bnx2x: Change to driver version 1.72.10-0
[linux-2.6.git] / fs / eventpoll.c
blob629e9ed99d0f6101949741f640b2c124e8dd71fe
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
43 * LOCKING:
44 * There are three level of locking required by epoll :
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (spinlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
98 #define EP_UNACTIVE_PTR ((void *) -1L)
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
102 struct epoll_filefd {
103 struct file *file;
104 int fd;
108 * Structure used to track possible nested calls, for too deep recursions
109 * and loop cycles.
111 struct nested_call_node {
112 struct list_head llink;
113 void *cookie;
114 void *ctx;
118 * This structure is used as collector for nested calls, to check for
119 * maximum recursion dept and loop cycles.
121 struct nested_calls {
122 struct list_head tasks_call_list;
123 spinlock_t lock;
127 * Each file descriptor added to the eventpoll interface will
128 * have an entry of this type linked to the "rbr" RB tree.
130 struct epitem {
131 /* RB tree node used to link this structure to the eventpoll RB tree */
132 struct rb_node rbn;
134 /* List header used to link this structure to the eventpoll ready list */
135 struct list_head rdllink;
138 * Works together "struct eventpoll"->ovflist in keeping the
139 * single linked chain of items.
141 struct epitem *next;
143 /* The file descriptor information this item refers to */
144 struct epoll_filefd ffd;
146 /* Number of active wait queue attached to poll operations */
147 int nwait;
149 /* List containing poll wait queues */
150 struct list_head pwqlist;
152 /* The "container" of this item */
153 struct eventpoll *ep;
155 /* List header used to link this item to the "struct file" items list */
156 struct list_head fllink;
158 /* The structure that describe the interested events and the source fd */
159 struct epoll_event event;
163 * This structure is stored inside the "private_data" member of the file
164 * structure and represents the main data structure for the eventpoll
165 * interface.
167 struct eventpoll {
168 /* Protect the access to this structure */
169 spinlock_t lock;
172 * This mutex is used to ensure that files are not removed
173 * while epoll is using them. This is held during the event
174 * collection loop, the file cleanup path, the epoll file exit
175 * code and the ctl operations.
177 struct mutex mtx;
179 /* Wait queue used by sys_epoll_wait() */
180 wait_queue_head_t wq;
182 /* Wait queue used by file->poll() */
183 wait_queue_head_t poll_wait;
185 /* List of ready file descriptors */
186 struct list_head rdllist;
188 /* RB tree root used to store monitored fd structs */
189 struct rb_root rbr;
192 * This is a single linked list that chains all the "struct epitem" that
193 * happened while transferring ready events to userspace w/out
194 * holding ->lock.
196 struct epitem *ovflist;
198 /* The user that created the eventpoll descriptor */
199 struct user_struct *user;
201 struct file *file;
203 /* used to optimize loop detection check */
204 int visited;
205 struct list_head visited_list_link;
208 /* Wait structure used by the poll hooks */
209 struct eppoll_entry {
210 /* List header used to link this structure to the "struct epitem" */
211 struct list_head llink;
213 /* The "base" pointer is set to the container "struct epitem" */
214 struct epitem *base;
217 * Wait queue item that will be linked to the target file wait
218 * queue head.
220 wait_queue_t wait;
222 /* The wait queue head that linked the "wait" wait queue item */
223 wait_queue_head_t *whead;
226 /* Wrapper struct used by poll queueing */
227 struct ep_pqueue {
228 poll_table pt;
229 struct epitem *epi;
232 /* Used by the ep_send_events() function as callback private data */
233 struct ep_send_events_data {
234 int maxevents;
235 struct epoll_event __user *events;
239 * Configuration options available inside /proc/sys/fs/epoll/
241 /* Maximum number of epoll watched descriptors, per user */
242 static long max_user_watches __read_mostly;
245 * This mutex is used to serialize ep_free() and eventpoll_release_file().
247 static DEFINE_MUTEX(epmutex);
249 /* Used to check for epoll file descriptor inclusion loops */
250 static struct nested_calls poll_loop_ncalls;
252 /* Used for safe wake up implementation */
253 static struct nested_calls poll_safewake_ncalls;
255 /* Used to call file's f_op->poll() under the nested calls boundaries */
256 static struct nested_calls poll_readywalk_ncalls;
258 /* Slab cache used to allocate "struct epitem" */
259 static struct kmem_cache *epi_cache __read_mostly;
261 /* Slab cache used to allocate "struct eppoll_entry" */
262 static struct kmem_cache *pwq_cache __read_mostly;
264 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
265 static LIST_HEAD(visited_list);
268 * List of files with newly added links, where we may need to limit the number
269 * of emanating paths. Protected by the epmutex.
271 static LIST_HEAD(tfile_check_list);
273 #ifdef CONFIG_SYSCTL
275 #include <linux/sysctl.h>
277 static long zero;
278 static long long_max = LONG_MAX;
280 ctl_table epoll_table[] = {
282 .procname = "max_user_watches",
283 .data = &max_user_watches,
284 .maxlen = sizeof(max_user_watches),
285 .mode = 0644,
286 .proc_handler = proc_doulongvec_minmax,
287 .extra1 = &zero,
288 .extra2 = &long_max,
292 #endif /* CONFIG_SYSCTL */
294 static const struct file_operations eventpoll_fops;
296 static inline int is_file_epoll(struct file *f)
298 return f->f_op == &eventpoll_fops;
301 /* Setup the structure that is used as key for the RB tree */
302 static inline void ep_set_ffd(struct epoll_filefd *ffd,
303 struct file *file, int fd)
305 ffd->file = file;
306 ffd->fd = fd;
309 /* Compare RB tree keys */
310 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
311 struct epoll_filefd *p2)
313 return (p1->file > p2->file ? +1:
314 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
317 /* Tells us if the item is currently linked */
318 static inline int ep_is_linked(struct list_head *p)
320 return !list_empty(p);
323 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
325 return container_of(p, struct eppoll_entry, wait);
328 /* Get the "struct epitem" from a wait queue pointer */
329 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
331 return container_of(p, struct eppoll_entry, wait)->base;
334 /* Get the "struct epitem" from an epoll queue wrapper */
335 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
337 return container_of(p, struct ep_pqueue, pt)->epi;
340 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
341 static inline int ep_op_has_event(int op)
343 return op != EPOLL_CTL_DEL;
346 /* Initialize the poll safe wake up structure */
347 static void ep_nested_calls_init(struct nested_calls *ncalls)
349 INIT_LIST_HEAD(&ncalls->tasks_call_list);
350 spin_lock_init(&ncalls->lock);
354 * ep_events_available - Checks if ready events might be available.
356 * @ep: Pointer to the eventpoll context.
358 * Returns: Returns a value different than zero if ready events are available,
359 * or zero otherwise.
361 static inline int ep_events_available(struct eventpoll *ep)
363 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
367 * ep_call_nested - Perform a bound (possibly) nested call, by checking
368 * that the recursion limit is not exceeded, and that
369 * the same nested call (by the meaning of same cookie) is
370 * no re-entered.
372 * @ncalls: Pointer to the nested_calls structure to be used for this call.
373 * @max_nests: Maximum number of allowed nesting calls.
374 * @nproc: Nested call core function pointer.
375 * @priv: Opaque data to be passed to the @nproc callback.
376 * @cookie: Cookie to be used to identify this nested call.
377 * @ctx: This instance context.
379 * Returns: Returns the code returned by the @nproc callback, or -1 if
380 * the maximum recursion limit has been exceeded.
382 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
383 int (*nproc)(void *, void *, int), void *priv,
384 void *cookie, void *ctx)
386 int error, call_nests = 0;
387 unsigned long flags;
388 struct list_head *lsthead = &ncalls->tasks_call_list;
389 struct nested_call_node *tncur;
390 struct nested_call_node tnode;
392 spin_lock_irqsave(&ncalls->lock, flags);
395 * Try to see if the current task is already inside this wakeup call.
396 * We use a list here, since the population inside this set is always
397 * very much limited.
399 list_for_each_entry(tncur, lsthead, llink) {
400 if (tncur->ctx == ctx &&
401 (tncur->cookie == cookie || ++call_nests > max_nests)) {
403 * Ops ... loop detected or maximum nest level reached.
404 * We abort this wake by breaking the cycle itself.
406 error = -1;
407 goto out_unlock;
411 /* Add the current task and cookie to the list */
412 tnode.ctx = ctx;
413 tnode.cookie = cookie;
414 list_add(&tnode.llink, lsthead);
416 spin_unlock_irqrestore(&ncalls->lock, flags);
418 /* Call the nested function */
419 error = (*nproc)(priv, cookie, call_nests);
421 /* Remove the current task from the list */
422 spin_lock_irqsave(&ncalls->lock, flags);
423 list_del(&tnode.llink);
424 out_unlock:
425 spin_unlock_irqrestore(&ncalls->lock, flags);
427 return error;
431 * As described in commit 0ccf831cb lockdep: annotate epoll
432 * the use of wait queues used by epoll is done in a very controlled
433 * manner. Wake ups can nest inside each other, but are never done
434 * with the same locking. For example:
436 * dfd = socket(...);
437 * efd1 = epoll_create();
438 * efd2 = epoll_create();
439 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
440 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
442 * When a packet arrives to the device underneath "dfd", the net code will
443 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
444 * callback wakeup entry on that queue, and the wake_up() performed by the
445 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
446 * (efd1) notices that it may have some event ready, so it needs to wake up
447 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
448 * that ends up in another wake_up(), after having checked about the
449 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
450 * avoid stack blasting.
452 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
453 * this special case of epoll.
455 #ifdef CONFIG_DEBUG_LOCK_ALLOC
456 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
457 unsigned long events, int subclass)
459 unsigned long flags;
461 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
462 wake_up_locked_poll(wqueue, events);
463 spin_unlock_irqrestore(&wqueue->lock, flags);
465 #else
466 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
467 unsigned long events, int subclass)
469 wake_up_poll(wqueue, events);
471 #endif
473 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
475 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
476 1 + call_nests);
477 return 0;
481 * Perform a safe wake up of the poll wait list. The problem is that
482 * with the new callback'd wake up system, it is possible that the
483 * poll callback is reentered from inside the call to wake_up() done
484 * on the poll wait queue head. The rule is that we cannot reenter the
485 * wake up code from the same task more than EP_MAX_NESTS times,
486 * and we cannot reenter the same wait queue head at all. This will
487 * enable to have a hierarchy of epoll file descriptor of no more than
488 * EP_MAX_NESTS deep.
490 static void ep_poll_safewake(wait_queue_head_t *wq)
492 int this_cpu = get_cpu();
494 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
495 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
497 put_cpu();
500 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
502 wait_queue_head_t *whead;
504 rcu_read_lock();
505 /* If it is cleared by POLLFREE, it should be rcu-safe */
506 whead = rcu_dereference(pwq->whead);
507 if (whead)
508 remove_wait_queue(whead, &pwq->wait);
509 rcu_read_unlock();
513 * This function unregisters poll callbacks from the associated file
514 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
515 * ep_free).
517 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
519 struct list_head *lsthead = &epi->pwqlist;
520 struct eppoll_entry *pwq;
522 while (!list_empty(lsthead)) {
523 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
525 list_del(&pwq->llink);
526 ep_remove_wait_queue(pwq);
527 kmem_cache_free(pwq_cache, pwq);
532 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
533 * the scan code, to call f_op->poll(). Also allows for
534 * O(NumReady) performance.
536 * @ep: Pointer to the epoll private data structure.
537 * @sproc: Pointer to the scan callback.
538 * @priv: Private opaque data passed to the @sproc callback.
539 * @depth: The current depth of recursive f_op->poll calls.
541 * Returns: The same integer error code returned by the @sproc callback.
543 static int ep_scan_ready_list(struct eventpoll *ep,
544 int (*sproc)(struct eventpoll *,
545 struct list_head *, void *),
546 void *priv,
547 int depth)
549 int error, pwake = 0;
550 unsigned long flags;
551 struct epitem *epi, *nepi;
552 LIST_HEAD(txlist);
555 * We need to lock this because we could be hit by
556 * eventpoll_release_file() and epoll_ctl().
558 mutex_lock_nested(&ep->mtx, depth);
561 * Steal the ready list, and re-init the original one to the
562 * empty list. Also, set ep->ovflist to NULL so that events
563 * happening while looping w/out locks, are not lost. We cannot
564 * have the poll callback to queue directly on ep->rdllist,
565 * because we want the "sproc" callback to be able to do it
566 * in a lockless way.
568 spin_lock_irqsave(&ep->lock, flags);
569 list_splice_init(&ep->rdllist, &txlist);
570 ep->ovflist = NULL;
571 spin_unlock_irqrestore(&ep->lock, flags);
574 * Now call the callback function.
576 error = (*sproc)(ep, &txlist, priv);
578 spin_lock_irqsave(&ep->lock, flags);
580 * During the time we spent inside the "sproc" callback, some
581 * other events might have been queued by the poll callback.
582 * We re-insert them inside the main ready-list here.
584 for (nepi = ep->ovflist; (epi = nepi) != NULL;
585 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
587 * We need to check if the item is already in the list.
588 * During the "sproc" callback execution time, items are
589 * queued into ->ovflist but the "txlist" might already
590 * contain them, and the list_splice() below takes care of them.
592 if (!ep_is_linked(&epi->rdllink))
593 list_add_tail(&epi->rdllink, &ep->rdllist);
596 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
597 * releasing the lock, events will be queued in the normal way inside
598 * ep->rdllist.
600 ep->ovflist = EP_UNACTIVE_PTR;
603 * Quickly re-inject items left on "txlist".
605 list_splice(&txlist, &ep->rdllist);
607 if (!list_empty(&ep->rdllist)) {
609 * Wake up (if active) both the eventpoll wait list and
610 * the ->poll() wait list (delayed after we release the lock).
612 if (waitqueue_active(&ep->wq))
613 wake_up_locked(&ep->wq);
614 if (waitqueue_active(&ep->poll_wait))
615 pwake++;
617 spin_unlock_irqrestore(&ep->lock, flags);
619 mutex_unlock(&ep->mtx);
621 /* We have to call this outside the lock */
622 if (pwake)
623 ep_poll_safewake(&ep->poll_wait);
625 return error;
629 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
630 * all the associated resources. Must be called with "mtx" held.
632 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
634 unsigned long flags;
635 struct file *file = epi->ffd.file;
638 * Removes poll wait queue hooks. We _have_ to do this without holding
639 * the "ep->lock" otherwise a deadlock might occur. This because of the
640 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
641 * queue head lock when unregistering the wait queue. The wakeup callback
642 * will run by holding the wait queue head lock and will call our callback
643 * that will try to get "ep->lock".
645 ep_unregister_pollwait(ep, epi);
647 /* Remove the current item from the list of epoll hooks */
648 spin_lock(&file->f_lock);
649 if (ep_is_linked(&epi->fllink))
650 list_del_init(&epi->fllink);
651 spin_unlock(&file->f_lock);
653 rb_erase(&epi->rbn, &ep->rbr);
655 spin_lock_irqsave(&ep->lock, flags);
656 if (ep_is_linked(&epi->rdllink))
657 list_del_init(&epi->rdllink);
658 spin_unlock_irqrestore(&ep->lock, flags);
660 /* At this point it is safe to free the eventpoll item */
661 kmem_cache_free(epi_cache, epi);
663 atomic_long_dec(&ep->user->epoll_watches);
665 return 0;
668 static void ep_free(struct eventpoll *ep)
670 struct rb_node *rbp;
671 struct epitem *epi;
673 /* We need to release all tasks waiting for these file */
674 if (waitqueue_active(&ep->poll_wait))
675 ep_poll_safewake(&ep->poll_wait);
678 * We need to lock this because we could be hit by
679 * eventpoll_release_file() while we're freeing the "struct eventpoll".
680 * We do not need to hold "ep->mtx" here because the epoll file
681 * is on the way to be removed and no one has references to it
682 * anymore. The only hit might come from eventpoll_release_file() but
683 * holding "epmutex" is sufficient here.
685 mutex_lock(&epmutex);
688 * Walks through the whole tree by unregistering poll callbacks.
690 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
691 epi = rb_entry(rbp, struct epitem, rbn);
693 ep_unregister_pollwait(ep, epi);
697 * Walks through the whole tree by freeing each "struct epitem". At this
698 * point we are sure no poll callbacks will be lingering around, and also by
699 * holding "epmutex" we can be sure that no file cleanup code will hit
700 * us during this operation. So we can avoid the lock on "ep->lock".
702 while ((rbp = rb_first(&ep->rbr)) != NULL) {
703 epi = rb_entry(rbp, struct epitem, rbn);
704 ep_remove(ep, epi);
707 mutex_unlock(&epmutex);
708 mutex_destroy(&ep->mtx);
709 free_uid(ep->user);
710 kfree(ep);
713 static int ep_eventpoll_release(struct inode *inode, struct file *file)
715 struct eventpoll *ep = file->private_data;
717 if (ep)
718 ep_free(ep);
720 return 0;
723 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
724 void *priv)
726 struct epitem *epi, *tmp;
727 poll_table pt;
729 init_poll_funcptr(&pt, NULL);
730 list_for_each_entry_safe(epi, tmp, head, rdllink) {
731 pt._key = epi->event.events;
732 if (epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
733 epi->event.events)
734 return POLLIN | POLLRDNORM;
735 else {
737 * Item has been dropped into the ready list by the poll
738 * callback, but it's not actually ready, as far as
739 * caller requested events goes. We can remove it here.
741 list_del_init(&epi->rdllink);
745 return 0;
748 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
750 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
753 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
755 int pollflags;
756 struct eventpoll *ep = file->private_data;
758 /* Insert inside our poll wait queue */
759 poll_wait(file, &ep->poll_wait, wait);
762 * Proceed to find out if wanted events are really available inside
763 * the ready list. This need to be done under ep_call_nested()
764 * supervision, since the call to f_op->poll() done on listed files
765 * could re-enter here.
767 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
768 ep_poll_readyevents_proc, ep, ep, current);
770 return pollflags != -1 ? pollflags : 0;
773 /* File callbacks that implement the eventpoll file behaviour */
774 static const struct file_operations eventpoll_fops = {
775 .release = ep_eventpoll_release,
776 .poll = ep_eventpoll_poll,
777 .llseek = noop_llseek,
781 * This is called from eventpoll_release() to unlink files from the eventpoll
782 * interface. We need to have this facility to cleanup correctly files that are
783 * closed without being removed from the eventpoll interface.
785 void eventpoll_release_file(struct file *file)
787 struct list_head *lsthead = &file->f_ep_links;
788 struct eventpoll *ep;
789 struct epitem *epi;
792 * We don't want to get "file->f_lock" because it is not
793 * necessary. It is not necessary because we're in the "struct file"
794 * cleanup path, and this means that no one is using this file anymore.
795 * So, for example, epoll_ctl() cannot hit here since if we reach this
796 * point, the file counter already went to zero and fget() would fail.
797 * The only hit might come from ep_free() but by holding the mutex
798 * will correctly serialize the operation. We do need to acquire
799 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
800 * from anywhere but ep_free().
802 * Besides, ep_remove() acquires the lock, so we can't hold it here.
804 mutex_lock(&epmutex);
806 while (!list_empty(lsthead)) {
807 epi = list_first_entry(lsthead, struct epitem, fllink);
809 ep = epi->ep;
810 list_del_init(&epi->fllink);
811 mutex_lock_nested(&ep->mtx, 0);
812 ep_remove(ep, epi);
813 mutex_unlock(&ep->mtx);
816 mutex_unlock(&epmutex);
819 static int ep_alloc(struct eventpoll **pep)
821 int error;
822 struct user_struct *user;
823 struct eventpoll *ep;
825 user = get_current_user();
826 error = -ENOMEM;
827 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
828 if (unlikely(!ep))
829 goto free_uid;
831 spin_lock_init(&ep->lock);
832 mutex_init(&ep->mtx);
833 init_waitqueue_head(&ep->wq);
834 init_waitqueue_head(&ep->poll_wait);
835 INIT_LIST_HEAD(&ep->rdllist);
836 ep->rbr = RB_ROOT;
837 ep->ovflist = EP_UNACTIVE_PTR;
838 ep->user = user;
840 *pep = ep;
842 return 0;
844 free_uid:
845 free_uid(user);
846 return error;
850 * Search the file inside the eventpoll tree. The RB tree operations
851 * are protected by the "mtx" mutex, and ep_find() must be called with
852 * "mtx" held.
854 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
856 int kcmp;
857 struct rb_node *rbp;
858 struct epitem *epi, *epir = NULL;
859 struct epoll_filefd ffd;
861 ep_set_ffd(&ffd, file, fd);
862 for (rbp = ep->rbr.rb_node; rbp; ) {
863 epi = rb_entry(rbp, struct epitem, rbn);
864 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
865 if (kcmp > 0)
866 rbp = rbp->rb_right;
867 else if (kcmp < 0)
868 rbp = rbp->rb_left;
869 else {
870 epir = epi;
871 break;
875 return epir;
879 * This is the callback that is passed to the wait queue wakeup
880 * mechanism. It is called by the stored file descriptors when they
881 * have events to report.
883 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
885 int pwake = 0;
886 unsigned long flags;
887 struct epitem *epi = ep_item_from_wait(wait);
888 struct eventpoll *ep = epi->ep;
890 if ((unsigned long)key & POLLFREE) {
891 ep_pwq_from_wait(wait)->whead = NULL;
893 * whead = NULL above can race with ep_remove_wait_queue()
894 * which can do another remove_wait_queue() after us, so we
895 * can't use __remove_wait_queue(). whead->lock is held by
896 * the caller.
898 list_del_init(&wait->task_list);
901 spin_lock_irqsave(&ep->lock, flags);
904 * If the event mask does not contain any poll(2) event, we consider the
905 * descriptor to be disabled. This condition is likely the effect of the
906 * EPOLLONESHOT bit that disables the descriptor when an event is received,
907 * until the next EPOLL_CTL_MOD will be issued.
909 if (!(epi->event.events & ~EP_PRIVATE_BITS))
910 goto out_unlock;
913 * Check the events coming with the callback. At this stage, not
914 * every device reports the events in the "key" parameter of the
915 * callback. We need to be able to handle both cases here, hence the
916 * test for "key" != NULL before the event match test.
918 if (key && !((unsigned long) key & epi->event.events))
919 goto out_unlock;
922 * If we are transferring events to userspace, we can hold no locks
923 * (because we're accessing user memory, and because of linux f_op->poll()
924 * semantics). All the events that happen during that period of time are
925 * chained in ep->ovflist and requeued later on.
927 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
928 if (epi->next == EP_UNACTIVE_PTR) {
929 epi->next = ep->ovflist;
930 ep->ovflist = epi;
932 goto out_unlock;
935 /* If this file is already in the ready list we exit soon */
936 if (!ep_is_linked(&epi->rdllink))
937 list_add_tail(&epi->rdllink, &ep->rdllist);
940 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
941 * wait list.
943 if (waitqueue_active(&ep->wq))
944 wake_up_locked(&ep->wq);
945 if (waitqueue_active(&ep->poll_wait))
946 pwake++;
948 out_unlock:
949 spin_unlock_irqrestore(&ep->lock, flags);
951 /* We have to call this outside the lock */
952 if (pwake)
953 ep_poll_safewake(&ep->poll_wait);
955 return 1;
959 * This is the callback that is used to add our wait queue to the
960 * target file wakeup lists.
962 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
963 poll_table *pt)
965 struct epitem *epi = ep_item_from_epqueue(pt);
966 struct eppoll_entry *pwq;
968 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
969 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
970 pwq->whead = whead;
971 pwq->base = epi;
972 add_wait_queue(whead, &pwq->wait);
973 list_add_tail(&pwq->llink, &epi->pwqlist);
974 epi->nwait++;
975 } else {
976 /* We have to signal that an error occurred */
977 epi->nwait = -1;
981 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
983 int kcmp;
984 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
985 struct epitem *epic;
987 while (*p) {
988 parent = *p;
989 epic = rb_entry(parent, struct epitem, rbn);
990 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
991 if (kcmp > 0)
992 p = &parent->rb_right;
993 else
994 p = &parent->rb_left;
996 rb_link_node(&epi->rbn, parent, p);
997 rb_insert_color(&epi->rbn, &ep->rbr);
1002 #define PATH_ARR_SIZE 5
1004 * These are the number paths of length 1 to 5, that we are allowing to emanate
1005 * from a single file of interest. For example, we allow 1000 paths of length
1006 * 1, to emanate from each file of interest. This essentially represents the
1007 * potential wakeup paths, which need to be limited in order to avoid massive
1008 * uncontrolled wakeup storms. The common use case should be a single ep which
1009 * is connected to n file sources. In this case each file source has 1 path
1010 * of length 1. Thus, the numbers below should be more than sufficient. These
1011 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1012 * and delete can't add additional paths. Protected by the epmutex.
1014 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1015 static int path_count[PATH_ARR_SIZE];
1017 static int path_count_inc(int nests)
1019 /* Allow an arbitrary number of depth 1 paths */
1020 if (nests == 0)
1021 return 0;
1023 if (++path_count[nests] > path_limits[nests])
1024 return -1;
1025 return 0;
1028 static void path_count_init(void)
1030 int i;
1032 for (i = 0; i < PATH_ARR_SIZE; i++)
1033 path_count[i] = 0;
1036 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1038 int error = 0;
1039 struct file *file = priv;
1040 struct file *child_file;
1041 struct epitem *epi;
1043 list_for_each_entry(epi, &file->f_ep_links, fllink) {
1044 child_file = epi->ep->file;
1045 if (is_file_epoll(child_file)) {
1046 if (list_empty(&child_file->f_ep_links)) {
1047 if (path_count_inc(call_nests)) {
1048 error = -1;
1049 break;
1051 } else {
1052 error = ep_call_nested(&poll_loop_ncalls,
1053 EP_MAX_NESTS,
1054 reverse_path_check_proc,
1055 child_file, child_file,
1056 current);
1058 if (error != 0)
1059 break;
1060 } else {
1061 printk(KERN_ERR "reverse_path_check_proc: "
1062 "file is not an ep!\n");
1065 return error;
1069 * reverse_path_check - The tfile_check_list is list of file *, which have
1070 * links that are proposed to be newly added. We need to
1071 * make sure that those added links don't add too many
1072 * paths such that we will spend all our time waking up
1073 * eventpoll objects.
1075 * Returns: Returns zero if the proposed links don't create too many paths,
1076 * -1 otherwise.
1078 static int reverse_path_check(void)
1080 int error = 0;
1081 struct file *current_file;
1083 /* let's call this for all tfiles */
1084 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1085 path_count_init();
1086 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1087 reverse_path_check_proc, current_file,
1088 current_file, current);
1089 if (error)
1090 break;
1092 return error;
1096 * Must be called with "mtx" held.
1098 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1099 struct file *tfile, int fd)
1101 int error, revents, pwake = 0;
1102 unsigned long flags;
1103 long user_watches;
1104 struct epitem *epi;
1105 struct ep_pqueue epq;
1107 user_watches = atomic_long_read(&ep->user->epoll_watches);
1108 if (unlikely(user_watches >= max_user_watches))
1109 return -ENOSPC;
1110 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1111 return -ENOMEM;
1113 /* Item initialization follow here ... */
1114 INIT_LIST_HEAD(&epi->rdllink);
1115 INIT_LIST_HEAD(&epi->fllink);
1116 INIT_LIST_HEAD(&epi->pwqlist);
1117 epi->ep = ep;
1118 ep_set_ffd(&epi->ffd, tfile, fd);
1119 epi->event = *event;
1120 epi->nwait = 0;
1121 epi->next = EP_UNACTIVE_PTR;
1123 /* Initialize the poll table using the queue callback */
1124 epq.epi = epi;
1125 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1126 epq.pt._key = event->events;
1129 * Attach the item to the poll hooks and get current event bits.
1130 * We can safely use the file* here because its usage count has
1131 * been increased by the caller of this function. Note that after
1132 * this operation completes, the poll callback can start hitting
1133 * the new item.
1135 revents = tfile->f_op->poll(tfile, &epq.pt);
1138 * We have to check if something went wrong during the poll wait queue
1139 * install process. Namely an allocation for a wait queue failed due
1140 * high memory pressure.
1142 error = -ENOMEM;
1143 if (epi->nwait < 0)
1144 goto error_unregister;
1146 /* Add the current item to the list of active epoll hook for this file */
1147 spin_lock(&tfile->f_lock);
1148 list_add_tail(&epi->fllink, &tfile->f_ep_links);
1149 spin_unlock(&tfile->f_lock);
1152 * Add the current item to the RB tree. All RB tree operations are
1153 * protected by "mtx", and ep_insert() is called with "mtx" held.
1155 ep_rbtree_insert(ep, epi);
1157 /* now check if we've created too many backpaths */
1158 error = -EINVAL;
1159 if (reverse_path_check())
1160 goto error_remove_epi;
1162 /* We have to drop the new item inside our item list to keep track of it */
1163 spin_lock_irqsave(&ep->lock, flags);
1165 /* If the file is already "ready" we drop it inside the ready list */
1166 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1167 list_add_tail(&epi->rdllink, &ep->rdllist);
1169 /* Notify waiting tasks that events are available */
1170 if (waitqueue_active(&ep->wq))
1171 wake_up_locked(&ep->wq);
1172 if (waitqueue_active(&ep->poll_wait))
1173 pwake++;
1176 spin_unlock_irqrestore(&ep->lock, flags);
1178 atomic_long_inc(&ep->user->epoll_watches);
1180 /* We have to call this outside the lock */
1181 if (pwake)
1182 ep_poll_safewake(&ep->poll_wait);
1184 return 0;
1186 error_remove_epi:
1187 spin_lock(&tfile->f_lock);
1188 if (ep_is_linked(&epi->fllink))
1189 list_del_init(&epi->fllink);
1190 spin_unlock(&tfile->f_lock);
1192 rb_erase(&epi->rbn, &ep->rbr);
1194 error_unregister:
1195 ep_unregister_pollwait(ep, epi);
1198 * We need to do this because an event could have been arrived on some
1199 * allocated wait queue. Note that we don't care about the ep->ovflist
1200 * list, since that is used/cleaned only inside a section bound by "mtx".
1201 * And ep_insert() is called with "mtx" held.
1203 spin_lock_irqsave(&ep->lock, flags);
1204 if (ep_is_linked(&epi->rdllink))
1205 list_del_init(&epi->rdllink);
1206 spin_unlock_irqrestore(&ep->lock, flags);
1208 kmem_cache_free(epi_cache, epi);
1210 return error;
1214 * Modify the interest event mask by dropping an event if the new mask
1215 * has a match in the current file status. Must be called with "mtx" held.
1217 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1219 int pwake = 0;
1220 unsigned int revents;
1221 poll_table pt;
1223 init_poll_funcptr(&pt, NULL);
1226 * Set the new event interest mask before calling f_op->poll();
1227 * otherwise we might miss an event that happens between the
1228 * f_op->poll() call and the new event set registering.
1230 epi->event.events = event->events;
1231 pt._key = event->events;
1232 epi->event.data = event->data; /* protected by mtx */
1235 * Get current event bits. We can safely use the file* here because
1236 * its usage count has been increased by the caller of this function.
1238 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt);
1241 * If the item is "hot" and it is not registered inside the ready
1242 * list, push it inside.
1244 if (revents & event->events) {
1245 spin_lock_irq(&ep->lock);
1246 if (!ep_is_linked(&epi->rdllink)) {
1247 list_add_tail(&epi->rdllink, &ep->rdllist);
1249 /* Notify waiting tasks that events are available */
1250 if (waitqueue_active(&ep->wq))
1251 wake_up_locked(&ep->wq);
1252 if (waitqueue_active(&ep->poll_wait))
1253 pwake++;
1255 spin_unlock_irq(&ep->lock);
1258 /* We have to call this outside the lock */
1259 if (pwake)
1260 ep_poll_safewake(&ep->poll_wait);
1262 return 0;
1265 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1266 void *priv)
1268 struct ep_send_events_data *esed = priv;
1269 int eventcnt;
1270 unsigned int revents;
1271 struct epitem *epi;
1272 struct epoll_event __user *uevent;
1273 poll_table pt;
1275 init_poll_funcptr(&pt, NULL);
1278 * We can loop without lock because we are passed a task private list.
1279 * Items cannot vanish during the loop because ep_scan_ready_list() is
1280 * holding "mtx" during this call.
1282 for (eventcnt = 0, uevent = esed->events;
1283 !list_empty(head) && eventcnt < esed->maxevents;) {
1284 epi = list_first_entry(head, struct epitem, rdllink);
1286 list_del_init(&epi->rdllink);
1288 pt._key = epi->event.events;
1289 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
1290 epi->event.events;
1293 * If the event mask intersect the caller-requested one,
1294 * deliver the event to userspace. Again, ep_scan_ready_list()
1295 * is holding "mtx", so no operations coming from userspace
1296 * can change the item.
1298 if (revents) {
1299 if (__put_user(revents, &uevent->events) ||
1300 __put_user(epi->event.data, &uevent->data)) {
1301 list_add(&epi->rdllink, head);
1302 return eventcnt ? eventcnt : -EFAULT;
1304 eventcnt++;
1305 uevent++;
1306 if (epi->event.events & EPOLLONESHOT)
1307 epi->event.events &= EP_PRIVATE_BITS;
1308 else if (!(epi->event.events & EPOLLET)) {
1310 * If this file has been added with Level
1311 * Trigger mode, we need to insert back inside
1312 * the ready list, so that the next call to
1313 * epoll_wait() will check again the events
1314 * availability. At this point, no one can insert
1315 * into ep->rdllist besides us. The epoll_ctl()
1316 * callers are locked out by
1317 * ep_scan_ready_list() holding "mtx" and the
1318 * poll callback will queue them in ep->ovflist.
1320 list_add_tail(&epi->rdllink, &ep->rdllist);
1325 return eventcnt;
1328 static int ep_send_events(struct eventpoll *ep,
1329 struct epoll_event __user *events, int maxevents)
1331 struct ep_send_events_data esed;
1333 esed.maxevents = maxevents;
1334 esed.events = events;
1336 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1339 static inline struct timespec ep_set_mstimeout(long ms)
1341 struct timespec now, ts = {
1342 .tv_sec = ms / MSEC_PER_SEC,
1343 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1346 ktime_get_ts(&now);
1347 return timespec_add_safe(now, ts);
1351 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1352 * event buffer.
1354 * @ep: Pointer to the eventpoll context.
1355 * @events: Pointer to the userspace buffer where the ready events should be
1356 * stored.
1357 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1358 * @timeout: Maximum timeout for the ready events fetch operation, in
1359 * milliseconds. If the @timeout is zero, the function will not block,
1360 * while if the @timeout is less than zero, the function will block
1361 * until at least one event has been retrieved (or an error
1362 * occurred).
1364 * Returns: Returns the number of ready events which have been fetched, or an
1365 * error code, in case of error.
1367 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1368 int maxevents, long timeout)
1370 int res = 0, eavail, timed_out = 0;
1371 unsigned long flags;
1372 long slack = 0;
1373 wait_queue_t wait;
1374 ktime_t expires, *to = NULL;
1376 if (timeout > 0) {
1377 struct timespec end_time = ep_set_mstimeout(timeout);
1379 slack = select_estimate_accuracy(&end_time);
1380 to = &expires;
1381 *to = timespec_to_ktime(end_time);
1382 } else if (timeout == 0) {
1384 * Avoid the unnecessary trip to the wait queue loop, if the
1385 * caller specified a non blocking operation.
1387 timed_out = 1;
1388 spin_lock_irqsave(&ep->lock, flags);
1389 goto check_events;
1392 fetch_events:
1393 spin_lock_irqsave(&ep->lock, flags);
1395 if (!ep_events_available(ep)) {
1397 * We don't have any available event to return to the caller.
1398 * We need to sleep here, and we will be wake up by
1399 * ep_poll_callback() when events will become available.
1401 init_waitqueue_entry(&wait, current);
1402 __add_wait_queue_exclusive(&ep->wq, &wait);
1404 for (;;) {
1406 * We don't want to sleep if the ep_poll_callback() sends us
1407 * a wakeup in between. That's why we set the task state
1408 * to TASK_INTERRUPTIBLE before doing the checks.
1410 set_current_state(TASK_INTERRUPTIBLE);
1411 if (ep_events_available(ep) || timed_out)
1412 break;
1413 if (signal_pending(current)) {
1414 res = -EINTR;
1415 break;
1418 spin_unlock_irqrestore(&ep->lock, flags);
1419 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1420 timed_out = 1;
1422 spin_lock_irqsave(&ep->lock, flags);
1424 __remove_wait_queue(&ep->wq, &wait);
1426 set_current_state(TASK_RUNNING);
1428 check_events:
1429 /* Is it worth to try to dig for events ? */
1430 eavail = ep_events_available(ep);
1432 spin_unlock_irqrestore(&ep->lock, flags);
1435 * Try to transfer events to user space. In case we get 0 events and
1436 * there's still timeout left over, we go trying again in search of
1437 * more luck.
1439 if (!res && eavail &&
1440 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1441 goto fetch_events;
1443 return res;
1447 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1448 * API, to verify that adding an epoll file inside another
1449 * epoll structure, does not violate the constraints, in
1450 * terms of closed loops, or too deep chains (which can
1451 * result in excessive stack usage).
1453 * @priv: Pointer to the epoll file to be currently checked.
1454 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1455 * data structure pointer.
1456 * @call_nests: Current dept of the @ep_call_nested() call stack.
1458 * Returns: Returns zero if adding the epoll @file inside current epoll
1459 * structure @ep does not violate the constraints, or -1 otherwise.
1461 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1463 int error = 0;
1464 struct file *file = priv;
1465 struct eventpoll *ep = file->private_data;
1466 struct eventpoll *ep_tovisit;
1467 struct rb_node *rbp;
1468 struct epitem *epi;
1470 mutex_lock_nested(&ep->mtx, call_nests + 1);
1471 ep->visited = 1;
1472 list_add(&ep->visited_list_link, &visited_list);
1473 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1474 epi = rb_entry(rbp, struct epitem, rbn);
1475 if (unlikely(is_file_epoll(epi->ffd.file))) {
1476 ep_tovisit = epi->ffd.file->private_data;
1477 if (ep_tovisit->visited)
1478 continue;
1479 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1480 ep_loop_check_proc, epi->ffd.file,
1481 ep_tovisit, current);
1482 if (error != 0)
1483 break;
1484 } else {
1486 * If we've reached a file that is not associated with
1487 * an ep, then we need to check if the newly added
1488 * links are going to add too many wakeup paths. We do
1489 * this by adding it to the tfile_check_list, if it's
1490 * not already there, and calling reverse_path_check()
1491 * during ep_insert().
1493 if (list_empty(&epi->ffd.file->f_tfile_llink))
1494 list_add(&epi->ffd.file->f_tfile_llink,
1495 &tfile_check_list);
1498 mutex_unlock(&ep->mtx);
1500 return error;
1504 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1505 * another epoll file (represented by @ep) does not create
1506 * closed loops or too deep chains.
1508 * @ep: Pointer to the epoll private data structure.
1509 * @file: Pointer to the epoll file to be checked.
1511 * Returns: Returns zero if adding the epoll @file inside current epoll
1512 * structure @ep does not violate the constraints, or -1 otherwise.
1514 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1516 int ret;
1517 struct eventpoll *ep_cur, *ep_next;
1519 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1520 ep_loop_check_proc, file, ep, current);
1521 /* clear visited list */
1522 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1523 visited_list_link) {
1524 ep_cur->visited = 0;
1525 list_del(&ep_cur->visited_list_link);
1527 return ret;
1530 static void clear_tfile_check_list(void)
1532 struct file *file;
1534 /* first clear the tfile_check_list */
1535 while (!list_empty(&tfile_check_list)) {
1536 file = list_first_entry(&tfile_check_list, struct file,
1537 f_tfile_llink);
1538 list_del_init(&file->f_tfile_llink);
1540 INIT_LIST_HEAD(&tfile_check_list);
1544 * Open an eventpoll file descriptor.
1546 SYSCALL_DEFINE1(epoll_create1, int, flags)
1548 int error, fd;
1549 struct eventpoll *ep = NULL;
1550 struct file *file;
1552 /* Check the EPOLL_* constant for consistency. */
1553 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1555 if (flags & ~EPOLL_CLOEXEC)
1556 return -EINVAL;
1558 * Create the internal data structure ("struct eventpoll").
1560 error = ep_alloc(&ep);
1561 if (error < 0)
1562 return error;
1564 * Creates all the items needed to setup an eventpoll file. That is,
1565 * a file structure and a free file descriptor.
1567 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1568 if (fd < 0) {
1569 error = fd;
1570 goto out_free_ep;
1572 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1573 O_RDWR | (flags & O_CLOEXEC));
1574 if (IS_ERR(file)) {
1575 error = PTR_ERR(file);
1576 goto out_free_fd;
1578 fd_install(fd, file);
1579 ep->file = file;
1580 return fd;
1582 out_free_fd:
1583 put_unused_fd(fd);
1584 out_free_ep:
1585 ep_free(ep);
1586 return error;
1589 SYSCALL_DEFINE1(epoll_create, int, size)
1591 if (size <= 0)
1592 return -EINVAL;
1594 return sys_epoll_create1(0);
1598 * The following function implements the controller interface for
1599 * the eventpoll file that enables the insertion/removal/change of
1600 * file descriptors inside the interest set.
1602 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1603 struct epoll_event __user *, event)
1605 int error;
1606 int did_lock_epmutex = 0;
1607 struct file *file, *tfile;
1608 struct eventpoll *ep;
1609 struct epitem *epi;
1610 struct epoll_event epds;
1612 error = -EFAULT;
1613 if (ep_op_has_event(op) &&
1614 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1615 goto error_return;
1617 /* Get the "struct file *" for the eventpoll file */
1618 error = -EBADF;
1619 file = fget(epfd);
1620 if (!file)
1621 goto error_return;
1623 /* Get the "struct file *" for the target file */
1624 tfile = fget(fd);
1625 if (!tfile)
1626 goto error_fput;
1628 /* The target file descriptor must support poll */
1629 error = -EPERM;
1630 if (!tfile->f_op || !tfile->f_op->poll)
1631 goto error_tgt_fput;
1634 * We have to check that the file structure underneath the file descriptor
1635 * the user passed to us _is_ an eventpoll file. And also we do not permit
1636 * adding an epoll file descriptor inside itself.
1638 error = -EINVAL;
1639 if (file == tfile || !is_file_epoll(file))
1640 goto error_tgt_fput;
1643 * At this point it is safe to assume that the "private_data" contains
1644 * our own data structure.
1646 ep = file->private_data;
1649 * When we insert an epoll file descriptor, inside another epoll file
1650 * descriptor, there is the change of creating closed loops, which are
1651 * better be handled here, than in more critical paths. While we are
1652 * checking for loops we also determine the list of files reachable
1653 * and hang them on the tfile_check_list, so we can check that we
1654 * haven't created too many possible wakeup paths.
1656 * We need to hold the epmutex across both ep_insert and ep_remove
1657 * b/c we want to make sure we are looking at a coherent view of
1658 * epoll network.
1660 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1661 mutex_lock(&epmutex);
1662 did_lock_epmutex = 1;
1664 if (op == EPOLL_CTL_ADD) {
1665 if (is_file_epoll(tfile)) {
1666 error = -ELOOP;
1667 if (ep_loop_check(ep, tfile) != 0)
1668 goto error_tgt_fput;
1669 } else
1670 list_add(&tfile->f_tfile_llink, &tfile_check_list);
1673 mutex_lock_nested(&ep->mtx, 0);
1676 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1677 * above, we can be sure to be able to use the item looked up by
1678 * ep_find() till we release the mutex.
1680 epi = ep_find(ep, tfile, fd);
1682 error = -EINVAL;
1683 switch (op) {
1684 case EPOLL_CTL_ADD:
1685 if (!epi) {
1686 epds.events |= POLLERR | POLLHUP;
1687 error = ep_insert(ep, &epds, tfile, fd);
1688 } else
1689 error = -EEXIST;
1690 clear_tfile_check_list();
1691 break;
1692 case EPOLL_CTL_DEL:
1693 if (epi)
1694 error = ep_remove(ep, epi);
1695 else
1696 error = -ENOENT;
1697 break;
1698 case EPOLL_CTL_MOD:
1699 if (epi) {
1700 epds.events |= POLLERR | POLLHUP;
1701 error = ep_modify(ep, epi, &epds);
1702 } else
1703 error = -ENOENT;
1704 break;
1706 mutex_unlock(&ep->mtx);
1708 error_tgt_fput:
1709 if (did_lock_epmutex)
1710 mutex_unlock(&epmutex);
1712 fput(tfile);
1713 error_fput:
1714 fput(file);
1715 error_return:
1717 return error;
1721 * Implement the event wait interface for the eventpoll file. It is the kernel
1722 * part of the user space epoll_wait(2).
1724 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1725 int, maxevents, int, timeout)
1727 int error;
1728 struct file *file;
1729 struct eventpoll *ep;
1731 /* The maximum number of event must be greater than zero */
1732 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1733 return -EINVAL;
1735 /* Verify that the area passed by the user is writeable */
1736 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1737 error = -EFAULT;
1738 goto error_return;
1741 /* Get the "struct file *" for the eventpoll file */
1742 error = -EBADF;
1743 file = fget(epfd);
1744 if (!file)
1745 goto error_return;
1748 * We have to check that the file structure underneath the fd
1749 * the user passed to us _is_ an eventpoll file.
1751 error = -EINVAL;
1752 if (!is_file_epoll(file))
1753 goto error_fput;
1756 * At this point it is safe to assume that the "private_data" contains
1757 * our own data structure.
1759 ep = file->private_data;
1761 /* Time to fish for events ... */
1762 error = ep_poll(ep, events, maxevents, timeout);
1764 error_fput:
1765 fput(file);
1766 error_return:
1768 return error;
1771 #ifdef HAVE_SET_RESTORE_SIGMASK
1774 * Implement the event wait interface for the eventpoll file. It is the kernel
1775 * part of the user space epoll_pwait(2).
1777 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1778 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1779 size_t, sigsetsize)
1781 int error;
1782 sigset_t ksigmask, sigsaved;
1785 * If the caller wants a certain signal mask to be set during the wait,
1786 * we apply it here.
1788 if (sigmask) {
1789 if (sigsetsize != sizeof(sigset_t))
1790 return -EINVAL;
1791 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1792 return -EFAULT;
1793 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1794 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1797 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1800 * If we changed the signal mask, we need to restore the original one.
1801 * In case we've got a signal while waiting, we do not restore the
1802 * signal mask yet, and we allow do_signal() to deliver the signal on
1803 * the way back to userspace, before the signal mask is restored.
1805 if (sigmask) {
1806 if (error == -EINTR) {
1807 memcpy(&current->saved_sigmask, &sigsaved,
1808 sizeof(sigsaved));
1809 set_restore_sigmask();
1810 } else
1811 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1814 return error;
1817 #endif /* HAVE_SET_RESTORE_SIGMASK */
1819 static int __init eventpoll_init(void)
1821 struct sysinfo si;
1823 si_meminfo(&si);
1825 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1827 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1828 EP_ITEM_COST;
1829 BUG_ON(max_user_watches < 0);
1832 * Initialize the structure used to perform epoll file descriptor
1833 * inclusion loops checks.
1835 ep_nested_calls_init(&poll_loop_ncalls);
1837 /* Initialize the structure used to perform safe poll wait head wake ups */
1838 ep_nested_calls_init(&poll_safewake_ncalls);
1840 /* Initialize the structure used to perform file's f_op->poll() calls */
1841 ep_nested_calls_init(&poll_readywalk_ncalls);
1843 /* Allocates slab cache used to allocate "struct epitem" items */
1844 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1845 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1847 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1848 pwq_cache = kmem_cache_create("eventpoll_pwq",
1849 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1851 return 0;
1853 fs_initcall(eventpoll_init);