
687 return rq_is_sync(rq1
) ? rq1
: rq2
;
689 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
690 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
692 s1
= blk_rq_pos(rq1
);
693 s2
= blk_rq_pos(rq2
);
696 * by definition, 1KiB is 2 sectors
698 back_max
= cfqd
->cfq_back_max
* 2;
701 * Strict one way elevator _except_ in the case where we allow
702 * short backward seeks which are biased as twice the cost of a
703 * similar forward seek.
707 else if (s1
+ back_max
>= last
)
708 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
710 wrap
|= CFQ_RQ1_WRAP
;
714 else if (s2
+ back_max
>= last
)
715 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
717 wrap
|= CFQ_RQ2_WRAP
;
719 /* Found required data */
722 * By doing switch() on the bit mask "wrap" we avoid having to
723 * check two variables for all permutations: --> faster!
726 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
742 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
745 * Since both rqs are wrapped,
746 * start with the one that's further behind head
747 * (--> only *one* back seek required),
748 * since back seek takes more time than forward.
758 * The below is leftmost cache rbtree addon
760 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
762 /* Service tree is empty */
767 root
->left
= rb_first(&root
->rb
);
770 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
775 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
778 root
->left
= rb_first(&root
->rb
);
781 return rb_entry_cfqg(root
->left
);
786 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
792 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
796 rb_erase_init(n
, &root
->rb
);
801 * would be nice to take fifo expire time into account as well
803 static struct request
*
804 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
805 struct request
*last
)
807 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
808 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
809 struct request
*next
= NULL
, *prev
= NULL
;
811 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
814 prev
= rb_entry_rq(rbprev
);
817 next
= rb_entry_rq(rbnext
);
819 rbnext
= rb_first(&cfqq
->sort_list
);
820 if (rbnext
&& rbnext
!= &last
->rb_node
)
821 next
= rb_entry_rq(rbnext
);
824 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
827 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
828 struct cfq_queue
*cfqq
)
831 * just an approximation, should be ok.
833 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
834 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
838 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
840 return cfqg
->vdisktime
- st
->min_vdisktime
;
844 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
846 struct rb_node
**node
= &st
->rb
.rb_node
;
847 struct rb_node
*parent
= NULL
;
848 struct cfq_group
*__cfqg
;
849 s64 key
= cfqg_key(st
, cfqg
);
852 while (*node
!= NULL
) {
854 __cfqg
= rb_entry_cfqg(parent
);
856 if (key
< cfqg_key(st
, __cfqg
))
857 node
= &parent
->rb_left
;
859 node
= &parent
->rb_right
;
865 st
->left
= &cfqg
->rb_node
;
867 rb_link_node(&cfqg
->rb_node
, parent
, node
);
868 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
872 cfq_update_group_weight(struct cfq_group
*cfqg
)
874 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
875 if (cfqg
->needs_update
) {
876 cfqg
->weight
= cfqg
->new_weight
;
877 cfqg
->needs_update
= false;
882 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
884 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
886 cfq_update_group_weight(cfqg
);
887 __cfq_group_service_tree_add(st
, cfqg
);
888 st
->total_weight
+= cfqg
->weight
;
892 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
894 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
895 struct cfq_group
*__cfqg
;
899 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
903 * Currently put the group at the end. Later implement something
904 * so that groups get lesser vtime based on their weights, so that
905 * if group does not loose all if it was not continuously backlogged.
907 n
= rb_last(&st
->rb
);
909 __cfqg
= rb_entry_cfqg(n
);
910 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
912 cfqg
->vdisktime
= st
->min_vdisktime
;
913 cfq_group_service_tree_add(st
, cfqg
);
917 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
919 st
->total_weight
-= cfqg
->weight
;
920 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
921 cfq_rb_erase(&cfqg
->rb_node
, st
);
925 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
927 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
929 BUG_ON(cfqg
->nr_cfqq
< 1);
932 /* If there are other cfq queues under this group, don't delete it */
936 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
937 cfq_group_service_tree_del(st
, cfqg
);
938 cfqg
->saved_workload_slice
= 0;
939 cfq_blkiocg_update_dequeue_stats(&cfqg
->blkg
, 1);
942 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
943 unsigned int *unaccounted_time
)
945 unsigned int slice_used
;
948 * Queue got expired before even a single request completed or
949 * got expired immediately after first request completion.
951 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
953 * Also charge the seek time incurred to the group, otherwise
954 * if there are mutiple queues in the group, each can dispatch
955 * a single request on seeky media and cause lots of seek time
956 * and group will never know it.
958 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
961 slice_used
= jiffies
- cfqq
->slice_start
;
962 if (slice_used
> cfqq
->allocated_slice
) {
963 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
964 slice_used
= cfqq
->allocated_slice
;
966 if (time_after(cfqq
->slice_start
, cfqq
->dispatch_start
))
967 *unaccounted_time
+= cfqq
->slice_start
-
968 cfqq
->dispatch_start
;
974 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
975 struct cfq_queue
*cfqq
)
977 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
978 unsigned int used_sl
, charge
, unaccounted_sl
= 0;
979 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
980 - cfqg
->service_tree_idle
.count
;
983 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
986 charge
= cfqq
->slice_dispatch
;
987 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
988 charge
= cfqq
->allocated_slice
;
990 /* Can't update vdisktime while group is on service tree */
991 cfq_group_service_tree_del(st
, cfqg
);
992 cfqg
->vdisktime
+= cfq_scale_slice(charge
, cfqg
);
993 /* If a new weight was requested, update now, off tree */
994 cfq_group_service_tree_add(st
, cfqg
);
996 /* This group is being expired. Save the context */
997 if (time_after(cfqd
->workload_expires
, jiffies
)) {
998 cfqg
->saved_workload_slice
= cfqd
->workload_expires
1000 cfqg
->saved_workload
= cfqd
->serving_type
;
1001 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
1003 cfqg
->saved_workload_slice
= 0;
1005 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1007 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1008 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1009 used_sl
, cfqq
->slice_dispatch
, charge
,
1010 iops_mode(cfqd
), cfqq
->nr_sectors
);
1011 cfq_blkiocg_update_timeslice_used(&cfqg
->blkg
, used_sl
,
1013 cfq_blkiocg_set_start_empty_time(&cfqg
->blkg
);
1016 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1017 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
1020 return container_of(blkg
, struct cfq_group
, blkg
);
1024 static void cfq_update_blkio_group_weight(void *key
, struct blkio_group
*blkg
,
1025 unsigned int weight
)
1027 struct cfq_group
*cfqg
= cfqg_of_blkg(blkg
);
1028 cfqg
->new_weight
= weight
;
1029 cfqg
->needs_update
= true;
1032 static void cfq_init_add_cfqg_lists(struct cfq_data
*cfqd
,
1033 struct cfq_group
*cfqg
, struct blkio_cgroup
*blkcg
)
1035 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
1036 unsigned int major
, minor
;
1039 * Add group onto cgroup list. It might happen that bdi->dev is
1040 * not initialized yet. Initialize this new group without major
1041 * and minor info and this info will be filled in once a new thread
1045 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1046 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
,
1047 (void *)cfqd
, MKDEV(major
, minor
));
1049 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
,
1052 cfqd
->nr_blkcg_linked_grps
++;
1053 cfqg
->weight
= blkcg_get_weight(blkcg
, cfqg
->blkg
.dev
);
1055 /* Add group on cfqd list */
1056 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
1060 * Should be called from sleepable context. No request queue lock as per
1061 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1062 * from sleepable context.
1064 static struct cfq_group
* cfq_alloc_cfqg(struct cfq_data
*cfqd
)
1066 struct cfq_group
*cfqg
= NULL
;
1068 struct cfq_rb_root
*st
;
1070 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
1074 for_each_cfqg_st(cfqg
, i
, j
, st
)
1076 RB_CLEAR_NODE(&cfqg
->rb_node
);
1078 cfqg
->ttime
.last_end_request
= jiffies
;
1081 * Take the initial reference that will be released on destroy
1082 * This can be thought of a joint reference by cgroup and
1083 * elevator which will be dropped by either elevator exit
1084 * or cgroup deletion path depending on who is exiting first.
1088 ret
= blkio_alloc_blkg_stats(&cfqg
->blkg
);
1097 static struct cfq_group
*
1098 cfq_find_cfqg(struct cfq_data
*cfqd
, struct blkio_cgroup
*blkcg
)
1100 struct cfq_group
*cfqg
= NULL
;
1102 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
1103 unsigned int major
, minor
;
1106 * This is the common case when there are no blkio cgroups.
1107 * Avoid lookup in this case
1109 if (blkcg
== &blkio_root_cgroup
)
1110 cfqg
= &cfqd
->root_group
;
1112 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
1114 if (cfqg
&& !cfqg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
1115 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1116 cfqg
->blkg
.dev
= MKDEV(major
, minor
);
1123 * Search for the cfq group current task belongs to. request_queue lock must
1126 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
)
1128 struct blkio_cgroup
*blkcg
;
1129 struct cfq_group
*cfqg
= NULL
, *__cfqg
= NULL
;
1130 struct request_queue
*q
= cfqd
->queue
;
1133 blkcg
= task_blkio_cgroup(current
);
1134 cfqg
= cfq_find_cfqg(cfqd
, blkcg
);
1141 * Need to allocate a group. Allocation of group also needs allocation
1142 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1143 * we need to drop rcu lock and queue_lock before we call alloc.
1145 * Not taking any queue reference here and assuming that queue is
1146 * around by the time we return. CFQ queue allocation code does
1147 * the same. It might be racy though.
1151 spin_unlock_irq(q
->queue_lock
);
1153 cfqg
= cfq_alloc_cfqg(cfqd
);
1155 spin_lock_irq(q
->queue_lock
);
1158 blkcg
= task_blkio_cgroup(current
);
1161 * If some other thread already allocated the group while we were
1162 * not holding queue lock, free up the group
1164 __cfqg
= cfq_find_cfqg(cfqd
, blkcg
);
1173 cfqg
= &cfqd
->root_group
;
1175 cfq_init_add_cfqg_lists(cfqd
, cfqg
, blkcg
);
1180 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1186 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1188 /* Currently, all async queues are mapped to root group */
1189 if (!cfq_cfqq_sync(cfqq
))
1190 cfqg
= &cfqq
->cfqd
->root_group
;
1193 /* cfqq reference on cfqg */
1197 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1199 struct cfq_rb_root
*st
;
1202 BUG_ON(cfqg
->ref
<= 0);
1206 for_each_cfqg_st(cfqg
, i
, j
, st
)
1207 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
));
1208 free_percpu(cfqg
->blkg
.stats_cpu
);
1212 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1214 /* Something wrong if we are trying to remove same group twice */
1215 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1217 hlist_del_init(&cfqg
->cfqd_node
);
1219 BUG_ON(cfqd
->nr_blkcg_linked_grps
<= 0);
1220 cfqd
->nr_blkcg_linked_grps
--;
1223 * Put the reference taken at the time of creation so that when all
1224 * queues are gone, group can be destroyed.
1229 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1231 struct hlist_node
*pos
, *n
;
1232 struct cfq_group
*cfqg
;
1234 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1236 * If cgroup removal path got to blk_group first and removed
1237 * it from cgroup list, then it will take care of destroying
1240 if (!cfq_blkiocg_del_blkio_group(&cfqg
->blkg
))
1241 cfq_destroy_cfqg(cfqd
, cfqg
);
1246 * Blk cgroup controller notification saying that blkio_group object is being
1247 * delinked as associated cgroup object is going away. That also means that
1248 * no new IO will come in this group. So get rid of this group as soon as
1249 * any pending IO in the group is finished.
1251 * This function is called under rcu_read_lock(). key is the rcu protected
1252 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1255 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1256 * it should not be NULL as even if elevator was exiting, cgroup deltion
1257 * path got to it first.
1259 static void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1261 unsigned long flags
;
1262 struct cfq_data
*cfqd
= key
;
1264 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1265 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1266 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1269 #else /* GROUP_IOSCHED */
1270 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
)
1272 return &cfqd
->root_group
;
1275 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1281 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1285 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1286 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1288 #endif /* GROUP_IOSCHED */
1291 * The cfqd->service_trees holds all pending cfq_queue's that have
1292 * requests waiting to be processed. It is sorted in the order that
1293 * we will service the queues.
1295 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1298 struct rb_node
**p
, *parent
;
1299 struct cfq_queue
*__cfqq
;
1300 unsigned long rb_key
;
1301 struct cfq_rb_root
*service_tree
;
1305 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1307 if (cfq_class_idle(cfqq
)) {
1308 rb_key
= CFQ_IDLE_DELAY
;
1309 parent
= rb_last(&service_tree
->rb
);
1310 if (parent
&& parent
!= &cfqq
->rb_node
) {
1311 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1312 rb_key
+= __cfqq
->rb_key
;
1315 } else if (!add_front
) {
1317 * Get our rb key offset. Subtract any residual slice
1318 * value carried from last service. A negative resid
1319 * count indicates slice overrun, and this should position
1320 * the next service time further away in the tree.
1322 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1323 rb_key
-= cfqq
->slice_resid
;
1324 cfqq
->slice_resid
= 0;
1327 __cfqq
= cfq_rb_first(service_tree
);
1328 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1331 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1334 * same position, nothing more to do
1336 if (rb_key
== cfqq
->rb_key
&&
1337 cfqq
->service_tree
== service_tree
)
1340 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1341 cfqq
->service_tree
= NULL
;
1346 cfqq
->service_tree
= service_tree
;
1347 p
= &service_tree
->rb
.rb_node
;
1352 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1355 * sort by key, that represents service time.
1357 if (time_before(rb_key
, __cfqq
->rb_key
))
1360 n
= &(*p
)->rb_right
;
1368 service_tree
->left
= &cfqq
->rb_node
;
1370 cfqq
->rb_key
= rb_key
;
1371 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1372 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1373 service_tree
->count
++;
1374 if (add_front
|| !new_cfqq
)
1376 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
1379 static struct cfq_queue
*
1380 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1381 sector_t sector
, struct rb_node
**ret_parent
,
1382 struct rb_node
***rb_link
)
1384 struct rb_node
**p
, *parent
;
1385 struct cfq_queue
*cfqq
= NULL
;
1393 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1396 * Sort strictly based on sector. Smallest to the left,
1397 * largest to the right.
1399 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1400 n
= &(*p
)->rb_right
;
1401 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1409 *ret_parent
= parent
;
1415 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1417 struct rb_node
**p
, *parent
;
1418 struct cfq_queue
*__cfqq
;
1421 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1422 cfqq
->p_root
= NULL
;
1425 if (cfq_class_idle(cfqq
))
1430 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1431 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1432 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1434 rb_link_node(&cfqq
->p_node
, parent
, p
);
1435 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1437 cfqq
->p_root
= NULL
;
1441 * Update cfqq's position in the service tree.
1443 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1446 * Resorting requires the cfqq to be on the RR list already.
1448 if (cfq_cfqq_on_rr(cfqq
)) {
1449 cfq_service_tree_add(cfqd
, cfqq
, 0);
1450 cfq_prio_tree_add(cfqd
, cfqq
);
1455 * add to busy list of queues for service, trying to be fair in ordering
1456 * the pending list according to last request service
1458 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1460 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1461 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1462 cfq_mark_cfqq_on_rr(cfqq
);
1463 cfqd
->busy_queues
++;
1464 if (cfq_cfqq_sync(cfqq
))
1465 cfqd
->busy_sync_queues
++;
1467 cfq_resort_rr_list(cfqd
, cfqq
);
1471 * Called when the cfqq no longer has requests pending, remove it from
1474 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1476 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1477 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1478 cfq_clear_cfqq_on_rr(cfqq
);
1480 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1481 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1482 cfqq
->service_tree
= NULL
;
1485 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1486 cfqq
->p_root
= NULL
;
1489 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
1490 BUG_ON(!cfqd
->busy_queues
);
1491 cfqd
->busy_queues
--;
1492 if (cfq_cfqq_sync(cfqq
))
1493 cfqd
->busy_sync_queues
--;
1497 * rb tree support functions
1499 static void cfq_del_rq_rb(struct request
*rq
)
1501 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1502 const int sync
= rq_is_sync(rq
);
1504 BUG_ON(!cfqq
->queued
[sync
]);
1505 cfqq
->queued
[sync
]--;
1507 elv_rb_del(&cfqq
->sort_list
, rq
);
1509 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1511 * Queue will be deleted from service tree when we actually
1512 * expire it later. Right now just remove it from prio tree
1516 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1517 cfqq
->p_root
= NULL
;
1522 static void cfq_add_rq_rb(struct request
*rq
)
1524 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1525 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1526 struct request
*prev
;
1528 cfqq
->queued
[rq_is_sync(rq
)]++;
1530 elv_rb_add(&cfqq
->sort_list
, rq
);
1532 if (!cfq_cfqq_on_rr(cfqq
))
1533 cfq_add_cfqq_rr(cfqd
, cfqq
);
1536 * check if this request is a better next-serve candidate
1538 prev
= cfqq
->next_rq
;
1539 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1542 * adjust priority tree position, if ->next_rq changes
1544 if (prev
!= cfqq
->next_rq
)
1545 cfq_prio_tree_add(cfqd
, cfqq
);
1547 BUG_ON(!cfqq
->next_rq
);
1550 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1552 elv_rb_del(&cfqq
->sort_list
, rq
);
1553 cfqq
->queued
[rq_is_sync(rq
)]--;
1554 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1555 rq_data_dir(rq
), rq_is_sync(rq
));
1557 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
1558 &cfqq
->cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
1562 static struct request
*
1563 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1565 struct task_struct
*tsk
= current
;
1566 struct cfq_io_cq
*cic
;
1567 struct cfq_queue
*cfqq
;
1569 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1573 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1575 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1577 return elv_rb_find(&cfqq
->sort_list
, sector
);
1583 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1585 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1587 cfqd
->rq_in_driver
++;
1588 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1589 cfqd
->rq_in_driver
);
1591 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1594 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1596 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1598 WARN_ON(!cfqd
->rq_in_driver
);
1599 cfqd
->rq_in_driver
--;
1600 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1601 cfqd
->rq_in_driver
);
1604 static void cfq_remove_request(struct request
*rq
)
1606 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1608 if (cfqq
->next_rq
== rq
)
1609 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1611 list_del_init(&rq
->queuelist
);
1614 cfqq
->cfqd
->rq_queued
--;
1615 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1616 rq_data_dir(rq
), rq_is_sync(rq
));
1617 if (rq
->cmd_flags
& REQ_PRIO
) {
1618 WARN_ON(!cfqq
->prio_pending
);
1619 cfqq
->prio_pending
--;
1623 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1626 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1627 struct request
*__rq
;
1629 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1630 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1632 return ELEVATOR_FRONT_MERGE
;
1635 return ELEVATOR_NO_MERGE
;
1638 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1641 if (type
== ELEVATOR_FRONT_MERGE
) {
1642 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1644 cfq_reposition_rq_rb(cfqq
, req
);
1648 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
1651 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req
))->blkg
,
1652 bio_data_dir(bio
), cfq_bio_sync(bio
));
1656 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1657 struct request
*next
)
1659 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1660 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1663 * reposition in fifo if next is older than rq
1665 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1666 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1667 list_move(&rq
->queuelist
, &next
->queuelist
);
1668 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1671 if (cfqq
->next_rq
== next
)
1673 cfq_remove_request(next
);
1674 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq
))->blkg
,
1675 rq_data_dir(next
), rq_is_sync(next
));
1677 cfqq
= RQ_CFQQ(next
);
1679 * all requests of this queue are merged to other queues, delete it
1680 * from the service tree. If it's the active_queue,
1681 * cfq_dispatch_requests() will choose to expire it or do idle
1683 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
) &&
1684 cfqq
!= cfqd
->active_queue
)
1685 cfq_del_cfqq_rr(cfqd
, cfqq
);
1688 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1691 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1692 struct cfq_io_cq
*cic
;
1693 struct cfq_queue
*cfqq
;
1696 * Disallow merge of a sync bio into an async request.
1698 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1702 * Lookup the cfqq that this bio will be queued with and allow
1703 * merge only if rq is queued there.
1705 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1709 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1710 return cfqq
== RQ_CFQQ(rq
);
1713 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1715 del_timer(&cfqd
->idle_slice_timer
);
1716 cfq_blkiocg_update_idle_time_stats(&cfqq
->cfqg
->blkg
);
1719 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1720 struct cfq_queue
*cfqq
)
1723 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_prio:%d wl_type:%d",
1724 cfqd
->serving_prio
, cfqd
->serving_type
);
1725 cfq_blkiocg_update_avg_queue_size_stats(&cfqq
->cfqg
->blkg
);
1726 cfqq
->slice_start
= 0;
1727 cfqq
->dispatch_start
= jiffies
;
1728 cfqq
->allocated_slice
= 0;
1729 cfqq
->slice_end
= 0;
1730 cfqq
->slice_dispatch
= 0;
1731 cfqq
->nr_sectors
= 0;
1733 cfq_clear_cfqq_wait_request(cfqq
);
1734 cfq_clear_cfqq_must_dispatch(cfqq
);
1735 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1736 cfq_clear_cfqq_fifo_expire(cfqq
);
1737 cfq_mark_cfqq_slice_new(cfqq
);
1739 cfq_del_timer(cfqd
, cfqq
);
1742 cfqd
->active_queue
= cfqq
;
1746 * current cfqq expired its slice (or was too idle), select new one
1749 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1752 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1754 if (cfq_cfqq_wait_request(cfqq
))
1755 cfq_del_timer(cfqd
, cfqq
);
1757 cfq_clear_cfqq_wait_request(cfqq
);
1758 cfq_clear_cfqq_wait_busy(cfqq
);
1761 * If this cfqq is shared between multiple processes, check to
1762 * make sure that those processes are still issuing I/Os within
1763 * the mean seek distance. If not, it may be time to break the
1764 * queues apart again.
1766 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1767 cfq_mark_cfqq_split_coop(cfqq
);
1770 * store what was left of this slice, if the queue idled/timed out
1773 if (cfq_cfqq_slice_new(cfqq
))
1774 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1776 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1777 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1780 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1782 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1783 cfq_del_cfqq_rr(cfqd
, cfqq
);
1785 cfq_resort_rr_list(cfqd
, cfqq
);
1787 if (cfqq
== cfqd
->active_queue
)
1788 cfqd
->active_queue
= NULL
;
1790 if (cfqd
->active_cic
) {
1791 put_io_context(cfqd
->active_cic
->icq
.ioc
);
1792 cfqd
->active_cic
= NULL
;
1796 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1798 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1801 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1805 * Get next queue for service. Unless we have a queue preemption,
1806 * we'll simply select the first cfqq in the service tree.
1808 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1810 struct cfq_rb_root
*service_tree
=
1811 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1812 cfqd
->serving_type
);
1814 if (!cfqd
->rq_queued
)
1817 /* There is nothing to dispatch */
1820 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1822 return cfq_rb_first(service_tree
);
1825 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1827 struct cfq_group
*cfqg
;
1828 struct cfq_queue
*cfqq
;
1830 struct cfq_rb_root
*st
;
1832 if (!cfqd
->rq_queued
)
1835 cfqg
= cfq_get_next_cfqg(cfqd
);
1839 for_each_cfqg_st(cfqg
, i
, j
, st
)
1840 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1846 * Get and set a new active queue for service.
1848 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1849 struct cfq_queue
*cfqq
)
1852 cfqq
= cfq_get_next_queue(cfqd
);
1854 __cfq_set_active_queue(cfqd
, cfqq
);
1858 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1861 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1862 return blk_rq_pos(rq
) - cfqd
->last_position
;
1864 return cfqd
->last_position
- blk_rq_pos(rq
);
1867 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1870 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
1873 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1874 struct cfq_queue
*cur_cfqq
)
1876 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1877 struct rb_node
*parent
, *node
;
1878 struct cfq_queue
*__cfqq
;
1879 sector_t sector
= cfqd
->last_position
;
1881 if (RB_EMPTY_ROOT(root
))
1885 * First, if we find a request starting at the end of the last
1886 * request, choose it.
1888 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1893 * If the exact sector wasn't found, the parent of the NULL leaf
1894 * will contain the closest sector.
1896 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1897 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1900 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1901 node
= rb_next(&__cfqq
->p_node
);
1903 node
= rb_prev(&__cfqq
->p_node
);
1907 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1908 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1916 * cur_cfqq - passed in so that we don't decide that the current queue is
1917 * closely cooperating with itself.
1919 * So, basically we're assuming that that cur_cfqq has dispatched at least
1920 * one request, and that cfqd->last_position reflects a position on the disk
1921 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1924 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1925 struct cfq_queue
*cur_cfqq
)
1927 struct cfq_queue
*cfqq
;
1929 if (cfq_class_idle(cur_cfqq
))
1931 if (!cfq_cfqq_sync(cur_cfqq
))
1933 if (CFQQ_SEEKY(cur_cfqq
))
1937 * Don't search priority tree if it's the only queue in the group.
1939 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1943 * We should notice if some of the queues are cooperating, eg
1944 * working closely on the same area of the disk. In that case,
1945 * we can group them together and don't waste time idling.
1947 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1951 /* If new queue belongs to different cfq_group, don't choose it */
1952 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1956 * It only makes sense to merge sync queues.
1958 if (!cfq_cfqq_sync(cfqq
))
1960 if (CFQQ_SEEKY(cfqq
))
1964 * Do not merge queues of different priority classes
1966 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1973 * Determine whether we should enforce idle window for this queue.
1976 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1978 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1979 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1981 BUG_ON(!service_tree
);
1982 BUG_ON(!service_tree
->count
);
1984 if (!cfqd
->cfq_slice_idle
)
1987 /* We never do for idle class queues. */
1988 if (prio
== IDLE_WORKLOAD
)
1991 /* We do for queues that were marked with idle window flag. */
1992 if (cfq_cfqq_idle_window(cfqq
) &&
1993 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1997 * Otherwise, we do only if they are the last ones
1998 * in their service tree.
2000 if (service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
2001 !cfq_io_thinktime_big(cfqd
, &service_tree
->ttime
, false))
2003 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d",
2004 service_tree
->count
);
2008 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
2010 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2011 struct cfq_io_cq
*cic
;
2012 unsigned long sl
, group_idle
= 0;
2015 * SSD device without seek penalty, disable idling. But only do so
2016 * for devices that support queuing, otherwise we still have a problem
2017 * with sync vs async workloads.
2019 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
2022 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2023 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2026 * idle is disabled, either manually or by past process history
2028 if (!cfq_should_idle(cfqd
, cfqq
)) {
2029 /* no queue idling. Check for group idling */
2030 if (cfqd
->cfq_group_idle
)
2031 group_idle
= cfqd
->cfq_group_idle
;
2037 * still active requests from this queue, don't idle
2039 if (cfqq
->dispatched
)
2043 * task has exited, don't wait
2045 cic
= cfqd
->active_cic
;
2046 if (!cic
|| !atomic_read(&cic
->icq
.ioc
->nr_tasks
))
2050 * If our average think time is larger than the remaining time
2051 * slice, then don't idle. This avoids overrunning the allotted
2054 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2055 (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
)) {
2056 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%lu",
2057 cic
->ttime
.ttime_mean
);
2061 /* There are other queues in the group, don't do group idle */
2062 if (group_idle
&& cfqq
->cfqg
->nr_cfqq
> 1)
2065 cfq_mark_cfqq_wait_request(cfqq
);
2068 sl
= cfqd
->cfq_group_idle
;
2070 sl
= cfqd
->cfq_slice_idle
;
2072 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
2073 cfq_blkiocg_update_set_idle_time_stats(&cfqq
->cfqg
->blkg
);
2074 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
2075 group_idle
? 1 : 0);
2079 * Move request from internal lists to the request queue dispatch list.
2081 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
2083 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2084 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2086 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
2088 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
2089 cfq_remove_request(rq
);
2091 (RQ_CFQG(rq
))->dispatched
++;
2092 elv_dispatch_sort(q
, rq
);
2094 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
2095 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
2096 cfq_blkiocg_update_dispatch_stats(&cfqq
->cfqg
->blkg
, blk_rq_bytes(rq
),
2097 rq_data_dir(rq
), rq_is_sync(rq
));
2101 * return expired entry, or NULL to just start from scratch in rbtree
2103 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
2105 struct request
*rq
= NULL
;
2107 if (cfq_cfqq_fifo_expire(cfqq
))
2110 cfq_mark_cfqq_fifo_expire(cfqq
);
2112 if (list_empty(&cfqq
->fifo
))
2115 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
2116 if (time_before(jiffies
, rq_fifo_time(rq
)))
2119 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
2124 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2126 const int base_rq
= cfqd
->cfq_slice_async_rq
;
2128 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
2130 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
2134 * Must be called with the queue_lock held.
2136 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
2138 int process_refs
, io_refs
;
2140 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
2141 process_refs
= cfqq
->ref
- io_refs
;
2142 BUG_ON(process_refs
< 0);
2143 return process_refs
;
2146 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
2148 int process_refs
, new_process_refs
;
2149 struct cfq_queue
*__cfqq
;
2152 * If there are no process references on the new_cfqq, then it is
2153 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2154 * chain may have dropped their last reference (not just their
2155 * last process reference).
2157 if (!cfqq_process_refs(new_cfqq
))
2160 /* Avoid a circular list and skip interim queue merges */
2161 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
2167 process_refs
= cfqq_process_refs(cfqq
);
2168 new_process_refs
= cfqq_process_refs(new_cfqq
);
2170 * If the process for the cfqq has gone away, there is no
2171 * sense in merging the queues.
2173 if (process_refs
== 0 || new_process_refs
== 0)
2177 * Merge in the direction of the lesser amount of work.
2179 if (new_process_refs
>= process_refs
) {
2180 cfqq
->new_cfqq
= new_cfqq
;
2181 new_cfqq
->ref
+= process_refs
;
2183 new_cfqq
->new_cfqq
= cfqq
;
2184 cfqq
->ref
+= new_process_refs
;
2188 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
2189 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
2191 struct cfq_queue
*queue
;
2193 bool key_valid
= false;
2194 unsigned long lowest_key
= 0;
2195 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
2197 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
2198 /* select the one with lowest rb_key */
2199 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
2201 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
2202 lowest_key
= queue
->rb_key
;
2211 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2215 struct cfq_rb_root
*st
;
2216 unsigned group_slice
;
2217 enum wl_prio_t original_prio
= cfqd
->serving_prio
;
2219 /* Choose next priority. RT > BE > IDLE */
2220 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2221 cfqd
->serving_prio
= RT_WORKLOAD
;
2222 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2223 cfqd
->serving_prio
= BE_WORKLOAD
;
2225 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2226 cfqd
->workload_expires
= jiffies
+ 1;
2230 if (original_prio
!= cfqd
->serving_prio
)
2234 * For RT and BE, we have to choose also the type
2235 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2238 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2242 * check workload expiration, and that we still have other queues ready
2244 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2248 /* otherwise select new workload type */
2249 cfqd
->serving_type
=
2250 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2251 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2255 * the workload slice is computed as a fraction of target latency
2256 * proportional to the number of queues in that workload, over
2257 * all the queues in the same priority class
2259 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2261 slice
= group_slice
* count
/
2262 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2263 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2265 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2269 * Async queues are currently system wide. Just taking
2270 * proportion of queues with-in same group will lead to higher
2271 * async ratio system wide as generally root group is going
2272 * to have higher weight. A more accurate thing would be to
2273 * calculate system wide asnc/sync ratio.
2275 tmp
= cfqd
->cfq_target_latency
*
2276 cfqg_busy_async_queues(cfqd
, cfqg
);
2277 tmp
= tmp
/cfqd
->busy_queues
;
2278 slice
= min_t(unsigned, slice
, tmp
);
2280 /* async workload slice is scaled down according to
2281 * the sync/async slice ratio. */
2282 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2284 /* sync workload slice is at least 2 * cfq_slice_idle */
2285 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2287 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2288 cfq_log(cfqd
, "workload slice:%d", slice
);
2289 cfqd
->workload_expires
= jiffies
+ slice
;
2292 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2294 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2295 struct cfq_group
*cfqg
;
2297 if (RB_EMPTY_ROOT(&st
->rb
))
2299 cfqg
= cfq_rb_first_group(st
);
2300 update_min_vdisktime(st
);
2304 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2306 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2308 cfqd
->serving_group
= cfqg
;
2310 /* Restore the workload type data */
2311 if (cfqg
->saved_workload_slice
) {
2312 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2313 cfqd
->serving_type
= cfqg
->saved_workload
;
2314 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2316 cfqd
->workload_expires
= jiffies
- 1;
2318 choose_service_tree(cfqd
, cfqg
);
2322 * Select a queue for service. If we have a current active queue,
2323 * check whether to continue servicing it, or retrieve and set a new one.
2325 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2327 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2329 cfqq
= cfqd
->active_queue
;
2333 if (!cfqd
->rq_queued
)
2337 * We were waiting for group to get backlogged. Expire the queue
2339 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2343 * The active queue has run out of time, expire it and select new.
2345 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2347 * If slice had not expired at the completion of last request
2348 * we might not have turned on wait_busy flag. Don't expire
2349 * the queue yet. Allow the group to get backlogged.
2351 * The very fact that we have used the slice, that means we
2352 * have been idling all along on this queue and it should be
2353 * ok to wait for this request to complete.
2355 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2356 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2360 goto check_group_idle
;
2364 * The active queue has requests and isn't expired, allow it to
2367 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2371 * If another queue has a request waiting within our mean seek
2372 * distance, let it run. The expire code will check for close
2373 * cooperators and put the close queue at the front of the service
2374 * tree. If possible, merge the expiring queue with the new cfqq.
2376 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2378 if (!cfqq
->new_cfqq
)
2379 cfq_setup_merge(cfqq
, new_cfqq
);
2384 * No requests pending. If the active queue still has requests in
2385 * flight or is idling for a new request, allow either of these
2386 * conditions to happen (or time out) before selecting a new queue.
2388 if (timer_pending(&cfqd
->idle_slice_timer
)) {
2394 * This is a deep seek queue, but the device is much faster than
2395 * the queue can deliver, don't idle
2397 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
2398 (cfq_cfqq_slice_new(cfqq
) ||
2399 (cfqq
->slice_end
- jiffies
> jiffies
- cfqq
->slice_start
))) {
2400 cfq_clear_cfqq_deep(cfqq
);
2401 cfq_clear_cfqq_idle_window(cfqq
);
2404 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2410 * If group idle is enabled and there are requests dispatched from
2411 * this group, wait for requests to complete.
2414 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
2415 cfqq
->cfqg
->dispatched
&&
2416 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
2422 cfq_slice_expired(cfqd
, 0);
2425 * Current queue expired. Check if we have to switch to a new
2429 cfq_choose_cfqg(cfqd
);
2431 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2436 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2440 while (cfqq
->next_rq
) {
2441 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2445 BUG_ON(!list_empty(&cfqq
->fifo
));
2447 /* By default cfqq is not expired if it is empty. Do it explicitly */
2448 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2453 * Drain our current requests. Used for barriers and when switching
2454 * io schedulers on-the-fly.
2456 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2458 struct cfq_queue
*cfqq
;
2461 /* Expire the timeslice of the current active queue first */
2462 cfq_slice_expired(cfqd
, 0);
2463 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
2464 __cfq_set_active_queue(cfqd
, cfqq
);
2465 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2468 BUG_ON(cfqd
->busy_queues
);
2470 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2474 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2475 struct cfq_queue
*cfqq
)
2477 /* the queue hasn't finished any request, can't estimate */
2478 if (cfq_cfqq_slice_new(cfqq
))
2480 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2487 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2489 unsigned int max_dispatch
;
2492 * Drain async requests before we start sync IO
2494 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2498 * If this is an async queue and we have sync IO in flight, let it wait
2500 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2503 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2504 if (cfq_class_idle(cfqq
))
2508 * Does this cfqq already have too much IO in flight?
2510 if (cfqq
->dispatched
>= max_dispatch
) {
2511 bool promote_sync
= false;
2513 * idle queue must always only have a single IO in flight
2515 if (cfq_class_idle(cfqq
))
2519 * If there is only one sync queue
2520 * we can ignore async queue here and give the sync
2521 * queue no dispatch limit. The reason is a sync queue can
2522 * preempt async queue, limiting the sync queue doesn't make
2523 * sense. This is useful for aiostress test.
2525 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
2526 promote_sync
= true;
2529 * We have other queues, don't allow more IO from this one
2531 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
2536 * Sole queue user, no limit
2538 if (cfqd
->busy_queues
== 1 || promote_sync
)
2542 * Normally we start throttling cfqq when cfq_quantum/2
2543 * requests have been dispatched. But we can drive
2544 * deeper queue depths at the beginning of slice
2545 * subjected to upper limit of cfq_quantum.
2547 max_dispatch
= cfqd
->cfq_quantum
;
2551 * Async queues must wait a bit before being allowed dispatch.
2552 * We also ramp up the dispatch depth gradually for async IO,
2553 * based on the last sync IO we serviced
2555 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2556 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2559 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2560 if (!depth
&& !cfqq
->dispatched
)
2562 if (depth
< max_dispatch
)
2563 max_dispatch
= depth
;
2567 * If we're below the current max, allow a dispatch
2569 return cfqq
->dispatched
< max_dispatch
;
2573 * Dispatch a request from cfqq, moving them to the request queue
2576 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2580 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2582 if (!cfq_may_dispatch(cfqd
, cfqq
))
2586 * follow expired path, else get first next available
2588 rq
= cfq_check_fifo(cfqq
);
2593 * insert request into driver dispatch list
2595 cfq_dispatch_insert(cfqd
->queue
, rq
);
2597 if (!cfqd
->active_cic
) {
2598 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
2600 atomic_long_inc(&cic
->icq
.ioc
->refcount
);
2601 cfqd
->active_cic
= cic
;
2608 * Find the cfqq that we need to service and move a request from that to the
2611 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2613 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2614 struct cfq_queue
*cfqq
;
2616 if (!cfqd
->busy_queues
)
2619 if (unlikely(force
))
2620 return cfq_forced_dispatch(cfqd
);
2622 cfqq
= cfq_select_queue(cfqd
);
2627 * Dispatch a request from this cfqq, if it is allowed
2629 if (!cfq_dispatch_request(cfqd
, cfqq
))
2632 cfqq
->slice_dispatch
++;
2633 cfq_clear_cfqq_must_dispatch(cfqq
);
2636 * expire an async queue immediately if it has used up its slice. idle
2637 * queue always expire after 1 dispatch round.
2639 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2640 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2641 cfq_class_idle(cfqq
))) {
2642 cfqq
->slice_end
= jiffies
+ 1;
2643 cfq_slice_expired(cfqd
, 0);
2646 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2651 * task holds one reference to the queue, dropped when task exits. each rq
2652 * in-flight on this queue also holds a reference, dropped when rq is freed.
2654 * Each cfq queue took a reference on the parent group. Drop it now.
2655 * queue lock must be held here.
2657 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2659 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2660 struct cfq_group
*cfqg
;
2662 BUG_ON(cfqq
->ref
<= 0);
2668 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2669 BUG_ON(rb_first(&cfqq
->sort_list
));
2670 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2673 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2674 __cfq_slice_expired(cfqd
, cfqq
, 0);
2675 cfq_schedule_dispatch(cfqd
);
2678 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2679 kmem_cache_free(cfq_pool
, cfqq
);
2683 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
2685 struct cfq_queue
*__cfqq
, *next
;
2688 * If this queue was scheduled to merge with another queue, be
2689 * sure to drop the reference taken on that queue (and others in
2690 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2692 __cfqq
= cfqq
->new_cfqq
;
2694 if (__cfqq
== cfqq
) {
2695 WARN(1, "cfqq->new_cfqq loop detected\n");
2698 next
= __cfqq
->new_cfqq
;
2699 cfq_put_queue(__cfqq
);
2704 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2706 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2707 __cfq_slice_expired(cfqd
, cfqq
, 0);
2708 cfq_schedule_dispatch(cfqd
);
2711 cfq_put_cooperator(cfqq
);
2713 cfq_put_queue(cfqq
);
2716 static void cfq_init_icq(struct io_cq
*icq
)
2718 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
2720 cic
->ttime
.last_end_request
= jiffies
;
2723 static void cfq_exit_icq(struct io_cq
*icq
)
2725 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
2726 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2728 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2729 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2730 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2733 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2734 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2735 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2739 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2741 struct task_struct
*tsk
= current
;
2744 if (!cfq_cfqq_prio_changed(cfqq
))
2747 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2748 switch (ioprio_class
) {
2750 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2751 case IOPRIO_CLASS_NONE
:
2753 * no prio set, inherit CPU scheduling settings
2755 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2756 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2758 case IOPRIO_CLASS_RT
:
2759 cfqq
->ioprio
= task_ioprio(ioc
);
2760 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2762 case IOPRIO_CLASS_BE
:
2763 cfqq
->ioprio
= task_ioprio(ioc
);
2764 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2766 case IOPRIO_CLASS_IDLE
:
2767 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2769 cfq_clear_cfqq_idle_window(cfqq
);
2774 * keep track of original prio settings in case we have to temporarily
2775 * elevate the priority of this queue
2777 cfqq
->org_ioprio
= cfqq
->ioprio
;
2778 cfq_clear_cfqq_prio_changed(cfqq
);
2781 static void changed_ioprio(struct cfq_io_cq
*cic
)
2783 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2784 struct cfq_queue
*cfqq
;
2786 if (unlikely(!cfqd
))
2789 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2791 struct cfq_queue
*new_cfqq
;
2792 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->icq
.ioc
,
2795 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2796 cfq_put_queue(cfqq
);
2800 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2802 cfq_mark_cfqq_prio_changed(cfqq
);
2805 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2806 pid_t pid
, bool is_sync
)
2808 RB_CLEAR_NODE(&cfqq
->rb_node
);
2809 RB_CLEAR_NODE(&cfqq
->p_node
);
2810 INIT_LIST_HEAD(&cfqq
->fifo
);
2815 cfq_mark_cfqq_prio_changed(cfqq
);
2818 if (!cfq_class_idle(cfqq
))
2819 cfq_mark_cfqq_idle_window(cfqq
);
2820 cfq_mark_cfqq_sync(cfqq
);
2825 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2826 static void changed_cgroup(struct cfq_io_cq
*cic
)
2828 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2829 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2830 struct request_queue
*q
;
2832 if (unlikely(!cfqd
))
2839 * Drop reference to sync queue. A new sync queue will be
2840 * assigned in new group upon arrival of a fresh request.
2842 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2843 cic_set_cfqq(cic
, NULL
, 1);
2844 cfq_put_queue(sync_cfqq
);
2847 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2849 static struct cfq_queue
*
2850 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2851 struct io_context
*ioc
, gfp_t gfp_mask
)
2853 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2854 struct cfq_io_cq
*cic
;
2855 struct cfq_group
*cfqg
;
2858 cfqg
= cfq_get_cfqg(cfqd
);
2859 cic
= cfq_cic_lookup(cfqd
, ioc
);
2860 /* cic always exists here */
2861 cfqq
= cic_to_cfqq(cic
, is_sync
);
2864 * Always try a new alloc if we fell back to the OOM cfqq
2865 * originally, since it should just be a temporary situation.
2867 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2872 } else if (gfp_mask
& __GFP_WAIT
) {
2873 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2874 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2875 gfp_mask
| __GFP_ZERO
,
2877 spin_lock_irq(cfqd
->queue
->queue_lock
);
2881 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2882 gfp_mask
| __GFP_ZERO
,
2887 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2888 cfq_init_prio_data(cfqq
, ioc
);
2889 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2890 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2892 cfqq
= &cfqd
->oom_cfqq
;
2896 kmem_cache_free(cfq_pool
, new_cfqq
);
2901 static struct cfq_queue
**
2902 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2904 switch (ioprio_class
) {
2905 case IOPRIO_CLASS_RT
:
2906 return &cfqd
->async_cfqq
[0][ioprio
];
2907 case IOPRIO_CLASS_BE
:
2908 return &cfqd
->async_cfqq
[1][ioprio
];
2909 case IOPRIO_CLASS_IDLE
:
2910 return &cfqd
->async_idle_cfqq
;
2916 static struct cfq_queue
*
2917 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2920 const int ioprio
= task_ioprio(ioc
);
2921 const int ioprio_class
= task_ioprio_class(ioc
);
2922 struct cfq_queue
**async_cfqq
= NULL
;
2923 struct cfq_queue
*cfqq
= NULL
;
2926 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2931 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2934 * pin the queue now that it's allocated, scheduler exit will prune it
2936 if (!is_sync
&& !(*async_cfqq
)) {
2946 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, unsigned long slice_idle
)
2948 unsigned long elapsed
= jiffies
- ttime
->last_end_request
;
2949 elapsed
= min(elapsed
, 2UL * slice_idle
);
2951 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
2952 ttime
->ttime_total
= (7*ttime
->ttime_total
+ 256*elapsed
) / 8;
2953 ttime
->ttime_mean
= (ttime
->ttime_total
+ 128) / ttime
->ttime_samples
;
2957 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2958 struct cfq_io_cq
*cic
)
2960 if (cfq_cfqq_sync(cfqq
)) {
2961 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
2962 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
2963 cfqd
->cfq_slice_idle
);
2965 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2966 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
2971 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2975 sector_t n_sec
= blk_rq_sectors(rq
);
2976 if (cfqq
->last_request_pos
) {
2977 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
2978 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
2980 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
2983 cfqq
->seek_history
<<= 1;
2984 if (blk_queue_nonrot(cfqd
->queue
))
2985 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
2987 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
2991 * Disable idle window if the process thinks too long or seeks so much that
2995 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2996 struct cfq_io_cq
*cic
)
2998 int old_idle
, enable_idle
;
3001 * Don't idle for async or idle io prio class
3003 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3006 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3008 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3009 cfq_mark_cfqq_deep(cfqq
);
3011 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3013 else if (!atomic_read(&cic
->icq
.ioc
->nr_tasks
) ||
3014 !cfqd
->cfq_slice_idle
||
3015 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3017 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3018 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3024 if (old_idle
!= enable_idle
) {
3025 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3027 cfq_mark_cfqq_idle_window(cfqq
);
3029 cfq_clear_cfqq_idle_window(cfqq
);
3034 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3035 * no or if we aren't sure, a 1 will cause a preempt.
3038 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3041 struct cfq_queue
*cfqq
;
3043 cfqq
= cfqd
->active_queue
;
3047 if (cfq_class_idle(new_cfqq
))
3050 if (cfq_class_idle(cfqq
))
3054 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3056 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3060 * if the new request is sync, but the currently running queue is
3061 * not, let the sync request have priority.
3063 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3066 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3069 if (cfq_slice_used(cfqq
))
3072 /* Allow preemption only if we are idling on sync-noidle tree */
3073 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3074 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3075 new_cfqq
->service_tree
->count
== 2 &&
3076 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3080 * So both queues are sync. Let the new request get disk time if
3081 * it's a metadata request and the current queue is doing regular IO.
3083 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
3087 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3089 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3092 /* An idle queue should not be idle now for some reason */
3093 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
3096 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3100 * if this request is as-good as one we would expect from the
3101 * current cfqq, let it preempt
3103 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3110 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3111 * let it have half of its nominal slice.
3113 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3115 enum wl_type_t old_type
= cfqq_type(cfqd
->active_queue
);
3117 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3118 cfq_slice_expired(cfqd
, 1);
3121 * workload type is changed, don't save slice, otherwise preempt
3124 if (old_type
!= cfqq_type(cfqq
))
3125 cfqq
->cfqg
->saved_workload_slice
= 0;
3128 * Put the new queue at the front of the of the current list,
3129 * so we know that it will be selected next.
3131 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3133 cfq_service_tree_add(cfqd
, cfqq
, 1);
3135 cfqq
->slice_end
= 0;
3136 cfq_mark_cfqq_slice_new(cfqq
);
3140 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3141 * something we should do about it
3144 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3147 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3150 if (rq
->cmd_flags
& REQ_PRIO
)
3151 cfqq
->prio_pending
++;
3153 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
3154 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3155 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3157 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3159 if (cfqq
== cfqd
->active_queue
) {
3161 * Remember that we saw a request from this process, but
3162 * don't start queuing just yet. Otherwise we risk seeing lots
3163 * of tiny requests, because we disrupt the normal plugging
3164 * and merging. If the request is already larger than a single
3165 * page, let it rip immediately. For that case we assume that
3166 * merging is already done. Ditto for a busy system that
3167 * has other work pending, don't risk delaying until the
3168 * idle timer unplug to continue working.
3170 if (cfq_cfqq_wait_request(cfqq
)) {
3171 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3172 cfqd
->busy_queues
> 1) {
3173 cfq_del_timer(cfqd
, cfqq
);
3174 cfq_clear_cfqq_wait_request(cfqq
);
3175 __blk_run_queue(cfqd
->queue
);
3177 cfq_blkiocg_update_idle_time_stats(
3179 cfq_mark_cfqq_must_dispatch(cfqq
);
3182 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3184 * not the active queue - expire current slice if it is
3185 * idle and has expired it's mean thinktime or this new queue
3186 * has some old slice time left and is of higher priority or
3187 * this new queue is RT and the current one is BE
3189 cfq_preempt_queue(cfqd
, cfqq
);
3190 __blk_run_queue(cfqd
->queue
);
3194 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3196 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3197 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3199 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3200 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->icq
.ioc
);
3202 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3203 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3205 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
3206 &cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
3208 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3212 * Update hw_tag based on peak queue depth over 50 samples under
3215 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3217 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3219 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3220 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3222 if (cfqd
->hw_tag
== 1)
3225 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3226 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3230 * If active queue hasn't enough requests and can idle, cfq might not
3231 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3234 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3235 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3236 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3239 if (cfqd
->hw_tag_samples
++ < 50)
3242 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3248 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3250 struct cfq_io_cq
*cic
= cfqd
->active_cic
;
3252 /* If the queue already has requests, don't wait */
3253 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3256 /* If there are other queues in the group, don't wait */
3257 if (cfqq
->cfqg
->nr_cfqq
> 1)
3260 /* the only queue in the group, but think time is big */
3261 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
3264 if (cfq_slice_used(cfqq
))
3267 /* if slice left is less than think time, wait busy */
3268 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
3269 && (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
))
3273 * If think times is less than a jiffy than ttime_mean=0 and above
3274 * will not be true. It might happen that slice has not expired yet
3275 * but will expire soon (4-5 ns) during select_queue(). To cover the
3276 * case where think time is less than a jiffy, mark the queue wait
3277 * busy if only 1 jiffy is left in the slice.
3279 if (cfqq
->slice_end
- jiffies
== 1)
3285 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3287 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3288 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3289 const int sync
= rq_is_sync(rq
);
3293 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
3294 !!(rq
->cmd_flags
& REQ_NOIDLE
));
3296 cfq_update_hw_tag(cfqd
);
3298 WARN_ON(!cfqd
->rq_in_driver
);
3299 WARN_ON(!cfqq
->dispatched
);
3300 cfqd
->rq_in_driver
--;
3302 (RQ_CFQG(rq
))->dispatched
--;
3303 cfq_blkiocg_update_completion_stats(&cfqq
->cfqg
->blkg
,
3304 rq_start_time_ns(rq
), rq_io_start_time_ns(rq
),
3305 rq_data_dir(rq
), rq_is_sync(rq
));
3307 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3310 struct cfq_rb_root
*service_tree
;
3312 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
3314 if (cfq_cfqq_on_rr(cfqq
))
3315 service_tree
= cfqq
->service_tree
;
3317 service_tree
= service_tree_for(cfqq
->cfqg
,
3318 cfqq_prio(cfqq
), cfqq_type(cfqq
));
3319 service_tree
->ttime
.last_end_request
= now
;
3320 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3321 cfqd
->last_delayed_sync
= now
;
3324 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3325 cfqq
->cfqg
->ttime
.last_end_request
= now
;
3329 * If this is the active queue, check if it needs to be expired,
3330 * or if we want to idle in case it has no pending requests.
3332 if (cfqd
->active_queue
== cfqq
) {
3333 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3335 if (cfq_cfqq_slice_new(cfqq
)) {
3336 cfq_set_prio_slice(cfqd
, cfqq
);
3337 cfq_clear_cfqq_slice_new(cfqq
);
3341 * Should we wait for next request to come in before we expire
3344 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3345 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
3346 if (!cfqd
->cfq_slice_idle
)
3347 extend_sl
= cfqd
->cfq_group_idle
;
3348 cfqq
->slice_end
= jiffies
+ extend_sl
;
3349 cfq_mark_cfqq_wait_busy(cfqq
);
3350 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
3354 * Idling is not enabled on:
3356 * - idle-priority queues
3358 * - queues with still some requests queued
3359 * - when there is a close cooperator
3361 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3362 cfq_slice_expired(cfqd
, 1);
3363 else if (sync
&& cfqq_empty
&&
3364 !cfq_close_cooperator(cfqd
, cfqq
)) {
3365 cfq_arm_slice_timer(cfqd
);
3369 if (!cfqd
->rq_in_driver
)
3370 cfq_schedule_dispatch(cfqd
);
3373 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3375 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3376 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3377 return ELV_MQUEUE_MUST
;
3380 return ELV_MQUEUE_MAY
;
3383 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3385 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3386 struct task_struct
*tsk
= current
;
3387 struct cfq_io_cq
*cic
;
3388 struct cfq_queue
*cfqq
;
3391 * don't force setup of a queue from here, as a call to may_queue
3392 * does not necessarily imply that a request actually will be queued.
3393 * so just lookup a possibly existing queue, or return 'may queue'
3396 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3398 return ELV_MQUEUE_MAY
;
3400 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3402 cfq_init_prio_data(cfqq
, cic
->icq
.ioc
);
3404 return __cfq_may_queue(cfqq
);
3407 return ELV_MQUEUE_MAY
;
3411 * queue lock held here
3413 static void cfq_put_request(struct request
*rq
)
3415 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3418 const int rw
= rq_data_dir(rq
);
3420 BUG_ON(!cfqq
->allocated
[rw
]);
3421 cfqq
->allocated
[rw
]--;
3423 /* Put down rq reference on cfqg */
3424 cfq_put_cfqg(RQ_CFQG(rq
));
3425 rq
->elv
.priv
[0] = NULL
;
3426 rq
->elv
.priv
[1] = NULL
;
3428 cfq_put_queue(cfqq
);
3432 static struct cfq_queue
*
3433 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_cq
*cic
,
3434 struct cfq_queue
*cfqq
)
3436 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3437 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3438 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3439 cfq_put_queue(cfqq
);
3440 return cic_to_cfqq(cic
, 1);
3444 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3445 * was the last process referring to said cfqq.
3447 static struct cfq_queue
*
3448 split_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
)
3450 if (cfqq_process_refs(cfqq
) == 1) {
3451 cfqq
->pid
= current
->pid
;
3452 cfq_clear_cfqq_coop(cfqq
);
3453 cfq_clear_cfqq_split_coop(cfqq
);
3457 cic_set_cfqq(cic
, NULL
, 1);
3459 cfq_put_cooperator(cfqq
);
3461 cfq_put_queue(cfqq
);
3465 * Allocate cfq data structures associated with this request.
3468 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3470 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3471 struct cfq_io_cq
*cic
= icq_to_cic(rq
->elv
.icq
);
3472 const int rw
= rq_data_dir(rq
);
3473 const bool is_sync
= rq_is_sync(rq
);
3474 struct cfq_queue
*cfqq
;
3475 unsigned int changed
;
3477 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3479 spin_lock_irq(q
->queue_lock
);
3481 /* handle changed notifications */
3482 changed
= icq_get_changed(&cic
->icq
);
3483 if (unlikely(changed
& ICQ_IOPRIO_CHANGED
))
3484 changed_ioprio(cic
);
3485 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3486 if (unlikely(changed
& ICQ_CGROUP_CHANGED
))
3487 changed_cgroup(cic
);
3491 cfqq
= cic_to_cfqq(cic
, is_sync
);
3492 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3493 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->icq
.ioc
, gfp_mask
);
3494 cic_set_cfqq(cic
, cfqq
, is_sync
);
3497 * If the queue was seeky for too long, break it apart.
3499 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3500 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3501 cfqq
= split_cfqq(cic
, cfqq
);
3507 * Check to see if this queue is scheduled to merge with
3508 * another, closely cooperating queue. The merging of
3509 * queues happens here as it must be done in process context.
3510 * The reference on new_cfqq was taken in merge_cfqqs.
3513 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3516 cfqq
->allocated
[rw
]++;
3519 rq
->elv
.priv
[0] = cfqq
;
3520 rq
->elv
.priv
[1] = cfq_ref_get_cfqg(cfqq
->cfqg
);
3521 spin_unlock_irq(q
->queue_lock
);
3525 static void cfq_kick_queue(struct work_struct
*work
)
3527 struct cfq_data
*cfqd
=
3528 container_of(work
, struct cfq_data
, unplug_work
);
3529 struct request_queue
*q
= cfqd
->queue
;
3531 spin_lock_irq(q
->queue_lock
);
3532 __blk_run_queue(cfqd
->queue
);
3533 spin_unlock_irq(q
->queue_lock
);
3537 * Timer running if the active_queue is currently idling inside its time slice
3539 static void cfq_idle_slice_timer(unsigned long data
)
3541 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3542 struct cfq_queue
*cfqq
;
3543 unsigned long flags
;
3546 cfq_log(cfqd
, "idle timer fired");
3548 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3550 cfqq
= cfqd
->active_queue
;
3555 * We saw a request before the queue expired, let it through
3557 if (cfq_cfqq_must_dispatch(cfqq
))
3563 if (cfq_slice_used(cfqq
))
3567 * only expire and reinvoke request handler, if there are
3568 * other queues with pending requests
3570 if (!cfqd
->busy_queues
)
3574 * not expired and it has a request pending, let it dispatch
3576 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3580 * Queue depth flag is reset only when the idle didn't succeed
3582 cfq_clear_cfqq_deep(cfqq
);
3585 cfq_slice_expired(cfqd
, timed_out
);
3587 cfq_schedule_dispatch(cfqd
);
3589 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3592 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3594 del_timer_sync(&cfqd
->idle_slice_timer
);
3595 cancel_work_sync(&cfqd
->unplug_work
);
3598 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3602 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3603 if (cfqd
->async_cfqq
[0][i
])
3604 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3605 if (cfqd
->async_cfqq
[1][i
])
3606 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3609 if (cfqd
->async_idle_cfqq
)
3610 cfq_put_queue(cfqd
->async_idle_cfqq
);
3613 static void cfq_exit_queue(struct elevator_queue
*e
)
3615 struct cfq_data
*cfqd
= e
->elevator_data
;
3616 struct request_queue
*q
= cfqd
->queue
;
3619 cfq_shutdown_timer_wq(cfqd
);
3621 spin_lock_irq(q
->queue_lock
);
3623 if (cfqd
->active_queue
)
3624 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3626 cfq_put_async_queues(cfqd
);
3627 cfq_release_cfq_groups(cfqd
);
3630 * If there are groups which we could not unlink from blkcg list,
3631 * wait for a rcu period for them to be freed.
3633 if (cfqd
->nr_blkcg_linked_grps
)
3636 spin_unlock_irq(q
->queue_lock
);
3638 cfq_shutdown_timer_wq(cfqd
);
3641 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3642 * Do this wait only if there are other unlinked groups out
3643 * there. This can happen if cgroup deletion path claimed the
3644 * responsibility of cleaning up a group before queue cleanup code
3647 * Do not call synchronize_rcu() unconditionally as there are drivers
3648 * which create/delete request queue hundreds of times during scan/boot
3649 * and synchronize_rcu() can take significant time and slow down boot.
3654 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3655 /* Free up per cpu stats for root group */
3656 free_percpu(cfqd
->root_group
.blkg
.stats_cpu
);
3661 static void *cfq_init_queue(struct request_queue
*q
)
3663 struct cfq_data
*cfqd
;
3665 struct cfq_group
*cfqg
;
3666 struct cfq_rb_root
*st
;
3668 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3672 /* Init root service tree */
3673 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3675 /* Init root group */
3676 cfqg
= &cfqd
->root_group
;
3677 for_each_cfqg_st(cfqg
, i
, j
, st
)
3679 RB_CLEAR_NODE(&cfqg
->rb_node
);
3681 /* Give preference to root group over other groups */
3682 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3684 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3686 * Set root group reference to 2. One reference will be dropped when
3687 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3688 * Other reference will remain there as we don't want to delete this
3689 * group as it is statically allocated and gets destroyed when
3690 * throtl_data goes away.
3694 if (blkio_alloc_blkg_stats(&cfqg
->blkg
)) {
3702 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
,
3705 cfqd
->nr_blkcg_linked_grps
++;
3707 /* Add group on cfqd->cfqg_list */
3708 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
3711 * Not strictly needed (since RB_ROOT just clears the node and we
3712 * zeroed cfqd on alloc), but better be safe in case someone decides
3713 * to add magic to the rb code
3715 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3716 cfqd
->prio_trees
[i
] = RB_ROOT
;
3719 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3720 * Grab a permanent reference to it, so that the normal code flow
3721 * will not attempt to free it.
3723 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3724 cfqd
->oom_cfqq
.ref
++;
3725 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3729 init_timer(&cfqd
->idle_slice_timer
);
3730 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3731 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3733 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3735 cfqd
->cfq_quantum
= cfq_quantum
;
3736 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3737 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3738 cfqd
->cfq_back_max
= cfq_back_max
;
3739 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3740 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3741 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3742 cfqd
->cfq_target_latency
= cfq_target_latency
;
3743 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3744 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3745 cfqd
->cfq_group_idle
= cfq_group_idle
;
3746 cfqd
->cfq_latency
= 1;
3749 * we optimistically start assuming sync ops weren't delayed in last
3750 * second, in order to have larger depth for async operations.
3752 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3757 * sysfs parts below -->
3760 cfq_var_show(unsigned int var
, char *page
)
3762 return sprintf(page
, "%d\n", var
);
3766 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3768 char *p
= (char *) page
;
3770 *var
= simple_strtoul(p
, &p
, 10);
3774 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3775 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3777 struct cfq_data *cfqd = e->elevator_data; \
3778 unsigned int __data = __VAR; \
3780 __data = jiffies_to_msecs(__data); \
3781 return cfq_var_show(__data, (page)); \
3783 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3784 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3785 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3786 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3787 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3788 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3789 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
3790 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
3791 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
3792 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
3793 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
3794 SHOW_FUNCTION(cfq_target_latency_show
, cfqd
->cfq_target_latency
, 1);
3795 #undef SHOW_FUNCTION
3797 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3798 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3800 struct cfq_data *cfqd = e->elevator_data; \
3801 unsigned int __data; \
3802 int ret = cfq_var_store(&__data, (page), count); \
3803 if (__data < (MIN)) \
3805 else if (__data > (MAX)) \
3808 *(__PTR) = msecs_to_jiffies(__data); \
3810 *(__PTR) = __data; \
3813 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
3814 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
3816 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
3818 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
3819 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
3821 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
3822 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
3823 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
3824 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
3825 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
3827 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
3828 STORE_FUNCTION(cfq_target_latency_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
, 1);
3829 #undef STORE_FUNCTION
3831 #define CFQ_ATTR(name) \
3832 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3834 static struct elv_fs_entry cfq_attrs
[] = {
3836 CFQ_ATTR(fifo_expire_sync
),
3837 CFQ_ATTR(fifo_expire_async
),
3838 CFQ_ATTR(back_seek_max
),
3839 CFQ_ATTR(back_seek_penalty
),
3840 CFQ_ATTR(slice_sync
),
3841 CFQ_ATTR(slice_async
),
3842 CFQ_ATTR(slice_async_rq
),
3843 CFQ_ATTR(slice_idle
),
3844 CFQ_ATTR(group_idle
),
3845 CFQ_ATTR(low_latency
),
3846 CFQ_ATTR(target_latency
),
3850 static struct elevator_type iosched_cfq
= {
3852 .elevator_merge_fn
= cfq_merge
,
3853 .elevator_merged_fn
= cfq_merged_request
,
3854 .elevator_merge_req_fn
= cfq_merged_requests
,
3855 .elevator_allow_merge_fn
= cfq_allow_merge
,
3856 .elevator_bio_merged_fn
= cfq_bio_merged
,
3857 .elevator_dispatch_fn
= cfq_dispatch_requests
,
3858 .elevator_add_req_fn
= cfq_insert_request
,
3859 .elevator_activate_req_fn
= cfq_activate_request
,
3860 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
3861 .elevator_completed_req_fn
= cfq_completed_request
,
3862 .elevator_former_req_fn
= elv_rb_former_request
,
3863 .elevator_latter_req_fn
= elv_rb_latter_request
,
3864 .elevator_init_icq_fn
= cfq_init_icq
,
3865 .elevator_exit_icq_fn
= cfq_exit_icq
,
3866 .elevator_set_req_fn
= cfq_set_request
,
3867 .elevator_put_req_fn
= cfq_put_request
,
3868 .elevator_may_queue_fn
= cfq_may_queue
,
3869 .elevator_init_fn
= cfq_init_queue
,
3870 .elevator_exit_fn
= cfq_exit_queue
,
3872 .icq_size
= sizeof(struct cfq_io_cq
),
3873 .icq_align
= __alignof__(struct cfq_io_cq
),
3874 .elevator_attrs
= cfq_attrs
,
3875 .elevator_name
= "cfq",
3876 .elevator_owner
= THIS_MODULE
,
3879 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3880 static struct blkio_policy_type blkio_policy_cfq
= {
3882 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
3883 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
3885 .plid
= BLKIO_POLICY_PROP
,
3888 static struct blkio_policy_type blkio_policy_cfq
;
3891 static int __init
cfq_init(void)
3896 * could be 0 on HZ < 1000 setups
3898 if (!cfq_slice_async
)
3899 cfq_slice_async
= 1;
3900 if (!cfq_slice_idle
)
3903 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3904 if (!cfq_group_idle
)
3909 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3913 ret
= elv_register(&iosched_cfq
);
3915 kmem_cache_destroy(cfq_pool
);
3919 blkio_policy_register(&blkio_policy_cfq
);
3924 static void __exit
cfq_exit(void)
3926 blkio_policy_unregister(&blkio_policy_cfq
);
3927 elv_unregister(&iosched_cfq
);
3928 kmem_cache_destroy(cfq_pool
);
3931 module_init(cfq_init
);
3932 module_exit(cfq_exit
);
3934 MODULE_AUTHOR("Jens Axboe");
3935 MODULE_LICENSE("GPL");
3936 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");