rt2x00 : modify padding location.
[linux-2.6.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
blob842c4e3c83cab12dfe755f3acdebe7529f7c8887
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Module: rt2x00lib
24 Abstract: rt2x00 queue specific routines.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/dma-mapping.h>
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
34 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
35 struct queue_entry *entry)
37 struct sk_buff *skb;
38 struct skb_frame_desc *skbdesc;
39 unsigned int frame_size;
40 unsigned int head_size = 0;
41 unsigned int tail_size = 0;
44 * The frame size includes descriptor size, because the
45 * hardware directly receive the frame into the skbuffer.
47 frame_size = entry->queue->data_size + entry->queue->desc_size;
50 * The payload should be aligned to a 4-byte boundary,
51 * this means we need at least 3 bytes for moving the frame
52 * into the correct offset.
54 head_size = 4;
57 * For IV/EIV/ICV assembly we must make sure there is
58 * at least 8 bytes bytes available in headroom for IV/EIV
59 * and 8 bytes for ICV data as tailroon.
61 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
62 head_size += 8;
63 tail_size += 8;
67 * Allocate skbuffer.
69 skb = dev_alloc_skb(frame_size + head_size + tail_size);
70 if (!skb)
71 return NULL;
74 * Make sure we not have a frame with the requested bytes
75 * available in the head and tail.
77 skb_reserve(skb, head_size);
78 skb_put(skb, frame_size);
81 * Populate skbdesc.
83 skbdesc = get_skb_frame_desc(skb);
84 memset(skbdesc, 0, sizeof(*skbdesc));
85 skbdesc->entry = entry;
87 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
88 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
89 skb->data,
90 skb->len,
91 DMA_FROM_DEVICE);
92 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
95 return skb;
98 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
100 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
103 * If device has requested headroom, we should make sure that
104 * is also mapped to the DMA so it can be used for transfering
105 * additional descriptor information to the hardware.
107 skb_push(skb, rt2x00dev->hw->extra_tx_headroom);
109 skbdesc->skb_dma =
110 dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
113 * Restore data pointer to original location again.
115 skb_pull(skb, rt2x00dev->hw->extra_tx_headroom);
117 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
119 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
121 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
123 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
125 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
126 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
127 DMA_FROM_DEVICE);
128 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
131 if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
133 * Add headroom to the skb length, it has been removed
134 * by the driver, but it was actually mapped to DMA.
136 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma,
137 skb->len + rt2x00dev->hw->extra_tx_headroom,
138 DMA_TO_DEVICE);
139 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
143 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
145 if (!skb)
146 return;
148 rt2x00queue_unmap_skb(rt2x00dev, skb);
149 dev_kfree_skb_any(skb);
152 void rt2x00queue_align_frame(struct sk_buff *skb)
154 unsigned int frame_length = skb->len;
155 unsigned int align = ALIGN_SIZE(skb, 0);
157 if (!align)
158 return;
160 skb_push(skb, align);
161 memmove(skb->data, skb->data + align, frame_length);
162 skb_trim(skb, frame_length);
165 void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
167 unsigned int frame_length = skb->len;
168 unsigned int align = ALIGN_SIZE(skb, header_length);
170 if (!align)
171 return;
173 skb_push(skb, align);
174 memmove(skb->data, skb->data + align, frame_length);
175 skb_trim(skb, frame_length);
178 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
180 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
181 unsigned int frame_length = skb->len;
182 unsigned int header_align = ALIGN_SIZE(skb, 0);
183 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
184 unsigned int l2pad = 4 - (payload_align - header_align);
186 if (header_align == payload_align) {
188 * Both header and payload must be moved the same
189 * amount of bytes to align them properly. This means
190 * we don't use the L2 padding but just move the entire
191 * frame.
193 rt2x00queue_align_frame(skb);
194 } else if (!payload_align) {
196 * Simple L2 padding, only the header needs to be moved,
197 * the payload is already properly aligned.
199 skb_push(skb, header_align);
200 memmove(skb->data, skb->data + header_align, header_length);
201 skbdesc->flags |= SKBDESC_L2_PADDED;
202 } else {
205 * Complicated L2 padding, both header and payload need
206 * to be moved. By default we only move to the start
207 * of the buffer, so our header alignment needs to be
208 * increased if there is not enough room for the header
209 * to be moved.
211 if (payload_align > header_align)
212 header_align += 4;
214 skb_push(skb, header_align);
215 memmove(skb->data, skb->data + header_align, header_length);
216 memmove(skb->data + header_length + l2pad,
217 skb->data + header_length + l2pad + payload_align,
218 frame_length - header_length);
219 skbdesc->flags |= SKBDESC_L2_PADDED;
223 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
225 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
226 unsigned int l2pad = 4 - (header_length & 3);
228 if (!l2pad || (skbdesc->flags & SKBDESC_L2_PADDED))
229 return;
231 memmove(skb->data + l2pad, skb->data, header_length);
232 skb_pull(skb, l2pad);
235 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
236 struct txentry_desc *txdesc)
238 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
239 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
240 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
241 unsigned long irqflags;
243 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
244 unlikely(!tx_info->control.vif))
245 return;
248 * Hardware should insert sequence counter.
249 * FIXME: We insert a software sequence counter first for
250 * hardware that doesn't support hardware sequence counting.
252 * This is wrong because beacons are not getting sequence
253 * numbers assigned properly.
255 * A secondary problem exists for drivers that cannot toggle
256 * sequence counting per-frame, since those will override the
257 * sequence counter given by mac80211.
259 spin_lock_irqsave(&intf->seqlock, irqflags);
261 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
262 intf->seqno += 0x10;
263 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
264 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
266 spin_unlock_irqrestore(&intf->seqlock, irqflags);
268 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
271 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
272 struct txentry_desc *txdesc,
273 const struct rt2x00_rate *hwrate)
275 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
276 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
277 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
278 unsigned int data_length;
279 unsigned int duration;
280 unsigned int residual;
282 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
283 data_length = entry->skb->len + 4;
284 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
287 * PLCP setup
288 * Length calculation depends on OFDM/CCK rate.
290 txdesc->signal = hwrate->plcp;
291 txdesc->service = 0x04;
293 if (hwrate->flags & DEV_RATE_OFDM) {
294 txdesc->length_high = (data_length >> 6) & 0x3f;
295 txdesc->length_low = data_length & 0x3f;
296 } else {
298 * Convert length to microseconds.
300 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
301 duration = GET_DURATION(data_length, hwrate->bitrate);
303 if (residual != 0) {
304 duration++;
307 * Check if we need to set the Length Extension
309 if (hwrate->bitrate == 110 && residual <= 30)
310 txdesc->service |= 0x80;
313 txdesc->length_high = (duration >> 8) & 0xff;
314 txdesc->length_low = duration & 0xff;
317 * When preamble is enabled we should set the
318 * preamble bit for the signal.
320 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
321 txdesc->signal |= 0x08;
325 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
326 struct txentry_desc *txdesc)
328 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
329 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
330 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
331 struct ieee80211_rate *rate =
332 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
333 const struct rt2x00_rate *hwrate;
335 memset(txdesc, 0, sizeof(*txdesc));
338 * Initialize information from queue
340 txdesc->queue = entry->queue->qid;
341 txdesc->cw_min = entry->queue->cw_min;
342 txdesc->cw_max = entry->queue->cw_max;
343 txdesc->aifs = entry->queue->aifs;
346 * Header and alignment information.
348 txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
349 txdesc->l2pad = ALIGN_SIZE(entry->skb, txdesc->header_length);
352 * Check whether this frame is to be acked.
354 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
355 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
358 * Check if this is a RTS/CTS frame
360 if (ieee80211_is_rts(hdr->frame_control) ||
361 ieee80211_is_cts(hdr->frame_control)) {
362 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
363 if (ieee80211_is_rts(hdr->frame_control))
364 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
365 else
366 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
367 if (tx_info->control.rts_cts_rate_idx >= 0)
368 rate =
369 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
373 * Determine retry information.
375 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
376 if (txdesc->retry_limit >= rt2x00dev->long_retry)
377 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
380 * Check if more fragments are pending
382 if (ieee80211_has_morefrags(hdr->frame_control) ||
383 (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)) {
384 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
385 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
389 * Beacons and probe responses require the tsf timestamp
390 * to be inserted into the frame.
392 if (ieee80211_is_beacon(hdr->frame_control) ||
393 ieee80211_is_probe_resp(hdr->frame_control))
394 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
397 * Determine with what IFS priority this frame should be send.
398 * Set ifs to IFS_SIFS when the this is not the first fragment,
399 * or this fragment came after RTS/CTS.
401 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
402 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
403 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
404 txdesc->ifs = IFS_BACKOFF;
405 } else
406 txdesc->ifs = IFS_SIFS;
409 * Determine rate modulation.
411 hwrate = rt2x00_get_rate(rate->hw_value);
412 txdesc->rate_mode = RATE_MODE_CCK;
413 if (hwrate->flags & DEV_RATE_OFDM)
414 txdesc->rate_mode = RATE_MODE_OFDM;
417 * Apply TX descriptor handling by components
419 rt2x00crypto_create_tx_descriptor(entry, txdesc);
420 rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
421 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
422 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
425 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
426 struct txentry_desc *txdesc)
428 struct data_queue *queue = entry->queue;
429 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
431 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
434 * All processing on the frame has been completed, this means
435 * it is now ready to be dumped to userspace through debugfs.
437 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
440 * Check if we need to kick the queue, there are however a few rules
441 * 1) Don't kick beacon queue
442 * 2) Don't kick unless this is the last in frame in a burst.
443 * When the burst flag is set, this frame is always followed
444 * by another frame which in some way are related to eachother.
445 * This is true for fragments, RTS or CTS-to-self frames.
446 * 3) Rule 2 can be broken when the available entries
447 * in the queue are less then a certain threshold.
449 if (entry->queue->qid == QID_BEACON)
450 return;
452 if (rt2x00queue_threshold(queue) ||
453 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
454 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
457 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
458 bool local)
460 struct ieee80211_tx_info *tx_info;
461 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
462 struct txentry_desc txdesc;
463 struct skb_frame_desc *skbdesc;
464 u8 rate_idx, rate_flags;
466 if (unlikely(rt2x00queue_full(queue)))
467 return -ENOBUFS;
469 if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
470 ERROR(queue->rt2x00dev,
471 "Arrived at non-free entry in the non-full queue %d.\n"
472 "Please file bug report to %s.\n",
473 queue->qid, DRV_PROJECT);
474 return -EINVAL;
478 * Copy all TX descriptor information into txdesc,
479 * after that we are free to use the skb->cb array
480 * for our information.
482 entry->skb = skb;
483 rt2x00queue_create_tx_descriptor(entry, &txdesc);
486 * All information is retrieved from the skb->cb array,
487 * now we should claim ownership of the driver part of that
488 * array, preserving the bitrate index and flags.
490 tx_info = IEEE80211_SKB_CB(skb);
491 rate_idx = tx_info->control.rates[0].idx;
492 rate_flags = tx_info->control.rates[0].flags;
493 skbdesc = get_skb_frame_desc(skb);
494 memset(skbdesc, 0, sizeof(*skbdesc));
495 skbdesc->entry = entry;
496 skbdesc->tx_rate_idx = rate_idx;
497 skbdesc->tx_rate_flags = rate_flags;
499 if (local)
500 skbdesc->flags |= SKBDESC_NOT_MAC80211;
503 * When hardware encryption is supported, and this frame
504 * is to be encrypted, we should strip the IV/EIV data from
505 * the frame so we can provide it to the driver seperately.
507 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
508 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
509 if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
510 rt2x00crypto_tx_copy_iv(skb, &txdesc);
511 else
512 rt2x00crypto_tx_remove_iv(skb, &txdesc);
516 * When DMA allocation is required we should guarentee to the
517 * driver that the DMA is aligned to a 4-byte boundary.
518 * However some drivers require L2 padding to pad the payload
519 * rather then the header. This could be a requirement for
520 * PCI and USB devices, while header alignment only is valid
521 * for PCI devices.
523 if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
524 rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
525 else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
526 rt2x00queue_align_frame(entry->skb);
529 * It could be possible that the queue was corrupted and this
530 * call failed. Since we always return NETDEV_TX_OK to mac80211,
531 * this frame will simply be dropped.
533 if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
534 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
535 entry->skb = NULL;
536 return -EIO;
539 if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
540 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
542 set_bit(ENTRY_DATA_PENDING, &entry->flags);
544 rt2x00queue_index_inc(queue, Q_INDEX);
545 rt2x00queue_write_tx_descriptor(entry, &txdesc);
547 return 0;
550 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
551 struct ieee80211_vif *vif,
552 const bool enable_beacon)
554 struct rt2x00_intf *intf = vif_to_intf(vif);
555 struct skb_frame_desc *skbdesc;
556 struct txentry_desc txdesc;
557 __le32 desc[16];
559 if (unlikely(!intf->beacon))
560 return -ENOBUFS;
562 mutex_lock(&intf->beacon_skb_mutex);
565 * Clean up the beacon skb.
567 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
568 intf->beacon->skb = NULL;
570 if (!enable_beacon) {
571 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, QID_BEACON);
572 mutex_unlock(&intf->beacon_skb_mutex);
573 return 0;
576 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
577 if (!intf->beacon->skb) {
578 mutex_unlock(&intf->beacon_skb_mutex);
579 return -ENOMEM;
583 * Copy all TX descriptor information into txdesc,
584 * after that we are free to use the skb->cb array
585 * for our information.
587 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
590 * For the descriptor we use a local array from where the
591 * driver can move it to the correct location required for
592 * the hardware.
594 memset(desc, 0, sizeof(desc));
597 * Fill in skb descriptor
599 skbdesc = get_skb_frame_desc(intf->beacon->skb);
600 memset(skbdesc, 0, sizeof(*skbdesc));
601 skbdesc->desc = desc;
602 skbdesc->desc_len = intf->beacon->queue->desc_size;
603 skbdesc->entry = intf->beacon;
606 * Write TX descriptor into reserved room in front of the beacon.
608 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
611 * Send beacon to hardware.
612 * Also enable beacon generation, which might have been disabled
613 * by the driver during the config_beacon() callback function.
615 rt2x00dev->ops->lib->write_beacon(intf->beacon);
616 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
618 mutex_unlock(&intf->beacon_skb_mutex);
620 return 0;
623 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
624 const enum data_queue_qid queue)
626 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
628 if (queue == QID_RX)
629 return rt2x00dev->rx;
631 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
632 return &rt2x00dev->tx[queue];
634 if (!rt2x00dev->bcn)
635 return NULL;
637 if (queue == QID_BEACON)
638 return &rt2x00dev->bcn[0];
639 else if (queue == QID_ATIM && atim)
640 return &rt2x00dev->bcn[1];
642 return NULL;
644 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
646 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
647 enum queue_index index)
649 struct queue_entry *entry;
650 unsigned long irqflags;
652 if (unlikely(index >= Q_INDEX_MAX)) {
653 ERROR(queue->rt2x00dev,
654 "Entry requested from invalid index type (%d)\n", index);
655 return NULL;
658 spin_lock_irqsave(&queue->lock, irqflags);
660 entry = &queue->entries[queue->index[index]];
662 spin_unlock_irqrestore(&queue->lock, irqflags);
664 return entry;
666 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
668 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
670 unsigned long irqflags;
672 if (unlikely(index >= Q_INDEX_MAX)) {
673 ERROR(queue->rt2x00dev,
674 "Index change on invalid index type (%d)\n", index);
675 return;
678 spin_lock_irqsave(&queue->lock, irqflags);
680 queue->index[index]++;
681 if (queue->index[index] >= queue->limit)
682 queue->index[index] = 0;
684 if (index == Q_INDEX) {
685 queue->length++;
686 } else if (index == Q_INDEX_DONE) {
687 queue->length--;
688 queue->count++;
691 spin_unlock_irqrestore(&queue->lock, irqflags);
694 static void rt2x00queue_reset(struct data_queue *queue)
696 unsigned long irqflags;
698 spin_lock_irqsave(&queue->lock, irqflags);
700 queue->count = 0;
701 queue->length = 0;
702 memset(queue->index, 0, sizeof(queue->index));
704 spin_unlock_irqrestore(&queue->lock, irqflags);
707 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
709 struct data_queue *queue;
711 txall_queue_for_each(rt2x00dev, queue)
712 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, queue->qid);
715 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
717 struct data_queue *queue;
718 unsigned int i;
720 queue_for_each(rt2x00dev, queue) {
721 rt2x00queue_reset(queue);
723 for (i = 0; i < queue->limit; i++) {
724 queue->entries[i].flags = 0;
726 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
731 static int rt2x00queue_alloc_entries(struct data_queue *queue,
732 const struct data_queue_desc *qdesc)
734 struct queue_entry *entries;
735 unsigned int entry_size;
736 unsigned int i;
738 rt2x00queue_reset(queue);
740 queue->limit = qdesc->entry_num;
741 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
742 queue->data_size = qdesc->data_size;
743 queue->desc_size = qdesc->desc_size;
746 * Allocate all queue entries.
748 entry_size = sizeof(*entries) + qdesc->priv_size;
749 entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
750 if (!entries)
751 return -ENOMEM;
753 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
754 ( ((char *)(__base)) + ((__limit) * (__esize)) + \
755 ((__index) * (__psize)) )
757 for (i = 0; i < queue->limit; i++) {
758 entries[i].flags = 0;
759 entries[i].queue = queue;
760 entries[i].skb = NULL;
761 entries[i].entry_idx = i;
762 entries[i].priv_data =
763 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
764 sizeof(*entries), qdesc->priv_size);
767 #undef QUEUE_ENTRY_PRIV_OFFSET
769 queue->entries = entries;
771 return 0;
774 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
775 struct data_queue *queue)
777 unsigned int i;
779 if (!queue->entries)
780 return;
782 for (i = 0; i < queue->limit; i++) {
783 if (queue->entries[i].skb)
784 rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
788 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
789 struct data_queue *queue)
791 unsigned int i;
792 struct sk_buff *skb;
794 for (i = 0; i < queue->limit; i++) {
795 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
796 if (!skb)
797 return -ENOMEM;
798 queue->entries[i].skb = skb;
801 return 0;
804 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
806 struct data_queue *queue;
807 int status;
809 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
810 if (status)
811 goto exit;
813 tx_queue_for_each(rt2x00dev, queue) {
814 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
815 if (status)
816 goto exit;
819 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
820 if (status)
821 goto exit;
823 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
824 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
825 rt2x00dev->ops->atim);
826 if (status)
827 goto exit;
830 status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
831 if (status)
832 goto exit;
834 return 0;
836 exit:
837 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
839 rt2x00queue_uninitialize(rt2x00dev);
841 return status;
844 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
846 struct data_queue *queue;
848 rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
850 queue_for_each(rt2x00dev, queue) {
851 kfree(queue->entries);
852 queue->entries = NULL;
856 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
857 struct data_queue *queue, enum data_queue_qid qid)
859 spin_lock_init(&queue->lock);
861 queue->rt2x00dev = rt2x00dev;
862 queue->qid = qid;
863 queue->txop = 0;
864 queue->aifs = 2;
865 queue->cw_min = 5;
866 queue->cw_max = 10;
869 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
871 struct data_queue *queue;
872 enum data_queue_qid qid;
873 unsigned int req_atim =
874 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
877 * We need the following queues:
878 * RX: 1
879 * TX: ops->tx_queues
880 * Beacon: 1
881 * Atim: 1 (if required)
883 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
885 queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
886 if (!queue) {
887 ERROR(rt2x00dev, "Queue allocation failed.\n");
888 return -ENOMEM;
892 * Initialize pointers
894 rt2x00dev->rx = queue;
895 rt2x00dev->tx = &queue[1];
896 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
899 * Initialize queue parameters.
900 * RX: qid = QID_RX
901 * TX: qid = QID_AC_BE + index
902 * TX: cw_min: 2^5 = 32.
903 * TX: cw_max: 2^10 = 1024.
904 * BCN: qid = QID_BEACON
905 * ATIM: qid = QID_ATIM
907 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
909 qid = QID_AC_BE;
910 tx_queue_for_each(rt2x00dev, queue)
911 rt2x00queue_init(rt2x00dev, queue, qid++);
913 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
914 if (req_atim)
915 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
917 return 0;
920 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
922 kfree(rt2x00dev->rx);
923 rt2x00dev->rx = NULL;
924 rt2x00dev->tx = NULL;
925 rt2x00dev->bcn = NULL;