4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned
;
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed
;
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim
;
67 unsigned long hibernation_mode
;
69 /* This context's GFP mask */
74 /* Can mapped pages be reclaimed? */
77 /* Can pages be swapped as part of reclaim? */
82 /* Scan (total_size >> priority) pages at once */
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
89 struct mem_cgroup
*target_mem_cgroup
;
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field) \
103 if ((_page)->lru.prev != _base) { \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field) \
117 if ((_page)->lru.prev != _base) { \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
129 * From 0 .. 100. Higher means more swappy.
131 int vm_swappiness
= 60;
132 unsigned long vm_total_pages
; /* The total number of pages which the VM controls */
134 static LIST_HEAD(shrinker_list
);
135 static DECLARE_RWSEM(shrinker_rwsem
);
138 static bool global_reclaim(struct scan_control
*sc
)
140 return !sc
->target_mem_cgroup
;
143 static bool global_reclaim(struct scan_control
*sc
)
149 static unsigned long get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
151 if (!mem_cgroup_disabled())
152 return mem_cgroup_get_lru_size(lruvec
, lru
);
154 return zone_page_state(lruvec_zone(lruvec
), NR_LRU_BASE
+ lru
);
158 * Add a shrinker callback to be called from the vm
160 void register_shrinker(struct shrinker
*shrinker
)
162 atomic_long_set(&shrinker
->nr_in_batch
, 0);
163 down_write(&shrinker_rwsem
);
164 list_add_tail(&shrinker
->list
, &shrinker_list
);
165 up_write(&shrinker_rwsem
);
167 EXPORT_SYMBOL(register_shrinker
);
172 void unregister_shrinker(struct shrinker
*shrinker
)
174 down_write(&shrinker_rwsem
);
175 list_del(&shrinker
->list
);
176 up_write(&shrinker_rwsem
);
178 EXPORT_SYMBOL(unregister_shrinker
);
180 static inline int do_shrinker_shrink(struct shrinker
*shrinker
,
181 struct shrink_control
*sc
,
182 unsigned long nr_to_scan
)
184 sc
->nr_to_scan
= nr_to_scan
;
185 return (*shrinker
->shrink
)(shrinker
, sc
);
188 #define SHRINK_BATCH 128
190 * Call the shrink functions to age shrinkable caches
192 * Here we assume it costs one seek to replace a lru page and that it also
193 * takes a seek to recreate a cache object. With this in mind we age equal
194 * percentages of the lru and ageable caches. This should balance the seeks
195 * generated by these structures.
197 * If the vm encountered mapped pages on the LRU it increase the pressure on
198 * slab to avoid swapping.
200 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
202 * `lru_pages' represents the number of on-LRU pages in all the zones which
203 * are eligible for the caller's allocation attempt. It is used for balancing
204 * slab reclaim versus page reclaim.
206 * Returns the number of slab objects which we shrunk.
208 unsigned long shrink_slab(struct shrink_control
*shrink
,
209 unsigned long nr_pages_scanned
,
210 unsigned long lru_pages
)
212 struct shrinker
*shrinker
;
213 unsigned long ret
= 0;
215 if (nr_pages_scanned
== 0)
216 nr_pages_scanned
= SWAP_CLUSTER_MAX
;
218 if (!down_read_trylock(&shrinker_rwsem
)) {
219 /* Assume we'll be able to shrink next time */
224 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
225 unsigned long long delta
;
231 long batch_size
= shrinker
->batch
? shrinker
->batch
234 max_pass
= do_shrinker_shrink(shrinker
, shrink
, 0);
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
243 nr
= atomic_long_xchg(&shrinker
->nr_in_batch
, 0);
246 delta
= (4 * nr_pages_scanned
) / shrinker
->seeks
;
248 do_div(delta
, lru_pages
+ 1);
250 if (total_scan
< 0) {
251 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
253 shrinker
->shrink
, total_scan
);
254 total_scan
= max_pass
;
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
269 if (delta
< max_pass
/ 4)
270 total_scan
= min(total_scan
, max_pass
/ 2);
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
277 if (total_scan
> max_pass
* 2)
278 total_scan
= max_pass
* 2;
280 trace_mm_shrink_slab_start(shrinker
, shrink
, nr
,
281 nr_pages_scanned
, lru_pages
,
282 max_pass
, delta
, total_scan
);
284 while (total_scan
>= batch_size
) {
287 nr_before
= do_shrinker_shrink(shrinker
, shrink
, 0);
288 shrink_ret
= do_shrinker_shrink(shrinker
, shrink
,
290 if (shrink_ret
== -1)
292 if (shrink_ret
< nr_before
)
293 ret
+= nr_before
- shrink_ret
;
294 count_vm_events(SLABS_SCANNED
, batch_size
);
295 total_scan
-= batch_size
;
301 * move the unused scan count back into the shrinker in a
302 * manner that handles concurrent updates. If we exhausted the
303 * scan, there is no need to do an update.
306 new_nr
= atomic_long_add_return(total_scan
,
307 &shrinker
->nr_in_batch
);
309 new_nr
= atomic_long_read(&shrinker
->nr_in_batch
);
311 trace_mm_shrink_slab_end(shrinker
, shrink_ret
, nr
, new_nr
);
313 up_read(&shrinker_rwsem
);
319 static inline int is_page_cache_freeable(struct page
*page
)
322 * A freeable page cache page is referenced only by the caller
323 * that isolated the page, the page cache radix tree and
324 * optional buffer heads at page->private.
326 return page_count(page
) - page_has_private(page
) == 2;
329 static int may_write_to_queue(struct backing_dev_info
*bdi
,
330 struct scan_control
*sc
)
332 if (current
->flags
& PF_SWAPWRITE
)
334 if (!bdi_write_congested(bdi
))
336 if (bdi
== current
->backing_dev_info
)
342 * We detected a synchronous write error writing a page out. Probably
343 * -ENOSPC. We need to propagate that into the address_space for a subsequent
344 * fsync(), msync() or close().
346 * The tricky part is that after writepage we cannot touch the mapping: nothing
347 * prevents it from being freed up. But we have a ref on the page and once
348 * that page is locked, the mapping is pinned.
350 * We're allowed to run sleeping lock_page() here because we know the caller has
353 static void handle_write_error(struct address_space
*mapping
,
354 struct page
*page
, int error
)
357 if (page_mapping(page
) == mapping
)
358 mapping_set_error(mapping
, error
);
362 /* possible outcome of pageout() */
364 /* failed to write page out, page is locked */
366 /* move page to the active list, page is locked */
368 /* page has been sent to the disk successfully, page is unlocked */
370 /* page is clean and locked */
375 * pageout is called by shrink_page_list() for each dirty page.
376 * Calls ->writepage().
378 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
379 struct scan_control
*sc
)
382 * If the page is dirty, only perform writeback if that write
383 * will be non-blocking. To prevent this allocation from being
384 * stalled by pagecache activity. But note that there may be
385 * stalls if we need to run get_block(). We could test
386 * PagePrivate for that.
388 * If this process is currently in __generic_file_aio_write() against
389 * this page's queue, we can perform writeback even if that
392 * If the page is swapcache, write it back even if that would
393 * block, for some throttling. This happens by accident, because
394 * swap_backing_dev_info is bust: it doesn't reflect the
395 * congestion state of the swapdevs. Easy to fix, if needed.
397 if (!is_page_cache_freeable(page
))
401 * Some data journaling orphaned pages can have
402 * page->mapping == NULL while being dirty with clean buffers.
404 if (page_has_private(page
)) {
405 if (try_to_free_buffers(page
)) {
406 ClearPageDirty(page
);
407 printk("%s: orphaned page\n", __func__
);
413 if (mapping
->a_ops
->writepage
== NULL
)
414 return PAGE_ACTIVATE
;
415 if (!may_write_to_queue(mapping
->backing_dev_info
, sc
))
418 if (clear_page_dirty_for_io(page
)) {
420 struct writeback_control wbc
= {
421 .sync_mode
= WB_SYNC_NONE
,
422 .nr_to_write
= SWAP_CLUSTER_MAX
,
424 .range_end
= LLONG_MAX
,
428 SetPageReclaim(page
);
429 res
= mapping
->a_ops
->writepage(page
, &wbc
);
431 handle_write_error(mapping
, page
, res
);
432 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
433 ClearPageReclaim(page
);
434 return PAGE_ACTIVATE
;
437 if (!PageWriteback(page
)) {
438 /* synchronous write or broken a_ops? */
439 ClearPageReclaim(page
);
441 trace_mm_vmscan_writepage(page
, trace_reclaim_flags(page
));
442 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
450 * Same as remove_mapping, but if the page is removed from the mapping, it
451 * gets returned with a refcount of 0.
453 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
455 BUG_ON(!PageLocked(page
));
456 BUG_ON(mapping
!= page_mapping(page
));
458 spin_lock_irq(&mapping
->tree_lock
);
460 * The non racy check for a busy page.
462 * Must be careful with the order of the tests. When someone has
463 * a ref to the page, it may be possible that they dirty it then
464 * drop the reference. So if PageDirty is tested before page_count
465 * here, then the following race may occur:
467 * get_user_pages(&page);
468 * [user mapping goes away]
470 * !PageDirty(page) [good]
471 * SetPageDirty(page);
473 * !page_count(page) [good, discard it]
475 * [oops, our write_to data is lost]
477 * Reversing the order of the tests ensures such a situation cannot
478 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479 * load is not satisfied before that of page->_count.
481 * Note that if SetPageDirty is always performed via set_page_dirty,
482 * and thus under tree_lock, then this ordering is not required.
484 if (!page_freeze_refs(page
, 2))
486 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487 if (unlikely(PageDirty(page
))) {
488 page_unfreeze_refs(page
, 2);
492 if (PageSwapCache(page
)) {
493 swp_entry_t swap
= { .val
= page_private(page
) };
494 __delete_from_swap_cache(page
);
495 spin_unlock_irq(&mapping
->tree_lock
);
496 swapcache_free(swap
, page
);
498 void (*freepage
)(struct page
*);
500 freepage
= mapping
->a_ops
->freepage
;
502 __delete_from_page_cache(page
);
503 spin_unlock_irq(&mapping
->tree_lock
);
504 mem_cgroup_uncharge_cache_page(page
);
506 if (freepage
!= NULL
)
513 spin_unlock_irq(&mapping
->tree_lock
);
518 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
519 * someone else has a ref on the page, abort and return 0. If it was
520 * successfully detached, return 1. Assumes the caller has a single ref on
523 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
525 if (__remove_mapping(mapping
, page
)) {
527 * Unfreezing the refcount with 1 rather than 2 effectively
528 * drops the pagecache ref for us without requiring another
531 page_unfreeze_refs(page
, 1);
538 * putback_lru_page - put previously isolated page onto appropriate LRU list
539 * @page: page to be put back to appropriate lru list
541 * Add previously isolated @page to appropriate LRU list.
542 * Page may still be unevictable for other reasons.
544 * lru_lock must not be held, interrupts must be enabled.
546 void putback_lru_page(struct page
*page
)
549 int active
= !!TestClearPageActive(page
);
550 int was_unevictable
= PageUnevictable(page
);
552 VM_BUG_ON(PageLRU(page
));
555 ClearPageUnevictable(page
);
557 if (page_evictable(page
)) {
559 * For evictable pages, we can use the cache.
560 * In event of a race, worst case is we end up with an
561 * unevictable page on [in]active list.
562 * We know how to handle that.
564 lru
= active
+ page_lru_base_type(page
);
565 lru_cache_add_lru(page
, lru
);
568 * Put unevictable pages directly on zone's unevictable
571 lru
= LRU_UNEVICTABLE
;
572 add_page_to_unevictable_list(page
);
574 * When racing with an mlock or AS_UNEVICTABLE clearing
575 * (page is unlocked) make sure that if the other thread
576 * does not observe our setting of PG_lru and fails
577 * isolation/check_move_unevictable_pages,
578 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579 * the page back to the evictable list.
581 * The other side is TestClearPageMlocked() or shmem_lock().
587 * page's status can change while we move it among lru. If an evictable
588 * page is on unevictable list, it never be freed. To avoid that,
589 * check after we added it to the list, again.
591 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
)) {
592 if (!isolate_lru_page(page
)) {
596 /* This means someone else dropped this page from LRU
597 * So, it will be freed or putback to LRU again. There is
598 * nothing to do here.
602 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
603 count_vm_event(UNEVICTABLE_PGRESCUED
);
604 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
605 count_vm_event(UNEVICTABLE_PGCULLED
);
607 put_page(page
); /* drop ref from isolate */
610 enum page_references
{
612 PAGEREF_RECLAIM_CLEAN
,
617 static enum page_references
page_check_references(struct page
*page
,
618 struct scan_control
*sc
)
620 int referenced_ptes
, referenced_page
;
621 unsigned long vm_flags
;
623 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
625 referenced_page
= TestClearPageReferenced(page
);
628 * Mlock lost the isolation race with us. Let try_to_unmap()
629 * move the page to the unevictable list.
631 if (vm_flags
& VM_LOCKED
)
632 return PAGEREF_RECLAIM
;
634 if (referenced_ptes
) {
635 if (PageSwapBacked(page
))
636 return PAGEREF_ACTIVATE
;
638 * All mapped pages start out with page table
639 * references from the instantiating fault, so we need
640 * to look twice if a mapped file page is used more
643 * Mark it and spare it for another trip around the
644 * inactive list. Another page table reference will
645 * lead to its activation.
647 * Note: the mark is set for activated pages as well
648 * so that recently deactivated but used pages are
651 SetPageReferenced(page
);
653 if (referenced_page
|| referenced_ptes
> 1)
654 return PAGEREF_ACTIVATE
;
657 * Activate file-backed executable pages after first usage.
659 if (vm_flags
& VM_EXEC
)
660 return PAGEREF_ACTIVATE
;
665 /* Reclaim if clean, defer dirty pages to writeback */
666 if (referenced_page
&& !PageSwapBacked(page
))
667 return PAGEREF_RECLAIM_CLEAN
;
669 return PAGEREF_RECLAIM
;
673 * shrink_page_list() returns the number of reclaimed pages
675 static unsigned long shrink_page_list(struct list_head
*page_list
,
677 struct scan_control
*sc
,
678 enum ttu_flags ttu_flags
,
679 unsigned long *ret_nr_dirty
,
680 unsigned long *ret_nr_writeback
,
683 LIST_HEAD(ret_pages
);
684 LIST_HEAD(free_pages
);
686 unsigned long nr_dirty
= 0;
687 unsigned long nr_congested
= 0;
688 unsigned long nr_reclaimed
= 0;
689 unsigned long nr_writeback
= 0;
693 mem_cgroup_uncharge_start();
694 while (!list_empty(page_list
)) {
695 struct address_space
*mapping
;
698 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
702 page
= lru_to_page(page_list
);
703 list_del(&page
->lru
);
705 if (!trylock_page(page
))
708 VM_BUG_ON(PageActive(page
));
709 VM_BUG_ON(page_zone(page
) != zone
);
713 if (unlikely(!page_evictable(page
)))
716 if (!sc
->may_unmap
&& page_mapped(page
))
719 /* Double the slab pressure for mapped and swapcache pages */
720 if (page_mapped(page
) || PageSwapCache(page
))
723 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
724 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
726 if (PageWriteback(page
)) {
728 * memcg doesn't have any dirty pages throttling so we
729 * could easily OOM just because too many pages are in
730 * writeback and there is nothing else to reclaim.
732 * Check __GFP_IO, certainly because a loop driver
733 * thread might enter reclaim, and deadlock if it waits
734 * on a page for which it is needed to do the write
735 * (loop masks off __GFP_IO|__GFP_FS for this reason);
736 * but more thought would probably show more reasons.
738 * Don't require __GFP_FS, since we're not going into
739 * the FS, just waiting on its writeback completion.
740 * Worryingly, ext4 gfs2 and xfs allocate pages with
741 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
742 * testing may_enter_fs here is liable to OOM on them.
744 if (global_reclaim(sc
) ||
745 !PageReclaim(page
) || !(sc
->gfp_mask
& __GFP_IO
)) {
747 * This is slightly racy - end_page_writeback()
748 * might have just cleared PageReclaim, then
749 * setting PageReclaim here end up interpreted
750 * as PageReadahead - but that does not matter
751 * enough to care. What we do want is for this
752 * page to have PageReclaim set next time memcg
753 * reclaim reaches the tests above, so it will
754 * then wait_on_page_writeback() to avoid OOM;
755 * and it's also appropriate in global reclaim.
757 SetPageReclaim(page
);
761 wait_on_page_writeback(page
);
765 references
= page_check_references(page
, sc
);
767 switch (references
) {
768 case PAGEREF_ACTIVATE
:
769 goto activate_locked
;
772 case PAGEREF_RECLAIM
:
773 case PAGEREF_RECLAIM_CLEAN
:
774 ; /* try to reclaim the page below */
778 * Anonymous process memory has backing store?
779 * Try to allocate it some swap space here.
781 if (PageAnon(page
) && !PageSwapCache(page
)) {
782 if (!(sc
->gfp_mask
& __GFP_IO
))
784 if (!add_to_swap(page
, page_list
))
785 goto activate_locked
;
789 mapping
= page_mapping(page
);
792 * The page is mapped into the page tables of one or more
793 * processes. Try to unmap it here.
795 if (page_mapped(page
) && mapping
) {
796 switch (try_to_unmap(page
, ttu_flags
)) {
798 goto activate_locked
;
804 ; /* try to free the page below */
808 if (PageDirty(page
)) {
812 * Only kswapd can writeback filesystem pages to
813 * avoid risk of stack overflow but do not writeback
814 * unless under significant pressure.
816 if (page_is_file_cache(page
) &&
817 (!current_is_kswapd() ||
818 sc
->priority
>= DEF_PRIORITY
- 2)) {
820 * Immediately reclaim when written back.
821 * Similar in principal to deactivate_page()
822 * except we already have the page isolated
823 * and know it's dirty
825 inc_zone_page_state(page
, NR_VMSCAN_IMMEDIATE
);
826 SetPageReclaim(page
);
831 if (references
== PAGEREF_RECLAIM_CLEAN
)
835 if (!sc
->may_writepage
)
838 /* Page is dirty, try to write it out here */
839 switch (pageout(page
, mapping
, sc
)) {
844 goto activate_locked
;
846 if (PageWriteback(page
))
852 * A synchronous write - probably a ramdisk. Go
853 * ahead and try to reclaim the page.
855 if (!trylock_page(page
))
857 if (PageDirty(page
) || PageWriteback(page
))
859 mapping
= page_mapping(page
);
861 ; /* try to free the page below */
866 * If the page has buffers, try to free the buffer mappings
867 * associated with this page. If we succeed we try to free
870 * We do this even if the page is PageDirty().
871 * try_to_release_page() does not perform I/O, but it is
872 * possible for a page to have PageDirty set, but it is actually
873 * clean (all its buffers are clean). This happens if the
874 * buffers were written out directly, with submit_bh(). ext3
875 * will do this, as well as the blockdev mapping.
876 * try_to_release_page() will discover that cleanness and will
877 * drop the buffers and mark the page clean - it can be freed.
879 * Rarely, pages can have buffers and no ->mapping. These are
880 * the pages which were not successfully invalidated in
881 * truncate_complete_page(). We try to drop those buffers here
882 * and if that worked, and the page is no longer mapped into
883 * process address space (page_count == 1) it can be freed.
884 * Otherwise, leave the page on the LRU so it is swappable.
886 if (page_has_private(page
)) {
887 if (!try_to_release_page(page
, sc
->gfp_mask
))
888 goto activate_locked
;
889 if (!mapping
&& page_count(page
) == 1) {
891 if (put_page_testzero(page
))
895 * rare race with speculative reference.
896 * the speculative reference will free
897 * this page shortly, so we may
898 * increment nr_reclaimed here (and
899 * leave it off the LRU).
907 if (!mapping
|| !__remove_mapping(mapping
, page
))
911 * At this point, we have no other references and there is
912 * no way to pick any more up (removed from LRU, removed
913 * from pagecache). Can use non-atomic bitops now (and
914 * we obviously don't have to worry about waking up a process
915 * waiting on the page lock, because there are no references.
917 __clear_page_locked(page
);
922 * Is there need to periodically free_page_list? It would
923 * appear not as the counts should be low
925 list_add(&page
->lru
, &free_pages
);
929 if (PageSwapCache(page
))
930 try_to_free_swap(page
);
932 putback_lru_page(page
);
936 /* Not a candidate for swapping, so reclaim swap space. */
937 if (PageSwapCache(page
) && vm_swap_full())
938 try_to_free_swap(page
);
939 VM_BUG_ON(PageActive(page
));
945 list_add(&page
->lru
, &ret_pages
);
946 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
950 * Tag a zone as congested if all the dirty pages encountered were
951 * backed by a congested BDI. In this case, reclaimers should just
952 * back off and wait for congestion to clear because further reclaim
953 * will encounter the same problem
955 if (nr_dirty
&& nr_dirty
== nr_congested
&& global_reclaim(sc
))
956 zone_set_flag(zone
, ZONE_CONGESTED
);
958 free_hot_cold_page_list(&free_pages
, 1);
960 list_splice(&ret_pages
, page_list
);
961 count_vm_events(PGACTIVATE
, pgactivate
);
962 mem_cgroup_uncharge_end();
963 *ret_nr_dirty
+= nr_dirty
;
964 *ret_nr_writeback
+= nr_writeback
;
968 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
969 struct list_head
*page_list
)
971 struct scan_control sc
= {
972 .gfp_mask
= GFP_KERNEL
,
973 .priority
= DEF_PRIORITY
,
976 unsigned long ret
, dummy1
, dummy2
;
977 struct page
*page
, *next
;
978 LIST_HEAD(clean_pages
);
980 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
981 if (page_is_file_cache(page
) && !PageDirty(page
)) {
982 ClearPageActive(page
);
983 list_move(&page
->lru
, &clean_pages
);
987 ret
= shrink_page_list(&clean_pages
, zone
, &sc
,
988 TTU_UNMAP
|TTU_IGNORE_ACCESS
,
989 &dummy1
, &dummy2
, true);
990 list_splice(&clean_pages
, page_list
);
991 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -ret
);
996 * Attempt to remove the specified page from its LRU. Only take this page
997 * if it is of the appropriate PageActive status. Pages which are being
998 * freed elsewhere are also ignored.
1000 * page: page to consider
1001 * mode: one of the LRU isolation modes defined above
1003 * returns 0 on success, -ve errno on failure.
1005 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1009 /* Only take pages on the LRU. */
1013 /* Compaction should not handle unevictable pages but CMA can do so */
1014 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1020 * To minimise LRU disruption, the caller can indicate that it only
1021 * wants to isolate pages it will be able to operate on without
1022 * blocking - clean pages for the most part.
1024 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1025 * is used by reclaim when it is cannot write to backing storage
1027 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1028 * that it is possible to migrate without blocking
1030 if (mode
& (ISOLATE_CLEAN
|ISOLATE_ASYNC_MIGRATE
)) {
1031 /* All the caller can do on PageWriteback is block */
1032 if (PageWriteback(page
))
1035 if (PageDirty(page
)) {
1036 struct address_space
*mapping
;
1038 /* ISOLATE_CLEAN means only clean pages */
1039 if (mode
& ISOLATE_CLEAN
)
1043 * Only pages without mappings or that have a
1044 * ->migratepage callback are possible to migrate
1047 mapping
= page_mapping(page
);
1048 if (mapping
&& !mapping
->a_ops
->migratepage
)
1053 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1056 if (likely(get_page_unless_zero(page
))) {
1058 * Be careful not to clear PageLRU until after we're
1059 * sure the page is not being freed elsewhere -- the
1060 * page release code relies on it.
1070 * zone->lru_lock is heavily contended. Some of the functions that
1071 * shrink the lists perform better by taking out a batch of pages
1072 * and working on them outside the LRU lock.
1074 * For pagecache intensive workloads, this function is the hottest
1075 * spot in the kernel (apart from copy_*_user functions).
1077 * Appropriate locks must be held before calling this function.
1079 * @nr_to_scan: The number of pages to look through on the list.
1080 * @lruvec: The LRU vector to pull pages from.
1081 * @dst: The temp list to put pages on to.
1082 * @nr_scanned: The number of pages that were scanned.
1083 * @sc: The scan_control struct for this reclaim session
1084 * @mode: One of the LRU isolation modes
1085 * @lru: LRU list id for isolating
1087 * returns how many pages were moved onto *@dst.
1089 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1090 struct lruvec
*lruvec
, struct list_head
*dst
,
1091 unsigned long *nr_scanned
, struct scan_control
*sc
,
1092 isolate_mode_t mode
, enum lru_list lru
)
1094 struct list_head
*src
= &lruvec
->lists
[lru
];
1095 unsigned long nr_taken
= 0;
1098 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
1102 page
= lru_to_page(src
);
1103 prefetchw_prev_lru_page(page
, src
, flags
);
1105 VM_BUG_ON(!PageLRU(page
));
1107 switch (__isolate_lru_page(page
, mode
)) {
1109 nr_pages
= hpage_nr_pages(page
);
1110 mem_cgroup_update_lru_size(lruvec
, lru
, -nr_pages
);
1111 list_move(&page
->lru
, dst
);
1112 nr_taken
+= nr_pages
;
1116 /* else it is being freed elsewhere */
1117 list_move(&page
->lru
, src
);
1126 trace_mm_vmscan_lru_isolate(sc
->order
, nr_to_scan
, scan
,
1127 nr_taken
, mode
, is_file_lru(lru
));
1132 * isolate_lru_page - tries to isolate a page from its LRU list
1133 * @page: page to isolate from its LRU list
1135 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1136 * vmstat statistic corresponding to whatever LRU list the page was on.
1138 * Returns 0 if the page was removed from an LRU list.
1139 * Returns -EBUSY if the page was not on an LRU list.
1141 * The returned page will have PageLRU() cleared. If it was found on
1142 * the active list, it will have PageActive set. If it was found on
1143 * the unevictable list, it will have the PageUnevictable bit set. That flag
1144 * may need to be cleared by the caller before letting the page go.
1146 * The vmstat statistic corresponding to the list on which the page was
1147 * found will be decremented.
1150 * (1) Must be called with an elevated refcount on the page. This is a
1151 * fundamentnal difference from isolate_lru_pages (which is called
1152 * without a stable reference).
1153 * (2) the lru_lock must not be held.
1154 * (3) interrupts must be enabled.
1156 int isolate_lru_page(struct page
*page
)
1160 VM_BUG_ON(!page_count(page
));
1162 if (PageLRU(page
)) {
1163 struct zone
*zone
= page_zone(page
);
1164 struct lruvec
*lruvec
;
1166 spin_lock_irq(&zone
->lru_lock
);
1167 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1168 if (PageLRU(page
)) {
1169 int lru
= page_lru(page
);
1172 del_page_from_lru_list(page
, lruvec
, lru
);
1175 spin_unlock_irq(&zone
->lru_lock
);
1181 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1182 * then get resheduled. When there are massive number of tasks doing page
1183 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1184 * the LRU list will go small and be scanned faster than necessary, leading to
1185 * unnecessary swapping, thrashing and OOM.
1187 static int too_many_isolated(struct zone
*zone
, int file
,
1188 struct scan_control
*sc
)
1190 unsigned long inactive
, isolated
;
1192 if (current_is_kswapd())
1195 if (!global_reclaim(sc
))
1199 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1200 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1202 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1203 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1207 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1208 * won't get blocked by normal direct-reclaimers, forming a circular
1211 if ((sc
->gfp_mask
& GFP_IOFS
) == GFP_IOFS
)
1214 return isolated
> inactive
;
1217 static noinline_for_stack
void
1218 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1220 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1221 struct zone
*zone
= lruvec_zone(lruvec
);
1222 LIST_HEAD(pages_to_free
);
1225 * Put back any unfreeable pages.
1227 while (!list_empty(page_list
)) {
1228 struct page
*page
= lru_to_page(page_list
);
1231 VM_BUG_ON(PageLRU(page
));
1232 list_del(&page
->lru
);
1233 if (unlikely(!page_evictable(page
))) {
1234 spin_unlock_irq(&zone
->lru_lock
);
1235 putback_lru_page(page
);
1236 spin_lock_irq(&zone
->lru_lock
);
1240 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1243 lru
= page_lru(page
);
1244 add_page_to_lru_list(page
, lruvec
, lru
);
1246 if (is_active_lru(lru
)) {
1247 int file
= is_file_lru(lru
);
1248 int numpages
= hpage_nr_pages(page
);
1249 reclaim_stat
->recent_rotated
[file
] += numpages
;
1251 if (put_page_testzero(page
)) {
1252 __ClearPageLRU(page
);
1253 __ClearPageActive(page
);
1254 del_page_from_lru_list(page
, lruvec
, lru
);
1256 if (unlikely(PageCompound(page
))) {
1257 spin_unlock_irq(&zone
->lru_lock
);
1258 (*get_compound_page_dtor(page
))(page
);
1259 spin_lock_irq(&zone
->lru_lock
);
1261 list_add(&page
->lru
, &pages_to_free
);
1266 * To save our caller's stack, now use input list for pages to free.
1268 list_splice(&pages_to_free
, page_list
);
1272 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1273 * of reclaimed pages
1275 static noinline_for_stack
unsigned long
1276 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1277 struct scan_control
*sc
, enum lru_list lru
)
1279 LIST_HEAD(page_list
);
1280 unsigned long nr_scanned
;
1281 unsigned long nr_reclaimed
= 0;
1282 unsigned long nr_taken
;
1283 unsigned long nr_dirty
= 0;
1284 unsigned long nr_writeback
= 0;
1285 isolate_mode_t isolate_mode
= 0;
1286 int file
= is_file_lru(lru
);
1287 struct zone
*zone
= lruvec_zone(lruvec
);
1288 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1290 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1291 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1293 /* We are about to die and free our memory. Return now. */
1294 if (fatal_signal_pending(current
))
1295 return SWAP_CLUSTER_MAX
;
1301 isolate_mode
|= ISOLATE_UNMAPPED
;
1302 if (!sc
->may_writepage
)
1303 isolate_mode
|= ISOLATE_CLEAN
;
1305 spin_lock_irq(&zone
->lru_lock
);
1307 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1308 &nr_scanned
, sc
, isolate_mode
, lru
);
1310 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, -nr_taken
);
1311 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1313 if (global_reclaim(sc
)) {
1314 zone
->pages_scanned
+= nr_scanned
;
1315 if (current_is_kswapd())
1316 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scanned
);
1318 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scanned
);
1320 spin_unlock_irq(&zone
->lru_lock
);
1325 nr_reclaimed
= shrink_page_list(&page_list
, zone
, sc
, TTU_UNMAP
,
1326 &nr_dirty
, &nr_writeback
, false);
1328 spin_lock_irq(&zone
->lru_lock
);
1330 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1332 if (global_reclaim(sc
)) {
1333 if (current_is_kswapd())
1334 __count_zone_vm_events(PGSTEAL_KSWAPD
, zone
,
1337 __count_zone_vm_events(PGSTEAL_DIRECT
, zone
,
1341 putback_inactive_pages(lruvec
, &page_list
);
1343 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1345 spin_unlock_irq(&zone
->lru_lock
);
1347 free_hot_cold_page_list(&page_list
, 1);
1350 * If reclaim is isolating dirty pages under writeback, it implies
1351 * that the long-lived page allocation rate is exceeding the page
1352 * laundering rate. Either the global limits are not being effective
1353 * at throttling processes due to the page distribution throughout
1354 * zones or there is heavy usage of a slow backing device. The
1355 * only option is to throttle from reclaim context which is not ideal
1356 * as there is no guarantee the dirtying process is throttled in the
1357 * same way balance_dirty_pages() manages.
1359 * This scales the number of dirty pages that must be under writeback
1360 * before throttling depending on priority. It is a simple backoff
1361 * function that has the most effect in the range DEF_PRIORITY to
1362 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1363 * in trouble and reclaim is considered to be in trouble.
1365 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1366 * DEF_PRIORITY-1 50% must be PageWriteback
1367 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1369 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1370 * isolated page is PageWriteback
1372 if (nr_writeback
&& nr_writeback
>=
1373 (nr_taken
>> (DEF_PRIORITY
- sc
->priority
)))
1374 wait_iff_congested(zone
, BLK_RW_ASYNC
, HZ
/10);
1376 trace_mm_vmscan_lru_shrink_inactive(zone
->zone_pgdat
->node_id
,
1378 nr_scanned
, nr_reclaimed
,
1380 trace_shrink_flags(file
));
1381 return nr_reclaimed
;
1385 * This moves pages from the active list to the inactive list.
1387 * We move them the other way if the page is referenced by one or more
1388 * processes, from rmap.
1390 * If the pages are mostly unmapped, the processing is fast and it is
1391 * appropriate to hold zone->lru_lock across the whole operation. But if
1392 * the pages are mapped, the processing is slow (page_referenced()) so we
1393 * should drop zone->lru_lock around each page. It's impossible to balance
1394 * this, so instead we remove the pages from the LRU while processing them.
1395 * It is safe to rely on PG_active against the non-LRU pages in here because
1396 * nobody will play with that bit on a non-LRU page.
1398 * The downside is that we have to touch page->_count against each page.
1399 * But we had to alter page->flags anyway.
1402 static void move_active_pages_to_lru(struct lruvec
*lruvec
,
1403 struct list_head
*list
,
1404 struct list_head
*pages_to_free
,
1407 struct zone
*zone
= lruvec_zone(lruvec
);
1408 unsigned long pgmoved
= 0;
1412 while (!list_empty(list
)) {
1413 page
= lru_to_page(list
);
1414 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1416 VM_BUG_ON(PageLRU(page
));
1419 nr_pages
= hpage_nr_pages(page
);
1420 mem_cgroup_update_lru_size(lruvec
, lru
, nr_pages
);
1421 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1422 pgmoved
+= nr_pages
;
1424 if (put_page_testzero(page
)) {
1425 __ClearPageLRU(page
);
1426 __ClearPageActive(page
);
1427 del_page_from_lru_list(page
, lruvec
, lru
);
1429 if (unlikely(PageCompound(page
))) {
1430 spin_unlock_irq(&zone
->lru_lock
);
1431 (*get_compound_page_dtor(page
))(page
);
1432 spin_lock_irq(&zone
->lru_lock
);
1434 list_add(&page
->lru
, pages_to_free
);
1437 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1438 if (!is_active_lru(lru
))
1439 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1442 static void shrink_active_list(unsigned long nr_to_scan
,
1443 struct lruvec
*lruvec
,
1444 struct scan_control
*sc
,
1447 unsigned long nr_taken
;
1448 unsigned long nr_scanned
;
1449 unsigned long vm_flags
;
1450 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1451 LIST_HEAD(l_active
);
1452 LIST_HEAD(l_inactive
);
1454 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1455 unsigned long nr_rotated
= 0;
1456 isolate_mode_t isolate_mode
= 0;
1457 int file
= is_file_lru(lru
);
1458 struct zone
*zone
= lruvec_zone(lruvec
);
1463 isolate_mode
|= ISOLATE_UNMAPPED
;
1464 if (!sc
->may_writepage
)
1465 isolate_mode
|= ISOLATE_CLEAN
;
1467 spin_lock_irq(&zone
->lru_lock
);
1469 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
1470 &nr_scanned
, sc
, isolate_mode
, lru
);
1471 if (global_reclaim(sc
))
1472 zone
->pages_scanned
+= nr_scanned
;
1474 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1476 __count_zone_vm_events(PGREFILL
, zone
, nr_scanned
);
1477 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, -nr_taken
);
1478 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1479 spin_unlock_irq(&zone
->lru_lock
);
1481 while (!list_empty(&l_hold
)) {
1483 page
= lru_to_page(&l_hold
);
1484 list_del(&page
->lru
);
1486 if (unlikely(!page_evictable(page
))) {
1487 putback_lru_page(page
);
1491 if (unlikely(buffer_heads_over_limit
)) {
1492 if (page_has_private(page
) && trylock_page(page
)) {
1493 if (page_has_private(page
))
1494 try_to_release_page(page
, 0);
1499 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
1501 nr_rotated
+= hpage_nr_pages(page
);
1503 * Identify referenced, file-backed active pages and
1504 * give them one more trip around the active list. So
1505 * that executable code get better chances to stay in
1506 * memory under moderate memory pressure. Anon pages
1507 * are not likely to be evicted by use-once streaming
1508 * IO, plus JVM can create lots of anon VM_EXEC pages,
1509 * so we ignore them here.
1511 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1512 list_add(&page
->lru
, &l_active
);
1517 ClearPageActive(page
); /* we are de-activating */
1518 list_add(&page
->lru
, &l_inactive
);
1522 * Move pages back to the lru list.
1524 spin_lock_irq(&zone
->lru_lock
);
1526 * Count referenced pages from currently used mappings as rotated,
1527 * even though only some of them are actually re-activated. This
1528 * helps balance scan pressure between file and anonymous pages in
1531 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1533 move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
1534 move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
1535 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1536 spin_unlock_irq(&zone
->lru_lock
);
1538 free_hot_cold_page_list(&l_hold
, 1);
1542 static int inactive_anon_is_low_global(struct zone
*zone
)
1544 unsigned long active
, inactive
;
1546 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1547 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1549 if (inactive
* zone
->inactive_ratio
< active
)
1556 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1557 * @lruvec: LRU vector to check
1559 * Returns true if the zone does not have enough inactive anon pages,
1560 * meaning some active anon pages need to be deactivated.
1562 static int inactive_anon_is_low(struct lruvec
*lruvec
)
1565 * If we don't have swap space, anonymous page deactivation
1568 if (!total_swap_pages
)
1571 if (!mem_cgroup_disabled())
1572 return mem_cgroup_inactive_anon_is_low(lruvec
);
1574 return inactive_anon_is_low_global(lruvec_zone(lruvec
));
1577 static inline int inactive_anon_is_low(struct lruvec
*lruvec
)
1584 * inactive_file_is_low - check if file pages need to be deactivated
1585 * @lruvec: LRU vector to check
1587 * When the system is doing streaming IO, memory pressure here
1588 * ensures that active file pages get deactivated, until more
1589 * than half of the file pages are on the inactive list.
1591 * Once we get to that situation, protect the system's working
1592 * set from being evicted by disabling active file page aging.
1594 * This uses a different ratio than the anonymous pages, because
1595 * the page cache uses a use-once replacement algorithm.
1597 static int inactive_file_is_low(struct lruvec
*lruvec
)
1599 unsigned long inactive
;
1600 unsigned long active
;
1602 inactive
= get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
1603 active
= get_lru_size(lruvec
, LRU_ACTIVE_FILE
);
1605 return active
> inactive
;
1608 static int inactive_list_is_low(struct lruvec
*lruvec
, enum lru_list lru
)
1610 if (is_file_lru(lru
))
1611 return inactive_file_is_low(lruvec
);
1613 return inactive_anon_is_low(lruvec
);
1616 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1617 struct lruvec
*lruvec
, struct scan_control
*sc
)
1619 if (is_active_lru(lru
)) {
1620 if (inactive_list_is_low(lruvec
, lru
))
1621 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
1625 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
1628 static int vmscan_swappiness(struct scan_control
*sc
)
1630 if (global_reclaim(sc
))
1631 return vm_swappiness
;
1632 return mem_cgroup_swappiness(sc
->target_mem_cgroup
);
1643 * Determine how aggressively the anon and file LRU lists should be
1644 * scanned. The relative value of each set of LRU lists is determined
1645 * by looking at the fraction of the pages scanned we did rotate back
1646 * onto the active list instead of evict.
1648 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1649 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1651 static void get_scan_count(struct lruvec
*lruvec
, struct scan_control
*sc
,
1654 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1656 u64 denominator
= 0; /* gcc */
1657 struct zone
*zone
= lruvec_zone(lruvec
);
1658 unsigned long anon_prio
, file_prio
;
1659 enum scan_balance scan_balance
;
1660 unsigned long anon
, file
, free
;
1661 bool force_scan
= false;
1662 unsigned long ap
, fp
;
1666 * If the zone or memcg is small, nr[l] can be 0. This
1667 * results in no scanning on this priority and a potential
1668 * priority drop. Global direct reclaim can go to the next
1669 * zone and tends to have no problems. Global kswapd is for
1670 * zone balancing and it needs to scan a minimum amount. When
1671 * reclaiming for a memcg, a priority drop can cause high
1672 * latencies, so it's better to scan a minimum amount there as
1675 if (current_is_kswapd() && zone
->all_unreclaimable
)
1677 if (!global_reclaim(sc
))
1680 /* If we have no swap space, do not bother scanning anon pages. */
1681 if (!sc
->may_swap
|| (get_nr_swap_pages() <= 0)) {
1682 scan_balance
= SCAN_FILE
;
1687 * Global reclaim will swap to prevent OOM even with no
1688 * swappiness, but memcg users want to use this knob to
1689 * disable swapping for individual groups completely when
1690 * using the memory controller's swap limit feature would be
1693 if (!global_reclaim(sc
) && !vmscan_swappiness(sc
)) {
1694 scan_balance
= SCAN_FILE
;
1699 * Do not apply any pressure balancing cleverness when the
1700 * system is close to OOM, scan both anon and file equally
1701 * (unless the swappiness setting disagrees with swapping).
1703 if (!sc
->priority
&& vmscan_swappiness(sc
)) {
1704 scan_balance
= SCAN_EQUAL
;
1708 anon
= get_lru_size(lruvec
, LRU_ACTIVE_ANON
) +
1709 get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1710 file
= get_lru_size(lruvec
, LRU_ACTIVE_FILE
) +
1711 get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
1714 * If it's foreseeable that reclaiming the file cache won't be
1715 * enough to get the zone back into a desirable shape, we have
1716 * to swap. Better start now and leave the - probably heavily
1717 * thrashing - remaining file pages alone.
1719 if (global_reclaim(sc
)) {
1720 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1721 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1722 scan_balance
= SCAN_ANON
;
1728 * There is enough inactive page cache, do not reclaim
1729 * anything from the anonymous working set right now.
1731 if (!inactive_file_is_low(lruvec
)) {
1732 scan_balance
= SCAN_FILE
;
1736 scan_balance
= SCAN_FRACT
;
1739 * With swappiness at 100, anonymous and file have the same priority.
1740 * This scanning priority is essentially the inverse of IO cost.
1742 anon_prio
= vmscan_swappiness(sc
);
1743 file_prio
= 200 - anon_prio
;
1746 * OK, so we have swap space and a fair amount of page cache
1747 * pages. We use the recently rotated / recently scanned
1748 * ratios to determine how valuable each cache is.
1750 * Because workloads change over time (and to avoid overflow)
1751 * we keep these statistics as a floating average, which ends
1752 * up weighing recent references more than old ones.
1754 * anon in [0], file in [1]
1756 spin_lock_irq(&zone
->lru_lock
);
1757 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1758 reclaim_stat
->recent_scanned
[0] /= 2;
1759 reclaim_stat
->recent_rotated
[0] /= 2;
1762 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1763 reclaim_stat
->recent_scanned
[1] /= 2;
1764 reclaim_stat
->recent_rotated
[1] /= 2;
1768 * The amount of pressure on anon vs file pages is inversely
1769 * proportional to the fraction of recently scanned pages on
1770 * each list that were recently referenced and in active use.
1772 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
1773 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1775 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
1776 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1777 spin_unlock_irq(&zone
->lru_lock
);
1781 denominator
= ap
+ fp
+ 1;
1783 for_each_evictable_lru(lru
) {
1784 int file
= is_file_lru(lru
);
1788 size
= get_lru_size(lruvec
, lru
);
1789 scan
= size
>> sc
->priority
;
1791 if (!scan
&& force_scan
)
1792 scan
= min(size
, SWAP_CLUSTER_MAX
);
1794 switch (scan_balance
) {
1796 /* Scan lists relative to size */
1800 * Scan types proportional to swappiness and
1801 * their relative recent reclaim efficiency.
1803 scan
= div64_u64(scan
* fraction
[file
], denominator
);
1807 /* Scan one type exclusively */
1808 if ((scan_balance
== SCAN_FILE
) != file
)
1812 /* Look ma, no brain */
1820 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1822 static void shrink_lruvec(struct lruvec
*lruvec
, struct scan_control
*sc
)
1824 unsigned long nr
[NR_LRU_LISTS
];
1825 unsigned long nr_to_scan
;
1827 unsigned long nr_reclaimed
= 0;
1828 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
1829 struct blk_plug plug
;
1831 get_scan_count(lruvec
, sc
, nr
);
1833 blk_start_plug(&plug
);
1834 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1835 nr
[LRU_INACTIVE_FILE
]) {
1836 for_each_evictable_lru(lru
) {
1838 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
1839 nr
[lru
] -= nr_to_scan
;
1841 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
1846 * On large memory systems, scan >> priority can become
1847 * really large. This is fine for the starting priority;
1848 * we want to put equal scanning pressure on each zone.
1849 * However, if the VM has a harder time of freeing pages,
1850 * with multiple processes reclaiming pages, the total
1851 * freeing target can get unreasonably large.
1853 if (nr_reclaimed
>= nr_to_reclaim
&&
1854 sc
->priority
< DEF_PRIORITY
)
1857 blk_finish_plug(&plug
);
1858 sc
->nr_reclaimed
+= nr_reclaimed
;
1861 * Even if we did not try to evict anon pages at all, we want to
1862 * rebalance the anon lru active/inactive ratio.
1864 if (inactive_anon_is_low(lruvec
))
1865 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
1866 sc
, LRU_ACTIVE_ANON
);
1868 throttle_vm_writeout(sc
->gfp_mask
);
1871 /* Use reclaim/compaction for costly allocs or under memory pressure */
1872 static bool in_reclaim_compaction(struct scan_control
*sc
)
1874 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
1875 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
1876 sc
->priority
< DEF_PRIORITY
- 2))
1883 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1884 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1885 * true if more pages should be reclaimed such that when the page allocator
1886 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1887 * It will give up earlier than that if there is difficulty reclaiming pages.
1889 static inline bool should_continue_reclaim(struct zone
*zone
,
1890 unsigned long nr_reclaimed
,
1891 unsigned long nr_scanned
,
1892 struct scan_control
*sc
)
1894 unsigned long pages_for_compaction
;
1895 unsigned long inactive_lru_pages
;
1897 /* If not in reclaim/compaction mode, stop */
1898 if (!in_reclaim_compaction(sc
))
1901 /* Consider stopping depending on scan and reclaim activity */
1902 if (sc
->gfp_mask
& __GFP_REPEAT
) {
1904 * For __GFP_REPEAT allocations, stop reclaiming if the
1905 * full LRU list has been scanned and we are still failing
1906 * to reclaim pages. This full LRU scan is potentially
1907 * expensive but a __GFP_REPEAT caller really wants to succeed
1909 if (!nr_reclaimed
&& !nr_scanned
)
1913 * For non-__GFP_REPEAT allocations which can presumably
1914 * fail without consequence, stop if we failed to reclaim
1915 * any pages from the last SWAP_CLUSTER_MAX number of
1916 * pages that were scanned. This will return to the
1917 * caller faster at the risk reclaim/compaction and
1918 * the resulting allocation attempt fails
1925 * If we have not reclaimed enough pages for compaction and the
1926 * inactive lists are large enough, continue reclaiming
1928 pages_for_compaction
= (2UL << sc
->order
);
1929 inactive_lru_pages
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1930 if (get_nr_swap_pages() > 0)
1931 inactive_lru_pages
+= zone_page_state(zone
, NR_INACTIVE_ANON
);
1932 if (sc
->nr_reclaimed
< pages_for_compaction
&&
1933 inactive_lru_pages
> pages_for_compaction
)
1936 /* If compaction would go ahead or the allocation would succeed, stop */
1937 switch (compaction_suitable(zone
, sc
->order
)) {
1938 case COMPACT_PARTIAL
:
1939 case COMPACT_CONTINUE
:
1946 static void shrink_zone(struct zone
*zone
, struct scan_control
*sc
)
1948 unsigned long nr_reclaimed
, nr_scanned
;
1951 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
1952 struct mem_cgroup_reclaim_cookie reclaim
= {
1954 .priority
= sc
->priority
,
1956 struct mem_cgroup
*memcg
;
1958 nr_reclaimed
= sc
->nr_reclaimed
;
1959 nr_scanned
= sc
->nr_scanned
;
1961 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
1963 struct lruvec
*lruvec
;
1965 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
1967 shrink_lruvec(lruvec
, sc
);
1970 * Direct reclaim and kswapd have to scan all memory
1971 * cgroups to fulfill the overall scan target for the
1974 * Limit reclaim, on the other hand, only cares about
1975 * nr_to_reclaim pages to be reclaimed and it will
1976 * retry with decreasing priority if one round over the
1977 * whole hierarchy is not sufficient.
1979 if (!global_reclaim(sc
) &&
1980 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
1981 mem_cgroup_iter_break(root
, memcg
);
1984 memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
);
1987 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
,
1988 sc
->nr_scanned
- nr_scanned
,
1989 sc
->nr_reclaimed
- nr_reclaimed
);
1991 } while (should_continue_reclaim(zone
, sc
->nr_reclaimed
- nr_reclaimed
,
1992 sc
->nr_scanned
- nr_scanned
, sc
));
1995 /* Returns true if compaction should go ahead for a high-order request */
1996 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
1998 unsigned long balance_gap
, watermark
;
2001 /* Do not consider compaction for orders reclaim is meant to satisfy */
2002 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
)
2006 * Compaction takes time to run and there are potentially other
2007 * callers using the pages just freed. Continue reclaiming until
2008 * there is a buffer of free pages available to give compaction
2009 * a reasonable chance of completing and allocating the page
2011 balance_gap
= min(low_wmark_pages(zone
),
2012 (zone
->managed_pages
+ KSWAPD_ZONE_BALANCE_GAP_RATIO
-1) /
2013 KSWAPD_ZONE_BALANCE_GAP_RATIO
);
2014 watermark
= high_wmark_pages(zone
) + balance_gap
+ (2UL << sc
->order
);
2015 watermark_ok
= zone_watermark_ok_safe(zone
, 0, watermark
, 0, 0);
2018 * If compaction is deferred, reclaim up to a point where
2019 * compaction will have a chance of success when re-enabled
2021 if (compaction_deferred(zone
, sc
->order
))
2022 return watermark_ok
;
2024 /* If compaction is not ready to start, keep reclaiming */
2025 if (!compaction_suitable(zone
, sc
->order
))
2028 return watermark_ok
;
2032 * This is the direct reclaim path, for page-allocating processes. We only
2033 * try to reclaim pages from zones which will satisfy the caller's allocation
2036 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2038 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2040 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2041 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2042 * zone defense algorithm.
2044 * If a zone is deemed to be full of pinned pages then just give it a light
2045 * scan then give up on it.
2047 * This function returns true if a zone is being reclaimed for a costly
2048 * high-order allocation and compaction is ready to begin. This indicates to
2049 * the caller that it should consider retrying the allocation instead of
2052 static bool shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2056 unsigned long nr_soft_reclaimed
;
2057 unsigned long nr_soft_scanned
;
2058 bool aborted_reclaim
= false;
2061 * If the number of buffer_heads in the machine exceeds the maximum
2062 * allowed level, force direct reclaim to scan the highmem zone as
2063 * highmem pages could be pinning lowmem pages storing buffer_heads
2065 if (buffer_heads_over_limit
)
2066 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2068 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2069 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2070 if (!populated_zone(zone
))
2073 * Take care memory controller reclaiming has small influence
2076 if (global_reclaim(sc
)) {
2077 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2079 if (zone
->all_unreclaimable
&&
2080 sc
->priority
!= DEF_PRIORITY
)
2081 continue; /* Let kswapd poll it */
2082 if (IS_ENABLED(CONFIG_COMPACTION
)) {
2084 * If we already have plenty of memory free for
2085 * compaction in this zone, don't free any more.
2086 * Even though compaction is invoked for any
2087 * non-zero order, only frequent costly order
2088 * reclamation is disruptive enough to become a
2089 * noticeable problem, like transparent huge
2092 if (compaction_ready(zone
, sc
)) {
2093 aborted_reclaim
= true;
2098 * This steals pages from memory cgroups over softlimit
2099 * and returns the number of reclaimed pages and
2100 * scanned pages. This works for global memory pressure
2101 * and balancing, not for a memcg's limit.
2103 nr_soft_scanned
= 0;
2104 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2105 sc
->order
, sc
->gfp_mask
,
2107 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2108 sc
->nr_scanned
+= nr_soft_scanned
;
2109 /* need some check for avoid more shrink_zone() */
2112 shrink_zone(zone
, sc
);
2115 return aborted_reclaim
;
2118 static bool zone_reclaimable(struct zone
*zone
)
2120 return zone
->pages_scanned
< zone_reclaimable_pages(zone
) * 6;
2123 /* All zones in zonelist are unreclaimable? */
2124 static bool all_unreclaimable(struct zonelist
*zonelist
,
2125 struct scan_control
*sc
)
2130 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2131 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2132 if (!populated_zone(zone
))
2134 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2136 if (!zone
->all_unreclaimable
)
2144 * This is the main entry point to direct page reclaim.
2146 * If a full scan of the inactive list fails to free enough memory then we
2147 * are "out of memory" and something needs to be killed.
2149 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2150 * high - the zone may be full of dirty or under-writeback pages, which this
2151 * caller can't do much about. We kick the writeback threads and take explicit
2152 * naps in the hope that some of these pages can be written. But if the
2153 * allocating task holds filesystem locks which prevent writeout this might not
2154 * work, and the allocation attempt will fail.
2156 * returns: 0, if no pages reclaimed
2157 * else, the number of pages reclaimed
2159 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2160 struct scan_control
*sc
,
2161 struct shrink_control
*shrink
)
2163 unsigned long total_scanned
= 0;
2164 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2167 unsigned long writeback_threshold
;
2168 bool aborted_reclaim
;
2170 delayacct_freepages_start();
2172 if (global_reclaim(sc
))
2173 count_vm_event(ALLOCSTALL
);
2176 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2179 aborted_reclaim
= shrink_zones(zonelist
, sc
);
2182 * Don't shrink slabs when reclaiming memory from
2183 * over limit cgroups
2185 if (global_reclaim(sc
)) {
2186 unsigned long lru_pages
= 0;
2187 for_each_zone_zonelist(zone
, z
, zonelist
,
2188 gfp_zone(sc
->gfp_mask
)) {
2189 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2192 lru_pages
+= zone_reclaimable_pages(zone
);
2195 shrink_slab(shrink
, sc
->nr_scanned
, lru_pages
);
2196 if (reclaim_state
) {
2197 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2198 reclaim_state
->reclaimed_slab
= 0;
2201 total_scanned
+= sc
->nr_scanned
;
2202 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2206 * If we're getting trouble reclaiming, start doing
2207 * writepage even in laptop mode.
2209 if (sc
->priority
< DEF_PRIORITY
- 2)
2210 sc
->may_writepage
= 1;
2213 * Try to write back as many pages as we just scanned. This
2214 * tends to cause slow streaming writers to write data to the
2215 * disk smoothly, at the dirtying rate, which is nice. But
2216 * that's undesirable in laptop mode, where we *want* lumpy
2217 * writeout. So in laptop mode, write out the whole world.
2219 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2220 if (total_scanned
> writeback_threshold
) {
2221 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
,
2222 WB_REASON_TRY_TO_FREE_PAGES
);
2223 sc
->may_writepage
= 1;
2226 /* Take a nap, wait for some writeback to complete */
2227 if (!sc
->hibernation_mode
&& sc
->nr_scanned
&&
2228 sc
->priority
< DEF_PRIORITY
- 2) {
2229 struct zone
*preferred_zone
;
2231 first_zones_zonelist(zonelist
, gfp_zone(sc
->gfp_mask
),
2232 &cpuset_current_mems_allowed
,
2234 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/10);
2236 } while (--sc
->priority
>= 0);
2239 delayacct_freepages_end();
2241 if (sc
->nr_reclaimed
)
2242 return sc
->nr_reclaimed
;
2245 * As hibernation is going on, kswapd is freezed so that it can't mark
2246 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2249 if (oom_killer_disabled
)
2252 /* Aborted reclaim to try compaction? don't OOM, then */
2253 if (aborted_reclaim
)
2256 /* top priority shrink_zones still had more to do? don't OOM, then */
2257 if (global_reclaim(sc
) && !all_unreclaimable(zonelist
, sc
))
2263 static bool pfmemalloc_watermark_ok(pg_data_t
*pgdat
)
2266 unsigned long pfmemalloc_reserve
= 0;
2267 unsigned long free_pages
= 0;
2271 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
2272 zone
= &pgdat
->node_zones
[i
];
2273 pfmemalloc_reserve
+= min_wmark_pages(zone
);
2274 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
2277 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
2279 /* kswapd must be awake if processes are being throttled */
2280 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
2281 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
,
2282 (enum zone_type
)ZONE_NORMAL
);
2283 wake_up_interruptible(&pgdat
->kswapd_wait
);
2290 * Throttle direct reclaimers if backing storage is backed by the network
2291 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2292 * depleted. kswapd will continue to make progress and wake the processes
2293 * when the low watermark is reached.
2295 * Returns true if a fatal signal was delivered during throttling. If this
2296 * happens, the page allocator should not consider triggering the OOM killer.
2298 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
2299 nodemask_t
*nodemask
)
2302 int high_zoneidx
= gfp_zone(gfp_mask
);
2306 * Kernel threads should not be throttled as they may be indirectly
2307 * responsible for cleaning pages necessary for reclaim to make forward
2308 * progress. kjournald for example may enter direct reclaim while
2309 * committing a transaction where throttling it could forcing other
2310 * processes to block on log_wait_commit().
2312 if (current
->flags
& PF_KTHREAD
)
2316 * If a fatal signal is pending, this process should not throttle.
2317 * It should return quickly so it can exit and free its memory
2319 if (fatal_signal_pending(current
))
2322 /* Check if the pfmemalloc reserves are ok */
2323 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
, &zone
);
2324 pgdat
= zone
->zone_pgdat
;
2325 if (pfmemalloc_watermark_ok(pgdat
))
2328 /* Account for the throttling */
2329 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
2332 * If the caller cannot enter the filesystem, it's possible that it
2333 * is due to the caller holding an FS lock or performing a journal
2334 * transaction in the case of a filesystem like ext[3|4]. In this case,
2335 * it is not safe to block on pfmemalloc_wait as kswapd could be
2336 * blocked waiting on the same lock. Instead, throttle for up to a
2337 * second before continuing.
2339 if (!(gfp_mask
& __GFP_FS
)) {
2340 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
2341 pfmemalloc_watermark_ok(pgdat
), HZ
);
2346 /* Throttle until kswapd wakes the process */
2347 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
2348 pfmemalloc_watermark_ok(pgdat
));
2351 if (fatal_signal_pending(current
))
2358 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2359 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2361 unsigned long nr_reclaimed
;
2362 struct scan_control sc
= {
2363 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
2364 .may_writepage
= !laptop_mode
,
2365 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2369 .priority
= DEF_PRIORITY
,
2370 .target_mem_cgroup
= NULL
,
2371 .nodemask
= nodemask
,
2373 struct shrink_control shrink
= {
2374 .gfp_mask
= sc
.gfp_mask
,
2378 * Do not enter reclaim if fatal signal was delivered while throttled.
2379 * 1 is returned so that the page allocator does not OOM kill at this
2382 if (throttle_direct_reclaim(gfp_mask
, zonelist
, nodemask
))
2385 trace_mm_vmscan_direct_reclaim_begin(order
,
2389 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
2391 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2393 return nr_reclaimed
;
2398 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*memcg
,
2399 gfp_t gfp_mask
, bool noswap
,
2401 unsigned long *nr_scanned
)
2403 struct scan_control sc
= {
2405 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2406 .may_writepage
= !laptop_mode
,
2408 .may_swap
= !noswap
,
2411 .target_mem_cgroup
= memcg
,
2413 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2415 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2416 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2418 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
2423 * NOTE: Although we can get the priority field, using it
2424 * here is not a good idea, since it limits the pages we can scan.
2425 * if we don't reclaim here, the shrink_zone from balance_pgdat
2426 * will pick up pages from other mem cgroup's as well. We hack
2427 * the priority and make it zero.
2429 shrink_lruvec(lruvec
, &sc
);
2431 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2433 *nr_scanned
= sc
.nr_scanned
;
2434 return sc
.nr_reclaimed
;
2437 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
2441 struct zonelist
*zonelist
;
2442 unsigned long nr_reclaimed
;
2444 struct scan_control sc
= {
2445 .may_writepage
= !laptop_mode
,
2447 .may_swap
= !noswap
,
2448 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2450 .priority
= DEF_PRIORITY
,
2451 .target_mem_cgroup
= memcg
,
2452 .nodemask
= NULL
, /* we don't care the placement */
2453 .gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2454 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
2456 struct shrink_control shrink
= {
2457 .gfp_mask
= sc
.gfp_mask
,
2461 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2462 * take care of from where we get pages. So the node where we start the
2463 * scan does not need to be the current node.
2465 nid
= mem_cgroup_select_victim_node(memcg
);
2467 zonelist
= NODE_DATA(nid
)->node_zonelists
;
2469 trace_mm_vmscan_memcg_reclaim_begin(0,
2473 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
2475 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2477 return nr_reclaimed
;
2481 static void age_active_anon(struct zone
*zone
, struct scan_control
*sc
)
2483 struct mem_cgroup
*memcg
;
2485 if (!total_swap_pages
)
2488 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
2490 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2492 if (inactive_anon_is_low(lruvec
))
2493 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2494 sc
, LRU_ACTIVE_ANON
);
2496 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
2500 static bool zone_balanced(struct zone
*zone
, int order
,
2501 unsigned long balance_gap
, int classzone_idx
)
2503 if (!zone_watermark_ok_safe(zone
, order
, high_wmark_pages(zone
) +
2504 balance_gap
, classzone_idx
, 0))
2507 if (IS_ENABLED(CONFIG_COMPACTION
) && order
&&
2508 !compaction_suitable(zone
, order
))
2515 * pgdat_balanced() is used when checking if a node is balanced.
2517 * For order-0, all zones must be balanced!
2519 * For high-order allocations only zones that meet watermarks and are in a
2520 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2521 * total of balanced pages must be at least 25% of the zones allowed by
2522 * classzone_idx for the node to be considered balanced. Forcing all zones to
2523 * be balanced for high orders can cause excessive reclaim when there are
2525 * The choice of 25% is due to
2526 * o a 16M DMA zone that is balanced will not balance a zone on any
2527 * reasonable sized machine
2528 * o On all other machines, the top zone must be at least a reasonable
2529 * percentage of the middle zones. For example, on 32-bit x86, highmem
2530 * would need to be at least 256M for it to be balance a whole node.
2531 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2532 * to balance a node on its own. These seemed like reasonable ratios.
2534 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2536 unsigned long managed_pages
= 0;
2537 unsigned long balanced_pages
= 0;
2540 /* Check the watermark levels */
2541 for (i
= 0; i
<= classzone_idx
; i
++) {
2542 struct zone
*zone
= pgdat
->node_zones
+ i
;
2544 if (!populated_zone(zone
))
2547 managed_pages
+= zone
->managed_pages
;
2550 * A special case here:
2552 * balance_pgdat() skips over all_unreclaimable after
2553 * DEF_PRIORITY. Effectively, it considers them balanced so
2554 * they must be considered balanced here as well!
2556 if (zone
->all_unreclaimable
) {
2557 balanced_pages
+= zone
->managed_pages
;
2561 if (zone_balanced(zone
, order
, 0, i
))
2562 balanced_pages
+= zone
->managed_pages
;
2568 return balanced_pages
>= (managed_pages
>> 2);
2574 * Prepare kswapd for sleeping. This verifies that there are no processes
2575 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2577 * Returns true if kswapd is ready to sleep
2579 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, long remaining
,
2582 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2587 * There is a potential race between when kswapd checks its watermarks
2588 * and a process gets throttled. There is also a potential race if
2589 * processes get throttled, kswapd wakes, a large process exits therby
2590 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2591 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2592 * so wake them now if necessary. If necessary, processes will wake
2593 * kswapd and get throttled again
2595 if (waitqueue_active(&pgdat
->pfmemalloc_wait
)) {
2596 wake_up(&pgdat
->pfmemalloc_wait
);
2600 return pgdat_balanced(pgdat
, order
, classzone_idx
);
2604 * For kswapd, balance_pgdat() will work across all this node's zones until
2605 * they are all at high_wmark_pages(zone).
2607 * Returns the final order kswapd was reclaiming at
2609 * There is special handling here for zones which are full of pinned pages.
2610 * This can happen if the pages are all mlocked, or if they are all used by
2611 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2612 * What we do is to detect the case where all pages in the zone have been
2613 * scanned twice and there has been zero successful reclaim. Mark the zone as
2614 * dead and from now on, only perform a short scan. Basically we're polling
2615 * the zone for when the problem goes away.
2617 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2618 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2619 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2620 * lower zones regardless of the number of free pages in the lower zones. This
2621 * interoperates with the page allocator fallback scheme to ensure that aging
2622 * of pages is balanced across the zones.
2624 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
,
2627 bool pgdat_is_balanced
= false;
2629 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
2630 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2631 unsigned long nr_soft_reclaimed
;
2632 unsigned long nr_soft_scanned
;
2633 struct scan_control sc
= {
2634 .gfp_mask
= GFP_KERNEL
,
2638 * kswapd doesn't want to be bailed out while reclaim. because
2639 * we want to put equal scanning pressure on each zone.
2641 .nr_to_reclaim
= ULONG_MAX
,
2643 .target_mem_cgroup
= NULL
,
2645 struct shrink_control shrink
= {
2646 .gfp_mask
= sc
.gfp_mask
,
2649 sc
.priority
= DEF_PRIORITY
;
2650 sc
.nr_reclaimed
= 0;
2651 sc
.may_writepage
= !laptop_mode
;
2652 count_vm_event(PAGEOUTRUN
);
2655 unsigned long lru_pages
= 0;
2658 * Scan in the highmem->dma direction for the highest
2659 * zone which needs scanning
2661 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
2662 struct zone
*zone
= pgdat
->node_zones
+ i
;
2664 if (!populated_zone(zone
))
2667 if (zone
->all_unreclaimable
&&
2668 sc
.priority
!= DEF_PRIORITY
)
2672 * Do some background aging of the anon list, to give
2673 * pages a chance to be referenced before reclaiming.
2675 age_active_anon(zone
, &sc
);
2678 * If the number of buffer_heads in the machine
2679 * exceeds the maximum allowed level and this node
2680 * has a highmem zone, force kswapd to reclaim from
2681 * it to relieve lowmem pressure.
2683 if (buffer_heads_over_limit
&& is_highmem_idx(i
)) {
2688 if (!zone_balanced(zone
, order
, 0, 0)) {
2692 /* If balanced, clear the congested flag */
2693 zone_clear_flag(zone
, ZONE_CONGESTED
);
2698 pgdat_is_balanced
= true;
2702 for (i
= 0; i
<= end_zone
; i
++) {
2703 struct zone
*zone
= pgdat
->node_zones
+ i
;
2705 lru_pages
+= zone_reclaimable_pages(zone
);
2709 * Now scan the zone in the dma->highmem direction, stopping
2710 * at the last zone which needs scanning.
2712 * We do this because the page allocator works in the opposite
2713 * direction. This prevents the page allocator from allocating
2714 * pages behind kswapd's direction of progress, which would
2715 * cause too much scanning of the lower zones.
2717 for (i
= 0; i
<= end_zone
; i
++) {
2718 struct zone
*zone
= pgdat
->node_zones
+ i
;
2719 int nr_slab
, testorder
;
2720 unsigned long balance_gap
;
2722 if (!populated_zone(zone
))
2725 if (zone
->all_unreclaimable
&&
2726 sc
.priority
!= DEF_PRIORITY
)
2731 nr_soft_scanned
= 0;
2733 * Call soft limit reclaim before calling shrink_zone.
2735 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2738 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
2741 * We put equal pressure on every zone, unless
2742 * one zone has way too many pages free
2743 * already. The "too many pages" is defined
2744 * as the high wmark plus a "gap" where the
2745 * gap is either the low watermark or 1%
2746 * of the zone, whichever is smaller.
2748 balance_gap
= min(low_wmark_pages(zone
),
2749 (zone
->managed_pages
+
2750 KSWAPD_ZONE_BALANCE_GAP_RATIO
-1) /
2751 KSWAPD_ZONE_BALANCE_GAP_RATIO
);
2753 * Kswapd reclaims only single pages with compaction
2754 * enabled. Trying too hard to reclaim until contiguous
2755 * free pages have become available can hurt performance
2756 * by evicting too much useful data from memory.
2757 * Do not reclaim more than needed for compaction.
2760 if (IS_ENABLED(CONFIG_COMPACTION
) && order
&&
2761 compaction_suitable(zone
, order
) !=
2765 if ((buffer_heads_over_limit
&& is_highmem_idx(i
)) ||
2766 !zone_balanced(zone
, testorder
,
2767 balance_gap
, end_zone
)) {
2768 shrink_zone(zone
, &sc
);
2770 reclaim_state
->reclaimed_slab
= 0;
2771 nr_slab
= shrink_slab(&shrink
, sc
.nr_scanned
, lru_pages
);
2772 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2774 if (nr_slab
== 0 && !zone_reclaimable(zone
))
2775 zone
->all_unreclaimable
= 1;
2779 * If we're getting trouble reclaiming, start doing
2780 * writepage even in laptop mode.
2782 if (sc
.priority
< DEF_PRIORITY
- 2)
2783 sc
.may_writepage
= 1;
2785 if (zone
->all_unreclaimable
) {
2786 if (end_zone
&& end_zone
== i
)
2791 if (zone_balanced(zone
, testorder
, 0, end_zone
))
2793 * If a zone reaches its high watermark,
2794 * consider it to be no longer congested. It's
2795 * possible there are dirty pages backed by
2796 * congested BDIs but as pressure is relieved,
2797 * speculatively avoid congestion waits
2799 zone_clear_flag(zone
, ZONE_CONGESTED
);
2803 * If the low watermark is met there is no need for processes
2804 * to be throttled on pfmemalloc_wait as they should not be
2805 * able to safely make forward progress. Wake them
2807 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
2808 pfmemalloc_watermark_ok(pgdat
))
2809 wake_up(&pgdat
->pfmemalloc_wait
);
2811 if (pgdat_balanced(pgdat
, order
, *classzone_idx
)) {
2812 pgdat_is_balanced
= true;
2813 break; /* kswapd: all done */
2817 * We do this so kswapd doesn't build up large priorities for
2818 * example when it is freeing in parallel with allocators. It
2819 * matches the direct reclaim path behaviour in terms of impact
2820 * on zone->*_priority.
2822 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
2824 } while (--sc
.priority
>= 0);
2827 if (!pgdat_is_balanced
) {
2833 * Fragmentation may mean that the system cannot be
2834 * rebalanced for high-order allocations in all zones.
2835 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2836 * it means the zones have been fully scanned and are still
2837 * not balanced. For high-order allocations, there is
2838 * little point trying all over again as kswapd may
2841 * Instead, recheck all watermarks at order-0 as they
2842 * are the most important. If watermarks are ok, kswapd will go
2843 * back to sleep. High-order users can still perform direct
2844 * reclaim if they wish.
2846 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
2847 order
= sc
.order
= 0;
2853 * If kswapd was reclaiming at a higher order, it has the option of
2854 * sleeping without all zones being balanced. Before it does, it must
2855 * ensure that the watermarks for order-0 on *all* zones are met and
2856 * that the congestion flags are cleared. The congestion flag must
2857 * be cleared as kswapd is the only mechanism that clears the flag
2858 * and it is potentially going to sleep here.
2861 int zones_need_compaction
= 1;
2863 for (i
= 0; i
<= end_zone
; i
++) {
2864 struct zone
*zone
= pgdat
->node_zones
+ i
;
2866 if (!populated_zone(zone
))
2869 /* Check if the memory needs to be defragmented. */
2870 if (zone_watermark_ok(zone
, order
,
2871 low_wmark_pages(zone
), *classzone_idx
, 0))
2872 zones_need_compaction
= 0;
2875 if (zones_need_compaction
)
2876 compact_pgdat(pgdat
, order
);
2880 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2881 * makes a decision on the order we were last reclaiming at. However,
2882 * if another caller entered the allocator slow path while kswapd
2883 * was awake, order will remain at the higher level
2885 *classzone_idx
= end_zone
;
2889 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2894 if (freezing(current
) || kthread_should_stop())
2897 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2899 /* Try to sleep for a short interval */
2900 if (prepare_kswapd_sleep(pgdat
, order
, remaining
, classzone_idx
)) {
2901 remaining
= schedule_timeout(HZ
/10);
2902 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2903 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2907 * After a short sleep, check if it was a premature sleep. If not, then
2908 * go fully to sleep until explicitly woken up.
2910 if (prepare_kswapd_sleep(pgdat
, order
, remaining
, classzone_idx
)) {
2911 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
2914 * vmstat counters are not perfectly accurate and the estimated
2915 * value for counters such as NR_FREE_PAGES can deviate from the
2916 * true value by nr_online_cpus * threshold. To avoid the zone
2917 * watermarks being breached while under pressure, we reduce the
2918 * per-cpu vmstat threshold while kswapd is awake and restore
2919 * them before going back to sleep.
2921 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
2924 * Compaction records what page blocks it recently failed to
2925 * isolate pages from and skips them in the future scanning.
2926 * When kswapd is going to sleep, it is reasonable to assume
2927 * that pages and compaction may succeed so reset the cache.
2929 reset_isolation_suitable(pgdat
);
2931 if (!kthread_should_stop())
2934 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
2937 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
2939 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
2941 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2945 * The background pageout daemon, started as a kernel thread
2946 * from the init process.
2948 * This basically trickles out pages so that we have _some_
2949 * free memory available even if there is no other activity
2950 * that frees anything up. This is needed for things like routing
2951 * etc, where we otherwise might have all activity going on in
2952 * asynchronous contexts that cannot page things out.
2954 * If there are applications that are active memory-allocators
2955 * (most normal use), this basically shouldn't matter.
2957 static int kswapd(void *p
)
2959 unsigned long order
, new_order
;
2960 unsigned balanced_order
;
2961 int classzone_idx
, new_classzone_idx
;
2962 int balanced_classzone_idx
;
2963 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2964 struct task_struct
*tsk
= current
;
2966 struct reclaim_state reclaim_state
= {
2967 .reclaimed_slab
= 0,
2969 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2971 lockdep_set_current_reclaim_state(GFP_KERNEL
);
2973 if (!cpumask_empty(cpumask
))
2974 set_cpus_allowed_ptr(tsk
, cpumask
);
2975 current
->reclaim_state
= &reclaim_state
;
2978 * Tell the memory management that we're a "memory allocator",
2979 * and that if we need more memory we should get access to it
2980 * regardless (see "__alloc_pages()"). "kswapd" should
2981 * never get caught in the normal page freeing logic.
2983 * (Kswapd normally doesn't need memory anyway, but sometimes
2984 * you need a small amount of memory in order to be able to
2985 * page out something else, and this flag essentially protects
2986 * us from recursively trying to free more memory as we're
2987 * trying to free the first piece of memory in the first place).
2989 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2992 order
= new_order
= 0;
2994 classzone_idx
= new_classzone_idx
= pgdat
->nr_zones
- 1;
2995 balanced_classzone_idx
= classzone_idx
;
3000 * If the last balance_pgdat was unsuccessful it's unlikely a
3001 * new request of a similar or harder type will succeed soon
3002 * so consider going to sleep on the basis we reclaimed at
3004 if (balanced_classzone_idx
>= new_classzone_idx
&&
3005 balanced_order
== new_order
) {
3006 new_order
= pgdat
->kswapd_max_order
;
3007 new_classzone_idx
= pgdat
->classzone_idx
;
3008 pgdat
->kswapd_max_order
= 0;
3009 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
3012 if (order
< new_order
|| classzone_idx
> new_classzone_idx
) {
3014 * Don't sleep if someone wants a larger 'order'
3015 * allocation or has tigher zone constraints
3018 classzone_idx
= new_classzone_idx
;
3020 kswapd_try_to_sleep(pgdat
, balanced_order
,
3021 balanced_classzone_idx
);
3022 order
= pgdat
->kswapd_max_order
;
3023 classzone_idx
= pgdat
->classzone_idx
;
3025 new_classzone_idx
= classzone_idx
;
3026 pgdat
->kswapd_max_order
= 0;
3027 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
3030 ret
= try_to_freeze();
3031 if (kthread_should_stop())
3035 * We can speed up thawing tasks if we don't call balance_pgdat
3036 * after returning from the refrigerator
3039 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
3040 balanced_classzone_idx
= classzone_idx
;
3041 balanced_order
= balance_pgdat(pgdat
, order
,
3042 &balanced_classzone_idx
);
3046 current
->reclaim_state
= NULL
;
3051 * A zone is low on free memory, so wake its kswapd task to service it.
3053 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
3057 if (!populated_zone(zone
))
3060 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
3062 pgdat
= zone
->zone_pgdat
;
3063 if (pgdat
->kswapd_max_order
< order
) {
3064 pgdat
->kswapd_max_order
= order
;
3065 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
, classzone_idx
);
3067 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3069 if (zone_watermark_ok_safe(zone
, order
, low_wmark_pages(zone
), 0, 0))
3072 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
3073 wake_up_interruptible(&pgdat
->kswapd_wait
);
3077 * The reclaimable count would be mostly accurate.
3078 * The less reclaimable pages may be
3079 * - mlocked pages, which will be moved to unevictable list when encountered
3080 * - mapped pages, which may require several travels to be reclaimed
3081 * - dirty pages, which is not "instantly" reclaimable
3083 unsigned long global_reclaimable_pages(void)
3087 nr
= global_page_state(NR_ACTIVE_FILE
) +
3088 global_page_state(NR_INACTIVE_FILE
);
3090 if (get_nr_swap_pages() > 0)
3091 nr
+= global_page_state(NR_ACTIVE_ANON
) +
3092 global_page_state(NR_INACTIVE_ANON
);
3097 unsigned long zone_reclaimable_pages(struct zone
*zone
)
3101 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
3102 zone_page_state(zone
, NR_INACTIVE_FILE
);
3104 if (get_nr_swap_pages() > 0)
3105 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
3106 zone_page_state(zone
, NR_INACTIVE_ANON
);
3111 #ifdef CONFIG_HIBERNATION
3113 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3116 * Rather than trying to age LRUs the aim is to preserve the overall
3117 * LRU order by reclaiming preferentially
3118 * inactive > active > active referenced > active mapped
3120 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3122 struct reclaim_state reclaim_state
;
3123 struct scan_control sc
= {
3124 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3128 .nr_to_reclaim
= nr_to_reclaim
,
3129 .hibernation_mode
= 1,
3131 .priority
= DEF_PRIORITY
,
3133 struct shrink_control shrink
= {
3134 .gfp_mask
= sc
.gfp_mask
,
3136 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3137 struct task_struct
*p
= current
;
3138 unsigned long nr_reclaimed
;
3140 p
->flags
|= PF_MEMALLOC
;
3141 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
3142 reclaim_state
.reclaimed_slab
= 0;
3143 p
->reclaim_state
= &reclaim_state
;
3145 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
3147 p
->reclaim_state
= NULL
;
3148 lockdep_clear_current_reclaim_state();
3149 p
->flags
&= ~PF_MEMALLOC
;
3151 return nr_reclaimed
;
3153 #endif /* CONFIG_HIBERNATION */
3155 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3156 not required for correctness. So if the last cpu in a node goes
3157 away, we get changed to run anywhere: as the first one comes back,
3158 restore their cpu bindings. */
3159 static int cpu_callback(struct notifier_block
*nfb
, unsigned long action
,
3164 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
3165 for_each_node_state(nid
, N_MEMORY
) {
3166 pg_data_t
*pgdat
= NODE_DATA(nid
);
3167 const struct cpumask
*mask
;
3169 mask
= cpumask_of_node(pgdat
->node_id
);
3171 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3172 /* One of our CPUs online: restore mask */
3173 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3180 * This kswapd start function will be called by init and node-hot-add.
3181 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3183 int kswapd_run(int nid
)
3185 pg_data_t
*pgdat
= NODE_DATA(nid
);
3191 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3192 if (IS_ERR(pgdat
->kswapd
)) {
3193 /* failure at boot is fatal */
3194 BUG_ON(system_state
== SYSTEM_BOOTING
);
3195 pr_err("Failed to start kswapd on node %d\n", nid
);
3196 ret
= PTR_ERR(pgdat
->kswapd
);
3197 pgdat
->kswapd
= NULL
;
3203 * Called by memory hotplug when all memory in a node is offlined. Caller must
3204 * hold lock_memory_hotplug().
3206 void kswapd_stop(int nid
)
3208 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3211 kthread_stop(kswapd
);
3212 NODE_DATA(nid
)->kswapd
= NULL
;
3216 static int __init
kswapd_init(void)
3221 for_each_node_state(nid
, N_MEMORY
)
3223 hotcpu_notifier(cpu_callback
, 0);
3227 module_init(kswapd_init
)
3233 * If non-zero call zone_reclaim when the number of free pages falls below
3236 int zone_reclaim_mode __read_mostly
;
3238 #define RECLAIM_OFF 0
3239 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3240 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3241 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3244 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3245 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3248 #define ZONE_RECLAIM_PRIORITY 4
3251 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3254 int sysctl_min_unmapped_ratio
= 1;
3257 * If the number of slab pages in a zone grows beyond this percentage then
3258 * slab reclaim needs to occur.
3260 int sysctl_min_slab_ratio
= 5;
3262 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
3264 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
3265 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
3266 zone_page_state(zone
, NR_ACTIVE_FILE
);
3269 * It's possible for there to be more file mapped pages than
3270 * accounted for by the pages on the file LRU lists because
3271 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3273 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3276 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3277 static long zone_pagecache_reclaimable(struct zone
*zone
)
3279 long nr_pagecache_reclaimable
;
3283 * If RECLAIM_SWAP is set, then all file pages are considered
3284 * potentially reclaimable. Otherwise, we have to worry about
3285 * pages like swapcache and zone_unmapped_file_pages() provides
3288 if (zone_reclaim_mode
& RECLAIM_SWAP
)
3289 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
3291 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
3293 /* If we can't clean pages, remove dirty pages from consideration */
3294 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
3295 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
3297 /* Watch for any possible underflows due to delta */
3298 if (unlikely(delta
> nr_pagecache_reclaimable
))
3299 delta
= nr_pagecache_reclaimable
;
3301 return nr_pagecache_reclaimable
- delta
;
3305 * Try to free up some pages from this zone through reclaim.
3307 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3309 /* Minimum pages needed in order to stay on node */
3310 const unsigned long nr_pages
= 1 << order
;
3311 struct task_struct
*p
= current
;
3312 struct reclaim_state reclaim_state
;
3313 struct scan_control sc
= {
3314 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
3315 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
3317 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3318 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
3320 .priority
= ZONE_RECLAIM_PRIORITY
,
3322 struct shrink_control shrink
= {
3323 .gfp_mask
= sc
.gfp_mask
,
3325 unsigned long nr_slab_pages0
, nr_slab_pages1
;
3329 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3330 * and we also need to be able to write out pages for RECLAIM_WRITE
3333 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
3334 lockdep_set_current_reclaim_state(gfp_mask
);
3335 reclaim_state
.reclaimed_slab
= 0;
3336 p
->reclaim_state
= &reclaim_state
;
3338 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
3340 * Free memory by calling shrink zone with increasing
3341 * priorities until we have enough memory freed.
3344 shrink_zone(zone
, &sc
);
3345 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
3348 nr_slab_pages0
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3349 if (nr_slab_pages0
> zone
->min_slab_pages
) {
3351 * shrink_slab() does not currently allow us to determine how
3352 * many pages were freed in this zone. So we take the current
3353 * number of slab pages and shake the slab until it is reduced
3354 * by the same nr_pages that we used for reclaiming unmapped
3357 * Note that shrink_slab will free memory on all zones and may
3361 unsigned long lru_pages
= zone_reclaimable_pages(zone
);
3363 /* No reclaimable slab or very low memory pressure */
3364 if (!shrink_slab(&shrink
, sc
.nr_scanned
, lru_pages
))
3367 /* Freed enough memory */
3368 nr_slab_pages1
= zone_page_state(zone
,
3369 NR_SLAB_RECLAIMABLE
);
3370 if (nr_slab_pages1
+ nr_pages
<= nr_slab_pages0
)
3375 * Update nr_reclaimed by the number of slab pages we
3376 * reclaimed from this zone.
3378 nr_slab_pages1
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3379 if (nr_slab_pages1
< nr_slab_pages0
)
3380 sc
.nr_reclaimed
+= nr_slab_pages0
- nr_slab_pages1
;
3383 p
->reclaim_state
= NULL
;
3384 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3385 lockdep_clear_current_reclaim_state();
3386 return sc
.nr_reclaimed
>= nr_pages
;
3389 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3395 * Zone reclaim reclaims unmapped file backed pages and
3396 * slab pages if we are over the defined limits.
3398 * A small portion of unmapped file backed pages is needed for
3399 * file I/O otherwise pages read by file I/O will be immediately
3400 * thrown out if the zone is overallocated. So we do not reclaim
3401 * if less than a specified percentage of the zone is used by
3402 * unmapped file backed pages.
3404 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
3405 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
3406 return ZONE_RECLAIM_FULL
;
3408 if (zone
->all_unreclaimable
)
3409 return ZONE_RECLAIM_FULL
;
3412 * Do not scan if the allocation should not be delayed.
3414 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
3415 return ZONE_RECLAIM_NOSCAN
;
3418 * Only run zone reclaim on the local zone or on zones that do not
3419 * have associated processors. This will favor the local processor
3420 * over remote processors and spread off node memory allocations
3421 * as wide as possible.
3423 node_id
= zone_to_nid(zone
);
3424 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
3425 return ZONE_RECLAIM_NOSCAN
;
3427 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
3428 return ZONE_RECLAIM_NOSCAN
;
3430 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
3431 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
3434 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3441 * page_evictable - test whether a page is evictable
3442 * @page: the page to test
3444 * Test whether page is evictable--i.e., should be placed on active/inactive
3445 * lists vs unevictable list.
3447 * Reasons page might not be evictable:
3448 * (1) page's mapping marked unevictable
3449 * (2) page is part of an mlocked VMA
3452 int page_evictable(struct page
*page
)
3454 return !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
3459 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3460 * @pages: array of pages to check
3461 * @nr_pages: number of pages to check
3463 * Checks pages for evictability and moves them to the appropriate lru list.
3465 * This function is only used for SysV IPC SHM_UNLOCK.
3467 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
3469 struct lruvec
*lruvec
;
3470 struct zone
*zone
= NULL
;
3475 for (i
= 0; i
< nr_pages
; i
++) {
3476 struct page
*page
= pages
[i
];
3477 struct zone
*pagezone
;
3480 pagezone
= page_zone(page
);
3481 if (pagezone
!= zone
) {
3483 spin_unlock_irq(&zone
->lru_lock
);
3485 spin_lock_irq(&zone
->lru_lock
);
3487 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
3489 if (!PageLRU(page
) || !PageUnevictable(page
))
3492 if (page_evictable(page
)) {
3493 enum lru_list lru
= page_lru_base_type(page
);
3495 VM_BUG_ON(PageActive(page
));
3496 ClearPageUnevictable(page
);
3497 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
3498 add_page_to_lru_list(page
, lruvec
, lru
);
3504 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
3505 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
3506 spin_unlock_irq(&zone
->lru_lock
);
3509 #endif /* CONFIG_SHMEM */
3511 static void warn_scan_unevictable_pages(void)
3513 printk_once(KERN_WARNING
3514 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3515 "disabled for lack of a legitimate use case. If you have "
3516 "one, please send an email to linux-mm@kvack.org.\n",
3521 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3522 * all nodes' unevictable lists for evictable pages
3524 unsigned long scan_unevictable_pages
;
3526 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
3527 void __user
*buffer
,
3528 size_t *length
, loff_t
*ppos
)
3530 warn_scan_unevictable_pages();
3531 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3532 scan_unevictable_pages
= 0;
3538 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3539 * a specified node's per zone unevictable lists for evictable pages.
3542 static ssize_t
read_scan_unevictable_node(struct device
*dev
,
3543 struct device_attribute
*attr
,
3546 warn_scan_unevictable_pages();
3547 return sprintf(buf
, "0\n"); /* always zero; should fit... */
3550 static ssize_t
write_scan_unevictable_node(struct device
*dev
,
3551 struct device_attribute
*attr
,
3552 const char *buf
, size_t count
)
3554 warn_scan_unevictable_pages();
3559 static DEVICE_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
3560 read_scan_unevictable_node
,
3561 write_scan_unevictable_node
);
3563 int scan_unevictable_register_node(struct node
*node
)
3565 return device_create_file(&node
->dev
, &dev_attr_scan_unevictable_pages
);
3568 void scan_unevictable_unregister_node(struct node
*node
)
3570 device_remove_file(&node
->dev
, &dev_attr_scan_unevictable_pages
);