Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[linux-2.6.git] / arch / s390 / include / asm / pgtable.h
blob75fb726de91f802a68293d67c3b8541281044d3c
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 * Derived from "include/asm-i386/pgtable.h"
9 */
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
15 * The Linux memory management assumes a three-level page table setup. For
16 * s390 31 bit we "fold" the mid level into the top-level page table, so
17 * that we physically have the same two-level page table as the s390 mmu
18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19 * the hardware provides (region first and region second tables are not
20 * used).
22 * The "pgd_xxx()" functions are trivial for a folded two-level
23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
24 * into the pgd entry)
26 * This file contains the functions and defines necessary to modify and use
27 * the S390 page table tree.
29 #ifndef __ASSEMBLY__
30 #include <linux/sched.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <asm/bug.h>
34 #include <asm/page.h>
36 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37 extern void paging_init(void);
38 extern void vmem_map_init(void);
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
44 #define update_mmu_cache(vma, address, ptep) do { } while (0)
45 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
48 * ZERO_PAGE is a global shared page that is always zero; used
49 * for zero-mapped memory areas etc..
52 extern unsigned long empty_zero_page;
53 extern unsigned long zero_page_mask;
55 #define ZERO_PAGE(vaddr) \
56 (virt_to_page((void *)(empty_zero_page + \
57 (((unsigned long)(vaddr)) &zero_page_mask))))
58 #define __HAVE_COLOR_ZERO_PAGE
60 /* TODO: s390 cannot support io_remap_pfn_range... */
61 #endif /* !__ASSEMBLY__ */
64 * PMD_SHIFT determines the size of the area a second-level page
65 * table can map
66 * PGDIR_SHIFT determines what a third-level page table entry can map
68 #ifndef CONFIG_64BIT
69 # define PMD_SHIFT 20
70 # define PUD_SHIFT 20
71 # define PGDIR_SHIFT 20
72 #else /* CONFIG_64BIT */
73 # define PMD_SHIFT 20
74 # define PUD_SHIFT 31
75 # define PGDIR_SHIFT 42
76 #endif /* CONFIG_64BIT */
78 #define PMD_SIZE (1UL << PMD_SHIFT)
79 #define PMD_MASK (~(PMD_SIZE-1))
80 #define PUD_SIZE (1UL << PUD_SHIFT)
81 #define PUD_MASK (~(PUD_SIZE-1))
82 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
83 #define PGDIR_MASK (~(PGDIR_SIZE-1))
86 * entries per page directory level: the S390 is two-level, so
87 * we don't really have any PMD directory physically.
88 * for S390 segment-table entries are combined to one PGD
89 * that leads to 1024 pte per pgd
91 #define PTRS_PER_PTE 256
92 #ifndef CONFIG_64BIT
93 #define PTRS_PER_PMD 1
94 #define PTRS_PER_PUD 1
95 #else /* CONFIG_64BIT */
96 #define PTRS_PER_PMD 2048
97 #define PTRS_PER_PUD 2048
98 #endif /* CONFIG_64BIT */
99 #define PTRS_PER_PGD 2048
101 #define FIRST_USER_ADDRESS 0
103 #define pte_ERROR(e) \
104 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
105 #define pmd_ERROR(e) \
106 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
107 #define pud_ERROR(e) \
108 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
109 #define pgd_ERROR(e) \
110 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
112 #ifndef __ASSEMBLY__
114 * The vmalloc and module area will always be on the topmost area of the kernel
115 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
116 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
117 * modules will reside. That makes sure that inter module branches always
118 * happen without trampolines and in addition the placement within a 2GB frame
119 * is branch prediction unit friendly.
121 extern unsigned long VMALLOC_START;
122 extern unsigned long VMALLOC_END;
123 extern struct page *vmemmap;
125 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
127 #ifdef CONFIG_64BIT
128 extern unsigned long MODULES_VADDR;
129 extern unsigned long MODULES_END;
130 #define MODULES_VADDR MODULES_VADDR
131 #define MODULES_END MODULES_END
132 #define MODULES_LEN (1UL << 31)
133 #endif
136 * A 31 bit pagetable entry of S390 has following format:
137 * | PFRA | | OS |
138 * 0 0IP0
139 * 00000000001111111111222222222233
140 * 01234567890123456789012345678901
142 * I Page-Invalid Bit: Page is not available for address-translation
143 * P Page-Protection Bit: Store access not possible for page
145 * A 31 bit segmenttable entry of S390 has following format:
146 * | P-table origin | |PTL
147 * 0 IC
148 * 00000000001111111111222222222233
149 * 01234567890123456789012345678901
151 * I Segment-Invalid Bit: Segment is not available for address-translation
152 * C Common-Segment Bit: Segment is not private (PoP 3-30)
153 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
155 * The 31 bit segmenttable origin of S390 has following format:
157 * |S-table origin | | STL |
158 * X **GPS
159 * 00000000001111111111222222222233
160 * 01234567890123456789012345678901
162 * X Space-Switch event:
163 * G Segment-Invalid Bit: *
164 * P Private-Space Bit: Segment is not private (PoP 3-30)
165 * S Storage-Alteration:
166 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
168 * A 64 bit pagetable entry of S390 has following format:
169 * | PFRA |0IPC| OS |
170 * 0000000000111111111122222222223333333333444444444455555555556666
171 * 0123456789012345678901234567890123456789012345678901234567890123
173 * I Page-Invalid Bit: Page is not available for address-translation
174 * P Page-Protection Bit: Store access not possible for page
175 * C Change-bit override: HW is not required to set change bit
177 * A 64 bit segmenttable entry of S390 has following format:
178 * | P-table origin | TT
179 * 0000000000111111111122222222223333333333444444444455555555556666
180 * 0123456789012345678901234567890123456789012345678901234567890123
182 * I Segment-Invalid Bit: Segment is not available for address-translation
183 * C Common-Segment Bit: Segment is not private (PoP 3-30)
184 * P Page-Protection Bit: Store access not possible for page
185 * TT Type 00
187 * A 64 bit region table entry of S390 has following format:
188 * | S-table origin | TF TTTL
189 * 0000000000111111111122222222223333333333444444444455555555556666
190 * 0123456789012345678901234567890123456789012345678901234567890123
192 * I Segment-Invalid Bit: Segment is not available for address-translation
193 * TT Type 01
194 * TF
195 * TL Table length
197 * The 64 bit regiontable origin of S390 has following format:
198 * | region table origon | DTTL
199 * 0000000000111111111122222222223333333333444444444455555555556666
200 * 0123456789012345678901234567890123456789012345678901234567890123
202 * X Space-Switch event:
203 * G Segment-Invalid Bit:
204 * P Private-Space Bit:
205 * S Storage-Alteration:
206 * R Real space
207 * TL Table-Length:
209 * A storage key has the following format:
210 * | ACC |F|R|C|0|
211 * 0 3 4 5 6 7
212 * ACC: access key
213 * F : fetch protection bit
214 * R : referenced bit
215 * C : changed bit
218 /* Hardware bits in the page table entry */
219 #define _PAGE_CO 0x100 /* HW Change-bit override */
220 #define _PAGE_RO 0x200 /* HW read-only bit */
221 #define _PAGE_INVALID 0x400 /* HW invalid bit */
223 /* Software bits in the page table entry */
224 #define _PAGE_SWT 0x001 /* SW pte type bit t */
225 #define _PAGE_SWX 0x002 /* SW pte type bit x */
226 #define _PAGE_SWC 0x004 /* SW pte changed bit */
227 #define _PAGE_SWR 0x008 /* SW pte referenced bit */
228 #define _PAGE_SWW 0x010 /* SW pte write bit */
229 #define _PAGE_SPECIAL 0x020 /* SW associated with special page */
230 #define __HAVE_ARCH_PTE_SPECIAL
232 /* Set of bits not changed in pte_modify */
233 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
234 _PAGE_SWC | _PAGE_SWR)
236 /* Six different types of pages. */
237 #define _PAGE_TYPE_EMPTY 0x400
238 #define _PAGE_TYPE_NONE 0x401
239 #define _PAGE_TYPE_SWAP 0x403
240 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
241 #define _PAGE_TYPE_RO 0x200
242 #define _PAGE_TYPE_RW 0x000
245 * Only four types for huge pages, using the invalid bit and protection bit
246 * of a segment table entry.
248 #define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
249 #define _HPAGE_TYPE_NONE 0x220
250 #define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
251 #define _HPAGE_TYPE_RW 0x000
254 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
255 * pte_none and pte_file to find out the pte type WITHOUT holding the page
256 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
257 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
258 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
259 * This change is done while holding the lock, but the intermediate step
260 * of a previously valid pte with the hw invalid bit set can be observed by
261 * handle_pte_fault. That makes it necessary that all valid pte types with
262 * the hw invalid bit set must be distinguishable from the four pte types
263 * empty, none, swap and file.
265 * irxt ipte irxt
266 * _PAGE_TYPE_EMPTY 1000 -> 1000
267 * _PAGE_TYPE_NONE 1001 -> 1001
268 * _PAGE_TYPE_SWAP 1011 -> 1011
269 * _PAGE_TYPE_FILE 11?1 -> 11?1
270 * _PAGE_TYPE_RO 0100 -> 1100
271 * _PAGE_TYPE_RW 0000 -> 1000
273 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
274 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
275 * pte_file is true for bits combinations 1101, 1111
276 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
279 #ifndef CONFIG_64BIT
281 /* Bits in the segment table address-space-control-element */
282 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
283 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
284 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
285 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
286 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
288 /* Bits in the segment table entry */
289 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
290 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
291 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
292 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
293 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
295 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
296 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
298 /* Page status table bits for virtualization */
299 #define PGSTE_ACC_BITS 0xf0000000UL
300 #define PGSTE_FP_BIT 0x08000000UL
301 #define PGSTE_PCL_BIT 0x00800000UL
302 #define PGSTE_HR_BIT 0x00400000UL
303 #define PGSTE_HC_BIT 0x00200000UL
304 #define PGSTE_GR_BIT 0x00040000UL
305 #define PGSTE_GC_BIT 0x00020000UL
306 #define PGSTE_UR_BIT 0x00008000UL
307 #define PGSTE_UC_BIT 0x00004000UL /* user dirty (migration) */
308 #define PGSTE_IN_BIT 0x00002000UL /* IPTE notify bit */
310 #else /* CONFIG_64BIT */
312 /* Bits in the segment/region table address-space-control-element */
313 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
314 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
315 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
316 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
317 #define _ASCE_REAL_SPACE 0x20 /* real space control */
318 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
319 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
320 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
321 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
322 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
323 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
325 /* Bits in the region table entry */
326 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
327 #define _REGION_ENTRY_RO 0x200 /* region protection bit */
328 #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
329 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
330 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
331 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
332 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
333 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
335 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
336 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
337 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
338 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
339 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
340 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
342 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
343 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
344 #define _REGION3_ENTRY_CO 0x100 /* change-recording override */
346 /* Bits in the segment table entry */
347 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
348 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
349 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
350 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
352 #define _SEGMENT_ENTRY (0)
353 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
355 #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
356 #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
357 #define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */
358 #define _SEGMENT_ENTRY_SPLIT (1UL << _SEGMENT_ENTRY_SPLIT_BIT)
360 /* Set of bits not changed in pmd_modify */
361 #define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
362 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
364 /* Page status table bits for virtualization */
365 #define PGSTE_ACC_BITS 0xf000000000000000UL
366 #define PGSTE_FP_BIT 0x0800000000000000UL
367 #define PGSTE_PCL_BIT 0x0080000000000000UL
368 #define PGSTE_HR_BIT 0x0040000000000000UL
369 #define PGSTE_HC_BIT 0x0020000000000000UL
370 #define PGSTE_GR_BIT 0x0004000000000000UL
371 #define PGSTE_GC_BIT 0x0002000000000000UL
372 #define PGSTE_UR_BIT 0x0000800000000000UL
373 #define PGSTE_UC_BIT 0x0000400000000000UL /* user dirty (migration) */
374 #define PGSTE_IN_BIT 0x0000200000000000UL /* IPTE notify bit */
376 #endif /* CONFIG_64BIT */
379 * A user page table pointer has the space-switch-event bit, the
380 * private-space-control bit and the storage-alteration-event-control
381 * bit set. A kernel page table pointer doesn't need them.
383 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
384 _ASCE_ALT_EVENT)
387 * Page protection definitions.
389 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
390 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
391 #define PAGE_RW __pgprot(_PAGE_TYPE_RO | _PAGE_SWW)
392 #define PAGE_RWC __pgprot(_PAGE_TYPE_RW | _PAGE_SWW | _PAGE_SWC)
394 #define PAGE_KERNEL PAGE_RWC
395 #define PAGE_SHARED PAGE_KERNEL
396 #define PAGE_COPY PAGE_RO
399 * On s390 the page table entry has an invalid bit and a read-only bit.
400 * Read permission implies execute permission and write permission
401 * implies read permission.
403 /*xwr*/
404 #define __P000 PAGE_NONE
405 #define __P001 PAGE_RO
406 #define __P010 PAGE_RO
407 #define __P011 PAGE_RO
408 #define __P100 PAGE_RO
409 #define __P101 PAGE_RO
410 #define __P110 PAGE_RO
411 #define __P111 PAGE_RO
413 #define __S000 PAGE_NONE
414 #define __S001 PAGE_RO
415 #define __S010 PAGE_RW
416 #define __S011 PAGE_RW
417 #define __S100 PAGE_RO
418 #define __S101 PAGE_RO
419 #define __S110 PAGE_RW
420 #define __S111 PAGE_RW
423 * Segment entry (large page) protection definitions.
425 #define SEGMENT_NONE __pgprot(_HPAGE_TYPE_NONE)
426 #define SEGMENT_RO __pgprot(_HPAGE_TYPE_RO)
427 #define SEGMENT_RW __pgprot(_HPAGE_TYPE_RW)
429 static inline int mm_exclusive(struct mm_struct *mm)
431 return likely(mm == current->active_mm &&
432 atomic_read(&mm->context.attach_count) <= 1);
435 static inline int mm_has_pgste(struct mm_struct *mm)
437 #ifdef CONFIG_PGSTE
438 if (unlikely(mm->context.has_pgste))
439 return 1;
440 #endif
441 return 0;
444 * pgd/pmd/pte query functions
446 #ifndef CONFIG_64BIT
448 static inline int pgd_present(pgd_t pgd) { return 1; }
449 static inline int pgd_none(pgd_t pgd) { return 0; }
450 static inline int pgd_bad(pgd_t pgd) { return 0; }
452 static inline int pud_present(pud_t pud) { return 1; }
453 static inline int pud_none(pud_t pud) { return 0; }
454 static inline int pud_large(pud_t pud) { return 0; }
455 static inline int pud_bad(pud_t pud) { return 0; }
457 #else /* CONFIG_64BIT */
459 static inline int pgd_present(pgd_t pgd)
461 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
462 return 1;
463 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
466 static inline int pgd_none(pgd_t pgd)
468 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
469 return 0;
470 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
473 static inline int pgd_bad(pgd_t pgd)
476 * With dynamic page table levels the pgd can be a region table
477 * entry or a segment table entry. Check for the bit that are
478 * invalid for either table entry.
480 unsigned long mask =
481 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
482 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
483 return (pgd_val(pgd) & mask) != 0;
486 static inline int pud_present(pud_t pud)
488 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
489 return 1;
490 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
493 static inline int pud_none(pud_t pud)
495 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
496 return 0;
497 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
500 static inline int pud_large(pud_t pud)
502 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
503 return 0;
504 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
507 static inline int pud_bad(pud_t pud)
510 * With dynamic page table levels the pud can be a region table
511 * entry or a segment table entry. Check for the bit that are
512 * invalid for either table entry.
514 unsigned long mask =
515 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
516 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
517 return (pud_val(pud) & mask) != 0;
520 #endif /* CONFIG_64BIT */
522 static inline int pmd_present(pmd_t pmd)
524 unsigned long mask = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO;
525 return (pmd_val(pmd) & mask) == _HPAGE_TYPE_NONE ||
526 !(pmd_val(pmd) & _SEGMENT_ENTRY_INV);
529 static inline int pmd_none(pmd_t pmd)
531 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) &&
532 !(pmd_val(pmd) & _SEGMENT_ENTRY_RO);
535 static inline int pmd_large(pmd_t pmd)
537 #ifdef CONFIG_64BIT
538 return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE);
539 #else
540 return 0;
541 #endif
544 static inline int pmd_bad(pmd_t pmd)
546 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
547 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
550 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
551 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
552 unsigned long addr, pmd_t *pmdp);
554 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
555 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
556 unsigned long address, pmd_t *pmdp,
557 pmd_t entry, int dirty);
559 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
560 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
561 unsigned long address, pmd_t *pmdp);
563 #define __HAVE_ARCH_PMD_WRITE
564 static inline int pmd_write(pmd_t pmd)
566 return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0;
569 static inline int pmd_young(pmd_t pmd)
571 return 0;
574 static inline int pte_none(pte_t pte)
576 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
579 static inline int pte_present(pte_t pte)
581 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
582 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
583 (!(pte_val(pte) & _PAGE_INVALID) &&
584 !(pte_val(pte) & _PAGE_SWT));
587 static inline int pte_file(pte_t pte)
589 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
590 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
593 static inline int pte_special(pte_t pte)
595 return (pte_val(pte) & _PAGE_SPECIAL);
598 #define __HAVE_ARCH_PTE_SAME
599 static inline int pte_same(pte_t a, pte_t b)
601 return pte_val(a) == pte_val(b);
604 static inline pgste_t pgste_get_lock(pte_t *ptep)
606 unsigned long new = 0;
607 #ifdef CONFIG_PGSTE
608 unsigned long old;
610 preempt_disable();
611 asm(
612 " lg %0,%2\n"
613 "0: lgr %1,%0\n"
614 " nihh %0,0xff7f\n" /* clear PCL bit in old */
615 " oihh %1,0x0080\n" /* set PCL bit in new */
616 " csg %0,%1,%2\n"
617 " jl 0b\n"
618 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
619 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
620 #endif
621 return __pgste(new);
624 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
626 #ifdef CONFIG_PGSTE
627 asm(
628 " nihh %1,0xff7f\n" /* clear PCL bit */
629 " stg %1,%0\n"
630 : "=Q" (ptep[PTRS_PER_PTE])
631 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
632 : "cc", "memory");
633 preempt_enable();
634 #endif
637 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
639 #ifdef CONFIG_PGSTE
640 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
641 #endif
644 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
646 #ifdef CONFIG_PGSTE
647 unsigned long address, bits;
648 unsigned char skey;
650 if (pte_val(*ptep) & _PAGE_INVALID)
651 return pgste;
652 address = pte_val(*ptep) & PAGE_MASK;
653 skey = page_get_storage_key(address);
654 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
655 /* Clear page changed & referenced bit in the storage key */
656 if (bits & _PAGE_CHANGED)
657 page_set_storage_key(address, skey ^ bits, 0);
658 else if (bits)
659 page_reset_referenced(address);
660 /* Transfer page changed & referenced bit to guest bits in pgste */
661 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
662 /* Get host changed & referenced bits from pgste */
663 bits |= (pgste_val(pgste) & (PGSTE_HR_BIT | PGSTE_HC_BIT)) >> 52;
664 /* Transfer page changed & referenced bit to kvm user bits */
665 pgste_val(pgste) |= bits << 45; /* PGSTE_UR_BIT & PGSTE_UC_BIT */
666 /* Clear relevant host bits in pgste. */
667 pgste_val(pgste) &= ~(PGSTE_HR_BIT | PGSTE_HC_BIT);
668 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
669 /* Copy page access key and fetch protection bit to pgste */
670 pgste_val(pgste) |=
671 (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
672 /* Transfer referenced bit to pte */
673 pte_val(*ptep) |= (bits & _PAGE_REFERENCED) << 1;
674 #endif
675 return pgste;
679 static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
681 #ifdef CONFIG_PGSTE
682 int young;
684 if (pte_val(*ptep) & _PAGE_INVALID)
685 return pgste;
686 /* Get referenced bit from storage key */
687 young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
688 if (young)
689 pgste_val(pgste) |= PGSTE_GR_BIT;
690 /* Get host referenced bit from pgste */
691 if (pgste_val(pgste) & PGSTE_HR_BIT) {
692 pgste_val(pgste) &= ~PGSTE_HR_BIT;
693 young = 1;
695 /* Transfer referenced bit to kvm user bits and pte */
696 if (young) {
697 pgste_val(pgste) |= PGSTE_UR_BIT;
698 pte_val(*ptep) |= _PAGE_SWR;
700 #endif
701 return pgste;
704 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
706 #ifdef CONFIG_PGSTE
707 unsigned long address;
708 unsigned long nkey;
710 if (pte_val(entry) & _PAGE_INVALID)
711 return;
712 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
713 address = pte_val(entry) & PAGE_MASK;
715 * Set page access key and fetch protection bit from pgste.
716 * The guest C/R information is still in the PGSTE, set real
717 * key C/R to 0.
719 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
720 page_set_storage_key(address, nkey, 0);
721 #endif
724 static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
726 if (!MACHINE_HAS_ESOP && (pte_val(entry) & _PAGE_SWW)) {
728 * Without enhanced suppression-on-protection force
729 * the dirty bit on for all writable ptes.
731 pte_val(entry) |= _PAGE_SWC;
732 pte_val(entry) &= ~_PAGE_RO;
734 *ptep = entry;
738 * struct gmap_struct - guest address space
739 * @mm: pointer to the parent mm_struct
740 * @table: pointer to the page directory
741 * @asce: address space control element for gmap page table
742 * @crst_list: list of all crst tables used in the guest address space
744 struct gmap {
745 struct list_head list;
746 struct mm_struct *mm;
747 unsigned long *table;
748 unsigned long asce;
749 void *private;
750 struct list_head crst_list;
754 * struct gmap_rmap - reverse mapping for segment table entries
755 * @gmap: pointer to the gmap_struct
756 * @entry: pointer to a segment table entry
757 * @vmaddr: virtual address in the guest address space
759 struct gmap_rmap {
760 struct list_head list;
761 struct gmap *gmap;
762 unsigned long *entry;
763 unsigned long vmaddr;
767 * struct gmap_pgtable - gmap information attached to a page table
768 * @vmaddr: address of the 1MB segment in the process virtual memory
769 * @mapper: list of segment table entries mapping a page table
771 struct gmap_pgtable {
772 unsigned long vmaddr;
773 struct list_head mapper;
777 * struct gmap_notifier - notify function block for page invalidation
778 * @notifier_call: address of callback function
780 struct gmap_notifier {
781 struct list_head list;
782 void (*notifier_call)(struct gmap *gmap, unsigned long address);
785 struct gmap *gmap_alloc(struct mm_struct *mm);
786 void gmap_free(struct gmap *gmap);
787 void gmap_enable(struct gmap *gmap);
788 void gmap_disable(struct gmap *gmap);
789 int gmap_map_segment(struct gmap *gmap, unsigned long from,
790 unsigned long to, unsigned long len);
791 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
792 unsigned long __gmap_translate(unsigned long address, struct gmap *);
793 unsigned long gmap_translate(unsigned long address, struct gmap *);
794 unsigned long __gmap_fault(unsigned long address, struct gmap *);
795 unsigned long gmap_fault(unsigned long address, struct gmap *);
796 void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
798 void gmap_register_ipte_notifier(struct gmap_notifier *);
799 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
800 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
801 void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
803 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
804 unsigned long addr,
805 pte_t *ptep, pgste_t pgste)
807 #ifdef CONFIG_PGSTE
808 if (pgste_val(pgste) & PGSTE_IN_BIT) {
809 pgste_val(pgste) &= ~PGSTE_IN_BIT;
810 gmap_do_ipte_notify(mm, addr, ptep);
812 #endif
813 return pgste;
817 * Certain architectures need to do special things when PTEs
818 * within a page table are directly modified. Thus, the following
819 * hook is made available.
821 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
822 pte_t *ptep, pte_t entry)
824 pgste_t pgste;
826 if (mm_has_pgste(mm)) {
827 pgste = pgste_get_lock(ptep);
828 pgste_set_key(ptep, pgste, entry);
829 pgste_set_pte(ptep, entry);
830 pgste_set_unlock(ptep, pgste);
831 } else {
832 if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
833 pte_val(entry) |= _PAGE_CO;
834 *ptep = entry;
839 * query functions pte_write/pte_dirty/pte_young only work if
840 * pte_present() is true. Undefined behaviour if not..
842 static inline int pte_write(pte_t pte)
844 return (pte_val(pte) & _PAGE_SWW) != 0;
847 static inline int pte_dirty(pte_t pte)
849 return (pte_val(pte) & _PAGE_SWC) != 0;
852 static inline int pte_young(pte_t pte)
854 #ifdef CONFIG_PGSTE
855 if (pte_val(pte) & _PAGE_SWR)
856 return 1;
857 #endif
858 return 0;
862 * pgd/pmd/pte modification functions
865 static inline void pgd_clear(pgd_t *pgd)
867 #ifdef CONFIG_64BIT
868 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
869 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
870 #endif
873 static inline void pud_clear(pud_t *pud)
875 #ifdef CONFIG_64BIT
876 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
877 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
878 #endif
881 static inline void pmd_clear(pmd_t *pmdp)
883 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
886 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
888 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
892 * The following pte modification functions only work if
893 * pte_present() is true. Undefined behaviour if not..
895 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
897 pte_val(pte) &= _PAGE_CHG_MASK;
898 pte_val(pte) |= pgprot_val(newprot);
899 if ((pte_val(pte) & _PAGE_SWC) && (pte_val(pte) & _PAGE_SWW))
900 pte_val(pte) &= ~_PAGE_RO;
901 return pte;
904 static inline pte_t pte_wrprotect(pte_t pte)
906 pte_val(pte) &= ~_PAGE_SWW;
907 /* Do not clobber _PAGE_TYPE_NONE pages! */
908 if (!(pte_val(pte) & _PAGE_INVALID))
909 pte_val(pte) |= _PAGE_RO;
910 return pte;
913 static inline pte_t pte_mkwrite(pte_t pte)
915 pte_val(pte) |= _PAGE_SWW;
916 if (pte_val(pte) & _PAGE_SWC)
917 pte_val(pte) &= ~_PAGE_RO;
918 return pte;
921 static inline pte_t pte_mkclean(pte_t pte)
923 pte_val(pte) &= ~_PAGE_SWC;
924 /* Do not clobber _PAGE_TYPE_NONE pages! */
925 if (!(pte_val(pte) & _PAGE_INVALID))
926 pte_val(pte) |= _PAGE_RO;
927 return pte;
930 static inline pte_t pte_mkdirty(pte_t pte)
932 pte_val(pte) |= _PAGE_SWC;
933 if (pte_val(pte) & _PAGE_SWW)
934 pte_val(pte) &= ~_PAGE_RO;
935 return pte;
938 static inline pte_t pte_mkold(pte_t pte)
940 #ifdef CONFIG_PGSTE
941 pte_val(pte) &= ~_PAGE_SWR;
942 #endif
943 return pte;
946 static inline pte_t pte_mkyoung(pte_t pte)
948 return pte;
951 static inline pte_t pte_mkspecial(pte_t pte)
953 pte_val(pte) |= _PAGE_SPECIAL;
954 return pte;
957 #ifdef CONFIG_HUGETLB_PAGE
958 static inline pte_t pte_mkhuge(pte_t pte)
960 pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
961 return pte;
963 #endif
966 * Get (and clear) the user dirty bit for a pte.
968 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
969 pte_t *ptep)
971 pgste_t pgste;
972 int dirty = 0;
974 if (mm_has_pgste(mm)) {
975 pgste = pgste_get_lock(ptep);
976 pgste = pgste_update_all(ptep, pgste);
977 dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
978 pgste_val(pgste) &= ~PGSTE_UC_BIT;
979 pgste_set_unlock(ptep, pgste);
980 return dirty;
982 return dirty;
986 * Get (and clear) the user referenced bit for a pte.
988 static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
989 pte_t *ptep)
991 pgste_t pgste;
992 int young = 0;
994 if (mm_has_pgste(mm)) {
995 pgste = pgste_get_lock(ptep);
996 pgste = pgste_update_young(ptep, pgste);
997 young = !!(pgste_val(pgste) & PGSTE_UR_BIT);
998 pgste_val(pgste) &= ~PGSTE_UR_BIT;
999 pgste_set_unlock(ptep, pgste);
1001 return young;
1004 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1005 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1006 unsigned long addr, pte_t *ptep)
1008 pgste_t pgste;
1009 pte_t pte;
1011 if (mm_has_pgste(vma->vm_mm)) {
1012 pgste = pgste_get_lock(ptep);
1013 pgste = pgste_update_young(ptep, pgste);
1014 pte = *ptep;
1015 *ptep = pte_mkold(pte);
1016 pgste_set_unlock(ptep, pgste);
1017 return pte_young(pte);
1019 return 0;
1022 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1023 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1024 unsigned long address, pte_t *ptep)
1026 /* No need to flush TLB
1027 * On s390 reference bits are in storage key and never in TLB
1028 * With virtualization we handle the reference bit, without we
1029 * we can simply return */
1030 return ptep_test_and_clear_young(vma, address, ptep);
1033 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1035 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1036 #ifndef CONFIG_64BIT
1037 /* pto must point to the start of the segment table */
1038 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
1039 #else
1040 /* ipte in zarch mode can do the math */
1041 pte_t *pto = ptep;
1042 #endif
1043 asm volatile(
1044 " ipte %2,%3"
1045 : "=m" (*ptep) : "m" (*ptep),
1046 "a" (pto), "a" (address));
1051 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1052 * both clear the TLB for the unmapped pte. The reason is that
1053 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1054 * to modify an active pte. The sequence is
1055 * 1) ptep_get_and_clear
1056 * 2) set_pte_at
1057 * 3) flush_tlb_range
1058 * On s390 the tlb needs to get flushed with the modification of the pte
1059 * if the pte is active. The only way how this can be implemented is to
1060 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1061 * is a nop.
1063 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1064 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1065 unsigned long address, pte_t *ptep)
1067 pgste_t pgste;
1068 pte_t pte;
1070 mm->context.flush_mm = 1;
1071 if (mm_has_pgste(mm)) {
1072 pgste = pgste_get_lock(ptep);
1073 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1076 pte = *ptep;
1077 if (!mm_exclusive(mm))
1078 __ptep_ipte(address, ptep);
1079 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1081 if (mm_has_pgste(mm)) {
1082 pgste = pgste_update_all(&pte, pgste);
1083 pgste_set_unlock(ptep, pgste);
1085 return pte;
1088 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1089 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1090 unsigned long address,
1091 pte_t *ptep)
1093 pgste_t pgste;
1094 pte_t pte;
1096 mm->context.flush_mm = 1;
1097 if (mm_has_pgste(mm)) {
1098 pgste = pgste_get_lock(ptep);
1099 pgste_ipte_notify(mm, address, ptep, pgste);
1102 pte = *ptep;
1103 if (!mm_exclusive(mm))
1104 __ptep_ipte(address, ptep);
1106 if (mm_has_pgste(mm)) {
1107 pgste = pgste_update_all(&pte, pgste);
1108 pgste_set(ptep, pgste);
1110 return pte;
1113 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1114 unsigned long address,
1115 pte_t *ptep, pte_t pte)
1117 pgste_t pgste;
1119 if (mm_has_pgste(mm)) {
1120 pgste = *(pgste_t *)(ptep + PTRS_PER_PTE);
1121 pgste_set_key(ptep, pgste, pte);
1122 pgste_set_pte(ptep, pte);
1123 pgste_set_unlock(ptep, pgste);
1124 } else
1125 *ptep = pte;
1128 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1129 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1130 unsigned long address, pte_t *ptep)
1132 pgste_t pgste;
1133 pte_t pte;
1135 if (mm_has_pgste(vma->vm_mm)) {
1136 pgste = pgste_get_lock(ptep);
1137 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1140 pte = *ptep;
1141 __ptep_ipte(address, ptep);
1142 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1144 if (mm_has_pgste(vma->vm_mm)) {
1145 pgste = pgste_update_all(&pte, pgste);
1146 pgste_set_unlock(ptep, pgste);
1148 return pte;
1152 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1153 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1154 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1155 * cannot be accessed while the batched unmap is running. In this case
1156 * full==1 and a simple pte_clear is enough. See tlb.h.
1158 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1159 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1160 unsigned long address,
1161 pte_t *ptep, int full)
1163 pgste_t pgste;
1164 pte_t pte;
1166 if (mm_has_pgste(mm)) {
1167 pgste = pgste_get_lock(ptep);
1168 if (!full)
1169 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1172 pte = *ptep;
1173 if (!full)
1174 __ptep_ipte(address, ptep);
1175 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1177 if (mm_has_pgste(mm)) {
1178 pgste = pgste_update_all(&pte, pgste);
1179 pgste_set_unlock(ptep, pgste);
1181 return pte;
1184 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1185 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1186 unsigned long address, pte_t *ptep)
1188 pgste_t pgste;
1189 pte_t pte = *ptep;
1191 if (pte_write(pte)) {
1192 mm->context.flush_mm = 1;
1193 if (mm_has_pgste(mm)) {
1194 pgste = pgste_get_lock(ptep);
1195 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1198 if (!mm_exclusive(mm))
1199 __ptep_ipte(address, ptep);
1200 pte = pte_wrprotect(pte);
1202 if (mm_has_pgste(mm)) {
1203 pgste_set_pte(ptep, pte);
1204 pgste_set_unlock(ptep, pgste);
1205 } else
1206 *ptep = pte;
1208 return pte;
1211 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1212 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1213 unsigned long address, pte_t *ptep,
1214 pte_t entry, int dirty)
1216 pgste_t pgste;
1218 if (pte_same(*ptep, entry))
1219 return 0;
1220 if (mm_has_pgste(vma->vm_mm)) {
1221 pgste = pgste_get_lock(ptep);
1222 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1225 __ptep_ipte(address, ptep);
1227 if (mm_has_pgste(vma->vm_mm)) {
1228 pgste_set_pte(ptep, entry);
1229 pgste_set_unlock(ptep, pgste);
1230 } else
1231 *ptep = entry;
1232 return 1;
1236 * Conversion functions: convert a page and protection to a page entry,
1237 * and a page entry and page directory to the page they refer to.
1239 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1241 pte_t __pte;
1242 pte_val(__pte) = physpage + pgprot_val(pgprot);
1243 return __pte;
1246 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1248 unsigned long physpage = page_to_phys(page);
1249 pte_t __pte = mk_pte_phys(physpage, pgprot);
1251 if ((pte_val(__pte) & _PAGE_SWW) && PageDirty(page)) {
1252 pte_val(__pte) |= _PAGE_SWC;
1253 pte_val(__pte) &= ~_PAGE_RO;
1255 return __pte;
1258 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1259 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1260 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1261 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1263 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1264 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1266 #ifndef CONFIG_64BIT
1268 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1269 #define pud_deref(pmd) ({ BUG(); 0UL; })
1270 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1272 #define pud_offset(pgd, address) ((pud_t *) pgd)
1273 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1275 #else /* CONFIG_64BIT */
1277 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1278 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1279 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1281 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1283 pud_t *pud = (pud_t *) pgd;
1284 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1285 pud = (pud_t *) pgd_deref(*pgd);
1286 return pud + pud_index(address);
1289 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1291 pmd_t *pmd = (pmd_t *) pud;
1292 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1293 pmd = (pmd_t *) pud_deref(*pud);
1294 return pmd + pmd_index(address);
1297 #endif /* CONFIG_64BIT */
1299 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1300 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1301 #define pte_page(x) pfn_to_page(pte_pfn(x))
1303 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1305 /* Find an entry in the lowest level page table.. */
1306 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1307 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1308 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1309 #define pte_unmap(pte) do { } while (0)
1311 static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
1313 unsigned long sto = (unsigned long) pmdp -
1314 pmd_index(address) * sizeof(pmd_t);
1316 if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) {
1317 asm volatile(
1318 " .insn rrf,0xb98e0000,%2,%3,0,0"
1319 : "=m" (*pmdp)
1320 : "m" (*pmdp), "a" (sto),
1321 "a" ((address & HPAGE_MASK))
1322 : "cc"
1327 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1328 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1331 * pgprot is PAGE_NONE, PAGE_RO, or PAGE_RW (see __Pxxx / __Sxxx)
1332 * Convert to segment table entry format.
1334 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1335 return pgprot_val(SEGMENT_NONE);
1336 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1337 return pgprot_val(SEGMENT_RO);
1338 return pgprot_val(SEGMENT_RW);
1341 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1343 pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1344 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1345 return pmd;
1348 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1350 pmd_t __pmd;
1351 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1352 return __pmd;
1355 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1357 /* Do not clobber _HPAGE_TYPE_NONE pages! */
1358 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_INV))
1359 pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO;
1360 return pmd;
1362 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1366 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1367 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1368 pgtable_t pgtable);
1370 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1371 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1373 static inline int pmd_trans_splitting(pmd_t pmd)
1375 return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1378 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1379 pmd_t *pmdp, pmd_t entry)
1381 if (!(pmd_val(entry) & _SEGMENT_ENTRY_INV) && MACHINE_HAS_EDAT1)
1382 pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1383 *pmdp = entry;
1386 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1388 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1389 return pmd;
1392 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1394 pmd_val(pmd) |= _SEGMENT_ENTRY_RO;
1395 return pmd;
1398 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1400 /* No dirty bit in the segment table entry. */
1401 return pmd;
1404 static inline pmd_t pmd_mkold(pmd_t pmd)
1406 /* No referenced bit in the segment table entry. */
1407 return pmd;
1410 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1412 /* No referenced bit in the segment table entry. */
1413 return pmd;
1416 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1417 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1418 unsigned long address, pmd_t *pmdp)
1420 unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK;
1421 long tmp, rc;
1422 int counter;
1424 rc = 0;
1425 if (MACHINE_HAS_RRBM) {
1426 counter = PTRS_PER_PTE >> 6;
1427 asm volatile(
1428 "0: .insn rre,0xb9ae0000,%0,%3\n" /* rrbm */
1429 " ogr %1,%0\n"
1430 " la %3,0(%4,%3)\n"
1431 " brct %2,0b\n"
1432 : "=&d" (tmp), "+&d" (rc), "+d" (counter),
1433 "+a" (pmd_addr)
1434 : "a" (64 * 4096UL) : "cc");
1435 rc = !!rc;
1436 } else {
1437 counter = PTRS_PER_PTE;
1438 asm volatile(
1439 "0: rrbe 0,%2\n"
1440 " la %2,0(%3,%2)\n"
1441 " brc 12,1f\n"
1442 " lhi %0,1\n"
1443 "1: brct %1,0b\n"
1444 : "+d" (rc), "+d" (counter), "+a" (pmd_addr)
1445 : "a" (4096UL) : "cc");
1447 return rc;
1450 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1451 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1452 unsigned long address, pmd_t *pmdp)
1454 pmd_t pmd = *pmdp;
1456 __pmd_idte(address, pmdp);
1457 pmd_clear(pmdp);
1458 return pmd;
1461 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1462 static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1463 unsigned long address, pmd_t *pmdp)
1465 return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1468 #define __HAVE_ARCH_PMDP_INVALIDATE
1469 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1470 unsigned long address, pmd_t *pmdp)
1472 __pmd_idte(address, pmdp);
1475 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1476 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1477 unsigned long address, pmd_t *pmdp)
1479 pmd_t pmd = *pmdp;
1481 if (pmd_write(pmd)) {
1482 __pmd_idte(address, pmdp);
1483 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1487 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1488 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1490 static inline int pmd_trans_huge(pmd_t pmd)
1492 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1495 static inline int has_transparent_hugepage(void)
1497 return MACHINE_HAS_HPAGE ? 1 : 0;
1500 static inline unsigned long pmd_pfn(pmd_t pmd)
1502 return pmd_val(pmd) >> PAGE_SHIFT;
1504 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1507 * 31 bit swap entry format:
1508 * A page-table entry has some bits we have to treat in a special way.
1509 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1510 * exception will occur instead of a page translation exception. The
1511 * specifiation exception has the bad habit not to store necessary
1512 * information in the lowcore.
1513 * Bit 21 and bit 22 are the page invalid bit and the page protection
1514 * bit. We set both to indicate a swapped page.
1515 * Bit 30 and 31 are used to distinguish the different page types. For
1516 * a swapped page these bits need to be zero.
1517 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1518 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1519 * plus 24 for the offset.
1520 * 0| offset |0110|o|type |00|
1521 * 0 0000000001111111111 2222 2 22222 33
1522 * 0 1234567890123456789 0123 4 56789 01
1524 * 64 bit swap entry format:
1525 * A page-table entry has some bits we have to treat in a special way.
1526 * Bits 52 and bit 55 have to be zero, otherwise an specification
1527 * exception will occur instead of a page translation exception. The
1528 * specifiation exception has the bad habit not to store necessary
1529 * information in the lowcore.
1530 * Bit 53 and bit 54 are the page invalid bit and the page protection
1531 * bit. We set both to indicate a swapped page.
1532 * Bit 62 and 63 are used to distinguish the different page types. For
1533 * a swapped page these bits need to be zero.
1534 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1535 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1536 * plus 56 for the offset.
1537 * | offset |0110|o|type |00|
1538 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1539 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1541 #ifndef CONFIG_64BIT
1542 #define __SWP_OFFSET_MASK (~0UL >> 12)
1543 #else
1544 #define __SWP_OFFSET_MASK (~0UL >> 11)
1545 #endif
1546 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1548 pte_t pte;
1549 offset &= __SWP_OFFSET_MASK;
1550 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1551 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1552 return pte;
1555 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1556 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1557 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1559 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1560 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1562 #ifndef CONFIG_64BIT
1563 # define PTE_FILE_MAX_BITS 26
1564 #else /* CONFIG_64BIT */
1565 # define PTE_FILE_MAX_BITS 59
1566 #endif /* CONFIG_64BIT */
1568 #define pte_to_pgoff(__pte) \
1569 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1571 #define pgoff_to_pte(__off) \
1572 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1573 | _PAGE_TYPE_FILE })
1575 #endif /* !__ASSEMBLY__ */
1577 #define kern_addr_valid(addr) (1)
1579 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1580 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1581 extern int s390_enable_sie(void);
1584 * No page table caches to initialise
1586 static inline void pgtable_cache_init(void) { }
1587 static inline void check_pgt_cache(void) { }
1589 #include <asm-generic/pgtable.h>
1591 #endif /* _S390_PAGE_H */