UBI: rename ubi_scan_destroy_ai
[linux-2.6.git] / drivers / mtd / ubi / scan.c
blobdaa53a8fca88c4a923a4871c39ec8bb2254db557
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author: Artem Bityutskiy (Битюцкий Артём)
22 * UBI scanning sub-system.
24 * This sub-system is responsible for scanning the flash media, checking UBI
25 * headers and providing complete information about the UBI flash image.
27 * The attaching information is represented by a &struct ubi_attach_info'
28 * object. Information about found volumes is represented by
29 * &struct ubi_ainf_volume objects which are kept in volume RB-tree with root
30 * at the @volumes field. The RB-tree is indexed by the volume ID.
32 * Scanned logical eraseblocks are represented by &struct ubi_ainf_peb objects.
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_ainf_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
42 * About corruptions
43 * ~~~~~~~~~~~~~~~~~
45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46 * whether the headers are corrupted or not. Sometimes UBI also protects the
47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48 * when it moves the contents of a PEB for wear-leveling purposes.
50 * UBI tries to distinguish between 2 types of corruptions.
52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53 * tries to handle them gracefully, without printing too many warnings and
54 * error messages. The idea is that we do not lose important data in these case
55 * - we may lose only the data which was being written to the media just before
56 * the power cut happened, and the upper layers (e.g., UBIFS) are supposed to
57 * handle such data losses (e.g., by using the FS journal).
59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61 * PEBs in the @erase list are scheduled for erasure later.
63 * 2. Unexpected corruptions which are not caused by power cuts. During
64 * scanning, such PEBs are put to the @corr list and UBI preserves them.
65 * Obviously, this lessens the amount of available PEBs, and if at some point
66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67 * about such PEBs every time the MTD device is attached.
69 * However, it is difficult to reliably distinguish between these types of
70 * corruptions and UBI's strategy is as follows. UBI assumes corruption type 2
71 * if the VID header is corrupted and the data area does not contain all 0xFFs,
72 * and there were no bit-flips or integrity errors while reading the data area.
73 * Otherwise UBI assumes corruption type 1. So the decision criteria are as
74 * follows.
75 * o If the data area contains only 0xFFs, there is no data, and it is safe
76 * to just erase this PEB - this is corruption type 1.
77 * o If the data area has bit-flips or data integrity errors (ECC errors on
78 * NAND), it is probably a PEB which was being erased when power cut
79 * happened, so this is corruption type 1. However, this is just a guess,
80 * which might be wrong.
81 * o Otherwise this it corruption type 2.
84 #include <linux/err.h>
85 #include <linux/slab.h>
86 #include <linux/crc32.h>
87 #include <linux/math64.h>
88 #include <linux/random.h>
89 #include "ubi.h"
91 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
93 /* Temporary variables used during scanning */
94 static struct ubi_ec_hdr *ech;
95 static struct ubi_vid_hdr *vidh;
97 /**
98 * add_to_list - add physical eraseblock to a list.
99 * @ai: attaching information
100 * @pnum: physical eraseblock number to add
101 * @ec: erase counter of the physical eraseblock
102 * @to_head: if not zero, add to the head of the list
103 * @list: the list to add to
105 * This function adds physical eraseblock @pnum to free, erase, or alien lists.
106 * If @to_head is not zero, PEB will be added to the head of the list, which
107 * basically means it will be processed first later. E.g., we add corrupted
108 * PEBs (corrupted due to power cuts) to the head of the erase list to make
109 * sure we erase them first and get rid of corruptions ASAP. This function
110 * returns zero in case of success and a negative error code in case of
111 * failure.
113 static int add_to_list(struct ubi_attach_info *ai, int pnum, int ec,
114 int to_head, struct list_head *list)
116 struct ubi_ainf_peb *aeb;
118 if (list == &ai->free) {
119 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
120 } else if (list == &ai->erase) {
121 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
122 } else if (list == &ai->alien) {
123 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
124 ai->alien_peb_count += 1;
125 } else
126 BUG();
128 aeb = kmem_cache_alloc(ai->scan_leb_slab, GFP_KERNEL);
129 if (!aeb)
130 return -ENOMEM;
132 aeb->pnum = pnum;
133 aeb->ec = ec;
134 if (to_head)
135 list_add(&aeb->u.list, list);
136 else
137 list_add_tail(&aeb->u.list, list);
138 return 0;
142 * add_corrupted - add a corrupted physical eraseblock.
143 * @ai: attaching information
144 * @pnum: physical eraseblock number to add
145 * @ec: erase counter of the physical eraseblock
147 * This function adds corrupted physical eraseblock @pnum to the 'corr' list.
148 * The corruption was presumably not caused by a power cut. Returns zero in
149 * case of success and a negative error code in case of failure.
151 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
153 struct ubi_ainf_peb *aeb;
155 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
157 aeb = kmem_cache_alloc(ai->scan_leb_slab, GFP_KERNEL);
158 if (!aeb)
159 return -ENOMEM;
161 ai->corr_peb_count += 1;
162 aeb->pnum = pnum;
163 aeb->ec = ec;
164 list_add(&aeb->u.list, &ai->corr);
165 return 0;
169 * validate_vid_hdr - check volume identifier header.
170 * @vid_hdr: the volume identifier header to check
171 * @av: information about the volume this logical eraseblock belongs to
172 * @pnum: physical eraseblock number the VID header came from
174 * This function checks that data stored in @vid_hdr is consistent. Returns
175 * non-zero if an inconsistency was found and zero if not.
177 * Note, UBI does sanity check of everything it reads from the flash media.
178 * Most of the checks are done in the I/O sub-system. Here we check that the
179 * information in the VID header is consistent to the information in other VID
180 * headers of the same volume.
182 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
183 const struct ubi_ainf_volume *av, int pnum)
185 int vol_type = vid_hdr->vol_type;
186 int vol_id = be32_to_cpu(vid_hdr->vol_id);
187 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
188 int data_pad = be32_to_cpu(vid_hdr->data_pad);
190 if (av->leb_count != 0) {
191 int av_vol_type;
194 * This is not the first logical eraseblock belonging to this
195 * volume. Ensure that the data in its VID header is consistent
196 * to the data in previous logical eraseblock headers.
199 if (vol_id != av->vol_id) {
200 ubi_err("inconsistent vol_id");
201 goto bad;
204 if (av->vol_type == UBI_STATIC_VOLUME)
205 av_vol_type = UBI_VID_STATIC;
206 else
207 av_vol_type = UBI_VID_DYNAMIC;
209 if (vol_type != av_vol_type) {
210 ubi_err("inconsistent vol_type");
211 goto bad;
214 if (used_ebs != av->used_ebs) {
215 ubi_err("inconsistent used_ebs");
216 goto bad;
219 if (data_pad != av->data_pad) {
220 ubi_err("inconsistent data_pad");
221 goto bad;
225 return 0;
227 bad:
228 ubi_err("inconsistent VID header at PEB %d", pnum);
229 ubi_dump_vid_hdr(vid_hdr);
230 ubi_dump_av(av);
231 return -EINVAL;
235 * add_volume - add volume to the attaching information.
236 * @ai: attaching information
237 * @vol_id: ID of the volume to add
238 * @pnum: physical eraseblock number
239 * @vid_hdr: volume identifier header
241 * If the volume corresponding to the @vid_hdr logical eraseblock is already
242 * present in the attaching information, this function does nothing. Otherwise
243 * it adds corresponding volume to the attaching information. Returns a pointer
244 * to the scanning volume object in case of success and a negative error code
245 * in case of failure.
247 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
248 int vol_id, int pnum,
249 const struct ubi_vid_hdr *vid_hdr)
251 struct ubi_ainf_volume *av;
252 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
254 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
256 /* Walk the volume RB-tree to look if this volume is already present */
257 while (*p) {
258 parent = *p;
259 av = rb_entry(parent, struct ubi_ainf_volume, rb);
261 if (vol_id == av->vol_id)
262 return av;
264 if (vol_id > av->vol_id)
265 p = &(*p)->rb_left;
266 else
267 p = &(*p)->rb_right;
270 /* The volume is absent - add it */
271 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
272 if (!av)
273 return ERR_PTR(-ENOMEM);
275 av->highest_lnum = av->leb_count = 0;
276 av->vol_id = vol_id;
277 av->root = RB_ROOT;
278 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
279 av->data_pad = be32_to_cpu(vid_hdr->data_pad);
280 av->compat = vid_hdr->compat;
281 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
282 : UBI_STATIC_VOLUME;
283 if (vol_id > ai->highest_vol_id)
284 ai->highest_vol_id = vol_id;
286 rb_link_node(&av->rb, parent, p);
287 rb_insert_color(&av->rb, &ai->volumes);
288 ai->vols_found += 1;
289 dbg_bld("added volume %d", vol_id);
290 return av;
294 * compare_lebs - find out which logical eraseblock is newer.
295 * @ubi: UBI device description object
296 * @aeb: first logical eraseblock to compare
297 * @pnum: physical eraseblock number of the second logical eraseblock to
298 * compare
299 * @vid_hdr: volume identifier header of the second logical eraseblock
301 * This function compares 2 copies of a LEB and informs which one is newer. In
302 * case of success this function returns a positive value, in case of failure, a
303 * negative error code is returned. The success return codes use the following
304 * bits:
305 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
306 * second PEB (described by @pnum and @vid_hdr);
307 * o bit 0 is set: the second PEB is newer;
308 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
309 * o bit 1 is set: bit-flips were detected in the newer LEB;
310 * o bit 2 is cleared: the older LEB is not corrupted;
311 * o bit 2 is set: the older LEB is corrupted.
313 static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
314 int pnum, const struct ubi_vid_hdr *vid_hdr)
316 void *buf;
317 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
318 uint32_t data_crc, crc;
319 struct ubi_vid_hdr *vh = NULL;
320 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
322 if (sqnum2 == aeb->sqnum) {
324 * This must be a really ancient UBI image which has been
325 * created before sequence numbers support has been added. At
326 * that times we used 32-bit LEB versions stored in logical
327 * eraseblocks. That was before UBI got into mainline. We do not
328 * support these images anymore. Well, those images still work,
329 * but only if no unclean reboots happened.
331 ubi_err("unsupported on-flash UBI format\n");
332 return -EINVAL;
335 /* Obviously the LEB with lower sequence counter is older */
336 second_is_newer = (sqnum2 > aeb->sqnum);
339 * Now we know which copy is newer. If the copy flag of the PEB with
340 * newer version is not set, then we just return, otherwise we have to
341 * check data CRC. For the second PEB we already have the VID header,
342 * for the first one - we'll need to re-read it from flash.
344 * Note: this may be optimized so that we wouldn't read twice.
347 if (second_is_newer) {
348 if (!vid_hdr->copy_flag) {
349 /* It is not a copy, so it is newer */
350 dbg_bld("second PEB %d is newer, copy_flag is unset",
351 pnum);
352 return 1;
354 } else {
355 if (!aeb->copy_flag) {
356 /* It is not a copy, so it is newer */
357 dbg_bld("first PEB %d is newer, copy_flag is unset",
358 pnum);
359 return bitflips << 1;
362 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
363 if (!vh)
364 return -ENOMEM;
366 pnum = aeb->pnum;
367 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
368 if (err) {
369 if (err == UBI_IO_BITFLIPS)
370 bitflips = 1;
371 else {
372 ubi_err("VID of PEB %d header is bad, but it "
373 "was OK earlier, err %d", pnum, err);
374 if (err > 0)
375 err = -EIO;
377 goto out_free_vidh;
381 vid_hdr = vh;
384 /* Read the data of the copy and check the CRC */
386 len = be32_to_cpu(vid_hdr->data_size);
387 buf = vmalloc(len);
388 if (!buf) {
389 err = -ENOMEM;
390 goto out_free_vidh;
393 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
394 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
395 goto out_free_buf;
397 data_crc = be32_to_cpu(vid_hdr->data_crc);
398 crc = crc32(UBI_CRC32_INIT, buf, len);
399 if (crc != data_crc) {
400 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
401 pnum, crc, data_crc);
402 corrupted = 1;
403 bitflips = 0;
404 second_is_newer = !second_is_newer;
405 } else {
406 dbg_bld("PEB %d CRC is OK", pnum);
407 bitflips = !!err;
410 vfree(buf);
411 ubi_free_vid_hdr(ubi, vh);
413 if (second_is_newer)
414 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
415 else
416 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
418 return second_is_newer | (bitflips << 1) | (corrupted << 2);
420 out_free_buf:
421 vfree(buf);
422 out_free_vidh:
423 ubi_free_vid_hdr(ubi, vh);
424 return err;
428 * ubi_add_to_av - add physical eraseblock to the attaching information.
429 * @ubi: UBI device description object
430 * @ai: attaching information
431 * @pnum: the physical eraseblock number
432 * @ec: erase counter
433 * @vid_hdr: the volume identifier header
434 * @bitflips: if bit-flips were detected when this physical eraseblock was read
436 * This function adds information about a used physical eraseblock to the
437 * 'used' tree of the corresponding volume. The function is rather complex
438 * because it has to handle cases when this is not the first physical
439 * eraseblock belonging to the same logical eraseblock, and the newer one has
440 * to be picked, while the older one has to be dropped. This function returns
441 * zero in case of success and a negative error code in case of failure.
443 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
444 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
446 int err, vol_id, lnum;
447 unsigned long long sqnum;
448 struct ubi_ainf_volume *av;
449 struct ubi_ainf_peb *aeb;
450 struct rb_node **p, *parent = NULL;
452 vol_id = be32_to_cpu(vid_hdr->vol_id);
453 lnum = be32_to_cpu(vid_hdr->lnum);
454 sqnum = be64_to_cpu(vid_hdr->sqnum);
456 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
457 pnum, vol_id, lnum, ec, sqnum, bitflips);
459 av = add_volume(ai, vol_id, pnum, vid_hdr);
460 if (IS_ERR(av))
461 return PTR_ERR(av);
463 if (ai->max_sqnum < sqnum)
464 ai->max_sqnum = sqnum;
467 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
468 * if this is the first instance of this logical eraseblock or not.
470 p = &av->root.rb_node;
471 while (*p) {
472 int cmp_res;
474 parent = *p;
475 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
476 if (lnum != aeb->lnum) {
477 if (lnum < aeb->lnum)
478 p = &(*p)->rb_left;
479 else
480 p = &(*p)->rb_right;
481 continue;
485 * There is already a physical eraseblock describing the same
486 * logical eraseblock present.
489 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
490 aeb->pnum, aeb->sqnum, aeb->ec);
493 * Make sure that the logical eraseblocks have different
494 * sequence numbers. Otherwise the image is bad.
496 * However, if the sequence number is zero, we assume it must
497 * be an ancient UBI image from the era when UBI did not have
498 * sequence numbers. We still can attach these images, unless
499 * there is a need to distinguish between old and new
500 * eraseblocks, in which case we'll refuse the image in
501 * 'compare_lebs()'. In other words, we attach old clean
502 * images, but refuse attaching old images with duplicated
503 * logical eraseblocks because there was an unclean reboot.
505 if (aeb->sqnum == sqnum && sqnum != 0) {
506 ubi_err("two LEBs with same sequence number %llu",
507 sqnum);
508 ubi_dump_aeb(aeb, 0);
509 ubi_dump_vid_hdr(vid_hdr);
510 return -EINVAL;
514 * Now we have to drop the older one and preserve the newer
515 * one.
517 cmp_res = compare_lebs(ubi, aeb, pnum, vid_hdr);
518 if (cmp_res < 0)
519 return cmp_res;
521 if (cmp_res & 1) {
523 * This logical eraseblock is newer than the one
524 * found earlier.
526 err = validate_vid_hdr(vid_hdr, av, pnum);
527 if (err)
528 return err;
530 err = add_to_list(ai, aeb->pnum, aeb->ec, cmp_res & 4,
531 &ai->erase);
532 if (err)
533 return err;
535 aeb->ec = ec;
536 aeb->pnum = pnum;
537 aeb->scrub = ((cmp_res & 2) || bitflips);
538 aeb->copy_flag = vid_hdr->copy_flag;
539 aeb->sqnum = sqnum;
541 if (av->highest_lnum == lnum)
542 av->last_data_size =
543 be32_to_cpu(vid_hdr->data_size);
545 return 0;
546 } else {
548 * This logical eraseblock is older than the one found
549 * previously.
551 return add_to_list(ai, pnum, ec, cmp_res & 4,
552 &ai->erase);
557 * We've met this logical eraseblock for the first time, add it to the
558 * attaching information.
561 err = validate_vid_hdr(vid_hdr, av, pnum);
562 if (err)
563 return err;
565 aeb = kmem_cache_alloc(ai->scan_leb_slab, GFP_KERNEL);
566 if (!aeb)
567 return -ENOMEM;
569 aeb->ec = ec;
570 aeb->pnum = pnum;
571 aeb->lnum = lnum;
572 aeb->scrub = bitflips;
573 aeb->copy_flag = vid_hdr->copy_flag;
574 aeb->sqnum = sqnum;
576 if (av->highest_lnum <= lnum) {
577 av->highest_lnum = lnum;
578 av->last_data_size = be32_to_cpu(vid_hdr->data_size);
581 av->leb_count += 1;
582 rb_link_node(&aeb->u.rb, parent, p);
583 rb_insert_color(&aeb->u.rb, &av->root);
584 return 0;
588 * ubi_find_av - find volume in the attaching information.
589 * @ai: attaching information
590 * @vol_id: the requested volume ID
592 * This function returns a pointer to the volume description or %NULL if there
593 * are no data about this volume in the attaching information.
595 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
596 int vol_id)
598 struct ubi_ainf_volume *av;
599 struct rb_node *p = ai->volumes.rb_node;
601 while (p) {
602 av = rb_entry(p, struct ubi_ainf_volume, rb);
604 if (vol_id == av->vol_id)
605 return av;
607 if (vol_id > av->vol_id)
608 p = p->rb_left;
609 else
610 p = p->rb_right;
613 return NULL;
617 * ubi_remove_av - delete attaching information about a volume.
618 * @ai: attaching information
619 * @av: the volume attaching information to delete
621 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
623 struct rb_node *rb;
624 struct ubi_ainf_peb *aeb;
626 dbg_bld("remove attaching information about volume %d", av->vol_id);
628 while ((rb = rb_first(&av->root))) {
629 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
630 rb_erase(&aeb->u.rb, &av->root);
631 list_add_tail(&aeb->u.list, &ai->erase);
634 rb_erase(&av->rb, &ai->volumes);
635 kfree(av);
636 ai->vols_found -= 1;
640 * early_erase_peb - erase a physical eraseblock.
641 * @ubi: UBI device description object
642 * @ai: attaching information
643 * @pnum: physical eraseblock number to erase;
644 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
646 * This function erases physical eraseblock 'pnum', and writes the erase
647 * counter header to it. This function should only be used on UBI device
648 * initialization stages, when the EBA sub-system had not been yet initialized.
649 * This function returns zero in case of success and a negative error code in
650 * case of failure.
652 static int early_erase_peb(struct ubi_device *ubi,
653 const struct ubi_attach_info *ai, int pnum, int ec)
655 int err;
656 struct ubi_ec_hdr *ec_hdr;
658 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
660 * Erase counter overflow. Upgrade UBI and use 64-bit
661 * erase counters internally.
663 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
664 return -EINVAL;
667 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
668 if (!ec_hdr)
669 return -ENOMEM;
671 ec_hdr->ec = cpu_to_be64(ec);
673 err = ubi_io_sync_erase(ubi, pnum, 0);
674 if (err < 0)
675 goto out_free;
677 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
679 out_free:
680 kfree(ec_hdr);
681 return err;
685 * ubi_early_get_peb - get a free physical eraseblock.
686 * @ubi: UBI device description object
687 * @ai: attaching information
689 * This function returns a free physical eraseblock. It is supposed to be
690 * called on the UBI initialization stages when the wear-leveling sub-system is
691 * not initialized yet. This function picks a physical eraseblocks from one of
692 * the lists, writes the EC header if it is needed, and removes it from the
693 * list.
695 * This function returns scanning physical eraseblock information in case of
696 * success and an error code in case of failure.
698 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
699 struct ubi_attach_info *ai)
701 int err = 0;
702 struct ubi_ainf_peb *aeb, *tmp_aeb;
704 if (!list_empty(&ai->free)) {
705 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
706 list_del(&aeb->u.list);
707 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
708 return aeb;
712 * We try to erase the first physical eraseblock from the erase list
713 * and pick it if we succeed, or try to erase the next one if not. And
714 * so forth. We don't want to take care about bad eraseblocks here -
715 * they'll be handled later.
717 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
718 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
719 aeb->ec = ai->mean_ec;
721 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
722 if (err)
723 continue;
725 aeb->ec += 1;
726 list_del(&aeb->u.list);
727 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
728 return aeb;
731 ubi_err("no free eraseblocks");
732 return ERR_PTR(-ENOSPC);
736 * check_corruption - check the data area of PEB.
737 * @ubi: UBI device description object
738 * @vid_hrd: the (corrupted) VID header of this PEB
739 * @pnum: the physical eraseblock number to check
741 * This is a helper function which is used to distinguish between VID header
742 * corruptions caused by power cuts and other reasons. If the PEB contains only
743 * 0xFF bytes in the data area, the VID header is most probably corrupted
744 * because of a power cut (%0 is returned in this case). Otherwise, it was
745 * probably corrupted for some other reasons (%1 is returned in this case). A
746 * negative error code is returned if a read error occurred.
748 * If the corruption reason was a power cut, UBI can safely erase this PEB.
749 * Otherwise, it should preserve it to avoid possibly destroying important
750 * information.
752 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
753 int pnum)
755 int err;
757 mutex_lock(&ubi->buf_mutex);
758 memset(ubi->peb_buf, 0x00, ubi->leb_size);
760 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
761 ubi->leb_size);
762 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
764 * Bit-flips or integrity errors while reading the data area.
765 * It is difficult to say for sure what type of corruption is
766 * this, but presumably a power cut happened while this PEB was
767 * erased, so it became unstable and corrupted, and should be
768 * erased.
770 err = 0;
771 goto out_unlock;
774 if (err)
775 goto out_unlock;
777 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
778 goto out_unlock;
780 ubi_err("PEB %d contains corrupted VID header, and the data does not "
781 "contain all 0xFF, this may be a non-UBI PEB or a severe VID "
782 "header corruption which requires manual inspection", pnum);
783 ubi_dump_vid_hdr(vid_hdr);
784 dbg_msg("hexdump of PEB %d offset %d, length %d",
785 pnum, ubi->leb_start, ubi->leb_size);
786 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
787 ubi->peb_buf, ubi->leb_size, 1);
788 err = 1;
790 out_unlock:
791 mutex_unlock(&ubi->buf_mutex);
792 return err;
796 * process_eb - read, check UBI headers, and add them to attaching information.
797 * @ubi: UBI device description object
798 * @ai: attaching information
799 * @pnum: the physical eraseblock number
801 * This function returns a zero if the physical eraseblock was successfully
802 * handled and a negative error code in case of failure.
804 static int process_eb(struct ubi_device *ubi, struct ubi_attach_info *ai,
805 int pnum)
807 long long uninitialized_var(ec);
808 int err, bitflips = 0, vol_id, ec_err = 0;
810 dbg_bld("scan PEB %d", pnum);
812 /* Skip bad physical eraseblocks */
813 err = ubi_io_is_bad(ubi, pnum);
814 if (err < 0)
815 return err;
816 else if (err) {
818 * FIXME: this is actually duty of the I/O sub-system to
819 * initialize this, but MTD does not provide enough
820 * information.
822 ai->bad_peb_count += 1;
823 return 0;
826 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
827 if (err < 0)
828 return err;
829 switch (err) {
830 case 0:
831 break;
832 case UBI_IO_BITFLIPS:
833 bitflips = 1;
834 break;
835 case UBI_IO_FF:
836 ai->empty_peb_count += 1;
837 return add_to_list(ai, pnum, UBI_SCAN_UNKNOWN_EC, 0,
838 &ai->erase);
839 case UBI_IO_FF_BITFLIPS:
840 ai->empty_peb_count += 1;
841 return add_to_list(ai, pnum, UBI_SCAN_UNKNOWN_EC, 1,
842 &ai->erase);
843 case UBI_IO_BAD_HDR_EBADMSG:
844 case UBI_IO_BAD_HDR:
846 * We have to also look at the VID header, possibly it is not
847 * corrupted. Set %bitflips flag in order to make this PEB be
848 * moved and EC be re-created.
850 ec_err = err;
851 ec = UBI_SCAN_UNKNOWN_EC;
852 bitflips = 1;
853 break;
854 default:
855 ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
856 return -EINVAL;
859 if (!ec_err) {
860 int image_seq;
862 /* Make sure UBI version is OK */
863 if (ech->version != UBI_VERSION) {
864 ubi_err("this UBI version is %d, image version is %d",
865 UBI_VERSION, (int)ech->version);
866 return -EINVAL;
869 ec = be64_to_cpu(ech->ec);
870 if (ec > UBI_MAX_ERASECOUNTER) {
872 * Erase counter overflow. The EC headers have 64 bits
873 * reserved, but we anyway make use of only 31 bit
874 * values, as this seems to be enough for any existing
875 * flash. Upgrade UBI and use 64-bit erase counters
876 * internally.
878 ubi_err("erase counter overflow, max is %d",
879 UBI_MAX_ERASECOUNTER);
880 ubi_dump_ec_hdr(ech);
881 return -EINVAL;
885 * Make sure that all PEBs have the same image sequence number.
886 * This allows us to detect situations when users flash UBI
887 * images incorrectly, so that the flash has the new UBI image
888 * and leftovers from the old one. This feature was added
889 * relatively recently, and the sequence number was always
890 * zero, because old UBI implementations always set it to zero.
891 * For this reasons, we do not panic if some PEBs have zero
892 * sequence number, while other PEBs have non-zero sequence
893 * number.
895 image_seq = be32_to_cpu(ech->image_seq);
896 if (!ubi->image_seq && image_seq)
897 ubi->image_seq = image_seq;
898 if (ubi->image_seq && image_seq &&
899 ubi->image_seq != image_seq) {
900 ubi_err("bad image sequence number %d in PEB %d, "
901 "expected %d", image_seq, pnum, ubi->image_seq);
902 ubi_dump_ec_hdr(ech);
903 return -EINVAL;
907 /* OK, we've done with the EC header, let's look at the VID header */
909 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
910 if (err < 0)
911 return err;
912 switch (err) {
913 case 0:
914 break;
915 case UBI_IO_BITFLIPS:
916 bitflips = 1;
917 break;
918 case UBI_IO_BAD_HDR_EBADMSG:
919 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
921 * Both EC and VID headers are corrupted and were read
922 * with data integrity error, probably this is a bad
923 * PEB, bit it is not marked as bad yet. This may also
924 * be a result of power cut during erasure.
926 ai->maybe_bad_peb_count += 1;
927 case UBI_IO_BAD_HDR:
928 if (ec_err)
930 * Both headers are corrupted. There is a possibility
931 * that this a valid UBI PEB which has corresponding
932 * LEB, but the headers are corrupted. However, it is
933 * impossible to distinguish it from a PEB which just
934 * contains garbage because of a power cut during erase
935 * operation. So we just schedule this PEB for erasure.
937 * Besides, in case of NOR flash, we deliberately
938 * corrupt both headers because NOR flash erasure is
939 * slow and can start from the end.
941 err = 0;
942 else
944 * The EC was OK, but the VID header is corrupted. We
945 * have to check what is in the data area.
947 err = check_corruption(ubi, vidh, pnum);
949 if (err < 0)
950 return err;
951 else if (!err)
952 /* This corruption is caused by a power cut */
953 err = add_to_list(ai, pnum, ec, 1, &ai->erase);
954 else
955 /* This is an unexpected corruption */
956 err = add_corrupted(ai, pnum, ec);
957 if (err)
958 return err;
959 goto adjust_mean_ec;
960 case UBI_IO_FF_BITFLIPS:
961 err = add_to_list(ai, pnum, ec, 1, &ai->erase);
962 if (err)
963 return err;
964 goto adjust_mean_ec;
965 case UBI_IO_FF:
966 if (ec_err)
967 err = add_to_list(ai, pnum, ec, 1, &ai->erase);
968 else
969 err = add_to_list(ai, pnum, ec, 0, &ai->free);
970 if (err)
971 return err;
972 goto adjust_mean_ec;
973 default:
974 ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
975 err);
976 return -EINVAL;
979 vol_id = be32_to_cpu(vidh->vol_id);
980 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
981 int lnum = be32_to_cpu(vidh->lnum);
983 /* Unsupported internal volume */
984 switch (vidh->compat) {
985 case UBI_COMPAT_DELETE:
986 ubi_msg("\"delete\" compatible internal volume %d:%d"
987 " found, will remove it", vol_id, lnum);
988 err = add_to_list(ai, pnum, ec, 1, &ai->erase);
989 if (err)
990 return err;
991 return 0;
993 case UBI_COMPAT_RO:
994 ubi_msg("read-only compatible internal volume %d:%d"
995 " found, switch to read-only mode",
996 vol_id, lnum);
997 ubi->ro_mode = 1;
998 break;
1000 case UBI_COMPAT_PRESERVE:
1001 ubi_msg("\"preserve\" compatible internal volume %d:%d"
1002 " found", vol_id, lnum);
1003 err = add_to_list(ai, pnum, ec, 0, &ai->alien);
1004 if (err)
1005 return err;
1006 return 0;
1008 case UBI_COMPAT_REJECT:
1009 ubi_err("incompatible internal volume %d:%d found",
1010 vol_id, lnum);
1011 return -EINVAL;
1015 if (ec_err)
1016 ubi_warn("valid VID header but corrupted EC header at PEB %d",
1017 pnum);
1018 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1019 if (err)
1020 return err;
1022 adjust_mean_ec:
1023 if (!ec_err) {
1024 ai->ec_sum += ec;
1025 ai->ec_count += 1;
1026 if (ec > ai->max_ec)
1027 ai->max_ec = ec;
1028 if (ec < ai->min_ec)
1029 ai->min_ec = ec;
1032 return 0;
1036 * check_what_we_have - check what PEB were found by scanning.
1037 * @ubi: UBI device description object
1038 * @ai: attaching information
1040 * This is a helper function which takes a look what PEBs were found by
1041 * scanning, and decides whether the flash is empty and should be formatted and
1042 * whether there are too many corrupted PEBs and we should not attach this
1043 * MTD device. Returns zero if we should proceed with attaching the MTD device,
1044 * and %-EINVAL if we should not.
1046 static int check_what_we_have(struct ubi_device *ubi,
1047 struct ubi_attach_info *ai)
1049 struct ubi_ainf_peb *aeb;
1050 int max_corr, peb_count;
1052 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1053 max_corr = peb_count / 20 ?: 8;
1056 * Few corrupted PEBs is not a problem and may be just a result of
1057 * unclean reboots. However, many of them may indicate some problems
1058 * with the flash HW or driver.
1060 if (ai->corr_peb_count) {
1061 ubi_err("%d PEBs are corrupted and preserved",
1062 ai->corr_peb_count);
1063 printk(KERN_ERR "Corrupted PEBs are:");
1064 list_for_each_entry(aeb, &ai->corr, u.list)
1065 printk(KERN_CONT " %d", aeb->pnum);
1066 printk(KERN_CONT "\n");
1069 * If too many PEBs are corrupted, we refuse attaching,
1070 * otherwise, only print a warning.
1072 if (ai->corr_peb_count >= max_corr) {
1073 ubi_err("too many corrupted PEBs, refusing");
1074 return -EINVAL;
1078 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1080 * All PEBs are empty, or almost all - a couple PEBs look like
1081 * they may be bad PEBs which were not marked as bad yet.
1083 * This piece of code basically tries to distinguish between
1084 * the following situations:
1086 * 1. Flash is empty, but there are few bad PEBs, which are not
1087 * marked as bad so far, and which were read with error. We
1088 * want to go ahead and format this flash. While formatting,
1089 * the faulty PEBs will probably be marked as bad.
1091 * 2. Flash contains non-UBI data and we do not want to format
1092 * it and destroy possibly important information.
1094 if (ai->maybe_bad_peb_count <= 2) {
1095 ai->is_empty = 1;
1096 ubi_msg("empty MTD device detected");
1097 get_random_bytes(&ubi->image_seq,
1098 sizeof(ubi->image_seq));
1099 } else {
1100 ubi_err("MTD device is not UBI-formatted and possibly "
1101 "contains non-UBI data - refusing it");
1102 return -EINVAL;
1107 return 0;
1111 * ubi_scan - scan an MTD device.
1112 * @ubi: UBI device description object
1114 * This function does full scanning of an MTD device and returns complete
1115 * information about it. In case of failure, an error code is returned.
1117 struct ubi_attach_info *ubi_scan(struct ubi_device *ubi)
1119 int err, pnum;
1120 struct rb_node *rb1, *rb2;
1121 struct ubi_ainf_volume *av;
1122 struct ubi_ainf_peb *aeb;
1123 struct ubi_attach_info *ai;
1125 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1126 if (!ai)
1127 return ERR_PTR(-ENOMEM);
1129 INIT_LIST_HEAD(&ai->corr);
1130 INIT_LIST_HEAD(&ai->free);
1131 INIT_LIST_HEAD(&ai->erase);
1132 INIT_LIST_HEAD(&ai->alien);
1133 ai->volumes = RB_ROOT;
1135 err = -ENOMEM;
1136 ai->scan_leb_slab = kmem_cache_create("ubi_scan_leb_slab",
1137 sizeof(struct ubi_ainf_peb),
1138 0, 0, NULL);
1139 if (!ai->scan_leb_slab)
1140 goto out_ai;
1142 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1143 if (!ech)
1144 goto out_ai;
1146 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1147 if (!vidh)
1148 goto out_ech;
1150 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1151 cond_resched();
1153 dbg_gen("process PEB %d", pnum);
1154 err = process_eb(ubi, ai, pnum);
1155 if (err < 0)
1156 goto out_vidh;
1159 dbg_msg("scanning is finished");
1161 /* Calculate mean erase counter */
1162 if (ai->ec_count)
1163 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1165 err = check_what_we_have(ubi, ai);
1166 if (err)
1167 goto out_vidh;
1170 * In case of unknown erase counter we use the mean erase counter
1171 * value.
1173 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1174 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1175 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
1176 aeb->ec = ai->mean_ec;
1179 list_for_each_entry(aeb, &ai->free, u.list) {
1180 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
1181 aeb->ec = ai->mean_ec;
1184 list_for_each_entry(aeb, &ai->corr, u.list)
1185 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
1186 aeb->ec = ai->mean_ec;
1188 list_for_each_entry(aeb, &ai->erase, u.list)
1189 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
1190 aeb->ec = ai->mean_ec;
1192 err = self_check_ai(ubi, ai);
1193 if (err)
1194 goto out_vidh;
1196 ubi_free_vid_hdr(ubi, vidh);
1197 kfree(ech);
1199 return ai;
1201 out_vidh:
1202 ubi_free_vid_hdr(ubi, vidh);
1203 out_ech:
1204 kfree(ech);
1205 out_ai:
1206 ubi_destroy_ai(ai);
1207 return ERR_PTR(err);
1211 * destroy_av - free the scanning volume information
1212 * @av: scanning volume information
1213 * @ai: attaching information
1215 * This function destroys the volume RB-tree (@av->root) and the scanning
1216 * volume information.
1218 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1220 struct ubi_ainf_peb *aeb;
1221 struct rb_node *this = av->root.rb_node;
1223 while (this) {
1224 if (this->rb_left)
1225 this = this->rb_left;
1226 else if (this->rb_right)
1227 this = this->rb_right;
1228 else {
1229 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1230 this = rb_parent(this);
1231 if (this) {
1232 if (this->rb_left == &aeb->u.rb)
1233 this->rb_left = NULL;
1234 else
1235 this->rb_right = NULL;
1238 kmem_cache_free(ai->scan_leb_slab, aeb);
1241 kfree(av);
1245 * ubi_destroy_ai - destroy attaching information.
1246 * @ai: attaching information
1248 void ubi_destroy_ai(struct ubi_attach_info *ai)
1250 struct ubi_ainf_peb *aeb, *aeb_tmp;
1251 struct ubi_ainf_volume *av;
1252 struct rb_node *rb;
1254 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1255 list_del(&aeb->u.list);
1256 kmem_cache_free(ai->scan_leb_slab, aeb);
1258 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1259 list_del(&aeb->u.list);
1260 kmem_cache_free(ai->scan_leb_slab, aeb);
1262 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1263 list_del(&aeb->u.list);
1264 kmem_cache_free(ai->scan_leb_slab, aeb);
1266 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1267 list_del(&aeb->u.list);
1268 kmem_cache_free(ai->scan_leb_slab, aeb);
1271 /* Destroy the volume RB-tree */
1272 rb = ai->volumes.rb_node;
1273 while (rb) {
1274 if (rb->rb_left)
1275 rb = rb->rb_left;
1276 else if (rb->rb_right)
1277 rb = rb->rb_right;
1278 else {
1279 av = rb_entry(rb, struct ubi_ainf_volume, rb);
1281 rb = rb_parent(rb);
1282 if (rb) {
1283 if (rb->rb_left == &av->rb)
1284 rb->rb_left = NULL;
1285 else
1286 rb->rb_right = NULL;
1289 destroy_av(ai, av);
1293 if (ai->scan_leb_slab)
1294 kmem_cache_destroy(ai->scan_leb_slab);
1296 kfree(ai);
1300 * self_check_ai - check the attaching information.
1301 * @ubi: UBI device description object
1302 * @ai: attaching information
1304 * This function returns zero if the attaching information is all right, and a
1305 * negative error code if not or if an error occurred.
1307 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1309 int pnum, err, vols_found = 0;
1310 struct rb_node *rb1, *rb2;
1311 struct ubi_ainf_volume *av;
1312 struct ubi_ainf_peb *aeb, *last_aeb;
1313 uint8_t *buf;
1315 if (!ubi->dbg->chk_gen)
1316 return 0;
1319 * At first, check that attaching information is OK.
1321 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1322 int leb_count = 0;
1324 cond_resched();
1326 vols_found += 1;
1328 if (ai->is_empty) {
1329 ubi_err("bad is_empty flag");
1330 goto bad_av;
1333 if (av->vol_id < 0 || av->highest_lnum < 0 ||
1334 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1335 av->data_pad < 0 || av->last_data_size < 0) {
1336 ubi_err("negative values");
1337 goto bad_av;
1340 if (av->vol_id >= UBI_MAX_VOLUMES &&
1341 av->vol_id < UBI_INTERNAL_VOL_START) {
1342 ubi_err("bad vol_id");
1343 goto bad_av;
1346 if (av->vol_id > ai->highest_vol_id) {
1347 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1348 ai->highest_vol_id, av->vol_id);
1349 goto out;
1352 if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1353 av->vol_type != UBI_STATIC_VOLUME) {
1354 ubi_err("bad vol_type");
1355 goto bad_av;
1358 if (av->data_pad > ubi->leb_size / 2) {
1359 ubi_err("bad data_pad");
1360 goto bad_av;
1363 last_aeb = NULL;
1364 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1365 cond_resched();
1367 last_aeb = aeb;
1368 leb_count += 1;
1370 if (aeb->pnum < 0 || aeb->ec < 0) {
1371 ubi_err("negative values");
1372 goto bad_aeb;
1375 if (aeb->ec < ai->min_ec) {
1376 ubi_err("bad ai->min_ec (%d), %d found",
1377 ai->min_ec, aeb->ec);
1378 goto bad_aeb;
1381 if (aeb->ec > ai->max_ec) {
1382 ubi_err("bad ai->max_ec (%d), %d found",
1383 ai->max_ec, aeb->ec);
1384 goto bad_aeb;
1387 if (aeb->pnum >= ubi->peb_count) {
1388 ubi_err("too high PEB number %d, total PEBs %d",
1389 aeb->pnum, ubi->peb_count);
1390 goto bad_aeb;
1393 if (av->vol_type == UBI_STATIC_VOLUME) {
1394 if (aeb->lnum >= av->used_ebs) {
1395 ubi_err("bad lnum or used_ebs");
1396 goto bad_aeb;
1398 } else {
1399 if (av->used_ebs != 0) {
1400 ubi_err("non-zero used_ebs");
1401 goto bad_aeb;
1405 if (aeb->lnum > av->highest_lnum) {
1406 ubi_err("incorrect highest_lnum or lnum");
1407 goto bad_aeb;
1411 if (av->leb_count != leb_count) {
1412 ubi_err("bad leb_count, %d objects in the tree",
1413 leb_count);
1414 goto bad_av;
1417 if (!last_aeb)
1418 continue;
1420 aeb = last_aeb;
1422 if (aeb->lnum != av->highest_lnum) {
1423 ubi_err("bad highest_lnum");
1424 goto bad_aeb;
1428 if (vols_found != ai->vols_found) {
1429 ubi_err("bad ai->vols_found %d, should be %d",
1430 ai->vols_found, vols_found);
1431 goto out;
1434 /* Check that attaching information is correct */
1435 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1436 last_aeb = NULL;
1437 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1438 int vol_type;
1440 cond_resched();
1442 last_aeb = aeb;
1444 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1445 if (err && err != UBI_IO_BITFLIPS) {
1446 ubi_err("VID header is not OK (%d)", err);
1447 if (err > 0)
1448 err = -EIO;
1449 return err;
1452 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1453 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1454 if (av->vol_type != vol_type) {
1455 ubi_err("bad vol_type");
1456 goto bad_vid_hdr;
1459 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1460 ubi_err("bad sqnum %llu", aeb->sqnum);
1461 goto bad_vid_hdr;
1464 if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1465 ubi_err("bad vol_id %d", av->vol_id);
1466 goto bad_vid_hdr;
1469 if (av->compat != vidh->compat) {
1470 ubi_err("bad compat %d", vidh->compat);
1471 goto bad_vid_hdr;
1474 if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1475 ubi_err("bad lnum %d", aeb->lnum);
1476 goto bad_vid_hdr;
1479 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1480 ubi_err("bad used_ebs %d", av->used_ebs);
1481 goto bad_vid_hdr;
1484 if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1485 ubi_err("bad data_pad %d", av->data_pad);
1486 goto bad_vid_hdr;
1490 if (!last_aeb)
1491 continue;
1493 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1494 ubi_err("bad highest_lnum %d", av->highest_lnum);
1495 goto bad_vid_hdr;
1498 if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1499 ubi_err("bad last_data_size %d", av->last_data_size);
1500 goto bad_vid_hdr;
1505 * Make sure that all the physical eraseblocks are in one of the lists
1506 * or trees.
1508 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1509 if (!buf)
1510 return -ENOMEM;
1512 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1513 err = ubi_io_is_bad(ubi, pnum);
1514 if (err < 0) {
1515 kfree(buf);
1516 return err;
1517 } else if (err)
1518 buf[pnum] = 1;
1521 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1522 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1523 buf[aeb->pnum] = 1;
1525 list_for_each_entry(aeb, &ai->free, u.list)
1526 buf[aeb->pnum] = 1;
1528 list_for_each_entry(aeb, &ai->corr, u.list)
1529 buf[aeb->pnum] = 1;
1531 list_for_each_entry(aeb, &ai->erase, u.list)
1532 buf[aeb->pnum] = 1;
1534 list_for_each_entry(aeb, &ai->alien, u.list)
1535 buf[aeb->pnum] = 1;
1537 err = 0;
1538 for (pnum = 0; pnum < ubi->peb_count; pnum++)
1539 if (!buf[pnum]) {
1540 ubi_err("PEB %d is not referred", pnum);
1541 err = 1;
1544 kfree(buf);
1545 if (err)
1546 goto out;
1547 return 0;
1549 bad_aeb:
1550 ubi_err("bad attaching information about LEB %d", aeb->lnum);
1551 ubi_dump_aeb(aeb, 0);
1552 ubi_dump_av(av);
1553 goto out;
1555 bad_av:
1556 ubi_err("bad attaching information about volume %d", av->vol_id);
1557 ubi_dump_av(av);
1558 goto out;
1560 bad_vid_hdr:
1561 ubi_err("bad attaching information about volume %d", av->vol_id);
1562 ubi_dump_av(av);
1563 ubi_dump_vid_hdr(vidh);
1565 out:
1566 dump_stack();
1567 return -EINVAL;