2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
68 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
69 DEFINE_PER_CPU(int, numa_node
);
70 EXPORT_PER_CPU_SYMBOL(numa_node
);
73 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
75 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
76 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
77 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
78 * defined in <linux/topology.h>.
80 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
81 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
85 * Array of node states.
87 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
88 [N_POSSIBLE
] = NODE_MASK_ALL
,
89 [N_ONLINE
] = { { [0] = 1UL } },
91 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
93 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
95 #ifdef CONFIG_MOVABLE_NODE
96 [N_MEMORY
] = { { [0] = 1UL } },
98 [N_CPU
] = { { [0] = 1UL } },
101 EXPORT_SYMBOL(node_states
);
103 unsigned long totalram_pages __read_mostly
;
104 unsigned long totalreserve_pages __read_mostly
;
106 * When calculating the number of globally allowed dirty pages, there
107 * is a certain number of per-zone reserves that should not be
108 * considered dirtyable memory. This is the sum of those reserves
109 * over all existing zones that contribute dirtyable memory.
111 unsigned long dirty_balance_reserve __read_mostly
;
113 int percpu_pagelist_fraction
;
114 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
116 #ifdef CONFIG_PM_SLEEP
118 * The following functions are used by the suspend/hibernate code to temporarily
119 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
120 * while devices are suspended. To avoid races with the suspend/hibernate code,
121 * they should always be called with pm_mutex held (gfp_allowed_mask also should
122 * only be modified with pm_mutex held, unless the suspend/hibernate code is
123 * guaranteed not to run in parallel with that modification).
126 static gfp_t saved_gfp_mask
;
128 void pm_restore_gfp_mask(void)
130 WARN_ON(!mutex_is_locked(&pm_mutex
));
131 if (saved_gfp_mask
) {
132 gfp_allowed_mask
= saved_gfp_mask
;
137 void pm_restrict_gfp_mask(void)
139 WARN_ON(!mutex_is_locked(&pm_mutex
));
140 WARN_ON(saved_gfp_mask
);
141 saved_gfp_mask
= gfp_allowed_mask
;
142 gfp_allowed_mask
&= ~GFP_IOFS
;
145 bool pm_suspended_storage(void)
147 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
151 #endif /* CONFIG_PM_SLEEP */
153 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
154 int pageblock_order __read_mostly
;
157 static void __free_pages_ok(struct page
*page
, unsigned int order
);
160 * results with 256, 32 in the lowmem_reserve sysctl:
161 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
162 * 1G machine -> (16M dma, 784M normal, 224M high)
163 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
164 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
165 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
167 * TBD: should special case ZONE_DMA32 machines here - in those we normally
168 * don't need any ZONE_NORMAL reservation
170 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
171 #ifdef CONFIG_ZONE_DMA
174 #ifdef CONFIG_ZONE_DMA32
177 #ifdef CONFIG_HIGHMEM
183 EXPORT_SYMBOL(totalram_pages
);
185 static char * const zone_names
[MAX_NR_ZONES
] = {
186 #ifdef CONFIG_ZONE_DMA
189 #ifdef CONFIG_ZONE_DMA32
193 #ifdef CONFIG_HIGHMEM
199 int min_free_kbytes
= 1024;
201 static unsigned long __meminitdata nr_kernel_pages
;
202 static unsigned long __meminitdata nr_all_pages
;
203 static unsigned long __meminitdata dma_reserve
;
205 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
206 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
207 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
208 static unsigned long __initdata required_kernelcore
;
209 static unsigned long __initdata required_movablecore
;
210 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
212 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214 EXPORT_SYMBOL(movable_zone
);
215 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
218 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
219 int nr_online_nodes __read_mostly
= 1;
220 EXPORT_SYMBOL(nr_node_ids
);
221 EXPORT_SYMBOL(nr_online_nodes
);
224 int page_group_by_mobility_disabled __read_mostly
;
226 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
229 if (unlikely(page_group_by_mobility_disabled
))
230 migratetype
= MIGRATE_UNMOVABLE
;
232 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
233 PB_migrate
, PB_migrate_end
);
236 bool oom_killer_disabled __read_mostly
;
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
243 unsigned long pfn
= page_to_pfn(page
);
244 unsigned long sp
, start_pfn
;
247 seq
= zone_span_seqbegin(zone
);
248 start_pfn
= zone
->zone_start_pfn
;
249 sp
= zone
->spanned_pages
;
250 if (!zone_spans_pfn(zone
, pfn
))
252 } while (zone_span_seqretry(zone
, seq
));
255 pr_err("page %lu outside zone [ %lu - %lu ]\n",
256 pfn
, start_pfn
, start_pfn
+ sp
);
261 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
263 if (!pfn_valid_within(page_to_pfn(page
)))
265 if (zone
!= page_zone(page
))
271 * Temporary debugging check for pages not lying within a given zone.
273 static int bad_range(struct zone
*zone
, struct page
*page
)
275 if (page_outside_zone_boundaries(zone
, page
))
277 if (!page_is_consistent(zone
, page
))
283 static inline int bad_range(struct zone
*zone
, struct page
*page
)
289 static void bad_page(struct page
*page
)
291 static unsigned long resume
;
292 static unsigned long nr_shown
;
293 static unsigned long nr_unshown
;
295 /* Don't complain about poisoned pages */
296 if (PageHWPoison(page
)) {
297 page_mapcount_reset(page
); /* remove PageBuddy */
302 * Allow a burst of 60 reports, then keep quiet for that minute;
303 * or allow a steady drip of one report per second.
305 if (nr_shown
== 60) {
306 if (time_before(jiffies
, resume
)) {
312 "BUG: Bad page state: %lu messages suppressed\n",
319 resume
= jiffies
+ 60 * HZ
;
321 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
322 current
->comm
, page_to_pfn(page
));
328 /* Leave bad fields for debug, except PageBuddy could make trouble */
329 page_mapcount_reset(page
); /* remove PageBuddy */
330 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
334 * Higher-order pages are called "compound pages". They are structured thusly:
336 * The first PAGE_SIZE page is called the "head page".
338 * The remaining PAGE_SIZE pages are called "tail pages".
340 * All pages have PG_compound set. All tail pages have their ->first_page
341 * pointing at the head page.
343 * The first tail page's ->lru.next holds the address of the compound page's
344 * put_page() function. Its ->lru.prev holds the order of allocation.
345 * This usage means that zero-order pages may not be compound.
348 static void free_compound_page(struct page
*page
)
350 __free_pages_ok(page
, compound_order(page
));
353 void prep_compound_page(struct page
*page
, unsigned long order
)
356 int nr_pages
= 1 << order
;
358 set_compound_page_dtor(page
, free_compound_page
);
359 set_compound_order(page
, order
);
361 for (i
= 1; i
< nr_pages
; i
++) {
362 struct page
*p
= page
+ i
;
364 set_page_count(p
, 0);
365 p
->first_page
= page
;
369 /* update __split_huge_page_refcount if you change this function */
370 static int destroy_compound_page(struct page
*page
, unsigned long order
)
373 int nr_pages
= 1 << order
;
376 if (unlikely(compound_order(page
) != order
)) {
381 __ClearPageHead(page
);
383 for (i
= 1; i
< nr_pages
; i
++) {
384 struct page
*p
= page
+ i
;
386 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
396 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
401 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
402 * and __GFP_HIGHMEM from hard or soft interrupt context.
404 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
405 for (i
= 0; i
< (1 << order
); i
++)
406 clear_highpage(page
+ i
);
409 #ifdef CONFIG_DEBUG_PAGEALLOC
410 unsigned int _debug_guardpage_minorder
;
412 static int __init
debug_guardpage_minorder_setup(char *buf
)
416 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
417 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
420 _debug_guardpage_minorder
= res
;
421 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
424 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
426 static inline void set_page_guard_flag(struct page
*page
)
428 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
431 static inline void clear_page_guard_flag(struct page
*page
)
433 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
436 static inline void set_page_guard_flag(struct page
*page
) { }
437 static inline void clear_page_guard_flag(struct page
*page
) { }
440 static inline void set_page_order(struct page
*page
, int order
)
442 set_page_private(page
, order
);
443 __SetPageBuddy(page
);
446 static inline void rmv_page_order(struct page
*page
)
448 __ClearPageBuddy(page
);
449 set_page_private(page
, 0);
453 * Locate the struct page for both the matching buddy in our
454 * pair (buddy1) and the combined O(n+1) page they form (page).
456 * 1) Any buddy B1 will have an order O twin B2 which satisfies
457 * the following equation:
459 * For example, if the starting buddy (buddy2) is #8 its order
461 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
463 * 2) Any buddy B will have an order O+1 parent P which
464 * satisfies the following equation:
467 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
469 static inline unsigned long
470 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
472 return page_idx
^ (1 << order
);
476 * This function checks whether a page is free && is the buddy
477 * we can do coalesce a page and its buddy if
478 * (a) the buddy is not in a hole &&
479 * (b) the buddy is in the buddy system &&
480 * (c) a page and its buddy have the same order &&
481 * (d) a page and its buddy are in the same zone.
483 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
484 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
486 * For recording page's order, we use page_private(page).
488 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
491 if (!pfn_valid_within(page_to_pfn(buddy
)))
494 if (page_zone_id(page
) != page_zone_id(buddy
))
497 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
498 VM_BUG_ON(page_count(buddy
) != 0);
502 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
503 VM_BUG_ON(page_count(buddy
) != 0);
510 * Freeing function for a buddy system allocator.
512 * The concept of a buddy system is to maintain direct-mapped table
513 * (containing bit values) for memory blocks of various "orders".
514 * The bottom level table contains the map for the smallest allocatable
515 * units of memory (here, pages), and each level above it describes
516 * pairs of units from the levels below, hence, "buddies".
517 * At a high level, all that happens here is marking the table entry
518 * at the bottom level available, and propagating the changes upward
519 * as necessary, plus some accounting needed to play nicely with other
520 * parts of the VM system.
521 * At each level, we keep a list of pages, which are heads of continuous
522 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
523 * order is recorded in page_private(page) field.
524 * So when we are allocating or freeing one, we can derive the state of the
525 * other. That is, if we allocate a small block, and both were
526 * free, the remainder of the region must be split into blocks.
527 * If a block is freed, and its buddy is also free, then this
528 * triggers coalescing into a block of larger size.
533 static inline void __free_one_page(struct page
*page
,
534 struct zone
*zone
, unsigned int order
,
537 unsigned long page_idx
;
538 unsigned long combined_idx
;
539 unsigned long uninitialized_var(buddy_idx
);
542 VM_BUG_ON(!zone_is_initialized(zone
));
544 if (unlikely(PageCompound(page
)))
545 if (unlikely(destroy_compound_page(page
, order
)))
548 VM_BUG_ON(migratetype
== -1);
550 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
552 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
553 VM_BUG_ON(bad_range(zone
, page
));
555 while (order
< MAX_ORDER
-1) {
556 buddy_idx
= __find_buddy_index(page_idx
, order
);
557 buddy
= page
+ (buddy_idx
- page_idx
);
558 if (!page_is_buddy(page
, buddy
, order
))
561 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
562 * merge with it and move up one order.
564 if (page_is_guard(buddy
)) {
565 clear_page_guard_flag(buddy
);
566 set_page_private(page
, 0);
567 __mod_zone_freepage_state(zone
, 1 << order
,
570 list_del(&buddy
->lru
);
571 zone
->free_area
[order
].nr_free
--;
572 rmv_page_order(buddy
);
574 combined_idx
= buddy_idx
& page_idx
;
575 page
= page
+ (combined_idx
- page_idx
);
576 page_idx
= combined_idx
;
579 set_page_order(page
, order
);
582 * If this is not the largest possible page, check if the buddy
583 * of the next-highest order is free. If it is, it's possible
584 * that pages are being freed that will coalesce soon. In case,
585 * that is happening, add the free page to the tail of the list
586 * so it's less likely to be used soon and more likely to be merged
587 * as a higher order page
589 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
590 struct page
*higher_page
, *higher_buddy
;
591 combined_idx
= buddy_idx
& page_idx
;
592 higher_page
= page
+ (combined_idx
- page_idx
);
593 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
594 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
595 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
596 list_add_tail(&page
->lru
,
597 &zone
->free_area
[order
].free_list
[migratetype
]);
602 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
604 zone
->free_area
[order
].nr_free
++;
607 static inline int free_pages_check(struct page
*page
)
609 if (unlikely(page_mapcount(page
) |
610 (page
->mapping
!= NULL
) |
611 (atomic_read(&page
->_count
) != 0) |
612 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
613 (mem_cgroup_bad_page_check(page
)))) {
617 page_nid_reset_last(page
);
618 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
619 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
624 * Frees a number of pages from the PCP lists
625 * Assumes all pages on list are in same zone, and of same order.
626 * count is the number of pages to free.
628 * If the zone was previously in an "all pages pinned" state then look to
629 * see if this freeing clears that state.
631 * And clear the zone's pages_scanned counter, to hold off the "all pages are
632 * pinned" detection logic.
634 static void free_pcppages_bulk(struct zone
*zone
, int count
,
635 struct per_cpu_pages
*pcp
)
641 spin_lock(&zone
->lock
);
642 zone
->all_unreclaimable
= 0;
643 zone
->pages_scanned
= 0;
647 struct list_head
*list
;
650 * Remove pages from lists in a round-robin fashion. A
651 * batch_free count is maintained that is incremented when an
652 * empty list is encountered. This is so more pages are freed
653 * off fuller lists instead of spinning excessively around empty
658 if (++migratetype
== MIGRATE_PCPTYPES
)
660 list
= &pcp
->lists
[migratetype
];
661 } while (list_empty(list
));
663 /* This is the only non-empty list. Free them all. */
664 if (batch_free
== MIGRATE_PCPTYPES
)
665 batch_free
= to_free
;
668 int mt
; /* migratetype of the to-be-freed page */
670 page
= list_entry(list
->prev
, struct page
, lru
);
671 /* must delete as __free_one_page list manipulates */
672 list_del(&page
->lru
);
673 mt
= get_freepage_migratetype(page
);
674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 __free_one_page(page
, zone
, 0, mt
);
676 trace_mm_page_pcpu_drain(page
, 0, mt
);
677 if (likely(!is_migrate_isolate_page(page
))) {
678 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1);
679 if (is_migrate_cma(mt
))
680 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, 1);
682 } while (--to_free
&& --batch_free
&& !list_empty(list
));
684 spin_unlock(&zone
->lock
);
687 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
690 spin_lock(&zone
->lock
);
691 zone
->all_unreclaimable
= 0;
692 zone
->pages_scanned
= 0;
694 __free_one_page(page
, zone
, order
, migratetype
);
695 if (unlikely(!is_migrate_isolate(migratetype
)))
696 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
697 spin_unlock(&zone
->lock
);
700 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
705 trace_mm_page_free(page
, order
);
706 kmemcheck_free_shadow(page
, order
);
709 page
->mapping
= NULL
;
710 for (i
= 0; i
< (1 << order
); i
++)
711 bad
+= free_pages_check(page
+ i
);
715 if (!PageHighMem(page
)) {
716 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
717 debug_check_no_obj_freed(page_address(page
),
720 arch_free_page(page
, order
);
721 kernel_map_pages(page
, 1 << order
, 0);
726 static void __free_pages_ok(struct page
*page
, unsigned int order
)
731 if (!free_pages_prepare(page
, order
))
734 local_irq_save(flags
);
735 __count_vm_events(PGFREE
, 1 << order
);
736 migratetype
= get_pageblock_migratetype(page
);
737 set_freepage_migratetype(page
, migratetype
);
738 free_one_page(page_zone(page
), page
, order
, migratetype
);
739 local_irq_restore(flags
);
743 * Read access to zone->managed_pages is safe because it's unsigned long,
744 * but we still need to serialize writers. Currently all callers of
745 * __free_pages_bootmem() except put_page_bootmem() should only be used
746 * at boot time. So for shorter boot time, we shift the burden to
747 * put_page_bootmem() to serialize writers.
749 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
751 unsigned int nr_pages
= 1 << order
;
755 for (loop
= 0; loop
< nr_pages
; loop
++) {
756 struct page
*p
= &page
[loop
];
758 if (loop
+ 1 < nr_pages
)
760 __ClearPageReserved(p
);
761 set_page_count(p
, 0);
764 page_zone(page
)->managed_pages
+= 1 << order
;
765 set_page_refcounted(page
);
766 __free_pages(page
, order
);
770 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
771 void __init
init_cma_reserved_pageblock(struct page
*page
)
773 unsigned i
= pageblock_nr_pages
;
774 struct page
*p
= page
;
777 __ClearPageReserved(p
);
778 set_page_count(p
, 0);
781 set_page_refcounted(page
);
782 set_pageblock_migratetype(page
, MIGRATE_CMA
);
783 __free_pages(page
, pageblock_order
);
784 totalram_pages
+= pageblock_nr_pages
;
785 #ifdef CONFIG_HIGHMEM
786 if (PageHighMem(page
))
787 totalhigh_pages
+= pageblock_nr_pages
;
793 * The order of subdivision here is critical for the IO subsystem.
794 * Please do not alter this order without good reasons and regression
795 * testing. Specifically, as large blocks of memory are subdivided,
796 * the order in which smaller blocks are delivered depends on the order
797 * they're subdivided in this function. This is the primary factor
798 * influencing the order in which pages are delivered to the IO
799 * subsystem according to empirical testing, and this is also justified
800 * by considering the behavior of a buddy system containing a single
801 * large block of memory acted on by a series of small allocations.
802 * This behavior is a critical factor in sglist merging's success.
806 static inline void expand(struct zone
*zone
, struct page
*page
,
807 int low
, int high
, struct free_area
*area
,
810 unsigned long size
= 1 << high
;
816 VM_BUG_ON(bad_range(zone
, &page
[size
]));
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 if (high
< debug_guardpage_minorder()) {
821 * Mark as guard pages (or page), that will allow to
822 * merge back to allocator when buddy will be freed.
823 * Corresponding page table entries will not be touched,
824 * pages will stay not present in virtual address space
826 INIT_LIST_HEAD(&page
[size
].lru
);
827 set_page_guard_flag(&page
[size
]);
828 set_page_private(&page
[size
], high
);
829 /* Guard pages are not available for any usage */
830 __mod_zone_freepage_state(zone
, -(1 << high
),
835 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
837 set_page_order(&page
[size
], high
);
842 * This page is about to be returned from the page allocator
844 static inline int check_new_page(struct page
*page
)
846 if (unlikely(page_mapcount(page
) |
847 (page
->mapping
!= NULL
) |
848 (atomic_read(&page
->_count
) != 0) |
849 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
850 (mem_cgroup_bad_page_check(page
)))) {
857 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
861 for (i
= 0; i
< (1 << order
); i
++) {
862 struct page
*p
= page
+ i
;
863 if (unlikely(check_new_page(p
)))
867 set_page_private(page
, 0);
868 set_page_refcounted(page
);
870 arch_alloc_page(page
, order
);
871 kernel_map_pages(page
, 1 << order
, 1);
873 if (gfp_flags
& __GFP_ZERO
)
874 prep_zero_page(page
, order
, gfp_flags
);
876 if (order
&& (gfp_flags
& __GFP_COMP
))
877 prep_compound_page(page
, order
);
883 * Go through the free lists for the given migratetype and remove
884 * the smallest available page from the freelists
887 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
890 unsigned int current_order
;
891 struct free_area
* area
;
894 /* Find a page of the appropriate size in the preferred list */
895 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
896 area
= &(zone
->free_area
[current_order
]);
897 if (list_empty(&area
->free_list
[migratetype
]))
900 page
= list_entry(area
->free_list
[migratetype
].next
,
902 list_del(&page
->lru
);
903 rmv_page_order(page
);
905 expand(zone
, page
, order
, current_order
, area
, migratetype
);
914 * This array describes the order lists are fallen back to when
915 * the free lists for the desirable migrate type are depleted
917 static int fallbacks
[MIGRATE_TYPES
][4] = {
918 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
919 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
921 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
922 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
924 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
926 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
927 #ifdef CONFIG_MEMORY_ISOLATION
928 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
933 * Move the free pages in a range to the free lists of the requested type.
934 * Note that start_page and end_pages are not aligned on a pageblock
935 * boundary. If alignment is required, use move_freepages_block()
937 int move_freepages(struct zone
*zone
,
938 struct page
*start_page
, struct page
*end_page
,
945 #ifndef CONFIG_HOLES_IN_ZONE
947 * page_zone is not safe to call in this context when
948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 * anyway as we check zone boundaries in move_freepages_block().
950 * Remove at a later date when no bug reports exist related to
951 * grouping pages by mobility
953 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
956 for (page
= start_page
; page
<= end_page
;) {
957 /* Make sure we are not inadvertently changing nodes */
958 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
960 if (!pfn_valid_within(page_to_pfn(page
))) {
965 if (!PageBuddy(page
)) {
970 order
= page_order(page
);
971 list_move(&page
->lru
,
972 &zone
->free_area
[order
].free_list
[migratetype
]);
973 set_freepage_migratetype(page
, migratetype
);
975 pages_moved
+= 1 << order
;
981 int move_freepages_block(struct zone
*zone
, struct page
*page
,
984 unsigned long start_pfn
, end_pfn
;
985 struct page
*start_page
, *end_page
;
987 start_pfn
= page_to_pfn(page
);
988 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
989 start_page
= pfn_to_page(start_pfn
);
990 end_page
= start_page
+ pageblock_nr_pages
- 1;
991 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
993 /* Do not cross zone boundaries */
994 if (!zone_spans_pfn(zone
, start_pfn
))
996 if (!zone_spans_pfn(zone
, end_pfn
))
999 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1002 static void change_pageblock_range(struct page
*pageblock_page
,
1003 int start_order
, int migratetype
)
1005 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1007 while (nr_pageblocks
--) {
1008 set_pageblock_migratetype(pageblock_page
, migratetype
);
1009 pageblock_page
+= pageblock_nr_pages
;
1013 /* Remove an element from the buddy allocator from the fallback list */
1014 static inline struct page
*
1015 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
1017 struct free_area
* area
;
1022 /* Find the largest possible block of pages in the other list */
1023 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
1026 migratetype
= fallbacks
[start_migratetype
][i
];
1028 /* MIGRATE_RESERVE handled later if necessary */
1029 if (migratetype
== MIGRATE_RESERVE
)
1032 area
= &(zone
->free_area
[current_order
]);
1033 if (list_empty(&area
->free_list
[migratetype
]))
1036 page
= list_entry(area
->free_list
[migratetype
].next
,
1041 * If breaking a large block of pages, move all free
1042 * pages to the preferred allocation list. If falling
1043 * back for a reclaimable kernel allocation, be more
1044 * aggressive about taking ownership of free pages
1046 * On the other hand, never change migration
1047 * type of MIGRATE_CMA pageblocks nor move CMA
1048 * pages on different free lists. We don't
1049 * want unmovable pages to be allocated from
1050 * MIGRATE_CMA areas.
1052 if (!is_migrate_cma(migratetype
) &&
1053 (unlikely(current_order
>= pageblock_order
/ 2) ||
1054 start_migratetype
== MIGRATE_RECLAIMABLE
||
1055 page_group_by_mobility_disabled
)) {
1057 pages
= move_freepages_block(zone
, page
,
1060 /* Claim the whole block if over half of it is free */
1061 if (pages
>= (1 << (pageblock_order
-1)) ||
1062 page_group_by_mobility_disabled
)
1063 set_pageblock_migratetype(page
,
1066 migratetype
= start_migratetype
;
1069 /* Remove the page from the freelists */
1070 list_del(&page
->lru
);
1071 rmv_page_order(page
);
1073 /* Take ownership for orders >= pageblock_order */
1074 if (current_order
>= pageblock_order
&&
1075 !is_migrate_cma(migratetype
))
1076 change_pageblock_range(page
, current_order
,
1079 expand(zone
, page
, order
, current_order
, area
,
1080 is_migrate_cma(migratetype
)
1081 ? migratetype
: start_migratetype
);
1083 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1084 start_migratetype
, migratetype
);
1094 * Do the hard work of removing an element from the buddy allocator.
1095 * Call me with the zone->lock already held.
1097 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1103 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1105 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1106 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1109 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1110 * is used because __rmqueue_smallest is an inline function
1111 * and we want just one call site
1114 migratetype
= MIGRATE_RESERVE
;
1119 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1124 * Obtain a specified number of elements from the buddy allocator, all under
1125 * a single hold of the lock, for efficiency. Add them to the supplied list.
1126 * Returns the number of new pages which were placed at *list.
1128 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1129 unsigned long count
, struct list_head
*list
,
1130 int migratetype
, int cold
)
1132 int mt
= migratetype
, i
;
1134 spin_lock(&zone
->lock
);
1135 for (i
= 0; i
< count
; ++i
) {
1136 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1137 if (unlikely(page
== NULL
))
1141 * Split buddy pages returned by expand() are received here
1142 * in physical page order. The page is added to the callers and
1143 * list and the list head then moves forward. From the callers
1144 * perspective, the linked list is ordered by page number in
1145 * some conditions. This is useful for IO devices that can
1146 * merge IO requests if the physical pages are ordered
1149 if (likely(cold
== 0))
1150 list_add(&page
->lru
, list
);
1152 list_add_tail(&page
->lru
, list
);
1153 if (IS_ENABLED(CONFIG_CMA
)) {
1154 mt
= get_pageblock_migratetype(page
);
1155 if (!is_migrate_cma(mt
) && !is_migrate_isolate(mt
))
1158 set_freepage_migratetype(page
, mt
);
1160 if (is_migrate_cma(mt
))
1161 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1164 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1165 spin_unlock(&zone
->lock
);
1171 * Called from the vmstat counter updater to drain pagesets of this
1172 * currently executing processor on remote nodes after they have
1175 * Note that this function must be called with the thread pinned to
1176 * a single processor.
1178 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1180 unsigned long flags
;
1183 local_irq_save(flags
);
1184 if (pcp
->count
>= pcp
->batch
)
1185 to_drain
= pcp
->batch
;
1187 to_drain
= pcp
->count
;
1189 free_pcppages_bulk(zone
, to_drain
, pcp
);
1190 pcp
->count
-= to_drain
;
1192 local_irq_restore(flags
);
1197 * Drain pages of the indicated processor.
1199 * The processor must either be the current processor and the
1200 * thread pinned to the current processor or a processor that
1203 static void drain_pages(unsigned int cpu
)
1205 unsigned long flags
;
1208 for_each_populated_zone(zone
) {
1209 struct per_cpu_pageset
*pset
;
1210 struct per_cpu_pages
*pcp
;
1212 local_irq_save(flags
);
1213 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1217 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1220 local_irq_restore(flags
);
1225 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1227 void drain_local_pages(void *arg
)
1229 drain_pages(smp_processor_id());
1233 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1235 * Note that this code is protected against sending an IPI to an offline
1236 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1237 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1238 * nothing keeps CPUs from showing up after we populated the cpumask and
1239 * before the call to on_each_cpu_mask().
1241 void drain_all_pages(void)
1244 struct per_cpu_pageset
*pcp
;
1248 * Allocate in the BSS so we wont require allocation in
1249 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1251 static cpumask_t cpus_with_pcps
;
1254 * We don't care about racing with CPU hotplug event
1255 * as offline notification will cause the notified
1256 * cpu to drain that CPU pcps and on_each_cpu_mask
1257 * disables preemption as part of its processing
1259 for_each_online_cpu(cpu
) {
1260 bool has_pcps
= false;
1261 for_each_populated_zone(zone
) {
1262 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1263 if (pcp
->pcp
.count
) {
1269 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1271 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1273 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1276 #ifdef CONFIG_HIBERNATION
1278 void mark_free_pages(struct zone
*zone
)
1280 unsigned long pfn
, max_zone_pfn
;
1281 unsigned long flags
;
1283 struct list_head
*curr
;
1285 if (!zone
->spanned_pages
)
1288 spin_lock_irqsave(&zone
->lock
, flags
);
1290 max_zone_pfn
= zone_end_pfn(zone
);
1291 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1292 if (pfn_valid(pfn
)) {
1293 struct page
*page
= pfn_to_page(pfn
);
1295 if (!swsusp_page_is_forbidden(page
))
1296 swsusp_unset_page_free(page
);
1299 for_each_migratetype_order(order
, t
) {
1300 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1303 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1304 for (i
= 0; i
< (1UL << order
); i
++)
1305 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1308 spin_unlock_irqrestore(&zone
->lock
, flags
);
1310 #endif /* CONFIG_PM */
1313 * Free a 0-order page
1314 * cold == 1 ? free a cold page : free a hot page
1316 void free_hot_cold_page(struct page
*page
, int cold
)
1318 struct zone
*zone
= page_zone(page
);
1319 struct per_cpu_pages
*pcp
;
1320 unsigned long flags
;
1323 if (!free_pages_prepare(page
, 0))
1326 migratetype
= get_pageblock_migratetype(page
);
1327 set_freepage_migratetype(page
, migratetype
);
1328 local_irq_save(flags
);
1329 __count_vm_event(PGFREE
);
1332 * We only track unmovable, reclaimable and movable on pcp lists.
1333 * Free ISOLATE pages back to the allocator because they are being
1334 * offlined but treat RESERVE as movable pages so we can get those
1335 * areas back if necessary. Otherwise, we may have to free
1336 * excessively into the page allocator
1338 if (migratetype
>= MIGRATE_PCPTYPES
) {
1339 if (unlikely(is_migrate_isolate(migratetype
))) {
1340 free_one_page(zone
, page
, 0, migratetype
);
1343 migratetype
= MIGRATE_MOVABLE
;
1346 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1348 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1350 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1352 if (pcp
->count
>= pcp
->high
) {
1353 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1354 pcp
->count
-= pcp
->batch
;
1358 local_irq_restore(flags
);
1362 * Free a list of 0-order pages
1364 void free_hot_cold_page_list(struct list_head
*list
, int cold
)
1366 struct page
*page
, *next
;
1368 list_for_each_entry_safe(page
, next
, list
, lru
) {
1369 trace_mm_page_free_batched(page
, cold
);
1370 free_hot_cold_page(page
, cold
);
1375 * split_page takes a non-compound higher-order page, and splits it into
1376 * n (1<<order) sub-pages: page[0..n]
1377 * Each sub-page must be freed individually.
1379 * Note: this is probably too low level an operation for use in drivers.
1380 * Please consult with lkml before using this in your driver.
1382 void split_page(struct page
*page
, unsigned int order
)
1386 VM_BUG_ON(PageCompound(page
));
1387 VM_BUG_ON(!page_count(page
));
1389 #ifdef CONFIG_KMEMCHECK
1391 * Split shadow pages too, because free(page[0]) would
1392 * otherwise free the whole shadow.
1394 if (kmemcheck_page_is_tracked(page
))
1395 split_page(virt_to_page(page
[0].shadow
), order
);
1398 for (i
= 1; i
< (1 << order
); i
++)
1399 set_page_refcounted(page
+ i
);
1401 EXPORT_SYMBOL_GPL(split_page
);
1403 static int __isolate_free_page(struct page
*page
, unsigned int order
)
1405 unsigned long watermark
;
1409 BUG_ON(!PageBuddy(page
));
1411 zone
= page_zone(page
);
1412 mt
= get_pageblock_migratetype(page
);
1414 if (!is_migrate_isolate(mt
)) {
1415 /* Obey watermarks as if the page was being allocated */
1416 watermark
= low_wmark_pages(zone
) + (1 << order
);
1417 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1420 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1423 /* Remove page from free list */
1424 list_del(&page
->lru
);
1425 zone
->free_area
[order
].nr_free
--;
1426 rmv_page_order(page
);
1428 /* Set the pageblock if the isolated page is at least a pageblock */
1429 if (order
>= pageblock_order
- 1) {
1430 struct page
*endpage
= page
+ (1 << order
) - 1;
1431 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1432 int mt
= get_pageblock_migratetype(page
);
1433 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
1434 set_pageblock_migratetype(page
,
1439 return 1UL << order
;
1443 * Similar to split_page except the page is already free. As this is only
1444 * being used for migration, the migratetype of the block also changes.
1445 * As this is called with interrupts disabled, the caller is responsible
1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1452 int split_free_page(struct page
*page
)
1457 order
= page_order(page
);
1459 nr_pages
= __isolate_free_page(page
, order
);
1463 /* Split into individual pages */
1464 set_page_refcounted(page
);
1465 split_page(page
, order
);
1470 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1471 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1475 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1476 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1479 unsigned long flags
;
1481 int cold
= !!(gfp_flags
& __GFP_COLD
);
1484 if (likely(order
== 0)) {
1485 struct per_cpu_pages
*pcp
;
1486 struct list_head
*list
;
1488 local_irq_save(flags
);
1489 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1490 list
= &pcp
->lists
[migratetype
];
1491 if (list_empty(list
)) {
1492 pcp
->count
+= rmqueue_bulk(zone
, 0,
1495 if (unlikely(list_empty(list
)))
1500 page
= list_entry(list
->prev
, struct page
, lru
);
1502 page
= list_entry(list
->next
, struct page
, lru
);
1504 list_del(&page
->lru
);
1507 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1509 * __GFP_NOFAIL is not to be used in new code.
1511 * All __GFP_NOFAIL callers should be fixed so that they
1512 * properly detect and handle allocation failures.
1514 * We most definitely don't want callers attempting to
1515 * allocate greater than order-1 page units with
1518 WARN_ON_ONCE(order
> 1);
1520 spin_lock_irqsave(&zone
->lock
, flags
);
1521 page
= __rmqueue(zone
, order
, migratetype
);
1522 spin_unlock(&zone
->lock
);
1525 __mod_zone_freepage_state(zone
, -(1 << order
),
1526 get_pageblock_migratetype(page
));
1529 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1530 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1531 local_irq_restore(flags
);
1533 VM_BUG_ON(bad_range(zone
, page
));
1534 if (prep_new_page(page
, order
, gfp_flags
))
1539 local_irq_restore(flags
);
1543 #ifdef CONFIG_FAIL_PAGE_ALLOC
1546 struct fault_attr attr
;
1548 u32 ignore_gfp_highmem
;
1549 u32 ignore_gfp_wait
;
1551 } fail_page_alloc
= {
1552 .attr
= FAULT_ATTR_INITIALIZER
,
1553 .ignore_gfp_wait
= 1,
1554 .ignore_gfp_highmem
= 1,
1558 static int __init
setup_fail_page_alloc(char *str
)
1560 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1562 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1564 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1566 if (order
< fail_page_alloc
.min_order
)
1568 if (gfp_mask
& __GFP_NOFAIL
)
1570 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1572 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1575 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1578 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1580 static int __init
fail_page_alloc_debugfs(void)
1582 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1585 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1586 &fail_page_alloc
.attr
);
1588 return PTR_ERR(dir
);
1590 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1591 &fail_page_alloc
.ignore_gfp_wait
))
1593 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1594 &fail_page_alloc
.ignore_gfp_highmem
))
1596 if (!debugfs_create_u32("min-order", mode
, dir
,
1597 &fail_page_alloc
.min_order
))
1602 debugfs_remove_recursive(dir
);
1607 late_initcall(fail_page_alloc_debugfs
);
1609 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1611 #else /* CONFIG_FAIL_PAGE_ALLOC */
1613 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1618 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1621 * Return true if free pages are above 'mark'. This takes into account the order
1622 * of the allocation.
1624 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1625 int classzone_idx
, int alloc_flags
, long free_pages
)
1627 /* free_pages my go negative - that's OK */
1629 long lowmem_reserve
= z
->lowmem_reserve
[classzone_idx
];
1633 free_pages
-= (1 << order
) - 1;
1634 if (alloc_flags
& ALLOC_HIGH
)
1636 if (alloc_flags
& ALLOC_HARDER
)
1639 /* If allocation can't use CMA areas don't use free CMA pages */
1640 if (!(alloc_flags
& ALLOC_CMA
))
1641 free_cma
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
1644 if (free_pages
- free_cma
<= min
+ lowmem_reserve
)
1646 for (o
= 0; o
< order
; o
++) {
1647 /* At the next order, this order's pages become unavailable */
1648 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1650 /* Require fewer higher order pages to be free */
1653 if (free_pages
<= min
)
1659 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1660 int classzone_idx
, int alloc_flags
)
1662 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1663 zone_page_state(z
, NR_FREE_PAGES
));
1666 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1667 int classzone_idx
, int alloc_flags
)
1669 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1671 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1672 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1674 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1680 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1681 * skip over zones that are not allowed by the cpuset, or that have
1682 * been recently (in last second) found to be nearly full. See further
1683 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1684 * that have to skip over a lot of full or unallowed zones.
1686 * If the zonelist cache is present in the passed in zonelist, then
1687 * returns a pointer to the allowed node mask (either the current
1688 * tasks mems_allowed, or node_states[N_MEMORY].)
1690 * If the zonelist cache is not available for this zonelist, does
1691 * nothing and returns NULL.
1693 * If the fullzones BITMAP in the zonelist cache is stale (more than
1694 * a second since last zap'd) then we zap it out (clear its bits.)
1696 * We hold off even calling zlc_setup, until after we've checked the
1697 * first zone in the zonelist, on the theory that most allocations will
1698 * be satisfied from that first zone, so best to examine that zone as
1699 * quickly as we can.
1701 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1703 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1704 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1706 zlc
= zonelist
->zlcache_ptr
;
1710 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1711 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1712 zlc
->last_full_zap
= jiffies
;
1715 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1716 &cpuset_current_mems_allowed
:
1717 &node_states
[N_MEMORY
];
1718 return allowednodes
;
1722 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1723 * if it is worth looking at further for free memory:
1724 * 1) Check that the zone isn't thought to be full (doesn't have its
1725 * bit set in the zonelist_cache fullzones BITMAP).
1726 * 2) Check that the zones node (obtained from the zonelist_cache
1727 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1728 * Return true (non-zero) if zone is worth looking at further, or
1729 * else return false (zero) if it is not.
1731 * This check -ignores- the distinction between various watermarks,
1732 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1733 * found to be full for any variation of these watermarks, it will
1734 * be considered full for up to one second by all requests, unless
1735 * we are so low on memory on all allowed nodes that we are forced
1736 * into the second scan of the zonelist.
1738 * In the second scan we ignore this zonelist cache and exactly
1739 * apply the watermarks to all zones, even it is slower to do so.
1740 * We are low on memory in the second scan, and should leave no stone
1741 * unturned looking for a free page.
1743 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1744 nodemask_t
*allowednodes
)
1746 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1747 int i
; /* index of *z in zonelist zones */
1748 int n
; /* node that zone *z is on */
1750 zlc
= zonelist
->zlcache_ptr
;
1754 i
= z
- zonelist
->_zonerefs
;
1757 /* This zone is worth trying if it is allowed but not full */
1758 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1762 * Given 'z' scanning a zonelist, set the corresponding bit in
1763 * zlc->fullzones, so that subsequent attempts to allocate a page
1764 * from that zone don't waste time re-examining it.
1766 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1768 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1769 int i
; /* index of *z in zonelist zones */
1771 zlc
= zonelist
->zlcache_ptr
;
1775 i
= z
- zonelist
->_zonerefs
;
1777 set_bit(i
, zlc
->fullzones
);
1781 * clear all zones full, called after direct reclaim makes progress so that
1782 * a zone that was recently full is not skipped over for up to a second
1784 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1786 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1788 zlc
= zonelist
->zlcache_ptr
;
1792 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1795 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1797 return node_isset(local_zone
->node
, zone
->zone_pgdat
->reclaim_nodes
);
1800 static void __paginginit
init_zone_allows_reclaim(int nid
)
1804 for_each_online_node(i
)
1805 if (node_distance(nid
, i
) <= RECLAIM_DISTANCE
)
1806 node_set(i
, NODE_DATA(nid
)->reclaim_nodes
);
1808 zone_reclaim_mode
= 1;
1811 #else /* CONFIG_NUMA */
1813 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1818 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1819 nodemask_t
*allowednodes
)
1824 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1828 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1832 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1837 static inline void init_zone_allows_reclaim(int nid
)
1840 #endif /* CONFIG_NUMA */
1843 * get_page_from_freelist goes through the zonelist trying to allocate
1846 static struct page
*
1847 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1848 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1849 struct zone
*preferred_zone
, int migratetype
)
1852 struct page
*page
= NULL
;
1855 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1856 int zlc_active
= 0; /* set if using zonelist_cache */
1857 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1859 classzone_idx
= zone_idx(preferred_zone
);
1862 * Scan zonelist, looking for a zone with enough free.
1863 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1865 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1866 high_zoneidx
, nodemask
) {
1867 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1868 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1870 if ((alloc_flags
& ALLOC_CPUSET
) &&
1871 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1874 * When allocating a page cache page for writing, we
1875 * want to get it from a zone that is within its dirty
1876 * limit, such that no single zone holds more than its
1877 * proportional share of globally allowed dirty pages.
1878 * The dirty limits take into account the zone's
1879 * lowmem reserves and high watermark so that kswapd
1880 * should be able to balance it without having to
1881 * write pages from its LRU list.
1883 * This may look like it could increase pressure on
1884 * lower zones by failing allocations in higher zones
1885 * before they are full. But the pages that do spill
1886 * over are limited as the lower zones are protected
1887 * by this very same mechanism. It should not become
1888 * a practical burden to them.
1890 * XXX: For now, allow allocations to potentially
1891 * exceed the per-zone dirty limit in the slowpath
1892 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1893 * which is important when on a NUMA setup the allowed
1894 * zones are together not big enough to reach the
1895 * global limit. The proper fix for these situations
1896 * will require awareness of zones in the
1897 * dirty-throttling and the flusher threads.
1899 if ((alloc_flags
& ALLOC_WMARK_LOW
) &&
1900 (gfp_mask
& __GFP_WRITE
) && !zone_dirty_ok(zone
))
1901 goto this_zone_full
;
1903 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1904 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1908 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1909 if (zone_watermark_ok(zone
, order
, mark
,
1910 classzone_idx
, alloc_flags
))
1913 if (IS_ENABLED(CONFIG_NUMA
) &&
1914 !did_zlc_setup
&& nr_online_nodes
> 1) {
1916 * we do zlc_setup if there are multiple nodes
1917 * and before considering the first zone allowed
1920 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1925 if (zone_reclaim_mode
== 0 ||
1926 !zone_allows_reclaim(preferred_zone
, zone
))
1927 goto this_zone_full
;
1930 * As we may have just activated ZLC, check if the first
1931 * eligible zone has failed zone_reclaim recently.
1933 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1934 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1937 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1939 case ZONE_RECLAIM_NOSCAN
:
1942 case ZONE_RECLAIM_FULL
:
1943 /* scanned but unreclaimable */
1946 /* did we reclaim enough */
1947 if (zone_watermark_ok(zone
, order
, mark
,
1948 classzone_idx
, alloc_flags
))
1952 * Failed to reclaim enough to meet watermark.
1953 * Only mark the zone full if checking the min
1954 * watermark or if we failed to reclaim just
1955 * 1<<order pages or else the page allocator
1956 * fastpath will prematurely mark zones full
1957 * when the watermark is between the low and
1960 if (((alloc_flags
& ALLOC_WMARK_MASK
) == ALLOC_WMARK_MIN
) ||
1961 ret
== ZONE_RECLAIM_SOME
)
1962 goto this_zone_full
;
1969 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1970 gfp_mask
, migratetype
);
1974 if (IS_ENABLED(CONFIG_NUMA
))
1975 zlc_mark_zone_full(zonelist
, z
);
1978 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && page
== NULL
&& zlc_active
)) {
1979 /* Disable zlc cache for second zonelist scan */
1986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1987 * necessary to allocate the page. The expectation is
1988 * that the caller is taking steps that will free more
1989 * memory. The caller should avoid the page being used
1990 * for !PFMEMALLOC purposes.
1992 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
1998 * Large machines with many possible nodes should not always dump per-node
1999 * meminfo in irq context.
2001 static inline bool should_suppress_show_mem(void)
2006 ret
= in_interrupt();
2011 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2012 DEFAULT_RATELIMIT_INTERVAL
,
2013 DEFAULT_RATELIMIT_BURST
);
2015 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
2017 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2019 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2020 debug_guardpage_minorder() > 0)
2024 * Walking all memory to count page types is very expensive and should
2025 * be inhibited in non-blockable contexts.
2027 if (!(gfp_mask
& __GFP_WAIT
))
2028 filter
|= SHOW_MEM_FILTER_PAGE_COUNT
;
2031 * This documents exceptions given to allocations in certain
2032 * contexts that are allowed to allocate outside current's set
2035 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2036 if (test_thread_flag(TIF_MEMDIE
) ||
2037 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2038 filter
&= ~SHOW_MEM_FILTER_NODES
;
2039 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2040 filter
&= ~SHOW_MEM_FILTER_NODES
;
2043 struct va_format vaf
;
2046 va_start(args
, fmt
);
2051 pr_warn("%pV", &vaf
);
2056 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2057 current
->comm
, order
, gfp_mask
);
2060 if (!should_suppress_show_mem())
2065 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2066 unsigned long did_some_progress
,
2067 unsigned long pages_reclaimed
)
2069 /* Do not loop if specifically requested */
2070 if (gfp_mask
& __GFP_NORETRY
)
2073 /* Always retry if specifically requested */
2074 if (gfp_mask
& __GFP_NOFAIL
)
2078 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2079 * making forward progress without invoking OOM. Suspend also disables
2080 * storage devices so kswapd will not help. Bail if we are suspending.
2082 if (!did_some_progress
&& pm_suspended_storage())
2086 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2087 * means __GFP_NOFAIL, but that may not be true in other
2090 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2094 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2095 * specified, then we retry until we no longer reclaim any pages
2096 * (above), or we've reclaimed an order of pages at least as
2097 * large as the allocation's order. In both cases, if the
2098 * allocation still fails, we stop retrying.
2100 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2106 static inline struct page
*
2107 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2108 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2109 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2114 /* Acquire the OOM killer lock for the zones in zonelist */
2115 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
2116 schedule_timeout_uninterruptible(1);
2121 * Go through the zonelist yet one more time, keep very high watermark
2122 * here, this is only to catch a parallel oom killing, we must fail if
2123 * we're still under heavy pressure.
2125 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2126 order
, zonelist
, high_zoneidx
,
2127 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2128 preferred_zone
, migratetype
);
2132 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2133 /* The OOM killer will not help higher order allocs */
2134 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2136 /* The OOM killer does not needlessly kill tasks for lowmem */
2137 if (high_zoneidx
< ZONE_NORMAL
)
2140 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2141 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2142 * The caller should handle page allocation failure by itself if
2143 * it specifies __GFP_THISNODE.
2144 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2146 if (gfp_mask
& __GFP_THISNODE
)
2149 /* Exhausted what can be done so it's blamo time */
2150 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2153 clear_zonelist_oom(zonelist
, gfp_mask
);
2157 #ifdef CONFIG_COMPACTION
2158 /* Try memory compaction for high-order allocations before reclaim */
2159 static struct page
*
2160 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2161 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2162 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2163 int migratetype
, bool sync_migration
,
2164 bool *contended_compaction
, bool *deferred_compaction
,
2165 unsigned long *did_some_progress
)
2170 if (compaction_deferred(preferred_zone
, order
)) {
2171 *deferred_compaction
= true;
2175 current
->flags
|= PF_MEMALLOC
;
2176 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2177 nodemask
, sync_migration
,
2178 contended_compaction
);
2179 current
->flags
&= ~PF_MEMALLOC
;
2181 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2184 /* Page migration frees to the PCP lists but we want merging */
2185 drain_pages(get_cpu());
2188 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2189 order
, zonelist
, high_zoneidx
,
2190 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2191 preferred_zone
, migratetype
);
2193 preferred_zone
->compact_blockskip_flush
= false;
2194 preferred_zone
->compact_considered
= 0;
2195 preferred_zone
->compact_defer_shift
= 0;
2196 if (order
>= preferred_zone
->compact_order_failed
)
2197 preferred_zone
->compact_order_failed
= order
+ 1;
2198 count_vm_event(COMPACTSUCCESS
);
2203 * It's bad if compaction run occurs and fails.
2204 * The most likely reason is that pages exist,
2205 * but not enough to satisfy watermarks.
2207 count_vm_event(COMPACTFAIL
);
2210 * As async compaction considers a subset of pageblocks, only
2211 * defer if the failure was a sync compaction failure.
2214 defer_compaction(preferred_zone
, order
);
2222 static inline struct page
*
2223 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2224 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2225 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2226 int migratetype
, bool sync_migration
,
2227 bool *contended_compaction
, bool *deferred_compaction
,
2228 unsigned long *did_some_progress
)
2232 #endif /* CONFIG_COMPACTION */
2234 /* Perform direct synchronous page reclaim */
2236 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2237 nodemask_t
*nodemask
)
2239 struct reclaim_state reclaim_state
;
2244 /* We now go into synchronous reclaim */
2245 cpuset_memory_pressure_bump();
2246 current
->flags
|= PF_MEMALLOC
;
2247 lockdep_set_current_reclaim_state(gfp_mask
);
2248 reclaim_state
.reclaimed_slab
= 0;
2249 current
->reclaim_state
= &reclaim_state
;
2251 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2253 current
->reclaim_state
= NULL
;
2254 lockdep_clear_current_reclaim_state();
2255 current
->flags
&= ~PF_MEMALLOC
;
2262 /* The really slow allocator path where we enter direct reclaim */
2263 static inline struct page
*
2264 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2265 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2266 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2267 int migratetype
, unsigned long *did_some_progress
)
2269 struct page
*page
= NULL
;
2270 bool drained
= false;
2272 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2274 if (unlikely(!(*did_some_progress
)))
2277 /* After successful reclaim, reconsider all zones for allocation */
2278 if (IS_ENABLED(CONFIG_NUMA
))
2279 zlc_clear_zones_full(zonelist
);
2282 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2283 zonelist
, high_zoneidx
,
2284 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2285 preferred_zone
, migratetype
);
2288 * If an allocation failed after direct reclaim, it could be because
2289 * pages are pinned on the per-cpu lists. Drain them and try again
2291 if (!page
&& !drained
) {
2301 * This is called in the allocator slow-path if the allocation request is of
2302 * sufficient urgency to ignore watermarks and take other desperate measures
2304 static inline struct page
*
2305 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2306 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2307 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2313 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2314 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2315 preferred_zone
, migratetype
);
2317 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2318 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2319 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2325 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
2326 enum zone_type high_zoneidx
,
2327 enum zone_type classzone_idx
)
2332 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2333 wakeup_kswapd(zone
, order
, classzone_idx
);
2337 gfp_to_alloc_flags(gfp_t gfp_mask
)
2339 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2340 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2342 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2343 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2346 * The caller may dip into page reserves a bit more if the caller
2347 * cannot run direct reclaim, or if the caller has realtime scheduling
2348 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2349 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2351 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2355 * Not worth trying to allocate harder for
2356 * __GFP_NOMEMALLOC even if it can't schedule.
2358 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2359 alloc_flags
|= ALLOC_HARDER
;
2361 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2362 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2364 alloc_flags
&= ~ALLOC_CPUSET
;
2365 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2366 alloc_flags
|= ALLOC_HARDER
;
2368 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2369 if (gfp_mask
& __GFP_MEMALLOC
)
2370 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2371 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2372 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2373 else if (!in_interrupt() &&
2374 ((current
->flags
& PF_MEMALLOC
) ||
2375 unlikely(test_thread_flag(TIF_MEMDIE
))))
2376 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2379 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2380 alloc_flags
|= ALLOC_CMA
;
2385 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2387 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2390 static inline struct page
*
2391 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2392 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2393 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2396 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2397 struct page
*page
= NULL
;
2399 unsigned long pages_reclaimed
= 0;
2400 unsigned long did_some_progress
;
2401 bool sync_migration
= false;
2402 bool deferred_compaction
= false;
2403 bool contended_compaction
= false;
2406 * In the slowpath, we sanity check order to avoid ever trying to
2407 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2408 * be using allocators in order of preference for an area that is
2411 if (order
>= MAX_ORDER
) {
2412 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2417 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2418 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2419 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2420 * using a larger set of nodes after it has established that the
2421 * allowed per node queues are empty and that nodes are
2424 if (IS_ENABLED(CONFIG_NUMA
) &&
2425 (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2429 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2430 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2431 zone_idx(preferred_zone
));
2434 * OK, we're below the kswapd watermark and have kicked background
2435 * reclaim. Now things get more complex, so set up alloc_flags according
2436 * to how we want to proceed.
2438 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2441 * Find the true preferred zone if the allocation is unconstrained by
2444 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2445 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2449 /* This is the last chance, in general, before the goto nopage. */
2450 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2451 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2452 preferred_zone
, migratetype
);
2456 /* Allocate without watermarks if the context allows */
2457 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2459 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2460 * the allocation is high priority and these type of
2461 * allocations are system rather than user orientated
2463 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2465 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2466 zonelist
, high_zoneidx
, nodemask
,
2467 preferred_zone
, migratetype
);
2473 /* Atomic allocations - we can't balance anything */
2477 /* Avoid recursion of direct reclaim */
2478 if (current
->flags
& PF_MEMALLOC
)
2481 /* Avoid allocations with no watermarks from looping endlessly */
2482 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2486 * Try direct compaction. The first pass is asynchronous. Subsequent
2487 * attempts after direct reclaim are synchronous
2489 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2490 zonelist
, high_zoneidx
,
2492 alloc_flags
, preferred_zone
,
2493 migratetype
, sync_migration
,
2494 &contended_compaction
,
2495 &deferred_compaction
,
2496 &did_some_progress
);
2499 sync_migration
= true;
2502 * If compaction is deferred for high-order allocations, it is because
2503 * sync compaction recently failed. In this is the case and the caller
2504 * requested a movable allocation that does not heavily disrupt the
2505 * system then fail the allocation instead of entering direct reclaim.
2507 if ((deferred_compaction
|| contended_compaction
) &&
2508 (gfp_mask
& __GFP_NO_KSWAPD
))
2511 /* Try direct reclaim and then allocating */
2512 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2513 zonelist
, high_zoneidx
,
2515 alloc_flags
, preferred_zone
,
2516 migratetype
, &did_some_progress
);
2521 * If we failed to make any progress reclaiming, then we are
2522 * running out of options and have to consider going OOM
2524 if (!did_some_progress
) {
2525 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2526 if (oom_killer_disabled
)
2528 /* Coredumps can quickly deplete all memory reserves */
2529 if ((current
->flags
& PF_DUMPCORE
) &&
2530 !(gfp_mask
& __GFP_NOFAIL
))
2532 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2533 zonelist
, high_zoneidx
,
2534 nodemask
, preferred_zone
,
2539 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2541 * The oom killer is not called for high-order
2542 * allocations that may fail, so if no progress
2543 * is being made, there are no other options and
2544 * retrying is unlikely to help.
2546 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2549 * The oom killer is not called for lowmem
2550 * allocations to prevent needlessly killing
2553 if (high_zoneidx
< ZONE_NORMAL
)
2561 /* Check if we should retry the allocation */
2562 pages_reclaimed
+= did_some_progress
;
2563 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2565 /* Wait for some write requests to complete then retry */
2566 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2570 * High-order allocations do not necessarily loop after
2571 * direct reclaim and reclaim/compaction depends on compaction
2572 * being called after reclaim so call directly if necessary
2574 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2575 zonelist
, high_zoneidx
,
2577 alloc_flags
, preferred_zone
,
2578 migratetype
, sync_migration
,
2579 &contended_compaction
,
2580 &deferred_compaction
,
2581 &did_some_progress
);
2587 warn_alloc_failed(gfp_mask
, order
, NULL
);
2590 if (kmemcheck_enabled
)
2591 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2597 * This is the 'heart' of the zoned buddy allocator.
2600 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2601 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2603 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2604 struct zone
*preferred_zone
;
2605 struct page
*page
= NULL
;
2606 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2607 unsigned int cpuset_mems_cookie
;
2608 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
;
2609 struct mem_cgroup
*memcg
= NULL
;
2611 gfp_mask
&= gfp_allowed_mask
;
2613 lockdep_trace_alloc(gfp_mask
);
2615 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2617 if (should_fail_alloc_page(gfp_mask
, order
))
2621 * Check the zones suitable for the gfp_mask contain at least one
2622 * valid zone. It's possible to have an empty zonelist as a result
2623 * of GFP_THISNODE and a memoryless node
2625 if (unlikely(!zonelist
->_zonerefs
->zone
))
2629 * Will only have any effect when __GFP_KMEMCG is set. This is
2630 * verified in the (always inline) callee
2632 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2636 cpuset_mems_cookie
= get_mems_allowed();
2638 /* The preferred zone is used for statistics later */
2639 first_zones_zonelist(zonelist
, high_zoneidx
,
2640 nodemask
? : &cpuset_current_mems_allowed
,
2642 if (!preferred_zone
)
2646 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2647 alloc_flags
|= ALLOC_CMA
;
2649 /* First allocation attempt */
2650 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2651 zonelist
, high_zoneidx
, alloc_flags
,
2652 preferred_zone
, migratetype
);
2653 if (unlikely(!page
)) {
2655 * Runtime PM, block IO and its error handling path
2656 * can deadlock because I/O on the device might not
2659 gfp_mask
= memalloc_noio_flags(gfp_mask
);
2660 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2661 zonelist
, high_zoneidx
, nodemask
,
2662 preferred_zone
, migratetype
);
2665 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2669 * When updating a task's mems_allowed, it is possible to race with
2670 * parallel threads in such a way that an allocation can fail while
2671 * the mask is being updated. If a page allocation is about to fail,
2672 * check if the cpuset changed during allocation and if so, retry.
2674 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
2677 memcg_kmem_commit_charge(page
, memcg
, order
);
2681 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2684 * Common helper functions.
2686 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2691 * __get_free_pages() returns a 32-bit address, which cannot represent
2694 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2696 page
= alloc_pages(gfp_mask
, order
);
2699 return (unsigned long) page_address(page
);
2701 EXPORT_SYMBOL(__get_free_pages
);
2703 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2705 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2707 EXPORT_SYMBOL(get_zeroed_page
);
2709 void __free_pages(struct page
*page
, unsigned int order
)
2711 if (put_page_testzero(page
)) {
2713 free_hot_cold_page(page
, 0);
2715 __free_pages_ok(page
, order
);
2719 EXPORT_SYMBOL(__free_pages
);
2721 void free_pages(unsigned long addr
, unsigned int order
)
2724 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2725 __free_pages(virt_to_page((void *)addr
), order
);
2729 EXPORT_SYMBOL(free_pages
);
2732 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2733 * pages allocated with __GFP_KMEMCG.
2735 * Those pages are accounted to a particular memcg, embedded in the
2736 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2737 * for that information only to find out that it is NULL for users who have no
2738 * interest in that whatsoever, we provide these functions.
2740 * The caller knows better which flags it relies on.
2742 void __free_memcg_kmem_pages(struct page
*page
, unsigned int order
)
2744 memcg_kmem_uncharge_pages(page
, order
);
2745 __free_pages(page
, order
);
2748 void free_memcg_kmem_pages(unsigned long addr
, unsigned int order
)
2751 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2752 __free_memcg_kmem_pages(virt_to_page((void *)addr
), order
);
2756 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2759 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2760 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2762 split_page(virt_to_page((void *)addr
), order
);
2763 while (used
< alloc_end
) {
2768 return (void *)addr
;
2772 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2773 * @size: the number of bytes to allocate
2774 * @gfp_mask: GFP flags for the allocation
2776 * This function is similar to alloc_pages(), except that it allocates the
2777 * minimum number of pages to satisfy the request. alloc_pages() can only
2778 * allocate memory in power-of-two pages.
2780 * This function is also limited by MAX_ORDER.
2782 * Memory allocated by this function must be released by free_pages_exact().
2784 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2786 unsigned int order
= get_order(size
);
2789 addr
= __get_free_pages(gfp_mask
, order
);
2790 return make_alloc_exact(addr
, order
, size
);
2792 EXPORT_SYMBOL(alloc_pages_exact
);
2795 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2797 * @nid: the preferred node ID where memory should be allocated
2798 * @size: the number of bytes to allocate
2799 * @gfp_mask: GFP flags for the allocation
2801 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2803 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2806 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2808 unsigned order
= get_order(size
);
2809 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2812 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2814 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2817 * free_pages_exact - release memory allocated via alloc_pages_exact()
2818 * @virt: the value returned by alloc_pages_exact.
2819 * @size: size of allocation, same value as passed to alloc_pages_exact().
2821 * Release the memory allocated by a previous call to alloc_pages_exact.
2823 void free_pages_exact(void *virt
, size_t size
)
2825 unsigned long addr
= (unsigned long)virt
;
2826 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2828 while (addr
< end
) {
2833 EXPORT_SYMBOL(free_pages_exact
);
2836 * nr_free_zone_pages - count number of pages beyond high watermark
2837 * @offset: The zone index of the highest zone
2839 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2840 * high watermark within all zones at or below a given zone index. For each
2841 * zone, the number of pages is calculated as:
2842 * present_pages - high_pages
2844 static unsigned long nr_free_zone_pages(int offset
)
2849 /* Just pick one node, since fallback list is circular */
2850 unsigned long sum
= 0;
2852 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2854 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2855 unsigned long size
= zone
->managed_pages
;
2856 unsigned long high
= high_wmark_pages(zone
);
2865 * nr_free_buffer_pages - count number of pages beyond high watermark
2867 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2868 * watermark within ZONE_DMA and ZONE_NORMAL.
2870 unsigned long nr_free_buffer_pages(void)
2872 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2874 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2877 * nr_free_pagecache_pages - count number of pages beyond high watermark
2879 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2880 * high watermark within all zones.
2882 unsigned long nr_free_pagecache_pages(void)
2884 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2887 static inline void show_node(struct zone
*zone
)
2889 if (IS_ENABLED(CONFIG_NUMA
))
2890 printk("Node %d ", zone_to_nid(zone
));
2893 void si_meminfo(struct sysinfo
*val
)
2895 val
->totalram
= totalram_pages
;
2897 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2898 val
->bufferram
= nr_blockdev_pages();
2899 val
->totalhigh
= totalhigh_pages
;
2900 val
->freehigh
= nr_free_highpages();
2901 val
->mem_unit
= PAGE_SIZE
;
2904 EXPORT_SYMBOL(si_meminfo
);
2907 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2909 pg_data_t
*pgdat
= NODE_DATA(nid
);
2911 val
->totalram
= pgdat
->node_present_pages
;
2912 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2913 #ifdef CONFIG_HIGHMEM
2914 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
2915 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2921 val
->mem_unit
= PAGE_SIZE
;
2926 * Determine whether the node should be displayed or not, depending on whether
2927 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2929 bool skip_free_areas_node(unsigned int flags
, int nid
)
2932 unsigned int cpuset_mems_cookie
;
2934 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2938 cpuset_mems_cookie
= get_mems_allowed();
2939 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
2940 } while (!put_mems_allowed(cpuset_mems_cookie
));
2945 #define K(x) ((x) << (PAGE_SHIFT-10))
2947 static void show_migration_types(unsigned char type
)
2949 static const char types
[MIGRATE_TYPES
] = {
2950 [MIGRATE_UNMOVABLE
] = 'U',
2951 [MIGRATE_RECLAIMABLE
] = 'E',
2952 [MIGRATE_MOVABLE
] = 'M',
2953 [MIGRATE_RESERVE
] = 'R',
2955 [MIGRATE_CMA
] = 'C',
2957 #ifdef CONFIG_MEMORY_ISOLATION
2958 [MIGRATE_ISOLATE
] = 'I',
2961 char tmp
[MIGRATE_TYPES
+ 1];
2965 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
2966 if (type
& (1 << i
))
2971 printk("(%s) ", tmp
);
2975 * Show free area list (used inside shift_scroll-lock stuff)
2976 * We also calculate the percentage fragmentation. We do this by counting the
2977 * memory on each free list with the exception of the first item on the list.
2978 * Suppresses nodes that are not allowed by current's cpuset if
2979 * SHOW_MEM_FILTER_NODES is passed.
2981 void show_free_areas(unsigned int filter
)
2986 for_each_populated_zone(zone
) {
2987 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2990 printk("%s per-cpu:\n", zone
->name
);
2992 for_each_online_cpu(cpu
) {
2993 struct per_cpu_pageset
*pageset
;
2995 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2997 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2998 cpu
, pageset
->pcp
.high
,
2999 pageset
->pcp
.batch
, pageset
->pcp
.count
);
3003 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3004 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3006 " dirty:%lu writeback:%lu unstable:%lu\n"
3007 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3008 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3010 global_page_state(NR_ACTIVE_ANON
),
3011 global_page_state(NR_INACTIVE_ANON
),
3012 global_page_state(NR_ISOLATED_ANON
),
3013 global_page_state(NR_ACTIVE_FILE
),
3014 global_page_state(NR_INACTIVE_FILE
),
3015 global_page_state(NR_ISOLATED_FILE
),
3016 global_page_state(NR_UNEVICTABLE
),
3017 global_page_state(NR_FILE_DIRTY
),
3018 global_page_state(NR_WRITEBACK
),
3019 global_page_state(NR_UNSTABLE_NFS
),
3020 global_page_state(NR_FREE_PAGES
),
3021 global_page_state(NR_SLAB_RECLAIMABLE
),
3022 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3023 global_page_state(NR_FILE_MAPPED
),
3024 global_page_state(NR_SHMEM
),
3025 global_page_state(NR_PAGETABLE
),
3026 global_page_state(NR_BOUNCE
),
3027 global_page_state(NR_FREE_CMA_PAGES
));
3029 for_each_populated_zone(zone
) {
3032 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3040 " active_anon:%lukB"
3041 " inactive_anon:%lukB"
3042 " active_file:%lukB"
3043 " inactive_file:%lukB"
3044 " unevictable:%lukB"
3045 " isolated(anon):%lukB"
3046 " isolated(file):%lukB"
3054 " slab_reclaimable:%lukB"
3055 " slab_unreclaimable:%lukB"
3056 " kernel_stack:%lukB"
3061 " writeback_tmp:%lukB"
3062 " pages_scanned:%lu"
3063 " all_unreclaimable? %s"
3066 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3067 K(min_wmark_pages(zone
)),
3068 K(low_wmark_pages(zone
)),
3069 K(high_wmark_pages(zone
)),
3070 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3071 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3072 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3073 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3074 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3075 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3076 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3077 K(zone
->present_pages
),
3078 K(zone
->managed_pages
),
3079 K(zone_page_state(zone
, NR_MLOCK
)),
3080 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3081 K(zone_page_state(zone
, NR_WRITEBACK
)),
3082 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3083 K(zone_page_state(zone
, NR_SHMEM
)),
3084 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3085 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3086 zone_page_state(zone
, NR_KERNEL_STACK
) *
3088 K(zone_page_state(zone
, NR_PAGETABLE
)),
3089 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3090 K(zone_page_state(zone
, NR_BOUNCE
)),
3091 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3092 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3093 zone
->pages_scanned
,
3094 (zone
->all_unreclaimable
? "yes" : "no")
3096 printk("lowmem_reserve[]:");
3097 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3098 printk(" %lu", zone
->lowmem_reserve
[i
]);
3102 for_each_populated_zone(zone
) {
3103 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3104 unsigned char types
[MAX_ORDER
];
3106 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3109 printk("%s: ", zone
->name
);
3111 spin_lock_irqsave(&zone
->lock
, flags
);
3112 for (order
= 0; order
< MAX_ORDER
; order
++) {
3113 struct free_area
*area
= &zone
->free_area
[order
];
3116 nr
[order
] = area
->nr_free
;
3117 total
+= nr
[order
] << order
;
3120 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3121 if (!list_empty(&area
->free_list
[type
]))
3122 types
[order
] |= 1 << type
;
3125 spin_unlock_irqrestore(&zone
->lock
, flags
);
3126 for (order
= 0; order
< MAX_ORDER
; order
++) {
3127 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3129 show_migration_types(types
[order
]);
3131 printk("= %lukB\n", K(total
));
3134 hugetlb_show_meminfo();
3136 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3138 show_swap_cache_info();
3141 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3143 zoneref
->zone
= zone
;
3144 zoneref
->zone_idx
= zone_idx(zone
);
3148 * Builds allocation fallback zone lists.
3150 * Add all populated zones of a node to the zonelist.
3152 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3153 int nr_zones
, enum zone_type zone_type
)
3157 BUG_ON(zone_type
>= MAX_NR_ZONES
);
3162 zone
= pgdat
->node_zones
+ zone_type
;
3163 if (populated_zone(zone
)) {
3164 zoneref_set_zone(zone
,
3165 &zonelist
->_zonerefs
[nr_zones
++]);
3166 check_highest_zone(zone_type
);
3169 } while (zone_type
);
3176 * 0 = automatic detection of better ordering.
3177 * 1 = order by ([node] distance, -zonetype)
3178 * 2 = order by (-zonetype, [node] distance)
3180 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3181 * the same zonelist. So only NUMA can configure this param.
3183 #define ZONELIST_ORDER_DEFAULT 0
3184 #define ZONELIST_ORDER_NODE 1
3185 #define ZONELIST_ORDER_ZONE 2
3187 /* zonelist order in the kernel.
3188 * set_zonelist_order() will set this to NODE or ZONE.
3190 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3191 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3195 /* The value user specified ....changed by config */
3196 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3197 /* string for sysctl */
3198 #define NUMA_ZONELIST_ORDER_LEN 16
3199 char numa_zonelist_order
[16] = "default";
3202 * interface for configure zonelist ordering.
3203 * command line option "numa_zonelist_order"
3204 * = "[dD]efault - default, automatic configuration.
3205 * = "[nN]ode - order by node locality, then by zone within node
3206 * = "[zZ]one - order by zone, then by locality within zone
3209 static int __parse_numa_zonelist_order(char *s
)
3211 if (*s
== 'd' || *s
== 'D') {
3212 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3213 } else if (*s
== 'n' || *s
== 'N') {
3214 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3215 } else if (*s
== 'z' || *s
== 'Z') {
3216 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3219 "Ignoring invalid numa_zonelist_order value: "
3226 static __init
int setup_numa_zonelist_order(char *s
)
3233 ret
= __parse_numa_zonelist_order(s
);
3235 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3239 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3242 * sysctl handler for numa_zonelist_order
3244 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
3245 void __user
*buffer
, size_t *length
,
3248 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3250 static DEFINE_MUTEX(zl_order_mutex
);
3252 mutex_lock(&zl_order_mutex
);
3254 strcpy(saved_string
, (char*)table
->data
);
3255 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3259 int oldval
= user_zonelist_order
;
3260 if (__parse_numa_zonelist_order((char*)table
->data
)) {
3262 * bogus value. restore saved string
3264 strncpy((char*)table
->data
, saved_string
,
3265 NUMA_ZONELIST_ORDER_LEN
);
3266 user_zonelist_order
= oldval
;
3267 } else if (oldval
!= user_zonelist_order
) {
3268 mutex_lock(&zonelists_mutex
);
3269 build_all_zonelists(NULL
, NULL
);
3270 mutex_unlock(&zonelists_mutex
);
3274 mutex_unlock(&zl_order_mutex
);
3279 #define MAX_NODE_LOAD (nr_online_nodes)
3280 static int node_load
[MAX_NUMNODES
];
3283 * find_next_best_node - find the next node that should appear in a given node's fallback list
3284 * @node: node whose fallback list we're appending
3285 * @used_node_mask: nodemask_t of already used nodes
3287 * We use a number of factors to determine which is the next node that should
3288 * appear on a given node's fallback list. The node should not have appeared
3289 * already in @node's fallback list, and it should be the next closest node
3290 * according to the distance array (which contains arbitrary distance values
3291 * from each node to each node in the system), and should also prefer nodes
3292 * with no CPUs, since presumably they'll have very little allocation pressure
3293 * on them otherwise.
3294 * It returns -1 if no node is found.
3296 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3299 int min_val
= INT_MAX
;
3300 int best_node
= NUMA_NO_NODE
;
3301 const struct cpumask
*tmp
= cpumask_of_node(0);
3303 /* Use the local node if we haven't already */
3304 if (!node_isset(node
, *used_node_mask
)) {
3305 node_set(node
, *used_node_mask
);
3309 for_each_node_state(n
, N_MEMORY
) {
3311 /* Don't want a node to appear more than once */
3312 if (node_isset(n
, *used_node_mask
))
3315 /* Use the distance array to find the distance */
3316 val
= node_distance(node
, n
);
3318 /* Penalize nodes under us ("prefer the next node") */
3321 /* Give preference to headless and unused nodes */
3322 tmp
= cpumask_of_node(n
);
3323 if (!cpumask_empty(tmp
))
3324 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3326 /* Slight preference for less loaded node */
3327 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3328 val
+= node_load
[n
];
3330 if (val
< min_val
) {
3337 node_set(best_node
, *used_node_mask
);
3344 * Build zonelists ordered by node and zones within node.
3345 * This results in maximum locality--normal zone overflows into local
3346 * DMA zone, if any--but risks exhausting DMA zone.
3348 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3351 struct zonelist
*zonelist
;
3353 zonelist
= &pgdat
->node_zonelists
[0];
3354 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3356 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3358 zonelist
->_zonerefs
[j
].zone
= NULL
;
3359 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3363 * Build gfp_thisnode zonelists
3365 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3368 struct zonelist
*zonelist
;
3370 zonelist
= &pgdat
->node_zonelists
[1];
3371 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3372 zonelist
->_zonerefs
[j
].zone
= NULL
;
3373 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3377 * Build zonelists ordered by zone and nodes within zones.
3378 * This results in conserving DMA zone[s] until all Normal memory is
3379 * exhausted, but results in overflowing to remote node while memory
3380 * may still exist in local DMA zone.
3382 static int node_order
[MAX_NUMNODES
];
3384 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3387 int zone_type
; /* needs to be signed */
3389 struct zonelist
*zonelist
;
3391 zonelist
= &pgdat
->node_zonelists
[0];
3393 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3394 for (j
= 0; j
< nr_nodes
; j
++) {
3395 node
= node_order
[j
];
3396 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3397 if (populated_zone(z
)) {
3399 &zonelist
->_zonerefs
[pos
++]);
3400 check_highest_zone(zone_type
);
3404 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3405 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3408 static int default_zonelist_order(void)
3411 unsigned long low_kmem_size
,total_size
;
3415 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3416 * If they are really small and used heavily, the system can fall
3417 * into OOM very easily.
3418 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3420 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3423 for_each_online_node(nid
) {
3424 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3425 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3426 if (populated_zone(z
)) {
3427 if (zone_type
< ZONE_NORMAL
)
3428 low_kmem_size
+= z
->present_pages
;
3429 total_size
+= z
->present_pages
;
3430 } else if (zone_type
== ZONE_NORMAL
) {
3432 * If any node has only lowmem, then node order
3433 * is preferred to allow kernel allocations
3434 * locally; otherwise, they can easily infringe
3435 * on other nodes when there is an abundance of
3436 * lowmem available to allocate from.
3438 return ZONELIST_ORDER_NODE
;
3442 if (!low_kmem_size
|| /* there are no DMA area. */
3443 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3444 return ZONELIST_ORDER_NODE
;
3446 * look into each node's config.
3447 * If there is a node whose DMA/DMA32 memory is very big area on
3448 * local memory, NODE_ORDER may be suitable.
3450 average_size
= total_size
/
3451 (nodes_weight(node_states
[N_MEMORY
]) + 1);
3452 for_each_online_node(nid
) {
3455 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3456 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3457 if (populated_zone(z
)) {
3458 if (zone_type
< ZONE_NORMAL
)
3459 low_kmem_size
+= z
->present_pages
;
3460 total_size
+= z
->present_pages
;
3463 if (low_kmem_size
&&
3464 total_size
> average_size
&& /* ignore small node */
3465 low_kmem_size
> total_size
* 70/100)
3466 return ZONELIST_ORDER_NODE
;
3468 return ZONELIST_ORDER_ZONE
;
3471 static void set_zonelist_order(void)
3473 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3474 current_zonelist_order
= default_zonelist_order();
3476 current_zonelist_order
= user_zonelist_order
;
3479 static void build_zonelists(pg_data_t
*pgdat
)
3483 nodemask_t used_mask
;
3484 int local_node
, prev_node
;
3485 struct zonelist
*zonelist
;
3486 int order
= current_zonelist_order
;
3488 /* initialize zonelists */
3489 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3490 zonelist
= pgdat
->node_zonelists
+ i
;
3491 zonelist
->_zonerefs
[0].zone
= NULL
;
3492 zonelist
->_zonerefs
[0].zone_idx
= 0;
3495 /* NUMA-aware ordering of nodes */
3496 local_node
= pgdat
->node_id
;
3497 load
= nr_online_nodes
;
3498 prev_node
= local_node
;
3499 nodes_clear(used_mask
);
3501 memset(node_order
, 0, sizeof(node_order
));
3504 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3506 * We don't want to pressure a particular node.
3507 * So adding penalty to the first node in same
3508 * distance group to make it round-robin.
3510 if (node_distance(local_node
, node
) !=
3511 node_distance(local_node
, prev_node
))
3512 node_load
[node
] = load
;
3516 if (order
== ZONELIST_ORDER_NODE
)
3517 build_zonelists_in_node_order(pgdat
, node
);
3519 node_order
[j
++] = node
; /* remember order */
3522 if (order
== ZONELIST_ORDER_ZONE
) {
3523 /* calculate node order -- i.e., DMA last! */
3524 build_zonelists_in_zone_order(pgdat
, j
);
3527 build_thisnode_zonelists(pgdat
);
3530 /* Construct the zonelist performance cache - see further mmzone.h */
3531 static void build_zonelist_cache(pg_data_t
*pgdat
)
3533 struct zonelist
*zonelist
;
3534 struct zonelist_cache
*zlc
;
3537 zonelist
= &pgdat
->node_zonelists
[0];
3538 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3539 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3540 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3541 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3544 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3546 * Return node id of node used for "local" allocations.
3547 * I.e., first node id of first zone in arg node's generic zonelist.
3548 * Used for initializing percpu 'numa_mem', which is used primarily
3549 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3551 int local_memory_node(int node
)
3555 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3556 gfp_zone(GFP_KERNEL
),
3563 #else /* CONFIG_NUMA */
3565 static void set_zonelist_order(void)
3567 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3570 static void build_zonelists(pg_data_t
*pgdat
)
3572 int node
, local_node
;
3574 struct zonelist
*zonelist
;
3576 local_node
= pgdat
->node_id
;
3578 zonelist
= &pgdat
->node_zonelists
[0];
3579 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3582 * Now we build the zonelist so that it contains the zones
3583 * of all the other nodes.
3584 * We don't want to pressure a particular node, so when
3585 * building the zones for node N, we make sure that the
3586 * zones coming right after the local ones are those from
3587 * node N+1 (modulo N)
3589 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3590 if (!node_online(node
))
3592 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3595 for (node
= 0; node
< local_node
; node
++) {
3596 if (!node_online(node
))
3598 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3602 zonelist
->_zonerefs
[j
].zone
= NULL
;
3603 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3606 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3607 static void build_zonelist_cache(pg_data_t
*pgdat
)
3609 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3612 #endif /* CONFIG_NUMA */
3615 * Boot pageset table. One per cpu which is going to be used for all
3616 * zones and all nodes. The parameters will be set in such a way
3617 * that an item put on a list will immediately be handed over to
3618 * the buddy list. This is safe since pageset manipulation is done
3619 * with interrupts disabled.
3621 * The boot_pagesets must be kept even after bootup is complete for
3622 * unused processors and/or zones. They do play a role for bootstrapping
3623 * hotplugged processors.
3625 * zoneinfo_show() and maybe other functions do
3626 * not check if the processor is online before following the pageset pointer.
3627 * Other parts of the kernel may not check if the zone is available.
3629 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3630 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3631 static void setup_zone_pageset(struct zone
*zone
);
3634 * Global mutex to protect against size modification of zonelists
3635 * as well as to serialize pageset setup for the new populated zone.
3637 DEFINE_MUTEX(zonelists_mutex
);
3639 /* return values int ....just for stop_machine() */
3640 static int __build_all_zonelists(void *data
)
3644 pg_data_t
*self
= data
;
3647 memset(node_load
, 0, sizeof(node_load
));
3650 if (self
&& !node_online(self
->node_id
)) {
3651 build_zonelists(self
);
3652 build_zonelist_cache(self
);
3655 for_each_online_node(nid
) {
3656 pg_data_t
*pgdat
= NODE_DATA(nid
);
3658 build_zonelists(pgdat
);
3659 build_zonelist_cache(pgdat
);
3663 * Initialize the boot_pagesets that are going to be used
3664 * for bootstrapping processors. The real pagesets for
3665 * each zone will be allocated later when the per cpu
3666 * allocator is available.
3668 * boot_pagesets are used also for bootstrapping offline
3669 * cpus if the system is already booted because the pagesets
3670 * are needed to initialize allocators on a specific cpu too.
3671 * F.e. the percpu allocator needs the page allocator which
3672 * needs the percpu allocator in order to allocate its pagesets
3673 * (a chicken-egg dilemma).
3675 for_each_possible_cpu(cpu
) {
3676 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3678 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3680 * We now know the "local memory node" for each node--
3681 * i.e., the node of the first zone in the generic zonelist.
3682 * Set up numa_mem percpu variable for on-line cpus. During
3683 * boot, only the boot cpu should be on-line; we'll init the
3684 * secondary cpus' numa_mem as they come on-line. During
3685 * node/memory hotplug, we'll fixup all on-line cpus.
3687 if (cpu_online(cpu
))
3688 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3696 * Called with zonelists_mutex held always
3697 * unless system_state == SYSTEM_BOOTING.
3699 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3701 set_zonelist_order();
3703 if (system_state
== SYSTEM_BOOTING
) {
3704 __build_all_zonelists(NULL
);
3705 mminit_verify_zonelist();
3706 cpuset_init_current_mems_allowed();
3708 /* we have to stop all cpus to guarantee there is no user
3710 #ifdef CONFIG_MEMORY_HOTPLUG
3712 setup_zone_pageset(zone
);
3714 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3715 /* cpuset refresh routine should be here */
3717 vm_total_pages
= nr_free_pagecache_pages();
3719 * Disable grouping by mobility if the number of pages in the
3720 * system is too low to allow the mechanism to work. It would be
3721 * more accurate, but expensive to check per-zone. This check is
3722 * made on memory-hotadd so a system can start with mobility
3723 * disabled and enable it later
3725 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3726 page_group_by_mobility_disabled
= 1;
3728 page_group_by_mobility_disabled
= 0;
3730 printk("Built %i zonelists in %s order, mobility grouping %s. "
3731 "Total pages: %ld\n",
3733 zonelist_order_name
[current_zonelist_order
],
3734 page_group_by_mobility_disabled
? "off" : "on",
3737 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3742 * Helper functions to size the waitqueue hash table.
3743 * Essentially these want to choose hash table sizes sufficiently
3744 * large so that collisions trying to wait on pages are rare.
3745 * But in fact, the number of active page waitqueues on typical
3746 * systems is ridiculously low, less than 200. So this is even
3747 * conservative, even though it seems large.
3749 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3750 * waitqueues, i.e. the size of the waitq table given the number of pages.
3752 #define PAGES_PER_WAITQUEUE 256
3754 #ifndef CONFIG_MEMORY_HOTPLUG
3755 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3757 unsigned long size
= 1;
3759 pages
/= PAGES_PER_WAITQUEUE
;
3761 while (size
< pages
)
3765 * Once we have dozens or even hundreds of threads sleeping
3766 * on IO we've got bigger problems than wait queue collision.
3767 * Limit the size of the wait table to a reasonable size.
3769 size
= min(size
, 4096UL);
3771 return max(size
, 4UL);
3775 * A zone's size might be changed by hot-add, so it is not possible to determine
3776 * a suitable size for its wait_table. So we use the maximum size now.
3778 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3780 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3781 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3782 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3784 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3785 * or more by the traditional way. (See above). It equals:
3787 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3788 * ia64(16K page size) : = ( 8G + 4M)byte.
3789 * powerpc (64K page size) : = (32G +16M)byte.
3791 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3798 * This is an integer logarithm so that shifts can be used later
3799 * to extract the more random high bits from the multiplicative
3800 * hash function before the remainder is taken.
3802 static inline unsigned long wait_table_bits(unsigned long size
)
3807 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3810 * Check if a pageblock contains reserved pages
3812 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3816 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3817 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3824 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3825 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3826 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3827 * higher will lead to a bigger reserve which will get freed as contiguous
3828 * blocks as reclaim kicks in
3830 static void setup_zone_migrate_reserve(struct zone
*zone
)
3832 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3834 unsigned long block_migratetype
;
3838 * Get the start pfn, end pfn and the number of blocks to reserve
3839 * We have to be careful to be aligned to pageblock_nr_pages to
3840 * make sure that we always check pfn_valid for the first page in
3843 start_pfn
= zone
->zone_start_pfn
;
3844 end_pfn
= zone_end_pfn(zone
);
3845 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3846 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3850 * Reserve blocks are generally in place to help high-order atomic
3851 * allocations that are short-lived. A min_free_kbytes value that
3852 * would result in more than 2 reserve blocks for atomic allocations
3853 * is assumed to be in place to help anti-fragmentation for the
3854 * future allocation of hugepages at runtime.
3856 reserve
= min(2, reserve
);
3858 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3859 if (!pfn_valid(pfn
))
3861 page
= pfn_to_page(pfn
);
3863 /* Watch out for overlapping nodes */
3864 if (page_to_nid(page
) != zone_to_nid(zone
))
3867 block_migratetype
= get_pageblock_migratetype(page
);
3869 /* Only test what is necessary when the reserves are not met */
3872 * Blocks with reserved pages will never free, skip
3875 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3876 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3879 /* If this block is reserved, account for it */
3880 if (block_migratetype
== MIGRATE_RESERVE
) {
3885 /* Suitable for reserving if this block is movable */
3886 if (block_migratetype
== MIGRATE_MOVABLE
) {
3887 set_pageblock_migratetype(page
,
3889 move_freepages_block(zone
, page
,
3897 * If the reserve is met and this is a previous reserved block,
3900 if (block_migratetype
== MIGRATE_RESERVE
) {
3901 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3902 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3908 * Initially all pages are reserved - free ones are freed
3909 * up by free_all_bootmem() once the early boot process is
3910 * done. Non-atomic initialization, single-pass.
3912 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3913 unsigned long start_pfn
, enum memmap_context context
)
3916 unsigned long end_pfn
= start_pfn
+ size
;
3920 if (highest_memmap_pfn
< end_pfn
- 1)
3921 highest_memmap_pfn
= end_pfn
- 1;
3923 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3924 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3926 * There can be holes in boot-time mem_map[]s
3927 * handed to this function. They do not
3928 * exist on hotplugged memory.
3930 if (context
== MEMMAP_EARLY
) {
3931 if (!early_pfn_valid(pfn
))
3933 if (!early_pfn_in_nid(pfn
, nid
))
3936 page
= pfn_to_page(pfn
);
3937 set_page_links(page
, zone
, nid
, pfn
);
3938 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3939 init_page_count(page
);
3940 page_mapcount_reset(page
);
3941 page_nid_reset_last(page
);
3942 SetPageReserved(page
);
3944 * Mark the block movable so that blocks are reserved for
3945 * movable at startup. This will force kernel allocations
3946 * to reserve their blocks rather than leaking throughout
3947 * the address space during boot when many long-lived
3948 * kernel allocations are made. Later some blocks near
3949 * the start are marked MIGRATE_RESERVE by
3950 * setup_zone_migrate_reserve()
3952 * bitmap is created for zone's valid pfn range. but memmap
3953 * can be created for invalid pages (for alignment)
3954 * check here not to call set_pageblock_migratetype() against
3957 if ((z
->zone_start_pfn
<= pfn
)
3958 && (pfn
< zone_end_pfn(z
))
3959 && !(pfn
& (pageblock_nr_pages
- 1)))
3960 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3962 INIT_LIST_HEAD(&page
->lru
);
3963 #ifdef WANT_PAGE_VIRTUAL
3964 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3965 if (!is_highmem_idx(zone
))
3966 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3971 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3974 for_each_migratetype_order(order
, t
) {
3975 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3976 zone
->free_area
[order
].nr_free
= 0;
3980 #ifndef __HAVE_ARCH_MEMMAP_INIT
3981 #define memmap_init(size, nid, zone, start_pfn) \
3982 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3985 static int __meminit
zone_batchsize(struct zone
*zone
)
3991 * The per-cpu-pages pools are set to around 1000th of the
3992 * size of the zone. But no more than 1/2 of a meg.
3994 * OK, so we don't know how big the cache is. So guess.
3996 batch
= zone
->managed_pages
/ 1024;
3997 if (batch
* PAGE_SIZE
> 512 * 1024)
3998 batch
= (512 * 1024) / PAGE_SIZE
;
3999 batch
/= 4; /* We effectively *= 4 below */
4004 * Clamp the batch to a 2^n - 1 value. Having a power
4005 * of 2 value was found to be more likely to have
4006 * suboptimal cache aliasing properties in some cases.
4008 * For example if 2 tasks are alternately allocating
4009 * batches of pages, one task can end up with a lot
4010 * of pages of one half of the possible page colors
4011 * and the other with pages of the other colors.
4013 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4018 /* The deferral and batching of frees should be suppressed under NOMMU
4021 * The problem is that NOMMU needs to be able to allocate large chunks
4022 * of contiguous memory as there's no hardware page translation to
4023 * assemble apparent contiguous memory from discontiguous pages.
4025 * Queueing large contiguous runs of pages for batching, however,
4026 * causes the pages to actually be freed in smaller chunks. As there
4027 * can be a significant delay between the individual batches being
4028 * recycled, this leads to the once large chunks of space being
4029 * fragmented and becoming unavailable for high-order allocations.
4035 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4037 struct per_cpu_pages
*pcp
;
4040 memset(p
, 0, sizeof(*p
));
4044 pcp
->high
= 6 * batch
;
4045 pcp
->batch
= max(1UL, 1 * batch
);
4046 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4047 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4051 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4052 * to the value high for the pageset p.
4055 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
4058 struct per_cpu_pages
*pcp
;
4062 pcp
->batch
= max(1UL, high
/4);
4063 if ((high
/4) > (PAGE_SHIFT
* 8))
4064 pcp
->batch
= PAGE_SHIFT
* 8;
4067 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4071 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4073 for_each_possible_cpu(cpu
) {
4074 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4076 setup_pageset(pcp
, zone_batchsize(zone
));
4078 if (percpu_pagelist_fraction
)
4079 setup_pagelist_highmark(pcp
,
4080 (zone
->managed_pages
/
4081 percpu_pagelist_fraction
));
4086 * Allocate per cpu pagesets and initialize them.
4087 * Before this call only boot pagesets were available.
4089 void __init
setup_per_cpu_pageset(void)
4093 for_each_populated_zone(zone
)
4094 setup_zone_pageset(zone
);
4097 static noinline __init_refok
4098 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4101 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4105 * The per-page waitqueue mechanism uses hashed waitqueues
4108 zone
->wait_table_hash_nr_entries
=
4109 wait_table_hash_nr_entries(zone_size_pages
);
4110 zone
->wait_table_bits
=
4111 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4112 alloc_size
= zone
->wait_table_hash_nr_entries
4113 * sizeof(wait_queue_head_t
);
4115 if (!slab_is_available()) {
4116 zone
->wait_table
= (wait_queue_head_t
*)
4117 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
4120 * This case means that a zone whose size was 0 gets new memory
4121 * via memory hot-add.
4122 * But it may be the case that a new node was hot-added. In
4123 * this case vmalloc() will not be able to use this new node's
4124 * memory - this wait_table must be initialized to use this new
4125 * node itself as well.
4126 * To use this new node's memory, further consideration will be
4129 zone
->wait_table
= vmalloc(alloc_size
);
4131 if (!zone
->wait_table
)
4134 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4135 init_waitqueue_head(zone
->wait_table
+ i
);
4140 static __meminit
void zone_pcp_init(struct zone
*zone
)
4143 * per cpu subsystem is not up at this point. The following code
4144 * relies on the ability of the linker to provide the
4145 * offset of a (static) per cpu variable into the per cpu area.
4147 zone
->pageset
= &boot_pageset
;
4149 if (zone
->present_pages
)
4150 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4151 zone
->name
, zone
->present_pages
,
4152 zone_batchsize(zone
));
4155 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4156 unsigned long zone_start_pfn
,
4158 enum memmap_context context
)
4160 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4162 ret
= zone_wait_table_init(zone
, size
);
4165 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4167 zone
->zone_start_pfn
= zone_start_pfn
;
4169 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4170 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4172 (unsigned long)zone_idx(zone
),
4173 zone_start_pfn
, (zone_start_pfn
+ size
));
4175 zone_init_free_lists(zone
);
4180 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4181 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4183 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4184 * Architectures may implement their own version but if add_active_range()
4185 * was used and there are no special requirements, this is a convenient
4188 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4190 unsigned long start_pfn
, end_pfn
;
4193 * NOTE: The following SMP-unsafe globals are only used early in boot
4194 * when the kernel is running single-threaded.
4196 static unsigned long __meminitdata last_start_pfn
, last_end_pfn
;
4197 static int __meminitdata last_nid
;
4199 if (last_start_pfn
<= pfn
&& pfn
< last_end_pfn
)
4202 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
4203 if (start_pfn
<= pfn
&& pfn
< end_pfn
) {
4204 last_start_pfn
= start_pfn
;
4205 last_end_pfn
= end_pfn
;
4209 /* This is a memory hole */
4212 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4214 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4218 nid
= __early_pfn_to_nid(pfn
);
4221 /* just returns 0 */
4225 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4226 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4230 nid
= __early_pfn_to_nid(pfn
);
4231 if (nid
>= 0 && nid
!= node
)
4238 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4239 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4240 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4242 * If an architecture guarantees that all ranges registered with
4243 * add_active_ranges() contain no holes and may be freed, this
4244 * this function may be used instead of calling free_bootmem() manually.
4246 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4248 unsigned long start_pfn
, end_pfn
;
4251 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4252 start_pfn
= min(start_pfn
, max_low_pfn
);
4253 end_pfn
= min(end_pfn
, max_low_pfn
);
4255 if (start_pfn
< end_pfn
)
4256 free_bootmem_node(NODE_DATA(this_nid
),
4257 PFN_PHYS(start_pfn
),
4258 (end_pfn
- start_pfn
) << PAGE_SHIFT
);
4263 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4264 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4266 * If an architecture guarantees that all ranges registered with
4267 * add_active_ranges() contain no holes and may be freed, this
4268 * function may be used instead of calling memory_present() manually.
4270 void __init
sparse_memory_present_with_active_regions(int nid
)
4272 unsigned long start_pfn
, end_pfn
;
4275 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4276 memory_present(this_nid
, start_pfn
, end_pfn
);
4280 * get_pfn_range_for_nid - Return the start and end page frames for a node
4281 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4282 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4283 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4285 * It returns the start and end page frame of a node based on information
4286 * provided by an arch calling add_active_range(). If called for a node
4287 * with no available memory, a warning is printed and the start and end
4290 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4291 unsigned long *start_pfn
, unsigned long *end_pfn
)
4293 unsigned long this_start_pfn
, this_end_pfn
;
4299 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4300 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4301 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4304 if (*start_pfn
== -1UL)
4309 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4310 * assumption is made that zones within a node are ordered in monotonic
4311 * increasing memory addresses so that the "highest" populated zone is used
4313 static void __init
find_usable_zone_for_movable(void)
4316 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4317 if (zone_index
== ZONE_MOVABLE
)
4320 if (arch_zone_highest_possible_pfn
[zone_index
] >
4321 arch_zone_lowest_possible_pfn
[zone_index
])
4325 VM_BUG_ON(zone_index
== -1);
4326 movable_zone
= zone_index
;
4330 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4331 * because it is sized independent of architecture. Unlike the other zones,
4332 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4333 * in each node depending on the size of each node and how evenly kernelcore
4334 * is distributed. This helper function adjusts the zone ranges
4335 * provided by the architecture for a given node by using the end of the
4336 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4337 * zones within a node are in order of monotonic increases memory addresses
4339 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4340 unsigned long zone_type
,
4341 unsigned long node_start_pfn
,
4342 unsigned long node_end_pfn
,
4343 unsigned long *zone_start_pfn
,
4344 unsigned long *zone_end_pfn
)
4346 /* Only adjust if ZONE_MOVABLE is on this node */
4347 if (zone_movable_pfn
[nid
]) {
4348 /* Size ZONE_MOVABLE */
4349 if (zone_type
== ZONE_MOVABLE
) {
4350 *zone_start_pfn
= zone_movable_pfn
[nid
];
4351 *zone_end_pfn
= min(node_end_pfn
,
4352 arch_zone_highest_possible_pfn
[movable_zone
]);
4354 /* Adjust for ZONE_MOVABLE starting within this range */
4355 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4356 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4357 *zone_end_pfn
= zone_movable_pfn
[nid
];
4359 /* Check if this whole range is within ZONE_MOVABLE */
4360 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4361 *zone_start_pfn
= *zone_end_pfn
;
4366 * Return the number of pages a zone spans in a node, including holes
4367 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4369 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4370 unsigned long zone_type
,
4371 unsigned long *ignored
)
4373 unsigned long node_start_pfn
, node_end_pfn
;
4374 unsigned long zone_start_pfn
, zone_end_pfn
;
4376 /* Get the start and end of the node and zone */
4377 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4378 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4379 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4380 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4381 node_start_pfn
, node_end_pfn
,
4382 &zone_start_pfn
, &zone_end_pfn
);
4384 /* Check that this node has pages within the zone's required range */
4385 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4388 /* Move the zone boundaries inside the node if necessary */
4389 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4390 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4392 /* Return the spanned pages */
4393 return zone_end_pfn
- zone_start_pfn
;
4397 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4398 * then all holes in the requested range will be accounted for.
4400 unsigned long __meminit
__absent_pages_in_range(int nid
,
4401 unsigned long range_start_pfn
,
4402 unsigned long range_end_pfn
)
4404 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4405 unsigned long start_pfn
, end_pfn
;
4408 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4409 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4410 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4411 nr_absent
-= end_pfn
- start_pfn
;
4417 * absent_pages_in_range - Return number of page frames in holes within a range
4418 * @start_pfn: The start PFN to start searching for holes
4419 * @end_pfn: The end PFN to stop searching for holes
4421 * It returns the number of pages frames in memory holes within a range.
4423 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4424 unsigned long end_pfn
)
4426 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4429 /* Return the number of page frames in holes in a zone on a node */
4430 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4431 unsigned long zone_type
,
4432 unsigned long *ignored
)
4434 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4435 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4436 unsigned long node_start_pfn
, node_end_pfn
;
4437 unsigned long zone_start_pfn
, zone_end_pfn
;
4439 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4440 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4441 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4443 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4444 node_start_pfn
, node_end_pfn
,
4445 &zone_start_pfn
, &zone_end_pfn
);
4446 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4449 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4450 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4451 unsigned long zone_type
,
4452 unsigned long *zones_size
)
4454 return zones_size
[zone_type
];
4457 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4458 unsigned long zone_type
,
4459 unsigned long *zholes_size
)
4464 return zholes_size
[zone_type
];
4467 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4469 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4470 unsigned long *zones_size
, unsigned long *zholes_size
)
4472 unsigned long realtotalpages
, totalpages
= 0;
4475 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4476 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4478 pgdat
->node_spanned_pages
= totalpages
;
4480 realtotalpages
= totalpages
;
4481 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4483 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4485 pgdat
->node_present_pages
= realtotalpages
;
4486 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4490 #ifndef CONFIG_SPARSEMEM
4492 * Calculate the size of the zone->blockflags rounded to an unsigned long
4493 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4494 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4495 * round what is now in bits to nearest long in bits, then return it in
4498 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4500 unsigned long usemapsize
;
4502 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4503 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4504 usemapsize
= usemapsize
>> pageblock_order
;
4505 usemapsize
*= NR_PAGEBLOCK_BITS
;
4506 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4508 return usemapsize
/ 8;
4511 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4513 unsigned long zone_start_pfn
,
4514 unsigned long zonesize
)
4516 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4517 zone
->pageblock_flags
= NULL
;
4519 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4523 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4524 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4525 #endif /* CONFIG_SPARSEMEM */
4527 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4529 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4530 void __init
set_pageblock_order(void)
4534 /* Check that pageblock_nr_pages has not already been setup */
4535 if (pageblock_order
)
4538 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4539 order
= HUGETLB_PAGE_ORDER
;
4541 order
= MAX_ORDER
- 1;
4544 * Assume the largest contiguous order of interest is a huge page.
4545 * This value may be variable depending on boot parameters on IA64 and
4548 pageblock_order
= order
;
4550 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4553 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4554 * is unused as pageblock_order is set at compile-time. See
4555 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4558 void __init
set_pageblock_order(void)
4562 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4564 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
4565 unsigned long present_pages
)
4567 unsigned long pages
= spanned_pages
;
4570 * Provide a more accurate estimation if there are holes within
4571 * the zone and SPARSEMEM is in use. If there are holes within the
4572 * zone, each populated memory region may cost us one or two extra
4573 * memmap pages due to alignment because memmap pages for each
4574 * populated regions may not naturally algined on page boundary.
4575 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4577 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
4578 IS_ENABLED(CONFIG_SPARSEMEM
))
4579 pages
= present_pages
;
4581 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
4585 * Set up the zone data structures:
4586 * - mark all pages reserved
4587 * - mark all memory queues empty
4588 * - clear the memory bitmaps
4590 * NOTE: pgdat should get zeroed by caller.
4592 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4593 unsigned long *zones_size
, unsigned long *zholes_size
)
4596 int nid
= pgdat
->node_id
;
4597 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4600 pgdat_resize_init(pgdat
);
4601 #ifdef CONFIG_NUMA_BALANCING
4602 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
4603 pgdat
->numabalancing_migrate_nr_pages
= 0;
4604 pgdat
->numabalancing_migrate_next_window
= jiffies
;
4606 init_waitqueue_head(&pgdat
->kswapd_wait
);
4607 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4608 pgdat_page_cgroup_init(pgdat
);
4610 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4611 struct zone
*zone
= pgdat
->node_zones
+ j
;
4612 unsigned long size
, realsize
, freesize
, memmap_pages
;
4614 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4615 realsize
= freesize
= size
- zone_absent_pages_in_node(nid
, j
,
4619 * Adjust freesize so that it accounts for how much memory
4620 * is used by this zone for memmap. This affects the watermark
4621 * and per-cpu initialisations
4623 memmap_pages
= calc_memmap_size(size
, realsize
);
4624 if (freesize
>= memmap_pages
) {
4625 freesize
-= memmap_pages
;
4628 " %s zone: %lu pages used for memmap\n",
4629 zone_names
[j
], memmap_pages
);
4632 " %s zone: %lu pages exceeds freesize %lu\n",
4633 zone_names
[j
], memmap_pages
, freesize
);
4635 /* Account for reserved pages */
4636 if (j
== 0 && freesize
> dma_reserve
) {
4637 freesize
-= dma_reserve
;
4638 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4639 zone_names
[0], dma_reserve
);
4642 if (!is_highmem_idx(j
))
4643 nr_kernel_pages
+= freesize
;
4644 /* Charge for highmem memmap if there are enough kernel pages */
4645 else if (nr_kernel_pages
> memmap_pages
* 2)
4646 nr_kernel_pages
-= memmap_pages
;
4647 nr_all_pages
+= freesize
;
4649 zone
->spanned_pages
= size
;
4650 zone
->present_pages
= realsize
;
4652 * Set an approximate value for lowmem here, it will be adjusted
4653 * when the bootmem allocator frees pages into the buddy system.
4654 * And all highmem pages will be managed by the buddy system.
4656 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
4659 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
4661 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
4663 zone
->name
= zone_names
[j
];
4664 spin_lock_init(&zone
->lock
);
4665 spin_lock_init(&zone
->lru_lock
);
4666 zone_seqlock_init(zone
);
4667 zone
->zone_pgdat
= pgdat
;
4669 zone_pcp_init(zone
);
4670 lruvec_init(&zone
->lruvec
);
4674 set_pageblock_order();
4675 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4676 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4677 size
, MEMMAP_EARLY
);
4679 memmap_init(size
, nid
, j
, zone_start_pfn
);
4680 zone_start_pfn
+= size
;
4684 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4686 /* Skip empty nodes */
4687 if (!pgdat
->node_spanned_pages
)
4690 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4691 /* ia64 gets its own node_mem_map, before this, without bootmem */
4692 if (!pgdat
->node_mem_map
) {
4693 unsigned long size
, start
, end
;
4697 * The zone's endpoints aren't required to be MAX_ORDER
4698 * aligned but the node_mem_map endpoints must be in order
4699 * for the buddy allocator to function correctly.
4701 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4702 end
= pgdat_end_pfn(pgdat
);
4703 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4704 size
= (end
- start
) * sizeof(struct page
);
4705 map
= alloc_remap(pgdat
->node_id
, size
);
4707 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4708 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4710 #ifndef CONFIG_NEED_MULTIPLE_NODES
4712 * With no DISCONTIG, the global mem_map is just set as node 0's
4714 if (pgdat
== NODE_DATA(0)) {
4715 mem_map
= NODE_DATA(0)->node_mem_map
;
4716 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4717 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4718 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4719 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4722 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4725 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4726 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4728 pg_data_t
*pgdat
= NODE_DATA(nid
);
4730 /* pg_data_t should be reset to zero when it's allocated */
4731 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
4733 pgdat
->node_id
= nid
;
4734 pgdat
->node_start_pfn
= node_start_pfn
;
4735 init_zone_allows_reclaim(nid
);
4736 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4738 alloc_node_mem_map(pgdat
);
4739 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4740 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4741 nid
, (unsigned long)pgdat
,
4742 (unsigned long)pgdat
->node_mem_map
);
4745 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4748 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4750 #if MAX_NUMNODES > 1
4752 * Figure out the number of possible node ids.
4754 void __init
setup_nr_node_ids(void)
4757 unsigned int highest
= 0;
4759 for_each_node_mask(node
, node_possible_map
)
4761 nr_node_ids
= highest
+ 1;
4766 * node_map_pfn_alignment - determine the maximum internode alignment
4768 * This function should be called after node map is populated and sorted.
4769 * It calculates the maximum power of two alignment which can distinguish
4772 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4773 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4774 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4775 * shifted, 1GiB is enough and this function will indicate so.
4777 * This is used to test whether pfn -> nid mapping of the chosen memory
4778 * model has fine enough granularity to avoid incorrect mapping for the
4779 * populated node map.
4781 * Returns the determined alignment in pfn's. 0 if there is no alignment
4782 * requirement (single node).
4784 unsigned long __init
node_map_pfn_alignment(void)
4786 unsigned long accl_mask
= 0, last_end
= 0;
4787 unsigned long start
, end
, mask
;
4791 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
4792 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
4799 * Start with a mask granular enough to pin-point to the
4800 * start pfn and tick off bits one-by-one until it becomes
4801 * too coarse to separate the current node from the last.
4803 mask
= ~((1 << __ffs(start
)) - 1);
4804 while (mask
&& last_end
<= (start
& (mask
<< 1)))
4807 /* accumulate all internode masks */
4811 /* convert mask to number of pages */
4812 return ~accl_mask
+ 1;
4815 /* Find the lowest pfn for a node */
4816 static unsigned long __init
find_min_pfn_for_node(int nid
)
4818 unsigned long min_pfn
= ULONG_MAX
;
4819 unsigned long start_pfn
;
4822 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
4823 min_pfn
= min(min_pfn
, start_pfn
);
4825 if (min_pfn
== ULONG_MAX
) {
4827 "Could not find start_pfn for node %d\n", nid
);
4835 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4837 * It returns the minimum PFN based on information provided via
4838 * add_active_range().
4840 unsigned long __init
find_min_pfn_with_active_regions(void)
4842 return find_min_pfn_for_node(MAX_NUMNODES
);
4846 * early_calculate_totalpages()
4847 * Sum pages in active regions for movable zone.
4848 * Populate N_MEMORY for calculating usable_nodes.
4850 static unsigned long __init
early_calculate_totalpages(void)
4852 unsigned long totalpages
= 0;
4853 unsigned long start_pfn
, end_pfn
;
4856 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
4857 unsigned long pages
= end_pfn
- start_pfn
;
4859 totalpages
+= pages
;
4861 node_set_state(nid
, N_MEMORY
);
4867 * Find the PFN the Movable zone begins in each node. Kernel memory
4868 * is spread evenly between nodes as long as the nodes have enough
4869 * memory. When they don't, some nodes will have more kernelcore than
4872 static void __init
find_zone_movable_pfns_for_nodes(void)
4875 unsigned long usable_startpfn
;
4876 unsigned long kernelcore_node
, kernelcore_remaining
;
4877 /* save the state before borrow the nodemask */
4878 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
4879 unsigned long totalpages
= early_calculate_totalpages();
4880 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
4883 * If movablecore was specified, calculate what size of
4884 * kernelcore that corresponds so that memory usable for
4885 * any allocation type is evenly spread. If both kernelcore
4886 * and movablecore are specified, then the value of kernelcore
4887 * will be used for required_kernelcore if it's greater than
4888 * what movablecore would have allowed.
4890 if (required_movablecore
) {
4891 unsigned long corepages
;
4894 * Round-up so that ZONE_MOVABLE is at least as large as what
4895 * was requested by the user
4897 required_movablecore
=
4898 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4899 corepages
= totalpages
- required_movablecore
;
4901 required_kernelcore
= max(required_kernelcore
, corepages
);
4904 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4905 if (!required_kernelcore
)
4908 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4909 find_usable_zone_for_movable();
4910 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4913 /* Spread kernelcore memory as evenly as possible throughout nodes */
4914 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4915 for_each_node_state(nid
, N_MEMORY
) {
4916 unsigned long start_pfn
, end_pfn
;
4919 * Recalculate kernelcore_node if the division per node
4920 * now exceeds what is necessary to satisfy the requested
4921 * amount of memory for the kernel
4923 if (required_kernelcore
< kernelcore_node
)
4924 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4927 * As the map is walked, we track how much memory is usable
4928 * by the kernel using kernelcore_remaining. When it is
4929 * 0, the rest of the node is usable by ZONE_MOVABLE
4931 kernelcore_remaining
= kernelcore_node
;
4933 /* Go through each range of PFNs within this node */
4934 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4935 unsigned long size_pages
;
4937 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
4938 if (start_pfn
>= end_pfn
)
4941 /* Account for what is only usable for kernelcore */
4942 if (start_pfn
< usable_startpfn
) {
4943 unsigned long kernel_pages
;
4944 kernel_pages
= min(end_pfn
, usable_startpfn
)
4947 kernelcore_remaining
-= min(kernel_pages
,
4948 kernelcore_remaining
);
4949 required_kernelcore
-= min(kernel_pages
,
4950 required_kernelcore
);
4952 /* Continue if range is now fully accounted */
4953 if (end_pfn
<= usable_startpfn
) {
4956 * Push zone_movable_pfn to the end so
4957 * that if we have to rebalance
4958 * kernelcore across nodes, we will
4959 * not double account here
4961 zone_movable_pfn
[nid
] = end_pfn
;
4964 start_pfn
= usable_startpfn
;
4968 * The usable PFN range for ZONE_MOVABLE is from
4969 * start_pfn->end_pfn. Calculate size_pages as the
4970 * number of pages used as kernelcore
4972 size_pages
= end_pfn
- start_pfn
;
4973 if (size_pages
> kernelcore_remaining
)
4974 size_pages
= kernelcore_remaining
;
4975 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4978 * Some kernelcore has been met, update counts and
4979 * break if the kernelcore for this node has been
4982 required_kernelcore
-= min(required_kernelcore
,
4984 kernelcore_remaining
-= size_pages
;
4985 if (!kernelcore_remaining
)
4991 * If there is still required_kernelcore, we do another pass with one
4992 * less node in the count. This will push zone_movable_pfn[nid] further
4993 * along on the nodes that still have memory until kernelcore is
4997 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5000 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5001 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5002 zone_movable_pfn
[nid
] =
5003 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5006 /* restore the node_state */
5007 node_states
[N_MEMORY
] = saved_node_state
;
5010 /* Any regular or high memory on that node ? */
5011 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5013 enum zone_type zone_type
;
5015 if (N_MEMORY
== N_NORMAL_MEMORY
)
5018 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5019 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5020 if (zone
->present_pages
) {
5021 node_set_state(nid
, N_HIGH_MEMORY
);
5022 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5023 zone_type
<= ZONE_NORMAL
)
5024 node_set_state(nid
, N_NORMAL_MEMORY
);
5031 * free_area_init_nodes - Initialise all pg_data_t and zone data
5032 * @max_zone_pfn: an array of max PFNs for each zone
5034 * This will call free_area_init_node() for each active node in the system.
5035 * Using the page ranges provided by add_active_range(), the size of each
5036 * zone in each node and their holes is calculated. If the maximum PFN
5037 * between two adjacent zones match, it is assumed that the zone is empty.
5038 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5039 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5040 * starts where the previous one ended. For example, ZONE_DMA32 starts
5041 * at arch_max_dma_pfn.
5043 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5045 unsigned long start_pfn
, end_pfn
;
5048 /* Record where the zone boundaries are */
5049 memset(arch_zone_lowest_possible_pfn
, 0,
5050 sizeof(arch_zone_lowest_possible_pfn
));
5051 memset(arch_zone_highest_possible_pfn
, 0,
5052 sizeof(arch_zone_highest_possible_pfn
));
5053 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5054 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5055 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5056 if (i
== ZONE_MOVABLE
)
5058 arch_zone_lowest_possible_pfn
[i
] =
5059 arch_zone_highest_possible_pfn
[i
-1];
5060 arch_zone_highest_possible_pfn
[i
] =
5061 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5063 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5064 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5066 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5067 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5068 find_zone_movable_pfns_for_nodes();
5070 /* Print out the zone ranges */
5071 printk("Zone ranges:\n");
5072 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5073 if (i
== ZONE_MOVABLE
)
5075 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
5076 if (arch_zone_lowest_possible_pfn
[i
] ==
5077 arch_zone_highest_possible_pfn
[i
])
5078 printk(KERN_CONT
"empty\n");
5080 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
5081 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
5082 (arch_zone_highest_possible_pfn
[i
]
5083 << PAGE_SHIFT
) - 1);
5086 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5087 printk("Movable zone start for each node\n");
5088 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5089 if (zone_movable_pfn
[i
])
5090 printk(" Node %d: %#010lx\n", i
,
5091 zone_movable_pfn
[i
] << PAGE_SHIFT
);
5094 /* Print out the early node map */
5095 printk("Early memory node ranges\n");
5096 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5097 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
5098 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
5100 /* Initialise every node */
5101 mminit_verify_pageflags_layout();
5102 setup_nr_node_ids();
5103 for_each_online_node(nid
) {
5104 pg_data_t
*pgdat
= NODE_DATA(nid
);
5105 free_area_init_node(nid
, NULL
,
5106 find_min_pfn_for_node(nid
), NULL
);
5108 /* Any memory on that node */
5109 if (pgdat
->node_present_pages
)
5110 node_set_state(nid
, N_MEMORY
);
5111 check_for_memory(pgdat
, nid
);
5115 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5117 unsigned long long coremem
;
5121 coremem
= memparse(p
, &p
);
5122 *core
= coremem
>> PAGE_SHIFT
;
5124 /* Paranoid check that UL is enough for the coremem value */
5125 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5131 * kernelcore=size sets the amount of memory for use for allocations that
5132 * cannot be reclaimed or migrated.
5134 static int __init
cmdline_parse_kernelcore(char *p
)
5136 return cmdline_parse_core(p
, &required_kernelcore
);
5140 * movablecore=size sets the amount of memory for use for allocations that
5141 * can be reclaimed or migrated.
5143 static int __init
cmdline_parse_movablecore(char *p
)
5145 return cmdline_parse_core(p
, &required_movablecore
);
5148 early_param("kernelcore", cmdline_parse_kernelcore
);
5149 early_param("movablecore", cmdline_parse_movablecore
);
5151 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5153 unsigned long free_reserved_area(unsigned long start
, unsigned long end
,
5154 int poison
, char *s
)
5156 unsigned long pages
, pos
;
5158 pos
= start
= PAGE_ALIGN(start
);
5160 for (pages
= 0; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5162 memset((void *)pos
, poison
, PAGE_SIZE
);
5163 free_reserved_page(virt_to_page((void *)pos
));
5167 pr_info("Freeing %s memory: %ldK (%lx - %lx)\n",
5168 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5173 #ifdef CONFIG_HIGHMEM
5174 void free_highmem_page(struct page
*page
)
5176 __free_reserved_page(page
);
5183 * set_dma_reserve - set the specified number of pages reserved in the first zone
5184 * @new_dma_reserve: The number of pages to mark reserved
5186 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5187 * In the DMA zone, a significant percentage may be consumed by kernel image
5188 * and other unfreeable allocations which can skew the watermarks badly. This
5189 * function may optionally be used to account for unfreeable pages in the
5190 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5191 * smaller per-cpu batchsize.
5193 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5195 dma_reserve
= new_dma_reserve
;
5198 void __init
free_area_init(unsigned long *zones_size
)
5200 free_area_init_node(0, zones_size
,
5201 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5204 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5205 unsigned long action
, void *hcpu
)
5207 int cpu
= (unsigned long)hcpu
;
5209 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5210 lru_add_drain_cpu(cpu
);
5214 * Spill the event counters of the dead processor
5215 * into the current processors event counters.
5216 * This artificially elevates the count of the current
5219 vm_events_fold_cpu(cpu
);
5222 * Zero the differential counters of the dead processor
5223 * so that the vm statistics are consistent.
5225 * This is only okay since the processor is dead and cannot
5226 * race with what we are doing.
5228 refresh_cpu_vm_stats(cpu
);
5233 void __init
page_alloc_init(void)
5235 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5239 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5240 * or min_free_kbytes changes.
5242 static void calculate_totalreserve_pages(void)
5244 struct pglist_data
*pgdat
;
5245 unsigned long reserve_pages
= 0;
5246 enum zone_type i
, j
;
5248 for_each_online_pgdat(pgdat
) {
5249 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5250 struct zone
*zone
= pgdat
->node_zones
+ i
;
5251 unsigned long max
= 0;
5253 /* Find valid and maximum lowmem_reserve in the zone */
5254 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5255 if (zone
->lowmem_reserve
[j
] > max
)
5256 max
= zone
->lowmem_reserve
[j
];
5259 /* we treat the high watermark as reserved pages. */
5260 max
+= high_wmark_pages(zone
);
5262 if (max
> zone
->managed_pages
)
5263 max
= zone
->managed_pages
;
5264 reserve_pages
+= max
;
5266 * Lowmem reserves are not available to
5267 * GFP_HIGHUSER page cache allocations and
5268 * kswapd tries to balance zones to their high
5269 * watermark. As a result, neither should be
5270 * regarded as dirtyable memory, to prevent a
5271 * situation where reclaim has to clean pages
5272 * in order to balance the zones.
5274 zone
->dirty_balance_reserve
= max
;
5277 dirty_balance_reserve
= reserve_pages
;
5278 totalreserve_pages
= reserve_pages
;
5282 * setup_per_zone_lowmem_reserve - called whenever
5283 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5284 * has a correct pages reserved value, so an adequate number of
5285 * pages are left in the zone after a successful __alloc_pages().
5287 static void setup_per_zone_lowmem_reserve(void)
5289 struct pglist_data
*pgdat
;
5290 enum zone_type j
, idx
;
5292 for_each_online_pgdat(pgdat
) {
5293 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5294 struct zone
*zone
= pgdat
->node_zones
+ j
;
5295 unsigned long managed_pages
= zone
->managed_pages
;
5297 zone
->lowmem_reserve
[j
] = 0;
5301 struct zone
*lower_zone
;
5305 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5306 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5308 lower_zone
= pgdat
->node_zones
+ idx
;
5309 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
5310 sysctl_lowmem_reserve_ratio
[idx
];
5311 managed_pages
+= lower_zone
->managed_pages
;
5316 /* update totalreserve_pages */
5317 calculate_totalreserve_pages();
5320 static void __setup_per_zone_wmarks(void)
5322 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5323 unsigned long lowmem_pages
= 0;
5325 unsigned long flags
;
5327 /* Calculate total number of !ZONE_HIGHMEM pages */
5328 for_each_zone(zone
) {
5329 if (!is_highmem(zone
))
5330 lowmem_pages
+= zone
->managed_pages
;
5333 for_each_zone(zone
) {
5336 spin_lock_irqsave(&zone
->lock
, flags
);
5337 tmp
= (u64
)pages_min
* zone
->managed_pages
;
5338 do_div(tmp
, lowmem_pages
);
5339 if (is_highmem(zone
)) {
5341 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5342 * need highmem pages, so cap pages_min to a small
5345 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5346 * deltas controls asynch page reclaim, and so should
5347 * not be capped for highmem.
5349 unsigned long min_pages
;
5351 min_pages
= zone
->managed_pages
/ 1024;
5352 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5353 zone
->watermark
[WMARK_MIN
] = min_pages
;
5356 * If it's a lowmem zone, reserve a number of pages
5357 * proportionate to the zone's size.
5359 zone
->watermark
[WMARK_MIN
] = tmp
;
5362 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5363 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5365 setup_zone_migrate_reserve(zone
);
5366 spin_unlock_irqrestore(&zone
->lock
, flags
);
5369 /* update totalreserve_pages */
5370 calculate_totalreserve_pages();
5374 * setup_per_zone_wmarks - called when min_free_kbytes changes
5375 * or when memory is hot-{added|removed}
5377 * Ensures that the watermark[min,low,high] values for each zone are set
5378 * correctly with respect to min_free_kbytes.
5380 void setup_per_zone_wmarks(void)
5382 mutex_lock(&zonelists_mutex
);
5383 __setup_per_zone_wmarks();
5384 mutex_unlock(&zonelists_mutex
);
5388 * The inactive anon list should be small enough that the VM never has to
5389 * do too much work, but large enough that each inactive page has a chance
5390 * to be referenced again before it is swapped out.
5392 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5393 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5394 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5395 * the anonymous pages are kept on the inactive list.
5398 * memory ratio inactive anon
5399 * -------------------------------------
5408 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5410 unsigned int gb
, ratio
;
5412 /* Zone size in gigabytes */
5413 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
5415 ratio
= int_sqrt(10 * gb
);
5419 zone
->inactive_ratio
= ratio
;
5422 static void __meminit
setup_per_zone_inactive_ratio(void)
5427 calculate_zone_inactive_ratio(zone
);
5431 * Initialise min_free_kbytes.
5433 * For small machines we want it small (128k min). For large machines
5434 * we want it large (64MB max). But it is not linear, because network
5435 * bandwidth does not increase linearly with machine size. We use
5437 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5438 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5454 int __meminit
init_per_zone_wmark_min(void)
5456 unsigned long lowmem_kbytes
;
5458 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5460 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5461 if (min_free_kbytes
< 128)
5462 min_free_kbytes
= 128;
5463 if (min_free_kbytes
> 65536)
5464 min_free_kbytes
= 65536;
5465 setup_per_zone_wmarks();
5466 refresh_zone_stat_thresholds();
5467 setup_per_zone_lowmem_reserve();
5468 setup_per_zone_inactive_ratio();
5471 module_init(init_per_zone_wmark_min
)
5474 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5475 * that we can call two helper functions whenever min_free_kbytes
5478 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5479 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5481 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5483 setup_per_zone_wmarks();
5488 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5489 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5494 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5499 zone
->min_unmapped_pages
= (zone
->managed_pages
*
5500 sysctl_min_unmapped_ratio
) / 100;
5504 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5505 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5510 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5515 zone
->min_slab_pages
= (zone
->managed_pages
*
5516 sysctl_min_slab_ratio
) / 100;
5522 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5523 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5524 * whenever sysctl_lowmem_reserve_ratio changes.
5526 * The reserve ratio obviously has absolutely no relation with the
5527 * minimum watermarks. The lowmem reserve ratio can only make sense
5528 * if in function of the boot time zone sizes.
5530 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5531 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5533 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5534 setup_per_zone_lowmem_reserve();
5539 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5540 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5541 * can have before it gets flushed back to buddy allocator.
5544 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5545 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5551 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5552 if (!write
|| (ret
< 0))
5554 for_each_populated_zone(zone
) {
5555 for_each_possible_cpu(cpu
) {
5557 high
= zone
->managed_pages
/ percpu_pagelist_fraction
;
5558 setup_pagelist_highmark(
5559 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5565 int hashdist
= HASHDIST_DEFAULT
;
5568 static int __init
set_hashdist(char *str
)
5572 hashdist
= simple_strtoul(str
, &str
, 0);
5575 __setup("hashdist=", set_hashdist
);
5579 * allocate a large system hash table from bootmem
5580 * - it is assumed that the hash table must contain an exact power-of-2
5581 * quantity of entries
5582 * - limit is the number of hash buckets, not the total allocation size
5584 void *__init
alloc_large_system_hash(const char *tablename
,
5585 unsigned long bucketsize
,
5586 unsigned long numentries
,
5589 unsigned int *_hash_shift
,
5590 unsigned int *_hash_mask
,
5591 unsigned long low_limit
,
5592 unsigned long high_limit
)
5594 unsigned long long max
= high_limit
;
5595 unsigned long log2qty
, size
;
5598 /* allow the kernel cmdline to have a say */
5600 /* round applicable memory size up to nearest megabyte */
5601 numentries
= nr_kernel_pages
;
5602 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5603 numentries
>>= 20 - PAGE_SHIFT
;
5604 numentries
<<= 20 - PAGE_SHIFT
;
5606 /* limit to 1 bucket per 2^scale bytes of low memory */
5607 if (scale
> PAGE_SHIFT
)
5608 numentries
>>= (scale
- PAGE_SHIFT
);
5610 numentries
<<= (PAGE_SHIFT
- scale
);
5612 /* Make sure we've got at least a 0-order allocation.. */
5613 if (unlikely(flags
& HASH_SMALL
)) {
5614 /* Makes no sense without HASH_EARLY */
5615 WARN_ON(!(flags
& HASH_EARLY
));
5616 if (!(numentries
>> *_hash_shift
)) {
5617 numentries
= 1UL << *_hash_shift
;
5618 BUG_ON(!numentries
);
5620 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5621 numentries
= PAGE_SIZE
/ bucketsize
;
5623 numentries
= roundup_pow_of_two(numentries
);
5625 /* limit allocation size to 1/16 total memory by default */
5627 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5628 do_div(max
, bucketsize
);
5630 max
= min(max
, 0x80000000ULL
);
5632 if (numentries
< low_limit
)
5633 numentries
= low_limit
;
5634 if (numentries
> max
)
5637 log2qty
= ilog2(numentries
);
5640 size
= bucketsize
<< log2qty
;
5641 if (flags
& HASH_EARLY
)
5642 table
= alloc_bootmem_nopanic(size
);
5644 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5647 * If bucketsize is not a power-of-two, we may free
5648 * some pages at the end of hash table which
5649 * alloc_pages_exact() automatically does
5651 if (get_order(size
) < MAX_ORDER
) {
5652 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5653 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5656 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5659 panic("Failed to allocate %s hash table\n", tablename
);
5661 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5664 ilog2(size
) - PAGE_SHIFT
,
5668 *_hash_shift
= log2qty
;
5670 *_hash_mask
= (1 << log2qty
) - 1;
5675 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5676 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5679 #ifdef CONFIG_SPARSEMEM
5680 return __pfn_to_section(pfn
)->pageblock_flags
;
5682 return zone
->pageblock_flags
;
5683 #endif /* CONFIG_SPARSEMEM */
5686 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5688 #ifdef CONFIG_SPARSEMEM
5689 pfn
&= (PAGES_PER_SECTION
-1);
5690 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5692 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
5693 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5694 #endif /* CONFIG_SPARSEMEM */
5698 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5699 * @page: The page within the block of interest
5700 * @start_bitidx: The first bit of interest to retrieve
5701 * @end_bitidx: The last bit of interest
5702 * returns pageblock_bits flags
5704 unsigned long get_pageblock_flags_group(struct page
*page
,
5705 int start_bitidx
, int end_bitidx
)
5708 unsigned long *bitmap
;
5709 unsigned long pfn
, bitidx
;
5710 unsigned long flags
= 0;
5711 unsigned long value
= 1;
5713 zone
= page_zone(page
);
5714 pfn
= page_to_pfn(page
);
5715 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5716 bitidx
= pfn_to_bitidx(zone
, pfn
);
5718 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5719 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5726 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5727 * @page: The page within the block of interest
5728 * @start_bitidx: The first bit of interest
5729 * @end_bitidx: The last bit of interest
5730 * @flags: The flags to set
5732 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5733 int start_bitidx
, int end_bitidx
)
5736 unsigned long *bitmap
;
5737 unsigned long pfn
, bitidx
;
5738 unsigned long value
= 1;
5740 zone
= page_zone(page
);
5741 pfn
= page_to_pfn(page
);
5742 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5743 bitidx
= pfn_to_bitidx(zone
, pfn
);
5744 VM_BUG_ON(!zone_spans_pfn(zone
, pfn
));
5746 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5748 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5750 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5754 * This function checks whether pageblock includes unmovable pages or not.
5755 * If @count is not zero, it is okay to include less @count unmovable pages
5757 * PageLRU check wihtout isolation or lru_lock could race so that
5758 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5759 * expect this function should be exact.
5761 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
5762 bool skip_hwpoisoned_pages
)
5764 unsigned long pfn
, iter
, found
;
5768 * For avoiding noise data, lru_add_drain_all() should be called
5769 * If ZONE_MOVABLE, the zone never contains unmovable pages
5771 if (zone_idx(zone
) == ZONE_MOVABLE
)
5773 mt
= get_pageblock_migratetype(page
);
5774 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
5777 pfn
= page_to_pfn(page
);
5778 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5779 unsigned long check
= pfn
+ iter
;
5781 if (!pfn_valid_within(check
))
5784 page
= pfn_to_page(check
);
5786 * We can't use page_count without pin a page
5787 * because another CPU can free compound page.
5788 * This check already skips compound tails of THP
5789 * because their page->_count is zero at all time.
5791 if (!atomic_read(&page
->_count
)) {
5792 if (PageBuddy(page
))
5793 iter
+= (1 << page_order(page
)) - 1;
5798 * The HWPoisoned page may be not in buddy system, and
5799 * page_count() is not 0.
5801 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
5807 * If there are RECLAIMABLE pages, we need to check it.
5808 * But now, memory offline itself doesn't call shrink_slab()
5809 * and it still to be fixed.
5812 * If the page is not RAM, page_count()should be 0.
5813 * we don't need more check. This is an _used_ not-movable page.
5815 * The problematic thing here is PG_reserved pages. PG_reserved
5816 * is set to both of a memory hole page and a _used_ kernel
5825 bool is_pageblock_removable_nolock(struct page
*page
)
5831 * We have to be careful here because we are iterating over memory
5832 * sections which are not zone aware so we might end up outside of
5833 * the zone but still within the section.
5834 * We have to take care about the node as well. If the node is offline
5835 * its NODE_DATA will be NULL - see page_zone.
5837 if (!node_online(page_to_nid(page
)))
5840 zone
= page_zone(page
);
5841 pfn
= page_to_pfn(page
);
5842 if (!zone_spans_pfn(zone
, pfn
))
5845 return !has_unmovable_pages(zone
, page
, 0, true);
5850 static unsigned long pfn_max_align_down(unsigned long pfn
)
5852 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
5853 pageblock_nr_pages
) - 1);
5856 static unsigned long pfn_max_align_up(unsigned long pfn
)
5858 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
5859 pageblock_nr_pages
));
5862 /* [start, end) must belong to a single zone. */
5863 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
5864 unsigned long start
, unsigned long end
)
5866 /* This function is based on compact_zone() from compaction.c. */
5867 unsigned long nr_reclaimed
;
5868 unsigned long pfn
= start
;
5869 unsigned int tries
= 0;
5874 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
5875 if (fatal_signal_pending(current
)) {
5880 if (list_empty(&cc
->migratepages
)) {
5881 cc
->nr_migratepages
= 0;
5882 pfn
= isolate_migratepages_range(cc
->zone
, cc
,
5889 } else if (++tries
== 5) {
5890 ret
= ret
< 0 ? ret
: -EBUSY
;
5894 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
5896 cc
->nr_migratepages
-= nr_reclaimed
;
5898 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
5899 0, MIGRATE_SYNC
, MR_CMA
);
5902 putback_movable_pages(&cc
->migratepages
);
5909 * alloc_contig_range() -- tries to allocate given range of pages
5910 * @start: start PFN to allocate
5911 * @end: one-past-the-last PFN to allocate
5912 * @migratetype: migratetype of the underlaying pageblocks (either
5913 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5914 * in range must have the same migratetype and it must
5915 * be either of the two.
5917 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5918 * aligned, however it's the caller's responsibility to guarantee that
5919 * we are the only thread that changes migrate type of pageblocks the
5922 * The PFN range must belong to a single zone.
5924 * Returns zero on success or negative error code. On success all
5925 * pages which PFN is in [start, end) are allocated for the caller and
5926 * need to be freed with free_contig_range().
5928 int alloc_contig_range(unsigned long start
, unsigned long end
,
5929 unsigned migratetype
)
5931 unsigned long outer_start
, outer_end
;
5934 struct compact_control cc
= {
5935 .nr_migratepages
= 0,
5937 .zone
= page_zone(pfn_to_page(start
)),
5939 .ignore_skip_hint
= true,
5941 INIT_LIST_HEAD(&cc
.migratepages
);
5944 * What we do here is we mark all pageblocks in range as
5945 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5946 * have different sizes, and due to the way page allocator
5947 * work, we align the range to biggest of the two pages so
5948 * that page allocator won't try to merge buddies from
5949 * different pageblocks and change MIGRATE_ISOLATE to some
5950 * other migration type.
5952 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5953 * migrate the pages from an unaligned range (ie. pages that
5954 * we are interested in). This will put all the pages in
5955 * range back to page allocator as MIGRATE_ISOLATE.
5957 * When this is done, we take the pages in range from page
5958 * allocator removing them from the buddy system. This way
5959 * page allocator will never consider using them.
5961 * This lets us mark the pageblocks back as
5962 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5963 * aligned range but not in the unaligned, original range are
5964 * put back to page allocator so that buddy can use them.
5967 ret
= start_isolate_page_range(pfn_max_align_down(start
),
5968 pfn_max_align_up(end
), migratetype
,
5973 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
5978 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5979 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5980 * more, all pages in [start, end) are free in page allocator.
5981 * What we are going to do is to allocate all pages from
5982 * [start, end) (that is remove them from page allocator).
5984 * The only problem is that pages at the beginning and at the
5985 * end of interesting range may be not aligned with pages that
5986 * page allocator holds, ie. they can be part of higher order
5987 * pages. Because of this, we reserve the bigger range and
5988 * once this is done free the pages we are not interested in.
5990 * We don't have to hold zone->lock here because the pages are
5991 * isolated thus they won't get removed from buddy.
5994 lru_add_drain_all();
5998 outer_start
= start
;
5999 while (!PageBuddy(pfn_to_page(outer_start
))) {
6000 if (++order
>= MAX_ORDER
) {
6004 outer_start
&= ~0UL << order
;
6007 /* Make sure the range is really isolated. */
6008 if (test_pages_isolated(outer_start
, end
, false)) {
6009 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6016 /* Grab isolated pages from freelists. */
6017 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6023 /* Free head and tail (if any) */
6024 if (start
!= outer_start
)
6025 free_contig_range(outer_start
, start
- outer_start
);
6026 if (end
!= outer_end
)
6027 free_contig_range(end
, outer_end
- end
);
6030 undo_isolate_page_range(pfn_max_align_down(start
),
6031 pfn_max_align_up(end
), migratetype
);
6035 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6037 unsigned int count
= 0;
6039 for (; nr_pages
--; pfn
++) {
6040 struct page
*page
= pfn_to_page(pfn
);
6042 count
+= page_count(page
) != 1;
6045 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6049 #ifdef CONFIG_MEMORY_HOTPLUG
6050 static int __meminit
__zone_pcp_update(void *data
)
6052 struct zone
*zone
= data
;
6054 unsigned long batch
= zone_batchsize(zone
), flags
;
6056 for_each_possible_cpu(cpu
) {
6057 struct per_cpu_pageset
*pset
;
6058 struct per_cpu_pages
*pcp
;
6060 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6063 local_irq_save(flags
);
6065 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
6066 drain_zonestat(zone
, pset
);
6067 setup_pageset(pset
, batch
);
6068 local_irq_restore(flags
);
6073 void __meminit
zone_pcp_update(struct zone
*zone
)
6075 stop_machine(__zone_pcp_update
, zone
, NULL
);
6079 void zone_pcp_reset(struct zone
*zone
)
6081 unsigned long flags
;
6083 struct per_cpu_pageset
*pset
;
6085 /* avoid races with drain_pages() */
6086 local_irq_save(flags
);
6087 if (zone
->pageset
!= &boot_pageset
) {
6088 for_each_online_cpu(cpu
) {
6089 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6090 drain_zonestat(zone
, pset
);
6092 free_percpu(zone
->pageset
);
6093 zone
->pageset
= &boot_pageset
;
6095 local_irq_restore(flags
);
6098 #ifdef CONFIG_MEMORY_HOTREMOVE
6100 * All pages in the range must be isolated before calling this.
6103 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6109 unsigned long flags
;
6110 /* find the first valid pfn */
6111 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6116 zone
= page_zone(pfn_to_page(pfn
));
6117 spin_lock_irqsave(&zone
->lock
, flags
);
6119 while (pfn
< end_pfn
) {
6120 if (!pfn_valid(pfn
)) {
6124 page
= pfn_to_page(pfn
);
6126 * The HWPoisoned page may be not in buddy system, and
6127 * page_count() is not 0.
6129 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6131 SetPageReserved(page
);
6135 BUG_ON(page_count(page
));
6136 BUG_ON(!PageBuddy(page
));
6137 order
= page_order(page
);
6138 #ifdef CONFIG_DEBUG_VM
6139 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6140 pfn
, 1 << order
, end_pfn
);
6142 list_del(&page
->lru
);
6143 rmv_page_order(page
);
6144 zone
->free_area
[order
].nr_free
--;
6145 for (i
= 0; i
< (1 << order
); i
++)
6146 SetPageReserved((page
+i
));
6147 pfn
+= (1 << order
);
6149 spin_unlock_irqrestore(&zone
->lock
, flags
);
6153 #ifdef CONFIG_MEMORY_FAILURE
6154 bool is_free_buddy_page(struct page
*page
)
6156 struct zone
*zone
= page_zone(page
);
6157 unsigned long pfn
= page_to_pfn(page
);
6158 unsigned long flags
;
6161 spin_lock_irqsave(&zone
->lock
, flags
);
6162 for (order
= 0; order
< MAX_ORDER
; order
++) {
6163 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6165 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6168 spin_unlock_irqrestore(&zone
->lock
, flags
);
6170 return order
< MAX_ORDER
;
6174 static const struct trace_print_flags pageflag_names
[] = {
6175 {1UL << PG_locked
, "locked" },
6176 {1UL << PG_error
, "error" },
6177 {1UL << PG_referenced
, "referenced" },
6178 {1UL << PG_uptodate
, "uptodate" },
6179 {1UL << PG_dirty
, "dirty" },
6180 {1UL << PG_lru
, "lru" },
6181 {1UL << PG_active
, "active" },
6182 {1UL << PG_slab
, "slab" },
6183 {1UL << PG_owner_priv_1
, "owner_priv_1" },
6184 {1UL << PG_arch_1
, "arch_1" },
6185 {1UL << PG_reserved
, "reserved" },
6186 {1UL << PG_private
, "private" },
6187 {1UL << PG_private_2
, "private_2" },
6188 {1UL << PG_writeback
, "writeback" },
6189 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6190 {1UL << PG_head
, "head" },
6191 {1UL << PG_tail
, "tail" },
6193 {1UL << PG_compound
, "compound" },
6195 {1UL << PG_swapcache
, "swapcache" },
6196 {1UL << PG_mappedtodisk
, "mappedtodisk" },
6197 {1UL << PG_reclaim
, "reclaim" },
6198 {1UL << PG_swapbacked
, "swapbacked" },
6199 {1UL << PG_unevictable
, "unevictable" },
6201 {1UL << PG_mlocked
, "mlocked" },
6203 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6204 {1UL << PG_uncached
, "uncached" },
6206 #ifdef CONFIG_MEMORY_FAILURE
6207 {1UL << PG_hwpoison
, "hwpoison" },
6209 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6210 {1UL << PG_compound_lock
, "compound_lock" },
6214 static void dump_page_flags(unsigned long flags
)
6216 const char *delim
= "";
6220 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names
) != __NR_PAGEFLAGS
);
6222 printk(KERN_ALERT
"page flags: %#lx(", flags
);
6224 /* remove zone id */
6225 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
6227 for (i
= 0; i
< ARRAY_SIZE(pageflag_names
) && flags
; i
++) {
6229 mask
= pageflag_names
[i
].mask
;
6230 if ((flags
& mask
) != mask
)
6234 printk("%s%s", delim
, pageflag_names
[i
].name
);
6238 /* check for left over flags */
6240 printk("%s%#lx", delim
, flags
);
6245 void dump_page(struct page
*page
)
6248 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6249 page
, atomic_read(&page
->_count
), page_mapcount(page
),
6250 page
->mapping
, page
->index
);
6251 dump_page_flags(page
->flags
);
6252 mem_cgroup_print_bad_page(page
);