dmatest: properly handle duplicate DMA channels
[linux-2.6.git] / fs / ext4 / inode.c
blob7e91913e325bb511086c5a2ddb0ddeda0bc28e01
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
44 #define MPAGE_DA_EXTENT_TAIL 0x01
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 loff_t new_size)
49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 new_size);
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
56 * Test whether an inode is a fast symlink.
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
60 int ea_blocks = EXT4_I(inode)->i_file_acl ?
61 (inode->i_sb->s_blocksize >> 9) : 0;
63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 * The ext4 forget function must perform a revoke if we are freeing data
68 * which has been journaled. Metadata (eg. indirect blocks) must be
69 * revoked in all cases.
71 * "bh" may be NULL: a metadata block may have been freed from memory
72 * but there may still be a record of it in the journal, and that record
73 * still needs to be revoked.
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 struct buffer_head *bh, ext4_fsblk_t blocknr)
78 int err;
80 might_sleep();
82 BUFFER_TRACE(bh, "enter");
84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 "data mode %lx\n",
86 bh, is_metadata, inode->i_mode,
87 test_opt(inode->i_sb, DATA_FLAGS));
89 /* Never use the revoke function if we are doing full data
90 * journaling: there is no need to, and a V1 superblock won't
91 * support it. Otherwise, only skip the revoke on un-journaled
92 * data blocks. */
94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 (!is_metadata && !ext4_should_journal_data(inode))) {
96 if (bh) {
97 BUFFER_TRACE(bh, "call jbd2_journal_forget");
98 return ext4_journal_forget(handle, bh);
100 return 0;
104 * data!=journal && (is_metadata || should_journal_data(inode))
106 BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 err = ext4_journal_revoke(handle, blocknr, bh);
108 if (err)
109 ext4_abort(inode->i_sb, __func__,
110 "error %d when attempting revoke", err);
111 BUFFER_TRACE(bh, "exit");
112 return err;
116 * Work out how many blocks we need to proceed with the next chunk of a
117 * truncate transaction.
119 static unsigned long blocks_for_truncate(struct inode *inode)
121 ext4_lblk_t needed;
123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
125 /* Give ourselves just enough room to cope with inodes in which
126 * i_blocks is corrupt: we've seen disk corruptions in the past
127 * which resulted in random data in an inode which looked enough
128 * like a regular file for ext4 to try to delete it. Things
129 * will go a bit crazy if that happens, but at least we should
130 * try not to panic the whole kernel. */
131 if (needed < 2)
132 needed = 2;
134 /* But we need to bound the transaction so we don't overflow the
135 * journal. */
136 if (needed > EXT4_MAX_TRANS_DATA)
137 needed = EXT4_MAX_TRANS_DATA;
139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
143 * Truncate transactions can be complex and absolutely huge. So we need to
144 * be able to restart the transaction at a conventient checkpoint to make
145 * sure we don't overflow the journal.
147 * start_transaction gets us a new handle for a truncate transaction,
148 * and extend_transaction tries to extend the existing one a bit. If
149 * extend fails, we need to propagate the failure up and restart the
150 * transaction in the top-level truncate loop. --sct
152 static handle_t *start_transaction(struct inode *inode)
154 handle_t *result;
156 result = ext4_journal_start(inode, blocks_for_truncate(inode));
157 if (!IS_ERR(result))
158 return result;
160 ext4_std_error(inode->i_sb, PTR_ERR(result));
161 return result;
165 * Try to extend this transaction for the purposes of truncation.
167 * Returns 0 if we managed to create more room. If we can't create more
168 * room, and the transaction must be restarted we return 1.
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173 return 0;
174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175 return 0;
176 return 1;
180 * Restart the transaction associated with *handle. This does a commit,
181 * so before we call here everything must be consistently dirtied against
182 * this transaction.
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
186 jbd_debug(2, "restarting handle %p\n", handle);
187 return ext4_journal_restart(handle, blocks_for_truncate(inode));
191 * Called at the last iput() if i_nlink is zero.
193 void ext4_delete_inode (struct inode * inode)
195 handle_t *handle;
196 int err;
198 if (ext4_should_order_data(inode))
199 ext4_begin_ordered_truncate(inode, 0);
200 truncate_inode_pages(&inode->i_data, 0);
202 if (is_bad_inode(inode))
203 goto no_delete;
205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206 if (IS_ERR(handle)) {
207 ext4_std_error(inode->i_sb, PTR_ERR(handle));
209 * If we're going to skip the normal cleanup, we still need to
210 * make sure that the in-core orphan linked list is properly
211 * cleaned up.
213 ext4_orphan_del(NULL, inode);
214 goto no_delete;
217 if (IS_SYNC(inode))
218 handle->h_sync = 1;
219 inode->i_size = 0;
220 err = ext4_mark_inode_dirty(handle, inode);
221 if (err) {
222 ext4_warning(inode->i_sb, __func__,
223 "couldn't mark inode dirty (err %d)", err);
224 goto stop_handle;
226 if (inode->i_blocks)
227 ext4_truncate(inode);
230 * ext4_ext_truncate() doesn't reserve any slop when it
231 * restarts journal transactions; therefore there may not be
232 * enough credits left in the handle to remove the inode from
233 * the orphan list and set the dtime field.
235 if (handle->h_buffer_credits < 3) {
236 err = ext4_journal_extend(handle, 3);
237 if (err > 0)
238 err = ext4_journal_restart(handle, 3);
239 if (err != 0) {
240 ext4_warning(inode->i_sb, __func__,
241 "couldn't extend journal (err %d)", err);
242 stop_handle:
243 ext4_journal_stop(handle);
244 goto no_delete;
249 * Kill off the orphan record which ext4_truncate created.
250 * AKPM: I think this can be inside the above `if'.
251 * Note that ext4_orphan_del() has to be able to cope with the
252 * deletion of a non-existent orphan - this is because we don't
253 * know if ext4_truncate() actually created an orphan record.
254 * (Well, we could do this if we need to, but heck - it works)
256 ext4_orphan_del(handle, inode);
257 EXT4_I(inode)->i_dtime = get_seconds();
260 * One subtle ordering requirement: if anything has gone wrong
261 * (transaction abort, IO errors, whatever), then we can still
262 * do these next steps (the fs will already have been marked as
263 * having errors), but we can't free the inode if the mark_dirty
264 * fails.
266 if (ext4_mark_inode_dirty(handle, inode))
267 /* If that failed, just do the required in-core inode clear. */
268 clear_inode(inode);
269 else
270 ext4_free_inode(handle, inode);
271 ext4_journal_stop(handle);
272 return;
273 no_delete:
274 clear_inode(inode); /* We must guarantee clearing of inode... */
277 typedef struct {
278 __le32 *p;
279 __le32 key;
280 struct buffer_head *bh;
281 } Indirect;
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
285 p->key = *(p->p = v);
286 p->bh = bh;
290 * ext4_block_to_path - parse the block number into array of offsets
291 * @inode: inode in question (we are only interested in its superblock)
292 * @i_block: block number to be parsed
293 * @offsets: array to store the offsets in
294 * @boundary: set this non-zero if the referred-to block is likely to be
295 * followed (on disk) by an indirect block.
297 * To store the locations of file's data ext4 uses a data structure common
298 * for UNIX filesystems - tree of pointers anchored in the inode, with
299 * data blocks at leaves and indirect blocks in intermediate nodes.
300 * This function translates the block number into path in that tree -
301 * return value is the path length and @offsets[n] is the offset of
302 * pointer to (n+1)th node in the nth one. If @block is out of range
303 * (negative or too large) warning is printed and zero returned.
305 * Note: function doesn't find node addresses, so no IO is needed. All
306 * we need to know is the capacity of indirect blocks (taken from the
307 * inode->i_sb).
311 * Portability note: the last comparison (check that we fit into triple
312 * indirect block) is spelled differently, because otherwise on an
313 * architecture with 32-bit longs and 8Kb pages we might get into trouble
314 * if our filesystem had 8Kb blocks. We might use long long, but that would
315 * kill us on x86. Oh, well, at least the sign propagation does not matter -
316 * i_block would have to be negative in the very beginning, so we would not
317 * get there at all.
320 static int ext4_block_to_path(struct inode *inode,
321 ext4_lblk_t i_block,
322 ext4_lblk_t offsets[4], int *boundary)
324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 const long direct_blocks = EXT4_NDIR_BLOCKS,
327 indirect_blocks = ptrs,
328 double_blocks = (1 << (ptrs_bits * 2));
329 int n = 0;
330 int final = 0;
332 if (i_block < 0) {
333 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
334 } else if (i_block < direct_blocks) {
335 offsets[n++] = i_block;
336 final = direct_blocks;
337 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
338 offsets[n++] = EXT4_IND_BLOCK;
339 offsets[n++] = i_block;
340 final = ptrs;
341 } else if ((i_block -= indirect_blocks) < double_blocks) {
342 offsets[n++] = EXT4_DIND_BLOCK;
343 offsets[n++] = i_block >> ptrs_bits;
344 offsets[n++] = i_block & (ptrs - 1);
345 final = ptrs;
346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347 offsets[n++] = EXT4_TIND_BLOCK;
348 offsets[n++] = i_block >> (ptrs_bits * 2);
349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 offsets[n++] = i_block & (ptrs - 1);
351 final = ptrs;
352 } else {
353 ext4_warning(inode->i_sb, "ext4_block_to_path",
354 "block %lu > max",
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks);
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
364 * ext4_get_branch - read the chain of indirect blocks leading to data
365 * @inode: inode in question
366 * @depth: depth of the chain (1 - direct pointer, etc.)
367 * @offsets: offsets of pointers in inode/indirect blocks
368 * @chain: place to store the result
369 * @err: here we store the error value
371 * Function fills the array of triples <key, p, bh> and returns %NULL
372 * if everything went OK or the pointer to the last filled triple
373 * (incomplete one) otherwise. Upon the return chain[i].key contains
374 * the number of (i+1)-th block in the chain (as it is stored in memory,
375 * i.e. little-endian 32-bit), chain[i].p contains the address of that
376 * number (it points into struct inode for i==0 and into the bh->b_data
377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378 * block for i>0 and NULL for i==0. In other words, it holds the block
379 * numbers of the chain, addresses they were taken from (and where we can
380 * verify that chain did not change) and buffer_heads hosting these
381 * numbers.
383 * Function stops when it stumbles upon zero pointer (absent block)
384 * (pointer to last triple returned, *@err == 0)
385 * or when it gets an IO error reading an indirect block
386 * (ditto, *@err == -EIO)
387 * or when it reads all @depth-1 indirect blocks successfully and finds
388 * the whole chain, all way to the data (returns %NULL, *err == 0).
390 * Need to be called with
391 * down_read(&EXT4_I(inode)->i_data_sem)
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 ext4_lblk_t *offsets,
395 Indirect chain[4], int *err)
397 struct super_block *sb = inode->i_sb;
398 Indirect *p = chain;
399 struct buffer_head *bh;
401 *err = 0;
402 /* i_data is not going away, no lock needed */
403 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
404 if (!p->key)
405 goto no_block;
406 while (--depth) {
407 bh = sb_bread(sb, le32_to_cpu(p->key));
408 if (!bh)
409 goto failure;
410 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
411 /* Reader: end */
412 if (!p->key)
413 goto no_block;
415 return NULL;
417 failure:
418 *err = -EIO;
419 no_block:
420 return p;
424 * ext4_find_near - find a place for allocation with sufficient locality
425 * @inode: owner
426 * @ind: descriptor of indirect block.
428 * This function returns the preferred place for block allocation.
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
441 * Caller must make sure that @ind is valid and will stay that way.
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
445 struct ext4_inode_info *ei = EXT4_I(inode);
446 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
447 __le32 *p;
448 ext4_fsblk_t bg_start;
449 ext4_fsblk_t last_block;
450 ext4_grpblk_t colour;
452 /* Try to find previous block */
453 for (p = ind->p - 1; p >= start; p--) {
454 if (*p)
455 return le32_to_cpu(*p);
458 /* No such thing, so let's try location of indirect block */
459 if (ind->bh)
460 return ind->bh->b_blocknr;
463 * It is going to be referred to from the inode itself? OK, just put it
464 * into the same cylinder group then.
466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 colour = (current->pid % 16) *
471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472 else
473 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474 return bg_start + colour;
478 * ext4_find_goal - find a preferred place for allocation.
479 * @inode: owner
480 * @block: block we want
481 * @partial: pointer to the last triple within a chain
483 * Normally this function find the preferred place for block allocation,
484 * returns it.
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487 Indirect *partial)
489 struct ext4_block_alloc_info *block_i;
491 block_i = EXT4_I(inode)->i_block_alloc_info;
494 * try the heuristic for sequential allocation,
495 * failing that at least try to get decent locality.
497 if (block_i && (block == block_i->last_alloc_logical_block + 1)
498 && (block_i->last_alloc_physical_block != 0)) {
499 return block_i->last_alloc_physical_block + 1;
502 return ext4_find_near(inode, partial);
506 * ext4_blks_to_allocate: Look up the block map and count the number
507 * of direct blocks need to be allocated for the given branch.
509 * @branch: chain of indirect blocks
510 * @k: number of blocks need for indirect blocks
511 * @blks: number of data blocks to be mapped.
512 * @blocks_to_boundary: the offset in the indirect block
514 * return the total number of blocks to be allocate, including the
515 * direct and indirect blocks.
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518 int blocks_to_boundary)
520 unsigned long count = 0;
523 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 * then it's clear blocks on that path have not allocated
526 if (k > 0) {
527 /* right now we don't handle cross boundary allocation */
528 if (blks < blocks_to_boundary + 1)
529 count += blks;
530 else
531 count += blocks_to_boundary + 1;
532 return count;
535 count++;
536 while (count < blks && count <= blocks_to_boundary &&
537 le32_to_cpu(*(branch[0].p + count)) == 0) {
538 count++;
540 return count;
544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
545 * @indirect_blks: the number of blocks need to allocate for indirect
546 * blocks
548 * @new_blocks: on return it will store the new block numbers for
549 * the indirect blocks(if needed) and the first direct block,
550 * @blks: on return it will store the total number of allocated
551 * direct blocks
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554 ext4_lblk_t iblock, ext4_fsblk_t goal,
555 int indirect_blks, int blks,
556 ext4_fsblk_t new_blocks[4], int *err)
558 int target, i;
559 unsigned long count = 0, blk_allocated = 0;
560 int index = 0;
561 ext4_fsblk_t current_block = 0;
562 int ret = 0;
565 * Here we try to allocate the requested multiple blocks at once,
566 * on a best-effort basis.
567 * To build a branch, we should allocate blocks for
568 * the indirect blocks(if not allocated yet), and at least
569 * the first direct block of this branch. That's the
570 * minimum number of blocks need to allocate(required)
572 /* first we try to allocate the indirect blocks */
573 target = indirect_blks;
574 while (target > 0) {
575 count = target;
576 /* allocating blocks for indirect blocks and direct blocks */
577 current_block = ext4_new_meta_blocks(handle, inode,
578 goal, &count, err);
579 if (*err)
580 goto failed_out;
582 target -= count;
583 /* allocate blocks for indirect blocks */
584 while (index < indirect_blks && count) {
585 new_blocks[index++] = current_block++;
586 count--;
588 if (count > 0) {
590 * save the new block number
591 * for the first direct block
593 new_blocks[index] = current_block;
594 printk(KERN_INFO "%s returned more blocks than "
595 "requested\n", __func__);
596 WARN_ON(1);
597 break;
601 target = blks - count ;
602 blk_allocated = count;
603 if (!target)
604 goto allocated;
605 /* Now allocate data blocks */
606 count = target;
607 /* allocating blocks for data blocks */
608 current_block = ext4_new_blocks(handle, inode, iblock,
609 goal, &count, err);
610 if (*err && (target == blks)) {
612 * if the allocation failed and we didn't allocate
613 * any blocks before
615 goto failed_out;
617 if (!*err) {
618 if (target == blks) {
620 * save the new block number
621 * for the first direct block
623 new_blocks[index] = current_block;
625 blk_allocated += count;
627 allocated:
628 /* total number of blocks allocated for direct blocks */
629 ret = blk_allocated;
630 *err = 0;
631 return ret;
632 failed_out:
633 for (i = 0; i <index; i++)
634 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635 return ret;
639 * ext4_alloc_branch - allocate and set up a chain of blocks.
640 * @inode: owner
641 * @indirect_blks: number of allocated indirect blocks
642 * @blks: number of allocated direct blocks
643 * @offsets: offsets (in the blocks) to store the pointers to next.
644 * @branch: place to store the chain in.
646 * This function allocates blocks, zeroes out all but the last one,
647 * links them into chain and (if we are synchronous) writes them to disk.
648 * In other words, it prepares a branch that can be spliced onto the
649 * inode. It stores the information about that chain in the branch[], in
650 * the same format as ext4_get_branch() would do. We are calling it after
651 * we had read the existing part of chain and partial points to the last
652 * triple of that (one with zero ->key). Upon the exit we have the same
653 * picture as after the successful ext4_get_block(), except that in one
654 * place chain is disconnected - *branch->p is still zero (we did not
655 * set the last link), but branch->key contains the number that should
656 * be placed into *branch->p to fill that gap.
658 * If allocation fails we free all blocks we've allocated (and forget
659 * their buffer_heads) and return the error value the from failed
660 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661 * as described above and return 0.
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664 ext4_lblk_t iblock, int indirect_blks,
665 int *blks, ext4_fsblk_t goal,
666 ext4_lblk_t *offsets, Indirect *branch)
668 int blocksize = inode->i_sb->s_blocksize;
669 int i, n = 0;
670 int err = 0;
671 struct buffer_head *bh;
672 int num;
673 ext4_fsblk_t new_blocks[4];
674 ext4_fsblk_t current_block;
676 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677 *blks, new_blocks, &err);
678 if (err)
679 return err;
681 branch[0].key = cpu_to_le32(new_blocks[0]);
683 * metadata blocks and data blocks are allocated.
685 for (n = 1; n <= indirect_blks; n++) {
687 * Get buffer_head for parent block, zero it out
688 * and set the pointer to new one, then send
689 * parent to disk.
691 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692 branch[n].bh = bh;
693 lock_buffer(bh);
694 BUFFER_TRACE(bh, "call get_create_access");
695 err = ext4_journal_get_create_access(handle, bh);
696 if (err) {
697 unlock_buffer(bh);
698 brelse(bh);
699 goto failed;
702 memset(bh->b_data, 0, blocksize);
703 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704 branch[n].key = cpu_to_le32(new_blocks[n]);
705 *branch[n].p = branch[n].key;
706 if ( n == indirect_blks) {
707 current_block = new_blocks[n];
709 * End of chain, update the last new metablock of
710 * the chain to point to the new allocated
711 * data blocks numbers
713 for (i=1; i < num; i++)
714 *(branch[n].p + i) = cpu_to_le32(++current_block);
716 BUFFER_TRACE(bh, "marking uptodate");
717 set_buffer_uptodate(bh);
718 unlock_buffer(bh);
720 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721 err = ext4_journal_dirty_metadata(handle, bh);
722 if (err)
723 goto failed;
725 *blks = num;
726 return err;
727 failed:
728 /* Allocation failed, free what we already allocated */
729 for (i = 1; i <= n ; i++) {
730 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731 ext4_journal_forget(handle, branch[i].bh);
733 for (i = 0; i <indirect_blks; i++)
734 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
736 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
738 return err;
742 * ext4_splice_branch - splice the allocated branch onto inode.
743 * @inode: owner
744 * @block: (logical) number of block we are adding
745 * @chain: chain of indirect blocks (with a missing link - see
746 * ext4_alloc_branch)
747 * @where: location of missing link
748 * @num: number of indirect blocks we are adding
749 * @blks: number of direct blocks we are adding
751 * This function fills the missing link and does all housekeeping needed in
752 * inode (->i_blocks, etc.). In case of success we end up with the full
753 * chain to new block and return 0.
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756 ext4_lblk_t block, Indirect *where, int num, int blks)
758 int i;
759 int err = 0;
760 struct ext4_block_alloc_info *block_i;
761 ext4_fsblk_t current_block;
763 block_i = EXT4_I(inode)->i_block_alloc_info;
765 * If we're splicing into a [td]indirect block (as opposed to the
766 * inode) then we need to get write access to the [td]indirect block
767 * before the splice.
769 if (where->bh) {
770 BUFFER_TRACE(where->bh, "get_write_access");
771 err = ext4_journal_get_write_access(handle, where->bh);
772 if (err)
773 goto err_out;
775 /* That's it */
777 *where->p = where->key;
780 * Update the host buffer_head or inode to point to more just allocated
781 * direct blocks blocks
783 if (num == 0 && blks > 1) {
784 current_block = le32_to_cpu(where->key) + 1;
785 for (i = 1; i < blks; i++)
786 *(where->p + i ) = cpu_to_le32(current_block++);
790 * update the most recently allocated logical & physical block
791 * in i_block_alloc_info, to assist find the proper goal block for next
792 * allocation
794 if (block_i) {
795 block_i->last_alloc_logical_block = block + blks - 1;
796 block_i->last_alloc_physical_block =
797 le32_to_cpu(where[num].key) + blks - 1;
800 /* We are done with atomic stuff, now do the rest of housekeeping */
802 inode->i_ctime = ext4_current_time(inode);
803 ext4_mark_inode_dirty(handle, inode);
805 /* had we spliced it onto indirect block? */
806 if (where->bh) {
808 * If we spliced it onto an indirect block, we haven't
809 * altered the inode. Note however that if it is being spliced
810 * onto an indirect block at the very end of the file (the
811 * file is growing) then we *will* alter the inode to reflect
812 * the new i_size. But that is not done here - it is done in
813 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
815 jbd_debug(5, "splicing indirect only\n");
816 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817 err = ext4_journal_dirty_metadata(handle, where->bh);
818 if (err)
819 goto err_out;
820 } else {
822 * OK, we spliced it into the inode itself on a direct block.
823 * Inode was dirtied above.
825 jbd_debug(5, "splicing direct\n");
827 return err;
829 err_out:
830 for (i = 1; i <= num; i++) {
831 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832 ext4_journal_forget(handle, where[i].bh);
833 ext4_free_blocks(handle, inode,
834 le32_to_cpu(where[i-1].key), 1, 0);
836 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
838 return err;
842 * Allocation strategy is simple: if we have to allocate something, we will
843 * have to go the whole way to leaf. So let's do it before attaching anything
844 * to tree, set linkage between the newborn blocks, write them if sync is
845 * required, recheck the path, free and repeat if check fails, otherwise
846 * set the last missing link (that will protect us from any truncate-generated
847 * removals - all blocks on the path are immune now) and possibly force the
848 * write on the parent block.
849 * That has a nice additional property: no special recovery from the failed
850 * allocations is needed - we simply release blocks and do not touch anything
851 * reachable from inode.
853 * `handle' can be NULL if create == 0.
855 * return > 0, # of blocks mapped or allocated.
856 * return = 0, if plain lookup failed.
857 * return < 0, error case.
860 * Need to be called with
861 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865 ext4_lblk_t iblock, unsigned long maxblocks,
866 struct buffer_head *bh_result,
867 int create, int extend_disksize)
869 int err = -EIO;
870 ext4_lblk_t offsets[4];
871 Indirect chain[4];
872 Indirect *partial;
873 ext4_fsblk_t goal;
874 int indirect_blks;
875 int blocks_to_boundary = 0;
876 int depth;
877 struct ext4_inode_info *ei = EXT4_I(inode);
878 int count = 0;
879 ext4_fsblk_t first_block = 0;
880 loff_t disksize;
883 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884 J_ASSERT(handle != NULL || create == 0);
885 depth = ext4_block_to_path(inode, iblock, offsets,
886 &blocks_to_boundary);
888 if (depth == 0)
889 goto out;
891 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
893 /* Simplest case - block found, no allocation needed */
894 if (!partial) {
895 first_block = le32_to_cpu(chain[depth - 1].key);
896 clear_buffer_new(bh_result);
897 count++;
898 /*map more blocks*/
899 while (count < maxblocks && count <= blocks_to_boundary) {
900 ext4_fsblk_t blk;
902 blk = le32_to_cpu(*(chain[depth-1].p + count));
904 if (blk == first_block + count)
905 count++;
906 else
907 break;
909 goto got_it;
912 /* Next simple case - plain lookup or failed read of indirect block */
913 if (!create || err == -EIO)
914 goto cleanup;
917 * Okay, we need to do block allocation. Lazily initialize the block
918 * allocation info here if necessary
920 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921 ext4_init_block_alloc_info(inode);
923 goal = ext4_find_goal(inode, iblock, partial);
925 /* the number of blocks need to allocate for [d,t]indirect blocks */
926 indirect_blks = (chain + depth) - partial - 1;
929 * Next look up the indirect map to count the totoal number of
930 * direct blocks to allocate for this branch.
932 count = ext4_blks_to_allocate(partial, indirect_blks,
933 maxblocks, blocks_to_boundary);
935 * Block out ext4_truncate while we alter the tree
937 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938 &count, goal,
939 offsets + (partial - chain), partial);
942 * The ext4_splice_branch call will free and forget any buffers
943 * on the new chain if there is a failure, but that risks using
944 * up transaction credits, especially for bitmaps where the
945 * credits cannot be returned. Can we handle this somehow? We
946 * may need to return -EAGAIN upwards in the worst case. --sct
948 if (!err)
949 err = ext4_splice_branch(handle, inode, iblock,
950 partial, indirect_blks, count);
952 * i_disksize growing is protected by i_data_sem. Don't forget to
953 * protect it if you're about to implement concurrent
954 * ext4_get_block() -bzzz
956 if (!err && extend_disksize) {
957 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958 if (disksize > i_size_read(inode))
959 disksize = i_size_read(inode);
960 if (disksize > ei->i_disksize)
961 ei->i_disksize = disksize;
963 if (err)
964 goto cleanup;
966 set_buffer_new(bh_result);
967 got_it:
968 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969 if (count > blocks_to_boundary)
970 set_buffer_boundary(bh_result);
971 err = count;
972 /* Clean up and exit */
973 partial = chain + depth - 1; /* the whole chain */
974 cleanup:
975 while (partial > chain) {
976 BUFFER_TRACE(partial->bh, "call brelse");
977 brelse(partial->bh);
978 partial--;
980 BUFFER_TRACE(bh_result, "returned");
981 out:
982 return err;
986 * Calculate the number of metadata blocks need to reserve
987 * to allocate @blocks for non extent file based file
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
991 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992 int ind_blks, dind_blks, tind_blks;
994 /* number of new indirect blocks needed */
995 ind_blks = (blocks + icap - 1) / icap;
997 dind_blks = (ind_blks + icap - 1) / icap;
999 tind_blks = 1;
1001 return ind_blks + dind_blks + tind_blks;
1005 * Calculate the number of metadata blocks need to reserve
1006 * to allocate given number of blocks
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1010 if (!blocks)
1011 return 0;
1013 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014 return ext4_ext_calc_metadata_amount(inode, blocks);
1016 return ext4_indirect_calc_metadata_amount(inode, blocks);
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1021 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022 int total, mdb, mdb_free;
1024 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025 /* recalculate the number of metablocks still need to be reserved */
1026 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027 mdb = ext4_calc_metadata_amount(inode, total);
1029 /* figure out how many metablocks to release */
1030 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1033 /* Account for allocated meta_blocks */
1034 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1036 /* update fs free blocks counter for truncate case */
1037 percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1039 /* update per-inode reservations */
1040 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1041 EXT4_I(inode)->i_reserved_data_blocks -= used;
1043 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1044 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1045 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1046 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1050 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1051 * and returns if the blocks are already mapped.
1053 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1054 * and store the allocated blocks in the result buffer head and mark it
1055 * mapped.
1057 * If file type is extents based, it will call ext4_ext_get_blocks(),
1058 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1059 * based files
1061 * On success, it returns the number of blocks being mapped or allocate.
1062 * if create==0 and the blocks are pre-allocated and uninitialized block,
1063 * the result buffer head is unmapped. If the create ==1, it will make sure
1064 * the buffer head is mapped.
1066 * It returns 0 if plain look up failed (blocks have not been allocated), in
1067 * that casem, buffer head is unmapped
1069 * It returns the error in case of allocation failure.
1071 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1072 unsigned long max_blocks, struct buffer_head *bh,
1073 int create, int extend_disksize, int flag)
1075 int retval;
1077 clear_buffer_mapped(bh);
1080 * Try to see if we can get the block without requesting
1081 * for new file system block.
1083 down_read((&EXT4_I(inode)->i_data_sem));
1084 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1085 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1086 bh, 0, 0);
1087 } else {
1088 retval = ext4_get_blocks_handle(handle,
1089 inode, block, max_blocks, bh, 0, 0);
1091 up_read((&EXT4_I(inode)->i_data_sem));
1093 /* If it is only a block(s) look up */
1094 if (!create)
1095 return retval;
1098 * Returns if the blocks have already allocated
1100 * Note that if blocks have been preallocated
1101 * ext4_ext_get_block() returns th create = 0
1102 * with buffer head unmapped.
1104 if (retval > 0 && buffer_mapped(bh))
1105 return retval;
1108 * New blocks allocate and/or writing to uninitialized extent
1109 * will possibly result in updating i_data, so we take
1110 * the write lock of i_data_sem, and call get_blocks()
1111 * with create == 1 flag.
1113 down_write((&EXT4_I(inode)->i_data_sem));
1116 * if the caller is from delayed allocation writeout path
1117 * we have already reserved fs blocks for allocation
1118 * let the underlying get_block() function know to
1119 * avoid double accounting
1121 if (flag)
1122 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1124 * We need to check for EXT4 here because migrate
1125 * could have changed the inode type in between
1127 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1128 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1129 bh, create, extend_disksize);
1130 } else {
1131 retval = ext4_get_blocks_handle(handle, inode, block,
1132 max_blocks, bh, create, extend_disksize);
1134 if (retval > 0 && buffer_new(bh)) {
1136 * We allocated new blocks which will result in
1137 * i_data's format changing. Force the migrate
1138 * to fail by clearing migrate flags
1140 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1141 ~EXT4_EXT_MIGRATE;
1145 if (flag) {
1146 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1148 * Update reserved blocks/metadata blocks
1149 * after successful block allocation
1150 * which were deferred till now
1152 if ((retval > 0) && buffer_delay(bh))
1153 ext4_da_update_reserve_space(inode, retval);
1156 up_write((&EXT4_I(inode)->i_data_sem));
1157 return retval;
1160 /* Maximum number of blocks we map for direct IO at once. */
1161 #define DIO_MAX_BLOCKS 4096
1163 static int ext4_get_block(struct inode *inode, sector_t iblock,
1164 struct buffer_head *bh_result, int create)
1166 handle_t *handle = ext4_journal_current_handle();
1167 int ret = 0, started = 0;
1168 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1169 int dio_credits;
1171 if (create && !handle) {
1172 /* Direct IO write... */
1173 if (max_blocks > DIO_MAX_BLOCKS)
1174 max_blocks = DIO_MAX_BLOCKS;
1175 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1176 handle = ext4_journal_start(inode, dio_credits);
1177 if (IS_ERR(handle)) {
1178 ret = PTR_ERR(handle);
1179 goto out;
1181 started = 1;
1184 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1185 max_blocks, bh_result, create, 0, 0);
1186 if (ret > 0) {
1187 bh_result->b_size = (ret << inode->i_blkbits);
1188 ret = 0;
1190 if (started)
1191 ext4_journal_stop(handle);
1192 out:
1193 return ret;
1197 * `handle' can be NULL if create is zero
1199 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1200 ext4_lblk_t block, int create, int *errp)
1202 struct buffer_head dummy;
1203 int fatal = 0, err;
1205 J_ASSERT(handle != NULL || create == 0);
1207 dummy.b_state = 0;
1208 dummy.b_blocknr = -1000;
1209 buffer_trace_init(&dummy.b_history);
1210 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1211 &dummy, create, 1, 0);
1213 * ext4_get_blocks_handle() returns number of blocks
1214 * mapped. 0 in case of a HOLE.
1216 if (err > 0) {
1217 if (err > 1)
1218 WARN_ON(1);
1219 err = 0;
1221 *errp = err;
1222 if (!err && buffer_mapped(&dummy)) {
1223 struct buffer_head *bh;
1224 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1225 if (!bh) {
1226 *errp = -EIO;
1227 goto err;
1229 if (buffer_new(&dummy)) {
1230 J_ASSERT(create != 0);
1231 J_ASSERT(handle != NULL);
1234 * Now that we do not always journal data, we should
1235 * keep in mind whether this should always journal the
1236 * new buffer as metadata. For now, regular file
1237 * writes use ext4_get_block instead, so it's not a
1238 * problem.
1240 lock_buffer(bh);
1241 BUFFER_TRACE(bh, "call get_create_access");
1242 fatal = ext4_journal_get_create_access(handle, bh);
1243 if (!fatal && !buffer_uptodate(bh)) {
1244 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1245 set_buffer_uptodate(bh);
1247 unlock_buffer(bh);
1248 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1249 err = ext4_journal_dirty_metadata(handle, bh);
1250 if (!fatal)
1251 fatal = err;
1252 } else {
1253 BUFFER_TRACE(bh, "not a new buffer");
1255 if (fatal) {
1256 *errp = fatal;
1257 brelse(bh);
1258 bh = NULL;
1260 return bh;
1262 err:
1263 return NULL;
1266 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1267 ext4_lblk_t block, int create, int *err)
1269 struct buffer_head * bh;
1271 bh = ext4_getblk(handle, inode, block, create, err);
1272 if (!bh)
1273 return bh;
1274 if (buffer_uptodate(bh))
1275 return bh;
1276 ll_rw_block(READ_META, 1, &bh);
1277 wait_on_buffer(bh);
1278 if (buffer_uptodate(bh))
1279 return bh;
1280 put_bh(bh);
1281 *err = -EIO;
1282 return NULL;
1285 static int walk_page_buffers( handle_t *handle,
1286 struct buffer_head *head,
1287 unsigned from,
1288 unsigned to,
1289 int *partial,
1290 int (*fn)( handle_t *handle,
1291 struct buffer_head *bh))
1293 struct buffer_head *bh;
1294 unsigned block_start, block_end;
1295 unsigned blocksize = head->b_size;
1296 int err, ret = 0;
1297 struct buffer_head *next;
1299 for ( bh = head, block_start = 0;
1300 ret == 0 && (bh != head || !block_start);
1301 block_start = block_end, bh = next)
1303 next = bh->b_this_page;
1304 block_end = block_start + blocksize;
1305 if (block_end <= from || block_start >= to) {
1306 if (partial && !buffer_uptodate(bh))
1307 *partial = 1;
1308 continue;
1310 err = (*fn)(handle, bh);
1311 if (!ret)
1312 ret = err;
1314 return ret;
1318 * To preserve ordering, it is essential that the hole instantiation and
1319 * the data write be encapsulated in a single transaction. We cannot
1320 * close off a transaction and start a new one between the ext4_get_block()
1321 * and the commit_write(). So doing the jbd2_journal_start at the start of
1322 * prepare_write() is the right place.
1324 * Also, this function can nest inside ext4_writepage() ->
1325 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1326 * has generated enough buffer credits to do the whole page. So we won't
1327 * block on the journal in that case, which is good, because the caller may
1328 * be PF_MEMALLOC.
1330 * By accident, ext4 can be reentered when a transaction is open via
1331 * quota file writes. If we were to commit the transaction while thus
1332 * reentered, there can be a deadlock - we would be holding a quota
1333 * lock, and the commit would never complete if another thread had a
1334 * transaction open and was blocking on the quota lock - a ranking
1335 * violation.
1337 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1338 * will _not_ run commit under these circumstances because handle->h_ref
1339 * is elevated. We'll still have enough credits for the tiny quotafile
1340 * write.
1342 static int do_journal_get_write_access(handle_t *handle,
1343 struct buffer_head *bh)
1345 if (!buffer_mapped(bh) || buffer_freed(bh))
1346 return 0;
1347 return ext4_journal_get_write_access(handle, bh);
1350 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1351 loff_t pos, unsigned len, unsigned flags,
1352 struct page **pagep, void **fsdata)
1354 struct inode *inode = mapping->host;
1355 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1356 handle_t *handle;
1357 int retries = 0;
1358 struct page *page;
1359 pgoff_t index;
1360 unsigned from, to;
1362 index = pos >> PAGE_CACHE_SHIFT;
1363 from = pos & (PAGE_CACHE_SIZE - 1);
1364 to = from + len;
1366 retry:
1367 handle = ext4_journal_start(inode, needed_blocks);
1368 if (IS_ERR(handle)) {
1369 ret = PTR_ERR(handle);
1370 goto out;
1373 page = __grab_cache_page(mapping, index);
1374 if (!page) {
1375 ext4_journal_stop(handle);
1376 ret = -ENOMEM;
1377 goto out;
1379 *pagep = page;
1381 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1382 ext4_get_block);
1384 if (!ret && ext4_should_journal_data(inode)) {
1385 ret = walk_page_buffers(handle, page_buffers(page),
1386 from, to, NULL, do_journal_get_write_access);
1389 if (ret) {
1390 unlock_page(page);
1391 ext4_journal_stop(handle);
1392 page_cache_release(page);
1395 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1396 goto retry;
1397 out:
1398 return ret;
1401 /* For write_end() in data=journal mode */
1402 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1404 if (!buffer_mapped(bh) || buffer_freed(bh))
1405 return 0;
1406 set_buffer_uptodate(bh);
1407 return ext4_journal_dirty_metadata(handle, bh);
1411 * We need to pick up the new inode size which generic_commit_write gave us
1412 * `file' can be NULL - eg, when called from page_symlink().
1414 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1415 * buffers are managed internally.
1417 static int ext4_ordered_write_end(struct file *file,
1418 struct address_space *mapping,
1419 loff_t pos, unsigned len, unsigned copied,
1420 struct page *page, void *fsdata)
1422 handle_t *handle = ext4_journal_current_handle();
1423 struct inode *inode = mapping->host;
1424 int ret = 0, ret2;
1426 ret = ext4_jbd2_file_inode(handle, inode);
1428 if (ret == 0) {
1430 * generic_write_end() will run mark_inode_dirty() if i_size
1431 * changes. So let's piggyback the i_disksize mark_inode_dirty
1432 * into that.
1434 loff_t new_i_size;
1436 new_i_size = pos + copied;
1437 if (new_i_size > EXT4_I(inode)->i_disksize)
1438 EXT4_I(inode)->i_disksize = new_i_size;
1439 ret2 = generic_write_end(file, mapping, pos, len, copied,
1440 page, fsdata);
1441 copied = ret2;
1442 if (ret2 < 0)
1443 ret = ret2;
1445 ret2 = ext4_journal_stop(handle);
1446 if (!ret)
1447 ret = ret2;
1449 return ret ? ret : copied;
1452 static int ext4_writeback_write_end(struct file *file,
1453 struct address_space *mapping,
1454 loff_t pos, unsigned len, unsigned copied,
1455 struct page *page, void *fsdata)
1457 handle_t *handle = ext4_journal_current_handle();
1458 struct inode *inode = mapping->host;
1459 int ret = 0, ret2;
1460 loff_t new_i_size;
1462 new_i_size = pos + copied;
1463 if (new_i_size > EXT4_I(inode)->i_disksize)
1464 EXT4_I(inode)->i_disksize = new_i_size;
1466 ret2 = generic_write_end(file, mapping, pos, len, copied,
1467 page, fsdata);
1468 copied = ret2;
1469 if (ret2 < 0)
1470 ret = ret2;
1472 ret2 = ext4_journal_stop(handle);
1473 if (!ret)
1474 ret = ret2;
1476 return ret ? ret : copied;
1479 static int ext4_journalled_write_end(struct file *file,
1480 struct address_space *mapping,
1481 loff_t pos, unsigned len, unsigned copied,
1482 struct page *page, void *fsdata)
1484 handle_t *handle = ext4_journal_current_handle();
1485 struct inode *inode = mapping->host;
1486 int ret = 0, ret2;
1487 int partial = 0;
1488 unsigned from, to;
1490 from = pos & (PAGE_CACHE_SIZE - 1);
1491 to = from + len;
1493 if (copied < len) {
1494 if (!PageUptodate(page))
1495 copied = 0;
1496 page_zero_new_buffers(page, from+copied, to);
1499 ret = walk_page_buffers(handle, page_buffers(page), from,
1500 to, &partial, write_end_fn);
1501 if (!partial)
1502 SetPageUptodate(page);
1503 if (pos+copied > inode->i_size)
1504 i_size_write(inode, pos+copied);
1505 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1506 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1507 EXT4_I(inode)->i_disksize = inode->i_size;
1508 ret2 = ext4_mark_inode_dirty(handle, inode);
1509 if (!ret)
1510 ret = ret2;
1513 unlock_page(page);
1514 ret2 = ext4_journal_stop(handle);
1515 if (!ret)
1516 ret = ret2;
1517 page_cache_release(page);
1519 return ret ? ret : copied;
1522 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1524 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1525 unsigned long md_needed, mdblocks, total = 0;
1528 * recalculate the amount of metadata blocks to reserve
1529 * in order to allocate nrblocks
1530 * worse case is one extent per block
1532 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1533 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1534 mdblocks = ext4_calc_metadata_amount(inode, total);
1535 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1537 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1538 total = md_needed + nrblocks;
1540 if (ext4_has_free_blocks(sbi, total) < total) {
1541 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1542 return -ENOSPC;
1544 /* reduce fs free blocks counter */
1545 percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1547 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1548 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1550 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1551 return 0; /* success */
1554 static void ext4_da_release_space(struct inode *inode, int to_free)
1556 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1557 int total, mdb, mdb_free, release;
1559 if (!to_free)
1560 return; /* Nothing to release, exit */
1562 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1564 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1566 * if there is no reserved blocks, but we try to free some
1567 * then the counter is messed up somewhere.
1568 * but since this function is called from invalidate
1569 * page, it's harmless to return without any action
1571 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1572 "blocks for inode %lu, but there is no reserved "
1573 "data blocks\n", to_free, inode->i_ino);
1574 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1575 return;
1578 /* recalculate the number of metablocks still need to be reserved */
1579 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1580 mdb = ext4_calc_metadata_amount(inode, total);
1582 /* figure out how many metablocks to release */
1583 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1584 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1586 release = to_free + mdb_free;
1588 /* update fs free blocks counter for truncate case */
1589 percpu_counter_add(&sbi->s_freeblocks_counter, release);
1591 /* update per-inode reservations */
1592 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1593 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1595 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1596 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1597 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1600 static void ext4_da_page_release_reservation(struct page *page,
1601 unsigned long offset)
1603 int to_release = 0;
1604 struct buffer_head *head, *bh;
1605 unsigned int curr_off = 0;
1607 head = page_buffers(page);
1608 bh = head;
1609 do {
1610 unsigned int next_off = curr_off + bh->b_size;
1612 if ((offset <= curr_off) && (buffer_delay(bh))) {
1613 to_release++;
1614 clear_buffer_delay(bh);
1616 curr_off = next_off;
1617 } while ((bh = bh->b_this_page) != head);
1618 ext4_da_release_space(page->mapping->host, to_release);
1622 * Delayed allocation stuff
1625 struct mpage_da_data {
1626 struct inode *inode;
1627 struct buffer_head lbh; /* extent of blocks */
1628 unsigned long first_page, next_page; /* extent of pages */
1629 get_block_t *get_block;
1630 struct writeback_control *wbc;
1631 int io_done;
1632 long pages_written;
1636 * mpage_da_submit_io - walks through extent of pages and try to write
1637 * them with writepage() call back
1639 * @mpd->inode: inode
1640 * @mpd->first_page: first page of the extent
1641 * @mpd->next_page: page after the last page of the extent
1642 * @mpd->get_block: the filesystem's block mapper function
1644 * By the time mpage_da_submit_io() is called we expect all blocks
1645 * to be allocated. this may be wrong if allocation failed.
1647 * As pages are already locked by write_cache_pages(), we can't use it
1649 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1651 struct address_space *mapping = mpd->inode->i_mapping;
1652 int ret = 0, err, nr_pages, i;
1653 unsigned long index, end;
1654 struct pagevec pvec;
1656 BUG_ON(mpd->next_page <= mpd->first_page);
1657 pagevec_init(&pvec, 0);
1658 index = mpd->first_page;
1659 end = mpd->next_page - 1;
1661 while (index <= end) {
1662 /* XXX: optimize tail */
1663 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1664 if (nr_pages == 0)
1665 break;
1666 for (i = 0; i < nr_pages; i++) {
1667 struct page *page = pvec.pages[i];
1669 index = page->index;
1670 if (index > end)
1671 break;
1672 index++;
1674 err = mapping->a_ops->writepage(page, mpd->wbc);
1675 if (!err)
1676 mpd->pages_written++;
1678 * In error case, we have to continue because
1679 * remaining pages are still locked
1680 * XXX: unlock and re-dirty them?
1682 if (ret == 0)
1683 ret = err;
1685 pagevec_release(&pvec);
1687 return ret;
1691 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1693 * @mpd->inode - inode to walk through
1694 * @exbh->b_blocknr - first block on a disk
1695 * @exbh->b_size - amount of space in bytes
1696 * @logical - first logical block to start assignment with
1698 * the function goes through all passed space and put actual disk
1699 * block numbers into buffer heads, dropping BH_Delay
1701 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1702 struct buffer_head *exbh)
1704 struct inode *inode = mpd->inode;
1705 struct address_space *mapping = inode->i_mapping;
1706 int blocks = exbh->b_size >> inode->i_blkbits;
1707 sector_t pblock = exbh->b_blocknr, cur_logical;
1708 struct buffer_head *head, *bh;
1709 pgoff_t index, end;
1710 struct pagevec pvec;
1711 int nr_pages, i;
1713 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1714 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1715 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1717 pagevec_init(&pvec, 0);
1719 while (index <= end) {
1720 /* XXX: optimize tail */
1721 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1722 if (nr_pages == 0)
1723 break;
1724 for (i = 0; i < nr_pages; i++) {
1725 struct page *page = pvec.pages[i];
1727 index = page->index;
1728 if (index > end)
1729 break;
1730 index++;
1732 BUG_ON(!PageLocked(page));
1733 BUG_ON(PageWriteback(page));
1734 BUG_ON(!page_has_buffers(page));
1736 bh = page_buffers(page);
1737 head = bh;
1739 /* skip blocks out of the range */
1740 do {
1741 if (cur_logical >= logical)
1742 break;
1743 cur_logical++;
1744 } while ((bh = bh->b_this_page) != head);
1746 do {
1747 if (cur_logical >= logical + blocks)
1748 break;
1749 if (buffer_delay(bh)) {
1750 bh->b_blocknr = pblock;
1751 clear_buffer_delay(bh);
1752 bh->b_bdev = inode->i_sb->s_bdev;
1753 } else if (buffer_unwritten(bh)) {
1754 bh->b_blocknr = pblock;
1755 clear_buffer_unwritten(bh);
1756 set_buffer_mapped(bh);
1757 set_buffer_new(bh);
1758 bh->b_bdev = inode->i_sb->s_bdev;
1759 } else if (buffer_mapped(bh))
1760 BUG_ON(bh->b_blocknr != pblock);
1762 cur_logical++;
1763 pblock++;
1764 } while ((bh = bh->b_this_page) != head);
1766 pagevec_release(&pvec);
1772 * __unmap_underlying_blocks - just a helper function to unmap
1773 * set of blocks described by @bh
1775 static inline void __unmap_underlying_blocks(struct inode *inode,
1776 struct buffer_head *bh)
1778 struct block_device *bdev = inode->i_sb->s_bdev;
1779 int blocks, i;
1781 blocks = bh->b_size >> inode->i_blkbits;
1782 for (i = 0; i < blocks; i++)
1783 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1787 * mpage_da_map_blocks - go through given space
1789 * @mpd->lbh - bh describing space
1790 * @mpd->get_block - the filesystem's block mapper function
1792 * The function skips space we know is already mapped to disk blocks.
1795 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1797 int err = 0;
1798 struct buffer_head *lbh = &mpd->lbh;
1799 sector_t next = lbh->b_blocknr;
1800 struct buffer_head new;
1803 * We consider only non-mapped and non-allocated blocks
1805 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1806 return;
1808 new.b_state = lbh->b_state;
1809 new.b_blocknr = 0;
1810 new.b_size = lbh->b_size;
1813 * If we didn't accumulate anything
1814 * to write simply return
1816 if (!new.b_size)
1817 return;
1818 err = mpd->get_block(mpd->inode, next, &new, 1);
1819 if (err)
1820 return;
1821 BUG_ON(new.b_size == 0);
1823 if (buffer_new(&new))
1824 __unmap_underlying_blocks(mpd->inode, &new);
1827 * If blocks are delayed marked, we need to
1828 * put actual blocknr and drop delayed bit
1830 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1831 mpage_put_bnr_to_bhs(mpd, next, &new);
1833 return;
1836 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1837 (1 << BH_Delay) | (1 << BH_Unwritten))
1840 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1842 * @mpd->lbh - extent of blocks
1843 * @logical - logical number of the block in the file
1844 * @bh - bh of the block (used to access block's state)
1846 * the function is used to collect contig. blocks in same state
1848 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1849 sector_t logical, struct buffer_head *bh)
1851 sector_t next;
1852 size_t b_size = bh->b_size;
1853 struct buffer_head *lbh = &mpd->lbh;
1854 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1856 /* check if thereserved journal credits might overflow */
1857 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1858 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1860 * With non-extent format we are limited by the journal
1861 * credit available. Total credit needed to insert
1862 * nrblocks contiguous blocks is dependent on the
1863 * nrblocks. So limit nrblocks.
1865 goto flush_it;
1866 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1867 EXT4_MAX_TRANS_DATA) {
1869 * Adding the new buffer_head would make it cross the
1870 * allowed limit for which we have journal credit
1871 * reserved. So limit the new bh->b_size
1873 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1874 mpd->inode->i_blkbits;
1875 /* we will do mpage_da_submit_io in the next loop */
1879 * First block in the extent
1881 if (lbh->b_size == 0) {
1882 lbh->b_blocknr = logical;
1883 lbh->b_size = b_size;
1884 lbh->b_state = bh->b_state & BH_FLAGS;
1885 return;
1888 next = lbh->b_blocknr + nrblocks;
1890 * Can we merge the block to our big extent?
1892 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1893 lbh->b_size += b_size;
1894 return;
1897 flush_it:
1899 * We couldn't merge the block to our extent, so we
1900 * need to flush current extent and start new one
1902 mpage_da_map_blocks(mpd);
1903 mpage_da_submit_io(mpd);
1904 mpd->io_done = 1;
1905 return;
1909 * __mpage_da_writepage - finds extent of pages and blocks
1911 * @page: page to consider
1912 * @wbc: not used, we just follow rules
1913 * @data: context
1915 * The function finds extents of pages and scan them for all blocks.
1917 static int __mpage_da_writepage(struct page *page,
1918 struct writeback_control *wbc, void *data)
1920 struct mpage_da_data *mpd = data;
1921 struct inode *inode = mpd->inode;
1922 struct buffer_head *bh, *head, fake;
1923 sector_t logical;
1925 if (mpd->io_done) {
1927 * Rest of the page in the page_vec
1928 * redirty then and skip then. We will
1929 * try to to write them again after
1930 * starting a new transaction
1932 redirty_page_for_writepage(wbc, page);
1933 unlock_page(page);
1934 return MPAGE_DA_EXTENT_TAIL;
1937 * Can we merge this page to current extent?
1939 if (mpd->next_page != page->index) {
1941 * Nope, we can't. So, we map non-allocated blocks
1942 * and start IO on them using writepage()
1944 if (mpd->next_page != mpd->first_page) {
1945 mpage_da_map_blocks(mpd);
1946 mpage_da_submit_io(mpd);
1948 * skip rest of the page in the page_vec
1950 mpd->io_done = 1;
1951 redirty_page_for_writepage(wbc, page);
1952 unlock_page(page);
1953 return MPAGE_DA_EXTENT_TAIL;
1957 * Start next extent of pages ...
1959 mpd->first_page = page->index;
1962 * ... and blocks
1964 mpd->lbh.b_size = 0;
1965 mpd->lbh.b_state = 0;
1966 mpd->lbh.b_blocknr = 0;
1969 mpd->next_page = page->index + 1;
1970 logical = (sector_t) page->index <<
1971 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1973 if (!page_has_buffers(page)) {
1975 * There is no attached buffer heads yet (mmap?)
1976 * we treat the page asfull of dirty blocks
1978 bh = &fake;
1979 bh->b_size = PAGE_CACHE_SIZE;
1980 bh->b_state = 0;
1981 set_buffer_dirty(bh);
1982 set_buffer_uptodate(bh);
1983 mpage_add_bh_to_extent(mpd, logical, bh);
1984 if (mpd->io_done)
1985 return MPAGE_DA_EXTENT_TAIL;
1986 } else {
1988 * Page with regular buffer heads, just add all dirty ones
1990 head = page_buffers(page);
1991 bh = head;
1992 do {
1993 BUG_ON(buffer_locked(bh));
1994 if (buffer_dirty(bh) &&
1995 (!buffer_mapped(bh) || buffer_delay(bh))) {
1996 mpage_add_bh_to_extent(mpd, logical, bh);
1997 if (mpd->io_done)
1998 return MPAGE_DA_EXTENT_TAIL;
2000 logical++;
2001 } while ((bh = bh->b_this_page) != head);
2004 return 0;
2008 * mpage_da_writepages - walk the list of dirty pages of the given
2009 * address space, allocates non-allocated blocks, maps newly-allocated
2010 * blocks to existing bhs and issue IO them
2012 * @mapping: address space structure to write
2013 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2014 * @get_block: the filesystem's block mapper function.
2016 * This is a library function, which implements the writepages()
2017 * address_space_operation.
2019 static int mpage_da_writepages(struct address_space *mapping,
2020 struct writeback_control *wbc,
2021 get_block_t get_block)
2023 struct mpage_da_data mpd;
2024 long to_write;
2025 int ret;
2027 if (!get_block)
2028 return generic_writepages(mapping, wbc);
2030 mpd.wbc = wbc;
2031 mpd.inode = mapping->host;
2032 mpd.lbh.b_size = 0;
2033 mpd.lbh.b_state = 0;
2034 mpd.lbh.b_blocknr = 0;
2035 mpd.first_page = 0;
2036 mpd.next_page = 0;
2037 mpd.get_block = get_block;
2038 mpd.io_done = 0;
2039 mpd.pages_written = 0;
2041 to_write = wbc->nr_to_write;
2043 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2046 * Handle last extent of pages
2048 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2049 mpage_da_map_blocks(&mpd);
2050 mpage_da_submit_io(&mpd);
2053 wbc->nr_to_write = to_write - mpd.pages_written;
2054 return ret;
2058 * this is a special callback for ->write_begin() only
2059 * it's intention is to return mapped block or reserve space
2061 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2062 struct buffer_head *bh_result, int create)
2064 int ret = 0;
2066 BUG_ON(create == 0);
2067 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2070 * first, we need to know whether the block is allocated already
2071 * preallocated blocks are unmapped but should treated
2072 * the same as allocated blocks.
2074 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2075 if ((ret == 0) && !buffer_delay(bh_result)) {
2076 /* the block isn't (pre)allocated yet, let's reserve space */
2078 * XXX: __block_prepare_write() unmaps passed block,
2079 * is it OK?
2081 ret = ext4_da_reserve_space(inode, 1);
2082 if (ret)
2083 /* not enough space to reserve */
2084 return ret;
2086 map_bh(bh_result, inode->i_sb, 0);
2087 set_buffer_new(bh_result);
2088 set_buffer_delay(bh_result);
2089 } else if (ret > 0) {
2090 bh_result->b_size = (ret << inode->i_blkbits);
2091 ret = 0;
2094 return ret;
2096 #define EXT4_DELALLOC_RSVED 1
2097 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2098 struct buffer_head *bh_result, int create)
2100 int ret;
2101 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2102 loff_t disksize = EXT4_I(inode)->i_disksize;
2103 handle_t *handle = NULL;
2105 handle = ext4_journal_current_handle();
2106 if (!handle) {
2107 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2108 bh_result, 0, 0, 0);
2109 BUG_ON(!ret);
2110 } else {
2111 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2112 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2115 if (ret > 0) {
2116 bh_result->b_size = (ret << inode->i_blkbits);
2119 * Update on-disk size along with block allocation
2120 * we don't use 'extend_disksize' as size may change
2121 * within already allocated block -bzzz
2123 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2124 if (disksize > i_size_read(inode))
2125 disksize = i_size_read(inode);
2126 if (disksize > EXT4_I(inode)->i_disksize) {
2128 * XXX: replace with spinlock if seen contended -bzzz
2130 down_write(&EXT4_I(inode)->i_data_sem);
2131 if (disksize > EXT4_I(inode)->i_disksize)
2132 EXT4_I(inode)->i_disksize = disksize;
2133 up_write(&EXT4_I(inode)->i_data_sem);
2135 if (EXT4_I(inode)->i_disksize == disksize) {
2136 ret = ext4_mark_inode_dirty(handle, inode);
2137 return ret;
2140 ret = 0;
2142 return ret;
2145 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2148 * unmapped buffer is possible for holes.
2149 * delay buffer is possible with delayed allocation
2151 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2154 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2155 struct buffer_head *bh_result, int create)
2157 int ret = 0;
2158 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2161 * we don't want to do block allocation in writepage
2162 * so call get_block_wrap with create = 0
2164 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2165 bh_result, 0, 0, 0);
2166 if (ret > 0) {
2167 bh_result->b_size = (ret << inode->i_blkbits);
2168 ret = 0;
2170 return ret;
2174 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2175 * get called via journal_submit_inode_data_buffers (no journal handle)
2176 * get called via shrink_page_list via pdflush (no journal handle)
2177 * or grab_page_cache when doing write_begin (have journal handle)
2179 static int ext4_da_writepage(struct page *page,
2180 struct writeback_control *wbc)
2182 int ret = 0;
2183 loff_t size;
2184 unsigned long len;
2185 struct buffer_head *page_bufs;
2186 struct inode *inode = page->mapping->host;
2188 size = i_size_read(inode);
2189 if (page->index == size >> PAGE_CACHE_SHIFT)
2190 len = size & ~PAGE_CACHE_MASK;
2191 else
2192 len = PAGE_CACHE_SIZE;
2194 if (page_has_buffers(page)) {
2195 page_bufs = page_buffers(page);
2196 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2197 ext4_bh_unmapped_or_delay)) {
2199 * We don't want to do block allocation
2200 * So redirty the page and return
2201 * We may reach here when we do a journal commit
2202 * via journal_submit_inode_data_buffers.
2203 * If we don't have mapping block we just ignore
2204 * them. We can also reach here via shrink_page_list
2206 redirty_page_for_writepage(wbc, page);
2207 unlock_page(page);
2208 return 0;
2210 } else {
2212 * The test for page_has_buffers() is subtle:
2213 * We know the page is dirty but it lost buffers. That means
2214 * that at some moment in time after write_begin()/write_end()
2215 * has been called all buffers have been clean and thus they
2216 * must have been written at least once. So they are all
2217 * mapped and we can happily proceed with mapping them
2218 * and writing the page.
2220 * Try to initialize the buffer_heads and check whether
2221 * all are mapped and non delay. We don't want to
2222 * do block allocation here.
2224 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2225 ext4_normal_get_block_write);
2226 if (!ret) {
2227 page_bufs = page_buffers(page);
2228 /* check whether all are mapped and non delay */
2229 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2230 ext4_bh_unmapped_or_delay)) {
2231 redirty_page_for_writepage(wbc, page);
2232 unlock_page(page);
2233 return 0;
2235 } else {
2237 * We can't do block allocation here
2238 * so just redity the page and unlock
2239 * and return
2241 redirty_page_for_writepage(wbc, page);
2242 unlock_page(page);
2243 return 0;
2247 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2248 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2249 else
2250 ret = block_write_full_page(page,
2251 ext4_normal_get_block_write,
2252 wbc);
2254 return ret;
2258 * This is called via ext4_da_writepages() to
2259 * calulate the total number of credits to reserve to fit
2260 * a single extent allocation into a single transaction,
2261 * ext4_da_writpeages() will loop calling this before
2262 * the block allocation.
2265 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2267 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2270 * With non-extent format the journal credit needed to
2271 * insert nrblocks contiguous block is dependent on
2272 * number of contiguous block. So we will limit
2273 * number of contiguous block to a sane value
2275 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2276 (max_blocks > EXT4_MAX_TRANS_DATA))
2277 max_blocks = EXT4_MAX_TRANS_DATA;
2279 return ext4_chunk_trans_blocks(inode, max_blocks);
2282 static int ext4_da_writepages(struct address_space *mapping,
2283 struct writeback_control *wbc)
2285 handle_t *handle = NULL;
2286 loff_t range_start = 0;
2287 struct inode *inode = mapping->host;
2288 int needed_blocks, ret = 0, nr_to_writebump = 0;
2289 long to_write, pages_skipped = 0;
2290 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2293 * No pages to write? This is mainly a kludge to avoid starting
2294 * a transaction for special inodes like journal inode on last iput()
2295 * because that could violate lock ordering on umount
2297 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2298 return 0;
2300 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2301 * This make sure small files blocks are allocated in
2302 * single attempt. This ensure that small files
2303 * get less fragmented.
2305 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2306 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2307 wbc->nr_to_write = sbi->s_mb_stream_request;
2310 if (!wbc->range_cyclic)
2312 * If range_cyclic is not set force range_cont
2313 * and save the old writeback_index
2315 wbc->range_cont = 1;
2317 range_start = wbc->range_start;
2318 pages_skipped = wbc->pages_skipped;
2320 restart_loop:
2321 to_write = wbc->nr_to_write;
2322 while (!ret && to_write > 0) {
2325 * we insert one extent at a time. So we need
2326 * credit needed for single extent allocation.
2327 * journalled mode is currently not supported
2328 * by delalloc
2330 BUG_ON(ext4_should_journal_data(inode));
2331 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2333 /* start a new transaction*/
2334 handle = ext4_journal_start(inode, needed_blocks);
2335 if (IS_ERR(handle)) {
2336 ret = PTR_ERR(handle);
2337 printk(KERN_EMERG "%s: jbd2_start: "
2338 "%ld pages, ino %lu; err %d\n", __func__,
2339 wbc->nr_to_write, inode->i_ino, ret);
2340 dump_stack();
2341 goto out_writepages;
2343 if (ext4_should_order_data(inode)) {
2345 * With ordered mode we need to add
2346 * the inode to the journal handl
2347 * when we do block allocation.
2349 ret = ext4_jbd2_file_inode(handle, inode);
2350 if (ret) {
2351 ext4_journal_stop(handle);
2352 goto out_writepages;
2356 to_write -= wbc->nr_to_write;
2357 ret = mpage_da_writepages(mapping, wbc,
2358 ext4_da_get_block_write);
2359 ext4_journal_stop(handle);
2360 if (ret == MPAGE_DA_EXTENT_TAIL) {
2362 * got one extent now try with
2363 * rest of the pages
2365 to_write += wbc->nr_to_write;
2366 ret = 0;
2367 } else if (wbc->nr_to_write) {
2369 * There is no more writeout needed
2370 * or we requested for a noblocking writeout
2371 * and we found the device congested
2373 to_write += wbc->nr_to_write;
2374 break;
2376 wbc->nr_to_write = to_write;
2379 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2380 /* We skipped pages in this loop */
2381 wbc->range_start = range_start;
2382 wbc->nr_to_write = to_write +
2383 wbc->pages_skipped - pages_skipped;
2384 wbc->pages_skipped = pages_skipped;
2385 goto restart_loop;
2388 out_writepages:
2389 wbc->nr_to_write = to_write - nr_to_writebump;
2390 wbc->range_start = range_start;
2391 return ret;
2394 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2395 loff_t pos, unsigned len, unsigned flags,
2396 struct page **pagep, void **fsdata)
2398 int ret, retries = 0;
2399 struct page *page;
2400 pgoff_t index;
2401 unsigned from, to;
2402 struct inode *inode = mapping->host;
2403 handle_t *handle;
2405 index = pos >> PAGE_CACHE_SHIFT;
2406 from = pos & (PAGE_CACHE_SIZE - 1);
2407 to = from + len;
2409 retry:
2411 * With delayed allocation, we don't log the i_disksize update
2412 * if there is delayed block allocation. But we still need
2413 * to journalling the i_disksize update if writes to the end
2414 * of file which has an already mapped buffer.
2416 handle = ext4_journal_start(inode, 1);
2417 if (IS_ERR(handle)) {
2418 ret = PTR_ERR(handle);
2419 goto out;
2422 page = __grab_cache_page(mapping, index);
2423 if (!page) {
2424 ext4_journal_stop(handle);
2425 ret = -ENOMEM;
2426 goto out;
2428 *pagep = page;
2430 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2431 ext4_da_get_block_prep);
2432 if (ret < 0) {
2433 unlock_page(page);
2434 ext4_journal_stop(handle);
2435 page_cache_release(page);
2438 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2439 goto retry;
2440 out:
2441 return ret;
2445 * Check if we should update i_disksize
2446 * when write to the end of file but not require block allocation
2448 static int ext4_da_should_update_i_disksize(struct page *page,
2449 unsigned long offset)
2451 struct buffer_head *bh;
2452 struct inode *inode = page->mapping->host;
2453 unsigned int idx;
2454 int i;
2456 bh = page_buffers(page);
2457 idx = offset >> inode->i_blkbits;
2459 for (i=0; i < idx; i++)
2460 bh = bh->b_this_page;
2462 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2463 return 0;
2464 return 1;
2467 static int ext4_da_write_end(struct file *file,
2468 struct address_space *mapping,
2469 loff_t pos, unsigned len, unsigned copied,
2470 struct page *page, void *fsdata)
2472 struct inode *inode = mapping->host;
2473 int ret = 0, ret2;
2474 handle_t *handle = ext4_journal_current_handle();
2475 loff_t new_i_size;
2476 unsigned long start, end;
2478 start = pos & (PAGE_CACHE_SIZE - 1);
2479 end = start + copied -1;
2482 * generic_write_end() will run mark_inode_dirty() if i_size
2483 * changes. So let's piggyback the i_disksize mark_inode_dirty
2484 * into that.
2487 new_i_size = pos + copied;
2488 if (new_i_size > EXT4_I(inode)->i_disksize) {
2489 if (ext4_da_should_update_i_disksize(page, end)) {
2490 down_write(&EXT4_I(inode)->i_data_sem);
2491 if (new_i_size > EXT4_I(inode)->i_disksize) {
2493 * Updating i_disksize when extending file
2494 * without needing block allocation
2496 if (ext4_should_order_data(inode))
2497 ret = ext4_jbd2_file_inode(handle,
2498 inode);
2500 EXT4_I(inode)->i_disksize = new_i_size;
2502 up_write(&EXT4_I(inode)->i_data_sem);
2505 ret2 = generic_write_end(file, mapping, pos, len, copied,
2506 page, fsdata);
2507 copied = ret2;
2508 if (ret2 < 0)
2509 ret = ret2;
2510 ret2 = ext4_journal_stop(handle);
2511 if (!ret)
2512 ret = ret2;
2514 return ret ? ret : copied;
2517 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2520 * Drop reserved blocks
2522 BUG_ON(!PageLocked(page));
2523 if (!page_has_buffers(page))
2524 goto out;
2526 ext4_da_page_release_reservation(page, offset);
2528 out:
2529 ext4_invalidatepage(page, offset);
2531 return;
2536 * bmap() is special. It gets used by applications such as lilo and by
2537 * the swapper to find the on-disk block of a specific piece of data.
2539 * Naturally, this is dangerous if the block concerned is still in the
2540 * journal. If somebody makes a swapfile on an ext4 data-journaling
2541 * filesystem and enables swap, then they may get a nasty shock when the
2542 * data getting swapped to that swapfile suddenly gets overwritten by
2543 * the original zero's written out previously to the journal and
2544 * awaiting writeback in the kernel's buffer cache.
2546 * So, if we see any bmap calls here on a modified, data-journaled file,
2547 * take extra steps to flush any blocks which might be in the cache.
2549 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2551 struct inode *inode = mapping->host;
2552 journal_t *journal;
2553 int err;
2555 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2556 test_opt(inode->i_sb, DELALLOC)) {
2558 * With delalloc we want to sync the file
2559 * so that we can make sure we allocate
2560 * blocks for file
2562 filemap_write_and_wait(mapping);
2565 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2567 * This is a REALLY heavyweight approach, but the use of
2568 * bmap on dirty files is expected to be extremely rare:
2569 * only if we run lilo or swapon on a freshly made file
2570 * do we expect this to happen.
2572 * (bmap requires CAP_SYS_RAWIO so this does not
2573 * represent an unprivileged user DOS attack --- we'd be
2574 * in trouble if mortal users could trigger this path at
2575 * will.)
2577 * NB. EXT4_STATE_JDATA is not set on files other than
2578 * regular files. If somebody wants to bmap a directory
2579 * or symlink and gets confused because the buffer
2580 * hasn't yet been flushed to disk, they deserve
2581 * everything they get.
2584 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2585 journal = EXT4_JOURNAL(inode);
2586 jbd2_journal_lock_updates(journal);
2587 err = jbd2_journal_flush(journal);
2588 jbd2_journal_unlock_updates(journal);
2590 if (err)
2591 return 0;
2594 return generic_block_bmap(mapping,block,ext4_get_block);
2597 static int bget_one(handle_t *handle, struct buffer_head *bh)
2599 get_bh(bh);
2600 return 0;
2603 static int bput_one(handle_t *handle, struct buffer_head *bh)
2605 put_bh(bh);
2606 return 0;
2610 * Note that we don't need to start a transaction unless we're journaling data
2611 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2612 * need to file the inode to the transaction's list in ordered mode because if
2613 * we are writing back data added by write(), the inode is already there and if
2614 * we are writing back data modified via mmap(), noone guarantees in which
2615 * transaction the data will hit the disk. In case we are journaling data, we
2616 * cannot start transaction directly because transaction start ranks above page
2617 * lock so we have to do some magic.
2619 * In all journaling modes block_write_full_page() will start the I/O.
2621 * Problem:
2623 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2624 * ext4_writepage()
2626 * Similar for:
2628 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2630 * Same applies to ext4_get_block(). We will deadlock on various things like
2631 * lock_journal and i_data_sem
2633 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2634 * allocations fail.
2636 * 16May01: If we're reentered then journal_current_handle() will be
2637 * non-zero. We simply *return*.
2639 * 1 July 2001: @@@ FIXME:
2640 * In journalled data mode, a data buffer may be metadata against the
2641 * current transaction. But the same file is part of a shared mapping
2642 * and someone does a writepage() on it.
2644 * We will move the buffer onto the async_data list, but *after* it has
2645 * been dirtied. So there's a small window where we have dirty data on
2646 * BJ_Metadata.
2648 * Note that this only applies to the last partial page in the file. The
2649 * bit which block_write_full_page() uses prepare/commit for. (That's
2650 * broken code anyway: it's wrong for msync()).
2652 * It's a rare case: affects the final partial page, for journalled data
2653 * where the file is subject to bith write() and writepage() in the same
2654 * transction. To fix it we'll need a custom block_write_full_page().
2655 * We'll probably need that anyway for journalling writepage() output.
2657 * We don't honour synchronous mounts for writepage(). That would be
2658 * disastrous. Any write() or metadata operation will sync the fs for
2659 * us.
2662 static int __ext4_normal_writepage(struct page *page,
2663 struct writeback_control *wbc)
2665 struct inode *inode = page->mapping->host;
2667 if (test_opt(inode->i_sb, NOBH))
2668 return nobh_writepage(page,
2669 ext4_normal_get_block_write, wbc);
2670 else
2671 return block_write_full_page(page,
2672 ext4_normal_get_block_write,
2673 wbc);
2676 static int ext4_normal_writepage(struct page *page,
2677 struct writeback_control *wbc)
2679 struct inode *inode = page->mapping->host;
2680 loff_t size = i_size_read(inode);
2681 loff_t len;
2683 J_ASSERT(PageLocked(page));
2684 if (page->index == size >> PAGE_CACHE_SHIFT)
2685 len = size & ~PAGE_CACHE_MASK;
2686 else
2687 len = PAGE_CACHE_SIZE;
2689 if (page_has_buffers(page)) {
2690 /* if page has buffers it should all be mapped
2691 * and allocated. If there are not buffers attached
2692 * to the page we know the page is dirty but it lost
2693 * buffers. That means that at some moment in time
2694 * after write_begin() / write_end() has been called
2695 * all buffers have been clean and thus they must have been
2696 * written at least once. So they are all mapped and we can
2697 * happily proceed with mapping them and writing the page.
2699 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2700 ext4_bh_unmapped_or_delay));
2703 if (!ext4_journal_current_handle())
2704 return __ext4_normal_writepage(page, wbc);
2706 redirty_page_for_writepage(wbc, page);
2707 unlock_page(page);
2708 return 0;
2711 static int __ext4_journalled_writepage(struct page *page,
2712 struct writeback_control *wbc)
2714 struct address_space *mapping = page->mapping;
2715 struct inode *inode = mapping->host;
2716 struct buffer_head *page_bufs;
2717 handle_t *handle = NULL;
2718 int ret = 0;
2719 int err;
2721 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2722 ext4_normal_get_block_write);
2723 if (ret != 0)
2724 goto out_unlock;
2726 page_bufs = page_buffers(page);
2727 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2728 bget_one);
2729 /* As soon as we unlock the page, it can go away, but we have
2730 * references to buffers so we are safe */
2731 unlock_page(page);
2733 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2734 if (IS_ERR(handle)) {
2735 ret = PTR_ERR(handle);
2736 goto out;
2739 ret = walk_page_buffers(handle, page_bufs, 0,
2740 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2742 err = walk_page_buffers(handle, page_bufs, 0,
2743 PAGE_CACHE_SIZE, NULL, write_end_fn);
2744 if (ret == 0)
2745 ret = err;
2746 err = ext4_journal_stop(handle);
2747 if (!ret)
2748 ret = err;
2750 walk_page_buffers(handle, page_bufs, 0,
2751 PAGE_CACHE_SIZE, NULL, bput_one);
2752 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2753 goto out;
2755 out_unlock:
2756 unlock_page(page);
2757 out:
2758 return ret;
2761 static int ext4_journalled_writepage(struct page *page,
2762 struct writeback_control *wbc)
2764 struct inode *inode = page->mapping->host;
2765 loff_t size = i_size_read(inode);
2766 loff_t len;
2768 J_ASSERT(PageLocked(page));
2769 if (page->index == size >> PAGE_CACHE_SHIFT)
2770 len = size & ~PAGE_CACHE_MASK;
2771 else
2772 len = PAGE_CACHE_SIZE;
2774 if (page_has_buffers(page)) {
2775 /* if page has buffers it should all be mapped
2776 * and allocated. If there are not buffers attached
2777 * to the page we know the page is dirty but it lost
2778 * buffers. That means that at some moment in time
2779 * after write_begin() / write_end() has been called
2780 * all buffers have been clean and thus they must have been
2781 * written at least once. So they are all mapped and we can
2782 * happily proceed with mapping them and writing the page.
2784 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2785 ext4_bh_unmapped_or_delay));
2788 if (ext4_journal_current_handle())
2789 goto no_write;
2791 if (PageChecked(page)) {
2793 * It's mmapped pagecache. Add buffers and journal it. There
2794 * doesn't seem much point in redirtying the page here.
2796 ClearPageChecked(page);
2797 return __ext4_journalled_writepage(page, wbc);
2798 } else {
2800 * It may be a page full of checkpoint-mode buffers. We don't
2801 * really know unless we go poke around in the buffer_heads.
2802 * But block_write_full_page will do the right thing.
2804 return block_write_full_page(page,
2805 ext4_normal_get_block_write,
2806 wbc);
2808 no_write:
2809 redirty_page_for_writepage(wbc, page);
2810 unlock_page(page);
2811 return 0;
2814 static int ext4_readpage(struct file *file, struct page *page)
2816 return mpage_readpage(page, ext4_get_block);
2819 static int
2820 ext4_readpages(struct file *file, struct address_space *mapping,
2821 struct list_head *pages, unsigned nr_pages)
2823 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2826 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2828 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2831 * If it's a full truncate we just forget about the pending dirtying
2833 if (offset == 0)
2834 ClearPageChecked(page);
2836 jbd2_journal_invalidatepage(journal, page, offset);
2839 static int ext4_releasepage(struct page *page, gfp_t wait)
2841 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2843 WARN_ON(PageChecked(page));
2844 if (!page_has_buffers(page))
2845 return 0;
2846 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2850 * If the O_DIRECT write will extend the file then add this inode to the
2851 * orphan list. So recovery will truncate it back to the original size
2852 * if the machine crashes during the write.
2854 * If the O_DIRECT write is intantiating holes inside i_size and the machine
2855 * crashes then stale disk data _may_ be exposed inside the file. But current
2856 * VFS code falls back into buffered path in that case so we are safe.
2858 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2859 const struct iovec *iov, loff_t offset,
2860 unsigned long nr_segs)
2862 struct file *file = iocb->ki_filp;
2863 struct inode *inode = file->f_mapping->host;
2864 struct ext4_inode_info *ei = EXT4_I(inode);
2865 handle_t *handle;
2866 ssize_t ret;
2867 int orphan = 0;
2868 size_t count = iov_length(iov, nr_segs);
2870 if (rw == WRITE) {
2871 loff_t final_size = offset + count;
2873 if (final_size > inode->i_size) {
2874 /* Credits for sb + inode write */
2875 handle = ext4_journal_start(inode, 2);
2876 if (IS_ERR(handle)) {
2877 ret = PTR_ERR(handle);
2878 goto out;
2880 ret = ext4_orphan_add(handle, inode);
2881 if (ret) {
2882 ext4_journal_stop(handle);
2883 goto out;
2885 orphan = 1;
2886 ei->i_disksize = inode->i_size;
2887 ext4_journal_stop(handle);
2891 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2892 offset, nr_segs,
2893 ext4_get_block, NULL);
2895 if (orphan) {
2896 int err;
2898 /* Credits for sb + inode write */
2899 handle = ext4_journal_start(inode, 2);
2900 if (IS_ERR(handle)) {
2901 /* This is really bad luck. We've written the data
2902 * but cannot extend i_size. Bail out and pretend
2903 * the write failed... */
2904 ret = PTR_ERR(handle);
2905 goto out;
2907 if (inode->i_nlink)
2908 ext4_orphan_del(handle, inode);
2909 if (ret > 0) {
2910 loff_t end = offset + ret;
2911 if (end > inode->i_size) {
2912 ei->i_disksize = end;
2913 i_size_write(inode, end);
2915 * We're going to return a positive `ret'
2916 * here due to non-zero-length I/O, so there's
2917 * no way of reporting error returns from
2918 * ext4_mark_inode_dirty() to userspace. So
2919 * ignore it.
2921 ext4_mark_inode_dirty(handle, inode);
2924 err = ext4_journal_stop(handle);
2925 if (ret == 0)
2926 ret = err;
2928 out:
2929 return ret;
2933 * Pages can be marked dirty completely asynchronously from ext4's journalling
2934 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2935 * much here because ->set_page_dirty is called under VFS locks. The page is
2936 * not necessarily locked.
2938 * We cannot just dirty the page and leave attached buffers clean, because the
2939 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2940 * or jbddirty because all the journalling code will explode.
2942 * So what we do is to mark the page "pending dirty" and next time writepage
2943 * is called, propagate that into the buffers appropriately.
2945 static int ext4_journalled_set_page_dirty(struct page *page)
2947 SetPageChecked(page);
2948 return __set_page_dirty_nobuffers(page);
2951 static const struct address_space_operations ext4_ordered_aops = {
2952 .readpage = ext4_readpage,
2953 .readpages = ext4_readpages,
2954 .writepage = ext4_normal_writepage,
2955 .sync_page = block_sync_page,
2956 .write_begin = ext4_write_begin,
2957 .write_end = ext4_ordered_write_end,
2958 .bmap = ext4_bmap,
2959 .invalidatepage = ext4_invalidatepage,
2960 .releasepage = ext4_releasepage,
2961 .direct_IO = ext4_direct_IO,
2962 .migratepage = buffer_migrate_page,
2963 .is_partially_uptodate = block_is_partially_uptodate,
2966 static const struct address_space_operations ext4_writeback_aops = {
2967 .readpage = ext4_readpage,
2968 .readpages = ext4_readpages,
2969 .writepage = ext4_normal_writepage,
2970 .sync_page = block_sync_page,
2971 .write_begin = ext4_write_begin,
2972 .write_end = ext4_writeback_write_end,
2973 .bmap = ext4_bmap,
2974 .invalidatepage = ext4_invalidatepage,
2975 .releasepage = ext4_releasepage,
2976 .direct_IO = ext4_direct_IO,
2977 .migratepage = buffer_migrate_page,
2978 .is_partially_uptodate = block_is_partially_uptodate,
2981 static const struct address_space_operations ext4_journalled_aops = {
2982 .readpage = ext4_readpage,
2983 .readpages = ext4_readpages,
2984 .writepage = ext4_journalled_writepage,
2985 .sync_page = block_sync_page,
2986 .write_begin = ext4_write_begin,
2987 .write_end = ext4_journalled_write_end,
2988 .set_page_dirty = ext4_journalled_set_page_dirty,
2989 .bmap = ext4_bmap,
2990 .invalidatepage = ext4_invalidatepage,
2991 .releasepage = ext4_releasepage,
2992 .is_partially_uptodate = block_is_partially_uptodate,
2995 static const struct address_space_operations ext4_da_aops = {
2996 .readpage = ext4_readpage,
2997 .readpages = ext4_readpages,
2998 .writepage = ext4_da_writepage,
2999 .writepages = ext4_da_writepages,
3000 .sync_page = block_sync_page,
3001 .write_begin = ext4_da_write_begin,
3002 .write_end = ext4_da_write_end,
3003 .bmap = ext4_bmap,
3004 .invalidatepage = ext4_da_invalidatepage,
3005 .releasepage = ext4_releasepage,
3006 .direct_IO = ext4_direct_IO,
3007 .migratepage = buffer_migrate_page,
3008 .is_partially_uptodate = block_is_partially_uptodate,
3011 void ext4_set_aops(struct inode *inode)
3013 if (ext4_should_order_data(inode) &&
3014 test_opt(inode->i_sb, DELALLOC))
3015 inode->i_mapping->a_ops = &ext4_da_aops;
3016 else if (ext4_should_order_data(inode))
3017 inode->i_mapping->a_ops = &ext4_ordered_aops;
3018 else if (ext4_should_writeback_data(inode) &&
3019 test_opt(inode->i_sb, DELALLOC))
3020 inode->i_mapping->a_ops = &ext4_da_aops;
3021 else if (ext4_should_writeback_data(inode))
3022 inode->i_mapping->a_ops = &ext4_writeback_aops;
3023 else
3024 inode->i_mapping->a_ops = &ext4_journalled_aops;
3028 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3029 * up to the end of the block which corresponds to `from'.
3030 * This required during truncate. We need to physically zero the tail end
3031 * of that block so it doesn't yield old data if the file is later grown.
3033 int ext4_block_truncate_page(handle_t *handle,
3034 struct address_space *mapping, loff_t from)
3036 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3037 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3038 unsigned blocksize, length, pos;
3039 ext4_lblk_t iblock;
3040 struct inode *inode = mapping->host;
3041 struct buffer_head *bh;
3042 struct page *page;
3043 int err = 0;
3045 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3046 if (!page)
3047 return -EINVAL;
3049 blocksize = inode->i_sb->s_blocksize;
3050 length = blocksize - (offset & (blocksize - 1));
3051 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3054 * For "nobh" option, we can only work if we don't need to
3055 * read-in the page - otherwise we create buffers to do the IO.
3057 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3058 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3059 zero_user(page, offset, length);
3060 set_page_dirty(page);
3061 goto unlock;
3064 if (!page_has_buffers(page))
3065 create_empty_buffers(page, blocksize, 0);
3067 /* Find the buffer that contains "offset" */
3068 bh = page_buffers(page);
3069 pos = blocksize;
3070 while (offset >= pos) {
3071 bh = bh->b_this_page;
3072 iblock++;
3073 pos += blocksize;
3076 err = 0;
3077 if (buffer_freed(bh)) {
3078 BUFFER_TRACE(bh, "freed: skip");
3079 goto unlock;
3082 if (!buffer_mapped(bh)) {
3083 BUFFER_TRACE(bh, "unmapped");
3084 ext4_get_block(inode, iblock, bh, 0);
3085 /* unmapped? It's a hole - nothing to do */
3086 if (!buffer_mapped(bh)) {
3087 BUFFER_TRACE(bh, "still unmapped");
3088 goto unlock;
3092 /* Ok, it's mapped. Make sure it's up-to-date */
3093 if (PageUptodate(page))
3094 set_buffer_uptodate(bh);
3096 if (!buffer_uptodate(bh)) {
3097 err = -EIO;
3098 ll_rw_block(READ, 1, &bh);
3099 wait_on_buffer(bh);
3100 /* Uhhuh. Read error. Complain and punt. */
3101 if (!buffer_uptodate(bh))
3102 goto unlock;
3105 if (ext4_should_journal_data(inode)) {
3106 BUFFER_TRACE(bh, "get write access");
3107 err = ext4_journal_get_write_access(handle, bh);
3108 if (err)
3109 goto unlock;
3112 zero_user(page, offset, length);
3114 BUFFER_TRACE(bh, "zeroed end of block");
3116 err = 0;
3117 if (ext4_should_journal_data(inode)) {
3118 err = ext4_journal_dirty_metadata(handle, bh);
3119 } else {
3120 if (ext4_should_order_data(inode))
3121 err = ext4_jbd2_file_inode(handle, inode);
3122 mark_buffer_dirty(bh);
3125 unlock:
3126 unlock_page(page);
3127 page_cache_release(page);
3128 return err;
3132 * Probably it should be a library function... search for first non-zero word
3133 * or memcmp with zero_page, whatever is better for particular architecture.
3134 * Linus?
3136 static inline int all_zeroes(__le32 *p, __le32 *q)
3138 while (p < q)
3139 if (*p++)
3140 return 0;
3141 return 1;
3145 * ext4_find_shared - find the indirect blocks for partial truncation.
3146 * @inode: inode in question
3147 * @depth: depth of the affected branch
3148 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3149 * @chain: place to store the pointers to partial indirect blocks
3150 * @top: place to the (detached) top of branch
3152 * This is a helper function used by ext4_truncate().
3154 * When we do truncate() we may have to clean the ends of several
3155 * indirect blocks but leave the blocks themselves alive. Block is
3156 * partially truncated if some data below the new i_size is refered
3157 * from it (and it is on the path to the first completely truncated
3158 * data block, indeed). We have to free the top of that path along
3159 * with everything to the right of the path. Since no allocation
3160 * past the truncation point is possible until ext4_truncate()
3161 * finishes, we may safely do the latter, but top of branch may
3162 * require special attention - pageout below the truncation point
3163 * might try to populate it.
3165 * We atomically detach the top of branch from the tree, store the
3166 * block number of its root in *@top, pointers to buffer_heads of
3167 * partially truncated blocks - in @chain[].bh and pointers to
3168 * their last elements that should not be removed - in
3169 * @chain[].p. Return value is the pointer to last filled element
3170 * of @chain.
3172 * The work left to caller to do the actual freeing of subtrees:
3173 * a) free the subtree starting from *@top
3174 * b) free the subtrees whose roots are stored in
3175 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3176 * c) free the subtrees growing from the inode past the @chain[0].
3177 * (no partially truncated stuff there). */
3179 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3180 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3182 Indirect *partial, *p;
3183 int k, err;
3185 *top = 0;
3186 /* Make k index the deepest non-null offest + 1 */
3187 for (k = depth; k > 1 && !offsets[k-1]; k--)
3189 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3190 /* Writer: pointers */
3191 if (!partial)
3192 partial = chain + k-1;
3194 * If the branch acquired continuation since we've looked at it -
3195 * fine, it should all survive and (new) top doesn't belong to us.
3197 if (!partial->key && *partial->p)
3198 /* Writer: end */
3199 goto no_top;
3200 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3203 * OK, we've found the last block that must survive. The rest of our
3204 * branch should be detached before unlocking. However, if that rest
3205 * of branch is all ours and does not grow immediately from the inode
3206 * it's easier to cheat and just decrement partial->p.
3208 if (p == chain + k - 1 && p > chain) {
3209 p->p--;
3210 } else {
3211 *top = *p->p;
3212 /* Nope, don't do this in ext4. Must leave the tree intact */
3213 #if 0
3214 *p->p = 0;
3215 #endif
3217 /* Writer: end */
3219 while(partial > p) {
3220 brelse(partial->bh);
3221 partial--;
3223 no_top:
3224 return partial;
3228 * Zero a number of block pointers in either an inode or an indirect block.
3229 * If we restart the transaction we must again get write access to the
3230 * indirect block for further modification.
3232 * We release `count' blocks on disk, but (last - first) may be greater
3233 * than `count' because there can be holes in there.
3235 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3236 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3237 unsigned long count, __le32 *first, __le32 *last)
3239 __le32 *p;
3240 if (try_to_extend_transaction(handle, inode)) {
3241 if (bh) {
3242 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3243 ext4_journal_dirty_metadata(handle, bh);
3245 ext4_mark_inode_dirty(handle, inode);
3246 ext4_journal_test_restart(handle, inode);
3247 if (bh) {
3248 BUFFER_TRACE(bh, "retaking write access");
3249 ext4_journal_get_write_access(handle, bh);
3254 * Any buffers which are on the journal will be in memory. We find
3255 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3256 * on them. We've already detached each block from the file, so
3257 * bforget() in jbd2_journal_forget() should be safe.
3259 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3261 for (p = first; p < last; p++) {
3262 u32 nr = le32_to_cpu(*p);
3263 if (nr) {
3264 struct buffer_head *tbh;
3266 *p = 0;
3267 tbh = sb_find_get_block(inode->i_sb, nr);
3268 ext4_forget(handle, 0, inode, tbh, nr);
3272 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3276 * ext4_free_data - free a list of data blocks
3277 * @handle: handle for this transaction
3278 * @inode: inode we are dealing with
3279 * @this_bh: indirect buffer_head which contains *@first and *@last
3280 * @first: array of block numbers
3281 * @last: points immediately past the end of array
3283 * We are freeing all blocks refered from that array (numbers are stored as
3284 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3286 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3287 * blocks are contiguous then releasing them at one time will only affect one
3288 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3289 * actually use a lot of journal space.
3291 * @this_bh will be %NULL if @first and @last point into the inode's direct
3292 * block pointers.
3294 static void ext4_free_data(handle_t *handle, struct inode *inode,
3295 struct buffer_head *this_bh,
3296 __le32 *first, __le32 *last)
3298 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3299 unsigned long count = 0; /* Number of blocks in the run */
3300 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3301 corresponding to
3302 block_to_free */
3303 ext4_fsblk_t nr; /* Current block # */
3304 __le32 *p; /* Pointer into inode/ind
3305 for current block */
3306 int err;
3308 if (this_bh) { /* For indirect block */
3309 BUFFER_TRACE(this_bh, "get_write_access");
3310 err = ext4_journal_get_write_access(handle, this_bh);
3311 /* Important: if we can't update the indirect pointers
3312 * to the blocks, we can't free them. */
3313 if (err)
3314 return;
3317 for (p = first; p < last; p++) {
3318 nr = le32_to_cpu(*p);
3319 if (nr) {
3320 /* accumulate blocks to free if they're contiguous */
3321 if (count == 0) {
3322 block_to_free = nr;
3323 block_to_free_p = p;
3324 count = 1;
3325 } else if (nr == block_to_free + count) {
3326 count++;
3327 } else {
3328 ext4_clear_blocks(handle, inode, this_bh,
3329 block_to_free,
3330 count, block_to_free_p, p);
3331 block_to_free = nr;
3332 block_to_free_p = p;
3333 count = 1;
3338 if (count > 0)
3339 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3340 count, block_to_free_p, p);
3342 if (this_bh) {
3343 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3346 * The buffer head should have an attached journal head at this
3347 * point. However, if the data is corrupted and an indirect
3348 * block pointed to itself, it would have been detached when
3349 * the block was cleared. Check for this instead of OOPSing.
3351 if (bh2jh(this_bh))
3352 ext4_journal_dirty_metadata(handle, this_bh);
3353 else
3354 ext4_error(inode->i_sb, __func__,
3355 "circular indirect block detected, "
3356 "inode=%lu, block=%llu",
3357 inode->i_ino,
3358 (unsigned long long) this_bh->b_blocknr);
3363 * ext4_free_branches - free an array of branches
3364 * @handle: JBD handle for this transaction
3365 * @inode: inode we are dealing with
3366 * @parent_bh: the buffer_head which contains *@first and *@last
3367 * @first: array of block numbers
3368 * @last: pointer immediately past the end of array
3369 * @depth: depth of the branches to free
3371 * We are freeing all blocks refered from these branches (numbers are
3372 * stored as little-endian 32-bit) and updating @inode->i_blocks
3373 * appropriately.
3375 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3376 struct buffer_head *parent_bh,
3377 __le32 *first, __le32 *last, int depth)
3379 ext4_fsblk_t nr;
3380 __le32 *p;
3382 if (is_handle_aborted(handle))
3383 return;
3385 if (depth--) {
3386 struct buffer_head *bh;
3387 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3388 p = last;
3389 while (--p >= first) {
3390 nr = le32_to_cpu(*p);
3391 if (!nr)
3392 continue; /* A hole */
3394 /* Go read the buffer for the next level down */
3395 bh = sb_bread(inode->i_sb, nr);
3398 * A read failure? Report error and clear slot
3399 * (should be rare).
3401 if (!bh) {
3402 ext4_error(inode->i_sb, "ext4_free_branches",
3403 "Read failure, inode=%lu, block=%llu",
3404 inode->i_ino, nr);
3405 continue;
3408 /* This zaps the entire block. Bottom up. */
3409 BUFFER_TRACE(bh, "free child branches");
3410 ext4_free_branches(handle, inode, bh,
3411 (__le32*)bh->b_data,
3412 (__le32*)bh->b_data + addr_per_block,
3413 depth);
3416 * We've probably journalled the indirect block several
3417 * times during the truncate. But it's no longer
3418 * needed and we now drop it from the transaction via
3419 * jbd2_journal_revoke().
3421 * That's easy if it's exclusively part of this
3422 * transaction. But if it's part of the committing
3423 * transaction then jbd2_journal_forget() will simply
3424 * brelse() it. That means that if the underlying
3425 * block is reallocated in ext4_get_block(),
3426 * unmap_underlying_metadata() will find this block
3427 * and will try to get rid of it. damn, damn.
3429 * If this block has already been committed to the
3430 * journal, a revoke record will be written. And
3431 * revoke records must be emitted *before* clearing
3432 * this block's bit in the bitmaps.
3434 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3437 * Everything below this this pointer has been
3438 * released. Now let this top-of-subtree go.
3440 * We want the freeing of this indirect block to be
3441 * atomic in the journal with the updating of the
3442 * bitmap block which owns it. So make some room in
3443 * the journal.
3445 * We zero the parent pointer *after* freeing its
3446 * pointee in the bitmaps, so if extend_transaction()
3447 * for some reason fails to put the bitmap changes and
3448 * the release into the same transaction, recovery
3449 * will merely complain about releasing a free block,
3450 * rather than leaking blocks.
3452 if (is_handle_aborted(handle))
3453 return;
3454 if (try_to_extend_transaction(handle, inode)) {
3455 ext4_mark_inode_dirty(handle, inode);
3456 ext4_journal_test_restart(handle, inode);
3459 ext4_free_blocks(handle, inode, nr, 1, 1);
3461 if (parent_bh) {
3463 * The block which we have just freed is
3464 * pointed to by an indirect block: journal it
3466 BUFFER_TRACE(parent_bh, "get_write_access");
3467 if (!ext4_journal_get_write_access(handle,
3468 parent_bh)){
3469 *p = 0;
3470 BUFFER_TRACE(parent_bh,
3471 "call ext4_journal_dirty_metadata");
3472 ext4_journal_dirty_metadata(handle,
3473 parent_bh);
3477 } else {
3478 /* We have reached the bottom of the tree. */
3479 BUFFER_TRACE(parent_bh, "free data blocks");
3480 ext4_free_data(handle, inode, parent_bh, first, last);
3484 int ext4_can_truncate(struct inode *inode)
3486 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3487 return 0;
3488 if (S_ISREG(inode->i_mode))
3489 return 1;
3490 if (S_ISDIR(inode->i_mode))
3491 return 1;
3492 if (S_ISLNK(inode->i_mode))
3493 return !ext4_inode_is_fast_symlink(inode);
3494 return 0;
3498 * ext4_truncate()
3500 * We block out ext4_get_block() block instantiations across the entire
3501 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3502 * simultaneously on behalf of the same inode.
3504 * As we work through the truncate and commmit bits of it to the journal there
3505 * is one core, guiding principle: the file's tree must always be consistent on
3506 * disk. We must be able to restart the truncate after a crash.
3508 * The file's tree may be transiently inconsistent in memory (although it
3509 * probably isn't), but whenever we close off and commit a journal transaction,
3510 * the contents of (the filesystem + the journal) must be consistent and
3511 * restartable. It's pretty simple, really: bottom up, right to left (although
3512 * left-to-right works OK too).
3514 * Note that at recovery time, journal replay occurs *before* the restart of
3515 * truncate against the orphan inode list.
3517 * The committed inode has the new, desired i_size (which is the same as
3518 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3519 * that this inode's truncate did not complete and it will again call
3520 * ext4_truncate() to have another go. So there will be instantiated blocks
3521 * to the right of the truncation point in a crashed ext4 filesystem. But
3522 * that's fine - as long as they are linked from the inode, the post-crash
3523 * ext4_truncate() run will find them and release them.
3525 void ext4_truncate(struct inode *inode)
3527 handle_t *handle;
3528 struct ext4_inode_info *ei = EXT4_I(inode);
3529 __le32 *i_data = ei->i_data;
3530 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3531 struct address_space *mapping = inode->i_mapping;
3532 ext4_lblk_t offsets[4];
3533 Indirect chain[4];
3534 Indirect *partial;
3535 __le32 nr = 0;
3536 int n;
3537 ext4_lblk_t last_block;
3538 unsigned blocksize = inode->i_sb->s_blocksize;
3540 if (!ext4_can_truncate(inode))
3541 return;
3543 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3544 ext4_ext_truncate(inode);
3545 return;
3548 handle = start_transaction(inode);
3549 if (IS_ERR(handle))
3550 return; /* AKPM: return what? */
3552 last_block = (inode->i_size + blocksize-1)
3553 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3555 if (inode->i_size & (blocksize - 1))
3556 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3557 goto out_stop;
3559 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3560 if (n == 0)
3561 goto out_stop; /* error */
3564 * OK. This truncate is going to happen. We add the inode to the
3565 * orphan list, so that if this truncate spans multiple transactions,
3566 * and we crash, we will resume the truncate when the filesystem
3567 * recovers. It also marks the inode dirty, to catch the new size.
3569 * Implication: the file must always be in a sane, consistent
3570 * truncatable state while each transaction commits.
3572 if (ext4_orphan_add(handle, inode))
3573 goto out_stop;
3576 * From here we block out all ext4_get_block() callers who want to
3577 * modify the block allocation tree.
3579 down_write(&ei->i_data_sem);
3581 ext4_discard_reservation(inode);
3584 * The orphan list entry will now protect us from any crash which
3585 * occurs before the truncate completes, so it is now safe to propagate
3586 * the new, shorter inode size (held for now in i_size) into the
3587 * on-disk inode. We do this via i_disksize, which is the value which
3588 * ext4 *really* writes onto the disk inode.
3590 ei->i_disksize = inode->i_size;
3592 if (n == 1) { /* direct blocks */
3593 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3594 i_data + EXT4_NDIR_BLOCKS);
3595 goto do_indirects;
3598 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3599 /* Kill the top of shared branch (not detached) */
3600 if (nr) {
3601 if (partial == chain) {
3602 /* Shared branch grows from the inode */
3603 ext4_free_branches(handle, inode, NULL,
3604 &nr, &nr+1, (chain+n-1) - partial);
3605 *partial->p = 0;
3607 * We mark the inode dirty prior to restart,
3608 * and prior to stop. No need for it here.
3610 } else {
3611 /* Shared branch grows from an indirect block */
3612 BUFFER_TRACE(partial->bh, "get_write_access");
3613 ext4_free_branches(handle, inode, partial->bh,
3614 partial->p,
3615 partial->p+1, (chain+n-1) - partial);
3618 /* Clear the ends of indirect blocks on the shared branch */
3619 while (partial > chain) {
3620 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3621 (__le32*)partial->bh->b_data+addr_per_block,
3622 (chain+n-1) - partial);
3623 BUFFER_TRACE(partial->bh, "call brelse");
3624 brelse (partial->bh);
3625 partial--;
3627 do_indirects:
3628 /* Kill the remaining (whole) subtrees */
3629 switch (offsets[0]) {
3630 default:
3631 nr = i_data[EXT4_IND_BLOCK];
3632 if (nr) {
3633 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3634 i_data[EXT4_IND_BLOCK] = 0;
3636 case EXT4_IND_BLOCK:
3637 nr = i_data[EXT4_DIND_BLOCK];
3638 if (nr) {
3639 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3640 i_data[EXT4_DIND_BLOCK] = 0;
3642 case EXT4_DIND_BLOCK:
3643 nr = i_data[EXT4_TIND_BLOCK];
3644 if (nr) {
3645 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3646 i_data[EXT4_TIND_BLOCK] = 0;
3648 case EXT4_TIND_BLOCK:
3652 up_write(&ei->i_data_sem);
3653 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3654 ext4_mark_inode_dirty(handle, inode);
3657 * In a multi-transaction truncate, we only make the final transaction
3658 * synchronous
3660 if (IS_SYNC(inode))
3661 handle->h_sync = 1;
3662 out_stop:
3664 * If this was a simple ftruncate(), and the file will remain alive
3665 * then we need to clear up the orphan record which we created above.
3666 * However, if this was a real unlink then we were called by
3667 * ext4_delete_inode(), and we allow that function to clean up the
3668 * orphan info for us.
3670 if (inode->i_nlink)
3671 ext4_orphan_del(handle, inode);
3673 ext4_journal_stop(handle);
3676 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3677 unsigned long ino, struct ext4_iloc *iloc)
3679 ext4_group_t block_group;
3680 unsigned long offset;
3681 ext4_fsblk_t block;
3682 struct ext4_group_desc *gdp;
3684 if (!ext4_valid_inum(sb, ino)) {
3686 * This error is already checked for in namei.c unless we are
3687 * looking at an NFS filehandle, in which case no error
3688 * report is needed
3690 return 0;
3693 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3694 gdp = ext4_get_group_desc(sb, block_group, NULL);
3695 if (!gdp)
3696 return 0;
3699 * Figure out the offset within the block group inode table
3701 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3702 EXT4_INODE_SIZE(sb);
3703 block = ext4_inode_table(sb, gdp) +
3704 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3706 iloc->block_group = block_group;
3707 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3708 return block;
3712 * ext4_get_inode_loc returns with an extra refcount against the inode's
3713 * underlying buffer_head on success. If 'in_mem' is true, we have all
3714 * data in memory that is needed to recreate the on-disk version of this
3715 * inode.
3717 static int __ext4_get_inode_loc(struct inode *inode,
3718 struct ext4_iloc *iloc, int in_mem)
3720 ext4_fsblk_t block;
3721 struct buffer_head *bh;
3723 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3724 if (!block)
3725 return -EIO;
3727 bh = sb_getblk(inode->i_sb, block);
3728 if (!bh) {
3729 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3730 "unable to read inode block - "
3731 "inode=%lu, block=%llu",
3732 inode->i_ino, block);
3733 return -EIO;
3735 if (!buffer_uptodate(bh)) {
3736 lock_buffer(bh);
3739 * If the buffer has the write error flag, we have failed
3740 * to write out another inode in the same block. In this
3741 * case, we don't have to read the block because we may
3742 * read the old inode data successfully.
3744 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3745 set_buffer_uptodate(bh);
3747 if (buffer_uptodate(bh)) {
3748 /* someone brought it uptodate while we waited */
3749 unlock_buffer(bh);
3750 goto has_buffer;
3754 * If we have all information of the inode in memory and this
3755 * is the only valid inode in the block, we need not read the
3756 * block.
3758 if (in_mem) {
3759 struct buffer_head *bitmap_bh;
3760 struct ext4_group_desc *desc;
3761 int inodes_per_buffer;
3762 int inode_offset, i;
3763 ext4_group_t block_group;
3764 int start;
3766 block_group = (inode->i_ino - 1) /
3767 EXT4_INODES_PER_GROUP(inode->i_sb);
3768 inodes_per_buffer = bh->b_size /
3769 EXT4_INODE_SIZE(inode->i_sb);
3770 inode_offset = ((inode->i_ino - 1) %
3771 EXT4_INODES_PER_GROUP(inode->i_sb));
3772 start = inode_offset & ~(inodes_per_buffer - 1);
3774 /* Is the inode bitmap in cache? */
3775 desc = ext4_get_group_desc(inode->i_sb,
3776 block_group, NULL);
3777 if (!desc)
3778 goto make_io;
3780 bitmap_bh = sb_getblk(inode->i_sb,
3781 ext4_inode_bitmap(inode->i_sb, desc));
3782 if (!bitmap_bh)
3783 goto make_io;
3786 * If the inode bitmap isn't in cache then the
3787 * optimisation may end up performing two reads instead
3788 * of one, so skip it.
3790 if (!buffer_uptodate(bitmap_bh)) {
3791 brelse(bitmap_bh);
3792 goto make_io;
3794 for (i = start; i < start + inodes_per_buffer; i++) {
3795 if (i == inode_offset)
3796 continue;
3797 if (ext4_test_bit(i, bitmap_bh->b_data))
3798 break;
3800 brelse(bitmap_bh);
3801 if (i == start + inodes_per_buffer) {
3802 /* all other inodes are free, so skip I/O */
3803 memset(bh->b_data, 0, bh->b_size);
3804 set_buffer_uptodate(bh);
3805 unlock_buffer(bh);
3806 goto has_buffer;
3810 make_io:
3812 * There are other valid inodes in the buffer, this inode
3813 * has in-inode xattrs, or we don't have this inode in memory.
3814 * Read the block from disk.
3816 get_bh(bh);
3817 bh->b_end_io = end_buffer_read_sync;
3818 submit_bh(READ_META, bh);
3819 wait_on_buffer(bh);
3820 if (!buffer_uptodate(bh)) {
3821 ext4_error(inode->i_sb, "ext4_get_inode_loc",
3822 "unable to read inode block - "
3823 "inode=%lu, block=%llu",
3824 inode->i_ino, block);
3825 brelse(bh);
3826 return -EIO;
3829 has_buffer:
3830 iloc->bh = bh;
3831 return 0;
3834 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3836 /* We have all inode data except xattrs in memory here. */
3837 return __ext4_get_inode_loc(inode, iloc,
3838 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3841 void ext4_set_inode_flags(struct inode *inode)
3843 unsigned int flags = EXT4_I(inode)->i_flags;
3845 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3846 if (flags & EXT4_SYNC_FL)
3847 inode->i_flags |= S_SYNC;
3848 if (flags & EXT4_APPEND_FL)
3849 inode->i_flags |= S_APPEND;
3850 if (flags & EXT4_IMMUTABLE_FL)
3851 inode->i_flags |= S_IMMUTABLE;
3852 if (flags & EXT4_NOATIME_FL)
3853 inode->i_flags |= S_NOATIME;
3854 if (flags & EXT4_DIRSYNC_FL)
3855 inode->i_flags |= S_DIRSYNC;
3858 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3859 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3861 unsigned int flags = ei->vfs_inode.i_flags;
3863 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3864 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3865 if (flags & S_SYNC)
3866 ei->i_flags |= EXT4_SYNC_FL;
3867 if (flags & S_APPEND)
3868 ei->i_flags |= EXT4_APPEND_FL;
3869 if (flags & S_IMMUTABLE)
3870 ei->i_flags |= EXT4_IMMUTABLE_FL;
3871 if (flags & S_NOATIME)
3872 ei->i_flags |= EXT4_NOATIME_FL;
3873 if (flags & S_DIRSYNC)
3874 ei->i_flags |= EXT4_DIRSYNC_FL;
3876 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3877 struct ext4_inode_info *ei)
3879 blkcnt_t i_blocks ;
3880 struct inode *inode = &(ei->vfs_inode);
3881 struct super_block *sb = inode->i_sb;
3883 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3884 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3885 /* we are using combined 48 bit field */
3886 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3887 le32_to_cpu(raw_inode->i_blocks_lo);
3888 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3889 /* i_blocks represent file system block size */
3890 return i_blocks << (inode->i_blkbits - 9);
3891 } else {
3892 return i_blocks;
3894 } else {
3895 return le32_to_cpu(raw_inode->i_blocks_lo);
3899 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3901 struct ext4_iloc iloc;
3902 struct ext4_inode *raw_inode;
3903 struct ext4_inode_info *ei;
3904 struct buffer_head *bh;
3905 struct inode *inode;
3906 long ret;
3907 int block;
3909 inode = iget_locked(sb, ino);
3910 if (!inode)
3911 return ERR_PTR(-ENOMEM);
3912 if (!(inode->i_state & I_NEW))
3913 return inode;
3915 ei = EXT4_I(inode);
3916 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3917 ei->i_acl = EXT4_ACL_NOT_CACHED;
3918 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3919 #endif
3920 ei->i_block_alloc_info = NULL;
3922 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3923 if (ret < 0)
3924 goto bad_inode;
3925 bh = iloc.bh;
3926 raw_inode = ext4_raw_inode(&iloc);
3927 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3928 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3929 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3930 if(!(test_opt (inode->i_sb, NO_UID32))) {
3931 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3932 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3934 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3936 ei->i_state = 0;
3937 ei->i_dir_start_lookup = 0;
3938 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3939 /* We now have enough fields to check if the inode was active or not.
3940 * This is needed because nfsd might try to access dead inodes
3941 * the test is that same one that e2fsck uses
3942 * NeilBrown 1999oct15
3944 if (inode->i_nlink == 0) {
3945 if (inode->i_mode == 0 ||
3946 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3947 /* this inode is deleted */
3948 brelse (bh);
3949 ret = -ESTALE;
3950 goto bad_inode;
3952 /* The only unlinked inodes we let through here have
3953 * valid i_mode and are being read by the orphan
3954 * recovery code: that's fine, we're about to complete
3955 * the process of deleting those. */
3957 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3958 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3959 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3960 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3961 cpu_to_le32(EXT4_OS_HURD)) {
3962 ei->i_file_acl |=
3963 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3965 inode->i_size = ext4_isize(raw_inode);
3966 ei->i_disksize = inode->i_size;
3967 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3968 ei->i_block_group = iloc.block_group;
3970 * NOTE! The in-memory inode i_data array is in little-endian order
3971 * even on big-endian machines: we do NOT byteswap the block numbers!
3973 for (block = 0; block < EXT4_N_BLOCKS; block++)
3974 ei->i_data[block] = raw_inode->i_block[block];
3975 INIT_LIST_HEAD(&ei->i_orphan);
3977 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3978 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3979 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3980 EXT4_INODE_SIZE(inode->i_sb)) {
3981 brelse (bh);
3982 ret = -EIO;
3983 goto bad_inode;
3985 if (ei->i_extra_isize == 0) {
3986 /* The extra space is currently unused. Use it. */
3987 ei->i_extra_isize = sizeof(struct ext4_inode) -
3988 EXT4_GOOD_OLD_INODE_SIZE;
3989 } else {
3990 __le32 *magic = (void *)raw_inode +
3991 EXT4_GOOD_OLD_INODE_SIZE +
3992 ei->i_extra_isize;
3993 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3994 ei->i_state |= EXT4_STATE_XATTR;
3996 } else
3997 ei->i_extra_isize = 0;
3999 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4000 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4001 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4002 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4004 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4005 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4006 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4007 inode->i_version |=
4008 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4011 if (S_ISREG(inode->i_mode)) {
4012 inode->i_op = &ext4_file_inode_operations;
4013 inode->i_fop = &ext4_file_operations;
4014 ext4_set_aops(inode);
4015 } else if (S_ISDIR(inode->i_mode)) {
4016 inode->i_op = &ext4_dir_inode_operations;
4017 inode->i_fop = &ext4_dir_operations;
4018 } else if (S_ISLNK(inode->i_mode)) {
4019 if (ext4_inode_is_fast_symlink(inode))
4020 inode->i_op = &ext4_fast_symlink_inode_operations;
4021 else {
4022 inode->i_op = &ext4_symlink_inode_operations;
4023 ext4_set_aops(inode);
4025 } else {
4026 inode->i_op = &ext4_special_inode_operations;
4027 if (raw_inode->i_block[0])
4028 init_special_inode(inode, inode->i_mode,
4029 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4030 else
4031 init_special_inode(inode, inode->i_mode,
4032 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4034 brelse (iloc.bh);
4035 ext4_set_inode_flags(inode);
4036 unlock_new_inode(inode);
4037 return inode;
4039 bad_inode:
4040 iget_failed(inode);
4041 return ERR_PTR(ret);
4044 static int ext4_inode_blocks_set(handle_t *handle,
4045 struct ext4_inode *raw_inode,
4046 struct ext4_inode_info *ei)
4048 struct inode *inode = &(ei->vfs_inode);
4049 u64 i_blocks = inode->i_blocks;
4050 struct super_block *sb = inode->i_sb;
4051 int err = 0;
4053 if (i_blocks <= ~0U) {
4055 * i_blocks can be represnted in a 32 bit variable
4056 * as multiple of 512 bytes
4058 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4059 raw_inode->i_blocks_high = 0;
4060 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4061 } else if (i_blocks <= 0xffffffffffffULL) {
4063 * i_blocks can be represented in a 48 bit variable
4064 * as multiple of 512 bytes
4066 err = ext4_update_rocompat_feature(handle, sb,
4067 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4068 if (err)
4069 goto err_out;
4070 /* i_block is stored in the split 48 bit fields */
4071 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4072 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4073 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4074 } else {
4076 * i_blocks should be represented in a 48 bit variable
4077 * as multiple of file system block size
4079 err = ext4_update_rocompat_feature(handle, sb,
4080 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4081 if (err)
4082 goto err_out;
4083 ei->i_flags |= EXT4_HUGE_FILE_FL;
4084 /* i_block is stored in file system block size */
4085 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4086 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4087 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4089 err_out:
4090 return err;
4094 * Post the struct inode info into an on-disk inode location in the
4095 * buffer-cache. This gobbles the caller's reference to the
4096 * buffer_head in the inode location struct.
4098 * The caller must have write access to iloc->bh.
4100 static int ext4_do_update_inode(handle_t *handle,
4101 struct inode *inode,
4102 struct ext4_iloc *iloc)
4104 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4105 struct ext4_inode_info *ei = EXT4_I(inode);
4106 struct buffer_head *bh = iloc->bh;
4107 int err = 0, rc, block;
4109 /* For fields not not tracking in the in-memory inode,
4110 * initialise them to zero for new inodes. */
4111 if (ei->i_state & EXT4_STATE_NEW)
4112 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4114 ext4_get_inode_flags(ei);
4115 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4116 if(!(test_opt(inode->i_sb, NO_UID32))) {
4117 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4118 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4120 * Fix up interoperability with old kernels. Otherwise, old inodes get
4121 * re-used with the upper 16 bits of the uid/gid intact
4123 if(!ei->i_dtime) {
4124 raw_inode->i_uid_high =
4125 cpu_to_le16(high_16_bits(inode->i_uid));
4126 raw_inode->i_gid_high =
4127 cpu_to_le16(high_16_bits(inode->i_gid));
4128 } else {
4129 raw_inode->i_uid_high = 0;
4130 raw_inode->i_gid_high = 0;
4132 } else {
4133 raw_inode->i_uid_low =
4134 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4135 raw_inode->i_gid_low =
4136 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4137 raw_inode->i_uid_high = 0;
4138 raw_inode->i_gid_high = 0;
4140 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4142 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4143 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4144 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4145 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4147 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4148 goto out_brelse;
4149 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4150 /* clear the migrate flag in the raw_inode */
4151 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4152 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4153 cpu_to_le32(EXT4_OS_HURD))
4154 raw_inode->i_file_acl_high =
4155 cpu_to_le16(ei->i_file_acl >> 32);
4156 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4157 ext4_isize_set(raw_inode, ei->i_disksize);
4158 if (ei->i_disksize > 0x7fffffffULL) {
4159 struct super_block *sb = inode->i_sb;
4160 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4161 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4162 EXT4_SB(sb)->s_es->s_rev_level ==
4163 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4164 /* If this is the first large file
4165 * created, add a flag to the superblock.
4167 err = ext4_journal_get_write_access(handle,
4168 EXT4_SB(sb)->s_sbh);
4169 if (err)
4170 goto out_brelse;
4171 ext4_update_dynamic_rev(sb);
4172 EXT4_SET_RO_COMPAT_FEATURE(sb,
4173 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4174 sb->s_dirt = 1;
4175 handle->h_sync = 1;
4176 err = ext4_journal_dirty_metadata(handle,
4177 EXT4_SB(sb)->s_sbh);
4180 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4181 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4182 if (old_valid_dev(inode->i_rdev)) {
4183 raw_inode->i_block[0] =
4184 cpu_to_le32(old_encode_dev(inode->i_rdev));
4185 raw_inode->i_block[1] = 0;
4186 } else {
4187 raw_inode->i_block[0] = 0;
4188 raw_inode->i_block[1] =
4189 cpu_to_le32(new_encode_dev(inode->i_rdev));
4190 raw_inode->i_block[2] = 0;
4192 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4193 raw_inode->i_block[block] = ei->i_data[block];
4195 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4196 if (ei->i_extra_isize) {
4197 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4198 raw_inode->i_version_hi =
4199 cpu_to_le32(inode->i_version >> 32);
4200 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4204 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4205 rc = ext4_journal_dirty_metadata(handle, bh);
4206 if (!err)
4207 err = rc;
4208 ei->i_state &= ~EXT4_STATE_NEW;
4210 out_brelse:
4211 brelse (bh);
4212 ext4_std_error(inode->i_sb, err);
4213 return err;
4217 * ext4_write_inode()
4219 * We are called from a few places:
4221 * - Within generic_file_write() for O_SYNC files.
4222 * Here, there will be no transaction running. We wait for any running
4223 * trasnaction to commit.
4225 * - Within sys_sync(), kupdate and such.
4226 * We wait on commit, if tol to.
4228 * - Within prune_icache() (PF_MEMALLOC == true)
4229 * Here we simply return. We can't afford to block kswapd on the
4230 * journal commit.
4232 * In all cases it is actually safe for us to return without doing anything,
4233 * because the inode has been copied into a raw inode buffer in
4234 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4235 * knfsd.
4237 * Note that we are absolutely dependent upon all inode dirtiers doing the
4238 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4239 * which we are interested.
4241 * It would be a bug for them to not do this. The code:
4243 * mark_inode_dirty(inode)
4244 * stuff();
4245 * inode->i_size = expr;
4247 * is in error because a kswapd-driven write_inode() could occur while
4248 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4249 * will no longer be on the superblock's dirty inode list.
4251 int ext4_write_inode(struct inode *inode, int wait)
4253 if (current->flags & PF_MEMALLOC)
4254 return 0;
4256 if (ext4_journal_current_handle()) {
4257 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4258 dump_stack();
4259 return -EIO;
4262 if (!wait)
4263 return 0;
4265 return ext4_force_commit(inode->i_sb);
4269 * ext4_setattr()
4271 * Called from notify_change.
4273 * We want to trap VFS attempts to truncate the file as soon as
4274 * possible. In particular, we want to make sure that when the VFS
4275 * shrinks i_size, we put the inode on the orphan list and modify
4276 * i_disksize immediately, so that during the subsequent flushing of
4277 * dirty pages and freeing of disk blocks, we can guarantee that any
4278 * commit will leave the blocks being flushed in an unused state on
4279 * disk. (On recovery, the inode will get truncated and the blocks will
4280 * be freed, so we have a strong guarantee that no future commit will
4281 * leave these blocks visible to the user.)
4283 * Another thing we have to assure is that if we are in ordered mode
4284 * and inode is still attached to the committing transaction, we must
4285 * we start writeout of all the dirty pages which are being truncated.
4286 * This way we are sure that all the data written in the previous
4287 * transaction are already on disk (truncate waits for pages under
4288 * writeback).
4290 * Called with inode->i_mutex down.
4292 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4294 struct inode *inode = dentry->d_inode;
4295 int error, rc = 0;
4296 const unsigned int ia_valid = attr->ia_valid;
4298 error = inode_change_ok(inode, attr);
4299 if (error)
4300 return error;
4302 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4303 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4304 handle_t *handle;
4306 /* (user+group)*(old+new) structure, inode write (sb,
4307 * inode block, ? - but truncate inode update has it) */
4308 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4309 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4310 if (IS_ERR(handle)) {
4311 error = PTR_ERR(handle);
4312 goto err_out;
4314 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4315 if (error) {
4316 ext4_journal_stop(handle);
4317 return error;
4319 /* Update corresponding info in inode so that everything is in
4320 * one transaction */
4321 if (attr->ia_valid & ATTR_UID)
4322 inode->i_uid = attr->ia_uid;
4323 if (attr->ia_valid & ATTR_GID)
4324 inode->i_gid = attr->ia_gid;
4325 error = ext4_mark_inode_dirty(handle, inode);
4326 ext4_journal_stop(handle);
4329 if (attr->ia_valid & ATTR_SIZE) {
4330 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4333 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4334 error = -EFBIG;
4335 goto err_out;
4340 if (S_ISREG(inode->i_mode) &&
4341 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4342 handle_t *handle;
4344 handle = ext4_journal_start(inode, 3);
4345 if (IS_ERR(handle)) {
4346 error = PTR_ERR(handle);
4347 goto err_out;
4350 error = ext4_orphan_add(handle, inode);
4351 EXT4_I(inode)->i_disksize = attr->ia_size;
4352 rc = ext4_mark_inode_dirty(handle, inode);
4353 if (!error)
4354 error = rc;
4355 ext4_journal_stop(handle);
4357 if (ext4_should_order_data(inode)) {
4358 error = ext4_begin_ordered_truncate(inode,
4359 attr->ia_size);
4360 if (error) {
4361 /* Do as much error cleanup as possible */
4362 handle = ext4_journal_start(inode, 3);
4363 if (IS_ERR(handle)) {
4364 ext4_orphan_del(NULL, inode);
4365 goto err_out;
4367 ext4_orphan_del(handle, inode);
4368 ext4_journal_stop(handle);
4369 goto err_out;
4374 rc = inode_setattr(inode, attr);
4376 /* If inode_setattr's call to ext4_truncate failed to get a
4377 * transaction handle at all, we need to clean up the in-core
4378 * orphan list manually. */
4379 if (inode->i_nlink)
4380 ext4_orphan_del(NULL, inode);
4382 if (!rc && (ia_valid & ATTR_MODE))
4383 rc = ext4_acl_chmod(inode);
4385 err_out:
4386 ext4_std_error(inode->i_sb, error);
4387 if (!error)
4388 error = rc;
4389 return error;
4392 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4393 struct kstat *stat)
4395 struct inode *inode;
4396 unsigned long delalloc_blocks;
4398 inode = dentry->d_inode;
4399 generic_fillattr(inode, stat);
4402 * We can't update i_blocks if the block allocation is delayed
4403 * otherwise in the case of system crash before the real block
4404 * allocation is done, we will have i_blocks inconsistent with
4405 * on-disk file blocks.
4406 * We always keep i_blocks updated together with real
4407 * allocation. But to not confuse with user, stat
4408 * will return the blocks that include the delayed allocation
4409 * blocks for this file.
4411 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4412 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4413 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4415 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4416 return 0;
4419 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4420 int chunk)
4422 int indirects;
4424 /* if nrblocks are contiguous */
4425 if (chunk) {
4427 * With N contiguous data blocks, it need at most
4428 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4429 * 2 dindirect blocks
4430 * 1 tindirect block
4432 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4433 return indirects + 3;
4436 * if nrblocks are not contiguous, worse case, each block touch
4437 * a indirect block, and each indirect block touch a double indirect
4438 * block, plus a triple indirect block
4440 indirects = nrblocks * 2 + 1;
4441 return indirects;
4444 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4446 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4447 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4448 return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4451 * Account for index blocks, block groups bitmaps and block group
4452 * descriptor blocks if modify datablocks and index blocks
4453 * worse case, the indexs blocks spread over different block groups
4455 * If datablocks are discontiguous, they are possible to spread over
4456 * different block groups too. If they are contiugous, with flexbg,
4457 * they could still across block group boundary.
4459 * Also account for superblock, inode, quota and xattr blocks
4461 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4463 int groups, gdpblocks;
4464 int idxblocks;
4465 int ret = 0;
4468 * How many index blocks need to touch to modify nrblocks?
4469 * The "Chunk" flag indicating whether the nrblocks is
4470 * physically contiguous on disk
4472 * For Direct IO and fallocate, they calls get_block to allocate
4473 * one single extent at a time, so they could set the "Chunk" flag
4475 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4477 ret = idxblocks;
4480 * Now let's see how many group bitmaps and group descriptors need
4481 * to account
4483 groups = idxblocks;
4484 if (chunk)
4485 groups += 1;
4486 else
4487 groups += nrblocks;
4489 gdpblocks = groups;
4490 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4491 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4492 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4493 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4495 /* bitmaps and block group descriptor blocks */
4496 ret += groups + gdpblocks;
4498 /* Blocks for super block, inode, quota and xattr blocks */
4499 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4501 return ret;
4505 * Calulate the total number of credits to reserve to fit
4506 * the modification of a single pages into a single transaction,
4507 * which may include multiple chunks of block allocations.
4509 * This could be called via ext4_write_begin()
4511 * We need to consider the worse case, when
4512 * one new block per extent.
4514 int ext4_writepage_trans_blocks(struct inode *inode)
4516 int bpp = ext4_journal_blocks_per_page(inode);
4517 int ret;
4519 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4521 /* Account for data blocks for journalled mode */
4522 if (ext4_should_journal_data(inode))
4523 ret += bpp;
4524 return ret;
4528 * Calculate the journal credits for a chunk of data modification.
4530 * This is called from DIO, fallocate or whoever calling
4531 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4533 * journal buffers for data blocks are not included here, as DIO
4534 * and fallocate do no need to journal data buffers.
4536 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4538 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4542 * The caller must have previously called ext4_reserve_inode_write().
4543 * Give this, we know that the caller already has write access to iloc->bh.
4545 int ext4_mark_iloc_dirty(handle_t *handle,
4546 struct inode *inode, struct ext4_iloc *iloc)
4548 int err = 0;
4550 if (test_opt(inode->i_sb, I_VERSION))
4551 inode_inc_iversion(inode);
4553 /* the do_update_inode consumes one bh->b_count */
4554 get_bh(iloc->bh);
4556 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4557 err = ext4_do_update_inode(handle, inode, iloc);
4558 put_bh(iloc->bh);
4559 return err;
4563 * On success, We end up with an outstanding reference count against
4564 * iloc->bh. This _must_ be cleaned up later.
4568 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4569 struct ext4_iloc *iloc)
4571 int err = 0;
4572 if (handle) {
4573 err = ext4_get_inode_loc(inode, iloc);
4574 if (!err) {
4575 BUFFER_TRACE(iloc->bh, "get_write_access");
4576 err = ext4_journal_get_write_access(handle, iloc->bh);
4577 if (err) {
4578 brelse(iloc->bh);
4579 iloc->bh = NULL;
4583 ext4_std_error(inode->i_sb, err);
4584 return err;
4588 * Expand an inode by new_extra_isize bytes.
4589 * Returns 0 on success or negative error number on failure.
4591 static int ext4_expand_extra_isize(struct inode *inode,
4592 unsigned int new_extra_isize,
4593 struct ext4_iloc iloc,
4594 handle_t *handle)
4596 struct ext4_inode *raw_inode;
4597 struct ext4_xattr_ibody_header *header;
4598 struct ext4_xattr_entry *entry;
4600 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4601 return 0;
4603 raw_inode = ext4_raw_inode(&iloc);
4605 header = IHDR(inode, raw_inode);
4606 entry = IFIRST(header);
4608 /* No extended attributes present */
4609 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4610 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4611 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4612 new_extra_isize);
4613 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4614 return 0;
4617 /* try to expand with EAs present */
4618 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4619 raw_inode, handle);
4623 * What we do here is to mark the in-core inode as clean with respect to inode
4624 * dirtiness (it may still be data-dirty).
4625 * This means that the in-core inode may be reaped by prune_icache
4626 * without having to perform any I/O. This is a very good thing,
4627 * because *any* task may call prune_icache - even ones which
4628 * have a transaction open against a different journal.
4630 * Is this cheating? Not really. Sure, we haven't written the
4631 * inode out, but prune_icache isn't a user-visible syncing function.
4632 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4633 * we start and wait on commits.
4635 * Is this efficient/effective? Well, we're being nice to the system
4636 * by cleaning up our inodes proactively so they can be reaped
4637 * without I/O. But we are potentially leaving up to five seconds'
4638 * worth of inodes floating about which prune_icache wants us to
4639 * write out. One way to fix that would be to get prune_icache()
4640 * to do a write_super() to free up some memory. It has the desired
4641 * effect.
4643 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4645 struct ext4_iloc iloc;
4646 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4647 static unsigned int mnt_count;
4648 int err, ret;
4650 might_sleep();
4651 err = ext4_reserve_inode_write(handle, inode, &iloc);
4652 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4653 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4655 * We need extra buffer credits since we may write into EA block
4656 * with this same handle. If journal_extend fails, then it will
4657 * only result in a minor loss of functionality for that inode.
4658 * If this is felt to be critical, then e2fsck should be run to
4659 * force a large enough s_min_extra_isize.
4661 if ((jbd2_journal_extend(handle,
4662 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4663 ret = ext4_expand_extra_isize(inode,
4664 sbi->s_want_extra_isize,
4665 iloc, handle);
4666 if (ret) {
4667 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4668 if (mnt_count !=
4669 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4670 ext4_warning(inode->i_sb, __func__,
4671 "Unable to expand inode %lu. Delete"
4672 " some EAs or run e2fsck.",
4673 inode->i_ino);
4674 mnt_count =
4675 le16_to_cpu(sbi->s_es->s_mnt_count);
4680 if (!err)
4681 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4682 return err;
4686 * ext4_dirty_inode() is called from __mark_inode_dirty()
4688 * We're really interested in the case where a file is being extended.
4689 * i_size has been changed by generic_commit_write() and we thus need
4690 * to include the updated inode in the current transaction.
4692 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4693 * are allocated to the file.
4695 * If the inode is marked synchronous, we don't honour that here - doing
4696 * so would cause a commit on atime updates, which we don't bother doing.
4697 * We handle synchronous inodes at the highest possible level.
4699 void ext4_dirty_inode(struct inode *inode)
4701 handle_t *current_handle = ext4_journal_current_handle();
4702 handle_t *handle;
4704 handle = ext4_journal_start(inode, 2);
4705 if (IS_ERR(handle))
4706 goto out;
4707 if (current_handle &&
4708 current_handle->h_transaction != handle->h_transaction) {
4709 /* This task has a transaction open against a different fs */
4710 printk(KERN_EMERG "%s: transactions do not match!\n",
4711 __func__);
4712 } else {
4713 jbd_debug(5, "marking dirty. outer handle=%p\n",
4714 current_handle);
4715 ext4_mark_inode_dirty(handle, inode);
4717 ext4_journal_stop(handle);
4718 out:
4719 return;
4722 #if 0
4724 * Bind an inode's backing buffer_head into this transaction, to prevent
4725 * it from being flushed to disk early. Unlike
4726 * ext4_reserve_inode_write, this leaves behind no bh reference and
4727 * returns no iloc structure, so the caller needs to repeat the iloc
4728 * lookup to mark the inode dirty later.
4730 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4732 struct ext4_iloc iloc;
4734 int err = 0;
4735 if (handle) {
4736 err = ext4_get_inode_loc(inode, &iloc);
4737 if (!err) {
4738 BUFFER_TRACE(iloc.bh, "get_write_access");
4739 err = jbd2_journal_get_write_access(handle, iloc.bh);
4740 if (!err)
4741 err = ext4_journal_dirty_metadata(handle,
4742 iloc.bh);
4743 brelse(iloc.bh);
4746 ext4_std_error(inode->i_sb, err);
4747 return err;
4749 #endif
4751 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4753 journal_t *journal;
4754 handle_t *handle;
4755 int err;
4758 * We have to be very careful here: changing a data block's
4759 * journaling status dynamically is dangerous. If we write a
4760 * data block to the journal, change the status and then delete
4761 * that block, we risk forgetting to revoke the old log record
4762 * from the journal and so a subsequent replay can corrupt data.
4763 * So, first we make sure that the journal is empty and that
4764 * nobody is changing anything.
4767 journal = EXT4_JOURNAL(inode);
4768 if (is_journal_aborted(journal))
4769 return -EROFS;
4771 jbd2_journal_lock_updates(journal);
4772 jbd2_journal_flush(journal);
4775 * OK, there are no updates running now, and all cached data is
4776 * synced to disk. We are now in a completely consistent state
4777 * which doesn't have anything in the journal, and we know that
4778 * no filesystem updates are running, so it is safe to modify
4779 * the inode's in-core data-journaling state flag now.
4782 if (val)
4783 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4784 else
4785 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4786 ext4_set_aops(inode);
4788 jbd2_journal_unlock_updates(journal);
4790 /* Finally we can mark the inode as dirty. */
4792 handle = ext4_journal_start(inode, 1);
4793 if (IS_ERR(handle))
4794 return PTR_ERR(handle);
4796 err = ext4_mark_inode_dirty(handle, inode);
4797 handle->h_sync = 1;
4798 ext4_journal_stop(handle);
4799 ext4_std_error(inode->i_sb, err);
4801 return err;
4804 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4806 return !buffer_mapped(bh);
4809 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4811 loff_t size;
4812 unsigned long len;
4813 int ret = -EINVAL;
4814 struct file *file = vma->vm_file;
4815 struct inode *inode = file->f_path.dentry->d_inode;
4816 struct address_space *mapping = inode->i_mapping;
4819 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4820 * get i_mutex because we are already holding mmap_sem.
4822 down_read(&inode->i_alloc_sem);
4823 size = i_size_read(inode);
4824 if (page->mapping != mapping || size <= page_offset(page)
4825 || !PageUptodate(page)) {
4826 /* page got truncated from under us? */
4827 goto out_unlock;
4829 ret = 0;
4830 if (PageMappedToDisk(page))
4831 goto out_unlock;
4833 if (page->index == size >> PAGE_CACHE_SHIFT)
4834 len = size & ~PAGE_CACHE_MASK;
4835 else
4836 len = PAGE_CACHE_SIZE;
4838 if (page_has_buffers(page)) {
4839 /* return if we have all the buffers mapped */
4840 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4841 ext4_bh_unmapped))
4842 goto out_unlock;
4845 * OK, we need to fill the hole... Do write_begin write_end
4846 * to do block allocation/reservation.We are not holding
4847 * inode.i__mutex here. That allow * parallel write_begin,
4848 * write_end call. lock_page prevent this from happening
4849 * on the same page though
4851 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4852 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4853 if (ret < 0)
4854 goto out_unlock;
4855 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4856 len, len, page, NULL);
4857 if (ret < 0)
4858 goto out_unlock;
4859 ret = 0;
4860 out_unlock:
4861 up_read(&inode->i_alloc_sem);
4862 return ret;