make the feature checks in ->fallocate future proof
[linux-2.6.git] / fs / namei.c
blobb753192d8c3f15850abaab3cc36d52ff3cd59460
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
37 #include "internal.h"
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
87 * [10-Sep-98 Alan Modra] Another symlink change.
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
117 static int do_getname(const char __user *filename, char *page)
119 int retval;
120 unsigned long len = PATH_MAX;
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
139 char * getname(const char __user * filename)
141 char *tmp, *result;
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
154 audit_getname(result);
155 return result;
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
166 EXPORT_SYMBOL(putname);
167 #endif
170 * This does basic POSIX ACL permission checking
172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
173 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
175 umode_t mode = inode->i_mode;
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask, flags);
184 if (error != -EAGAIN)
185 return error;
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
193 * If the DACs are ok we don't need any capability check.
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 * @flags: IPERM_FLAG_ flags.
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things.
212 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
213 * request cannot be satisfied (eg. requires blocking or too much complexity).
214 * It would then be called again in ref-walk mode.
216 int generic_permission(struct inode *inode, int mask, unsigned int flags,
217 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
219 int ret;
222 * Do the basic POSIX ACL permission checks.
224 ret = acl_permission_check(inode, mask, flags, check_acl);
225 if (ret != -EACCES)
226 return ret;
229 * Read/write DACs are always overridable.
230 * Executable DACs are overridable if at least one exec bit is set.
232 if (!(mask & MAY_EXEC) || execute_ok(inode))
233 if (capable(CAP_DAC_OVERRIDE))
234 return 0;
237 * Searching includes executable on directories, else just read.
239 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
240 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
241 if (capable(CAP_DAC_READ_SEARCH))
242 return 0;
244 return -EACCES;
248 * inode_permission - check for access rights to a given inode
249 * @inode: inode to check permission on
250 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
252 * Used to check for read/write/execute permissions on an inode.
253 * We use "fsuid" for this, letting us set arbitrary permissions
254 * for filesystem access without changing the "normal" uids which
255 * are used for other things.
257 int inode_permission(struct inode *inode, int mask)
259 int retval;
261 if (mask & MAY_WRITE) {
262 umode_t mode = inode->i_mode;
265 * Nobody gets write access to a read-only fs.
267 if (IS_RDONLY(inode) &&
268 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
269 return -EROFS;
272 * Nobody gets write access to an immutable file.
274 if (IS_IMMUTABLE(inode))
275 return -EACCES;
278 if (inode->i_op->permission)
279 retval = inode->i_op->permission(inode, mask, 0);
280 else
281 retval = generic_permission(inode, mask, 0,
282 inode->i_op->check_acl);
284 if (retval)
285 return retval;
287 retval = devcgroup_inode_permission(inode, mask);
288 if (retval)
289 return retval;
291 return security_inode_permission(inode, mask);
295 * file_permission - check for additional access rights to a given file
296 * @file: file to check access rights for
297 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
299 * Used to check for read/write/execute permissions on an already opened
300 * file.
302 * Note:
303 * Do not use this function in new code. All access checks should
304 * be done using inode_permission().
306 int file_permission(struct file *file, int mask)
308 return inode_permission(file->f_path.dentry->d_inode, mask);
312 * get_write_access() gets write permission for a file.
313 * put_write_access() releases this write permission.
314 * This is used for regular files.
315 * We cannot support write (and maybe mmap read-write shared) accesses and
316 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
317 * can have the following values:
318 * 0: no writers, no VM_DENYWRITE mappings
319 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
320 * > 0: (i_writecount) users are writing to the file.
322 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
323 * except for the cases where we don't hold i_writecount yet. Then we need to
324 * use {get,deny}_write_access() - these functions check the sign and refuse
325 * to do the change if sign is wrong. Exclusion between them is provided by
326 * the inode->i_lock spinlock.
329 int get_write_access(struct inode * inode)
331 spin_lock(&inode->i_lock);
332 if (atomic_read(&inode->i_writecount) < 0) {
333 spin_unlock(&inode->i_lock);
334 return -ETXTBSY;
336 atomic_inc(&inode->i_writecount);
337 spin_unlock(&inode->i_lock);
339 return 0;
342 int deny_write_access(struct file * file)
344 struct inode *inode = file->f_path.dentry->d_inode;
346 spin_lock(&inode->i_lock);
347 if (atomic_read(&inode->i_writecount) > 0) {
348 spin_unlock(&inode->i_lock);
349 return -ETXTBSY;
351 atomic_dec(&inode->i_writecount);
352 spin_unlock(&inode->i_lock);
354 return 0;
358 * path_get - get a reference to a path
359 * @path: path to get the reference to
361 * Given a path increment the reference count to the dentry and the vfsmount.
363 void path_get(struct path *path)
365 mntget(path->mnt);
366 dget(path->dentry);
368 EXPORT_SYMBOL(path_get);
371 * path_put - put a reference to a path
372 * @path: path to put the reference to
374 * Given a path decrement the reference count to the dentry and the vfsmount.
376 void path_put(struct path *path)
378 dput(path->dentry);
379 mntput(path->mnt);
381 EXPORT_SYMBOL(path_put);
384 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
385 * @nd: nameidata pathwalk data to drop
386 * Returns: 0 on success, -ECHILD on failure
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
390 * to drop out of rcu-walk mode and take normal reference counts on dentries
391 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
392 * refcounts at the last known good point before rcu-walk got stuck, so
393 * ref-walk may continue from there. If this is not successful (eg. a seqcount
394 * has changed), then failure is returned and path walk restarts from the
395 * beginning in ref-walk mode.
397 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
398 * ref-walk. Must be called from rcu-walk context.
400 static int nameidata_drop_rcu(struct nameidata *nd)
402 struct fs_struct *fs = current->fs;
403 struct dentry *dentry = nd->path.dentry;
405 BUG_ON(!(nd->flags & LOOKUP_RCU));
406 if (nd->root.mnt) {
407 spin_lock(&fs->lock);
408 if (nd->root.mnt != fs->root.mnt ||
409 nd->root.dentry != fs->root.dentry)
410 goto err_root;
412 spin_lock(&dentry->d_lock);
413 if (!__d_rcu_to_refcount(dentry, nd->seq))
414 goto err;
415 BUG_ON(nd->inode != dentry->d_inode);
416 spin_unlock(&dentry->d_lock);
417 if (nd->root.mnt) {
418 path_get(&nd->root);
419 spin_unlock(&fs->lock);
421 mntget(nd->path.mnt);
423 rcu_read_unlock();
424 br_read_unlock(vfsmount_lock);
425 nd->flags &= ~LOOKUP_RCU;
426 return 0;
427 err:
428 spin_unlock(&dentry->d_lock);
429 err_root:
430 if (nd->root.mnt)
431 spin_unlock(&fs->lock);
432 return -ECHILD;
435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
438 if (nd->flags & LOOKUP_RCU)
439 return nameidata_drop_rcu(nd);
440 return 0;
444 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
445 * @nd: nameidata pathwalk data to drop
446 * @dentry: dentry to drop
447 * Returns: 0 on success, -ECHILD on failure
449 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
450 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
451 * @nd. Must be called from rcu-walk context.
453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
455 struct fs_struct *fs = current->fs;
456 struct dentry *parent = nd->path.dentry;
459 * It can be possible to revalidate the dentry that we started
460 * the path walk with. force_reval_path may also revalidate the
461 * dentry already committed to the nameidata.
463 if (unlikely(parent == dentry))
464 return nameidata_drop_rcu(nd);
466 BUG_ON(!(nd->flags & LOOKUP_RCU));
467 if (nd->root.mnt) {
468 spin_lock(&fs->lock);
469 if (nd->root.mnt != fs->root.mnt ||
470 nd->root.dentry != fs->root.dentry)
471 goto err_root;
473 spin_lock(&parent->d_lock);
474 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
475 if (!__d_rcu_to_refcount(dentry, nd->seq))
476 goto err;
478 * If the sequence check on the child dentry passed, then the child has
479 * not been removed from its parent. This means the parent dentry must
480 * be valid and able to take a reference at this point.
482 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
483 BUG_ON(!parent->d_count);
484 parent->d_count++;
485 spin_unlock(&dentry->d_lock);
486 spin_unlock(&parent->d_lock);
487 if (nd->root.mnt) {
488 path_get(&nd->root);
489 spin_unlock(&fs->lock);
491 mntget(nd->path.mnt);
493 rcu_read_unlock();
494 br_read_unlock(vfsmount_lock);
495 nd->flags &= ~LOOKUP_RCU;
496 return 0;
497 err:
498 spin_unlock(&dentry->d_lock);
499 spin_unlock(&parent->d_lock);
500 err_root:
501 if (nd->root.mnt)
502 spin_unlock(&fs->lock);
503 return -ECHILD;
506 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
507 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
509 if (nd->flags & LOOKUP_RCU)
510 return nameidata_dentry_drop_rcu(nd, dentry);
511 return 0;
515 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
516 * @nd: nameidata pathwalk data to drop
517 * Returns: 0 on success, -ECHILD on failure
519 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
520 * nd->path should be the final element of the lookup, so nd->root is discarded.
521 * Must be called from rcu-walk context.
523 static int nameidata_drop_rcu_last(struct nameidata *nd)
525 struct dentry *dentry = nd->path.dentry;
527 BUG_ON(!(nd->flags & LOOKUP_RCU));
528 nd->flags &= ~LOOKUP_RCU;
529 nd->root.mnt = NULL;
530 spin_lock(&dentry->d_lock);
531 if (!__d_rcu_to_refcount(dentry, nd->seq))
532 goto err_unlock;
533 BUG_ON(nd->inode != dentry->d_inode);
534 spin_unlock(&dentry->d_lock);
536 mntget(nd->path.mnt);
538 rcu_read_unlock();
539 br_read_unlock(vfsmount_lock);
541 return 0;
543 err_unlock:
544 spin_unlock(&dentry->d_lock);
545 rcu_read_unlock();
546 br_read_unlock(vfsmount_lock);
547 return -ECHILD;
550 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
551 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd)
553 if (likely(nd->flags & LOOKUP_RCU))
554 return nameidata_drop_rcu_last(nd);
555 return 0;
559 * release_open_intent - free up open intent resources
560 * @nd: pointer to nameidata
562 void release_open_intent(struct nameidata *nd)
564 if (nd->intent.open.file->f_path.dentry == NULL)
565 put_filp(nd->intent.open.file);
566 else
567 fput(nd->intent.open.file);
571 * Call d_revalidate and handle filesystems that request rcu-walk
572 * to be dropped. This may be called and return in rcu-walk mode,
573 * regardless of success or error. If -ECHILD is returned, the caller
574 * must return -ECHILD back up the path walk stack so path walk may
575 * be restarted in ref-walk mode.
577 static int d_revalidate(struct dentry *dentry, struct nameidata *nd)
579 int status;
581 status = dentry->d_op->d_revalidate(dentry, nd);
582 if (status == -ECHILD) {
583 if (nameidata_dentry_drop_rcu(nd, dentry))
584 return status;
585 status = dentry->d_op->d_revalidate(dentry, nd);
588 return status;
591 static inline struct dentry *
592 do_revalidate(struct dentry *dentry, struct nameidata *nd)
594 int status;
596 status = d_revalidate(dentry, nd);
597 if (unlikely(status <= 0)) {
599 * The dentry failed validation.
600 * If d_revalidate returned 0 attempt to invalidate
601 * the dentry otherwise d_revalidate is asking us
602 * to return a fail status.
604 if (status < 0) {
605 /* If we're in rcu-walk, we don't have a ref */
606 if (!(nd->flags & LOOKUP_RCU))
607 dput(dentry);
608 dentry = ERR_PTR(status);
610 } else {
611 /* Don't d_invalidate in rcu-walk mode */
612 if (nameidata_dentry_drop_rcu_maybe(nd, dentry))
613 return ERR_PTR(-ECHILD);
614 if (!d_invalidate(dentry)) {
615 dput(dentry);
616 dentry = NULL;
620 return dentry;
623 static inline int need_reval_dot(struct dentry *dentry)
625 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
626 return 0;
628 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
629 return 0;
631 return 1;
635 * force_reval_path - force revalidation of a dentry
637 * In some situations the path walking code will trust dentries without
638 * revalidating them. This causes problems for filesystems that depend on
639 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
640 * (which indicates that it's possible for the dentry to go stale), force
641 * a d_revalidate call before proceeding.
643 * Returns 0 if the revalidation was successful. If the revalidation fails,
644 * either return the error returned by d_revalidate or -ESTALE if the
645 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
646 * invalidate the dentry. It's up to the caller to handle putting references
647 * to the path if necessary.
649 static int
650 force_reval_path(struct path *path, struct nameidata *nd)
652 int status;
653 struct dentry *dentry = path->dentry;
656 * only check on filesystems where it's possible for the dentry to
657 * become stale.
659 if (!need_reval_dot(dentry))
660 return 0;
662 status = d_revalidate(dentry, nd);
663 if (status > 0)
664 return 0;
666 if (!status) {
667 /* Don't d_invalidate in rcu-walk mode */
668 if (nameidata_drop_rcu(nd))
669 return -ECHILD;
670 d_invalidate(dentry);
671 status = -ESTALE;
673 return status;
677 * Short-cut version of permission(), for calling on directories
678 * during pathname resolution. Combines parts of permission()
679 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
681 * If appropriate, check DAC only. If not appropriate, or
682 * short-cut DAC fails, then call ->permission() to do more
683 * complete permission check.
685 static inline int exec_permission(struct inode *inode, unsigned int flags)
687 int ret;
689 if (inode->i_op->permission) {
690 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
691 } else {
692 ret = acl_permission_check(inode, MAY_EXEC, flags,
693 inode->i_op->check_acl);
695 if (likely(!ret))
696 goto ok;
697 if (ret == -ECHILD)
698 return ret;
700 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
701 goto ok;
703 return ret;
705 return security_inode_exec_permission(inode, flags);
708 static __always_inline void set_root(struct nameidata *nd)
710 if (!nd->root.mnt)
711 get_fs_root(current->fs, &nd->root);
714 static int link_path_walk(const char *, struct nameidata *);
716 static __always_inline void set_root_rcu(struct nameidata *nd)
718 if (!nd->root.mnt) {
719 struct fs_struct *fs = current->fs;
720 unsigned seq;
722 do {
723 seq = read_seqcount_begin(&fs->seq);
724 nd->root = fs->root;
725 } while (read_seqcount_retry(&fs->seq, seq));
729 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
731 int ret;
733 if (IS_ERR(link))
734 goto fail;
736 if (*link == '/') {
737 set_root(nd);
738 path_put(&nd->path);
739 nd->path = nd->root;
740 path_get(&nd->root);
742 nd->inode = nd->path.dentry->d_inode;
744 ret = link_path_walk(link, nd);
745 return ret;
746 fail:
747 path_put(&nd->path);
748 return PTR_ERR(link);
751 static void path_put_conditional(struct path *path, struct nameidata *nd)
753 dput(path->dentry);
754 if (path->mnt != nd->path.mnt)
755 mntput(path->mnt);
758 static inline void path_to_nameidata(const struct path *path,
759 struct nameidata *nd)
761 if (!(nd->flags & LOOKUP_RCU)) {
762 dput(nd->path.dentry);
763 if (nd->path.mnt != path->mnt)
764 mntput(nd->path.mnt);
766 nd->path.mnt = path->mnt;
767 nd->path.dentry = path->dentry;
770 static __always_inline int
771 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
773 int error;
774 struct dentry *dentry = link->dentry;
776 touch_atime(link->mnt, dentry);
777 nd_set_link(nd, NULL);
779 if (link->mnt == nd->path.mnt)
780 mntget(link->mnt);
782 nd->last_type = LAST_BIND;
783 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
784 error = PTR_ERR(*p);
785 if (!IS_ERR(*p)) {
786 char *s = nd_get_link(nd);
787 error = 0;
788 if (s)
789 error = __vfs_follow_link(nd, s);
790 else if (nd->last_type == LAST_BIND) {
791 error = force_reval_path(&nd->path, nd);
792 if (error)
793 path_put(&nd->path);
796 return error;
800 * This limits recursive symlink follows to 8, while
801 * limiting consecutive symlinks to 40.
803 * Without that kind of total limit, nasty chains of consecutive
804 * symlinks can cause almost arbitrarily long lookups.
806 static inline int do_follow_link(struct path *path, struct nameidata *nd)
808 void *cookie;
809 int err = -ELOOP;
810 if (current->link_count >= MAX_NESTED_LINKS)
811 goto loop;
812 if (current->total_link_count >= 40)
813 goto loop;
814 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
815 cond_resched();
816 err = security_inode_follow_link(path->dentry, nd);
817 if (err)
818 goto loop;
819 current->link_count++;
820 current->total_link_count++;
821 nd->depth++;
822 err = __do_follow_link(path, nd, &cookie);
823 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
824 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
825 path_put(path);
826 current->link_count--;
827 nd->depth--;
828 return err;
829 loop:
830 path_put_conditional(path, nd);
831 path_put(&nd->path);
832 return err;
835 static int follow_up_rcu(struct path *path)
837 struct vfsmount *parent;
838 struct dentry *mountpoint;
840 parent = path->mnt->mnt_parent;
841 if (parent == path->mnt)
842 return 0;
843 mountpoint = path->mnt->mnt_mountpoint;
844 path->dentry = mountpoint;
845 path->mnt = parent;
846 return 1;
849 int follow_up(struct path *path)
851 struct vfsmount *parent;
852 struct dentry *mountpoint;
854 br_read_lock(vfsmount_lock);
855 parent = path->mnt->mnt_parent;
856 if (parent == path->mnt) {
857 br_read_unlock(vfsmount_lock);
858 return 0;
860 mntget(parent);
861 mountpoint = dget(path->mnt->mnt_mountpoint);
862 br_read_unlock(vfsmount_lock);
863 dput(path->dentry);
864 path->dentry = mountpoint;
865 mntput(path->mnt);
866 path->mnt = parent;
867 return 1;
871 * Perform an automount
872 * - return -EISDIR to tell follow_managed() to stop and return the path we
873 * were called with.
875 static int follow_automount(struct path *path, unsigned flags,
876 bool *need_mntput)
878 struct vfsmount *mnt;
879 int err;
881 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
882 return -EREMOTE;
884 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
885 * and this is the terminal part of the path.
887 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
888 return -EISDIR; /* we actually want to stop here */
890 /* We want to mount if someone is trying to open/create a file of any
891 * type under the mountpoint, wants to traverse through the mountpoint
892 * or wants to open the mounted directory.
894 * We don't want to mount if someone's just doing a stat and they've
895 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
896 * appended a '/' to the name.
898 if (!(flags & LOOKUP_FOLLOW) &&
899 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
900 LOOKUP_OPEN | LOOKUP_CREATE)))
901 return -EISDIR;
903 current->total_link_count++;
904 if (current->total_link_count >= 40)
905 return -ELOOP;
907 mnt = path->dentry->d_op->d_automount(path);
908 if (IS_ERR(mnt)) {
910 * The filesystem is allowed to return -EISDIR here to indicate
911 * it doesn't want to automount. For instance, autofs would do
912 * this so that its userspace daemon can mount on this dentry.
914 * However, we can only permit this if it's a terminal point in
915 * the path being looked up; if it wasn't then the remainder of
916 * the path is inaccessible and we should say so.
918 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
919 return -EREMOTE;
920 return PTR_ERR(mnt);
923 if (!mnt) /* mount collision */
924 return 0;
926 err = finish_automount(mnt, path);
928 switch (err) {
929 case -EBUSY:
930 /* Someone else made a mount here whilst we were busy */
931 return 0;
932 case 0:
933 dput(path->dentry);
934 if (*need_mntput)
935 mntput(path->mnt);
936 path->mnt = mnt;
937 path->dentry = dget(mnt->mnt_root);
938 *need_mntput = true;
939 return 0;
940 default:
941 return err;
947 * Handle a dentry that is managed in some way.
948 * - Flagged for transit management (autofs)
949 * - Flagged as mountpoint
950 * - Flagged as automount point
952 * This may only be called in refwalk mode.
954 * Serialization is taken care of in namespace.c
956 static int follow_managed(struct path *path, unsigned flags)
958 unsigned managed;
959 bool need_mntput = false;
960 int ret;
962 /* Given that we're not holding a lock here, we retain the value in a
963 * local variable for each dentry as we look at it so that we don't see
964 * the components of that value change under us */
965 while (managed = ACCESS_ONCE(path->dentry->d_flags),
966 managed &= DCACHE_MANAGED_DENTRY,
967 unlikely(managed != 0)) {
968 /* Allow the filesystem to manage the transit without i_mutex
969 * being held. */
970 if (managed & DCACHE_MANAGE_TRANSIT) {
971 BUG_ON(!path->dentry->d_op);
972 BUG_ON(!path->dentry->d_op->d_manage);
973 ret = path->dentry->d_op->d_manage(path->dentry,
974 false, false);
975 if (ret < 0)
976 return ret == -EISDIR ? 0 : ret;
979 /* Transit to a mounted filesystem. */
980 if (managed & DCACHE_MOUNTED) {
981 struct vfsmount *mounted = lookup_mnt(path);
982 if (mounted) {
983 dput(path->dentry);
984 if (need_mntput)
985 mntput(path->mnt);
986 path->mnt = mounted;
987 path->dentry = dget(mounted->mnt_root);
988 need_mntput = true;
989 continue;
992 /* Something is mounted on this dentry in another
993 * namespace and/or whatever was mounted there in this
994 * namespace got unmounted before we managed to get the
995 * vfsmount_lock */
998 /* Handle an automount point */
999 if (managed & DCACHE_NEED_AUTOMOUNT) {
1000 ret = follow_automount(path, flags, &need_mntput);
1001 if (ret < 0)
1002 return ret == -EISDIR ? 0 : ret;
1003 continue;
1006 /* We didn't change the current path point */
1007 break;
1009 return 0;
1012 int follow_down_one(struct path *path)
1014 struct vfsmount *mounted;
1016 mounted = lookup_mnt(path);
1017 if (mounted) {
1018 dput(path->dentry);
1019 mntput(path->mnt);
1020 path->mnt = mounted;
1021 path->dentry = dget(mounted->mnt_root);
1022 return 1;
1024 return 0;
1028 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
1029 * meet a managed dentry and we're not walking to "..". True is returned to
1030 * continue, false to abort.
1032 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1033 struct inode **inode, bool reverse_transit)
1035 while (d_mountpoint(path->dentry)) {
1036 struct vfsmount *mounted;
1037 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1038 !reverse_transit &&
1039 path->dentry->d_op->d_manage(path->dentry, false, true) < 0)
1040 return false;
1041 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1042 if (!mounted)
1043 break;
1044 path->mnt = mounted;
1045 path->dentry = mounted->mnt_root;
1046 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1047 *inode = path->dentry->d_inode;
1050 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1051 return reverse_transit;
1052 return true;
1055 static int follow_dotdot_rcu(struct nameidata *nd)
1057 struct inode *inode = nd->inode;
1059 set_root_rcu(nd);
1061 while (1) {
1062 if (nd->path.dentry == nd->root.dentry &&
1063 nd->path.mnt == nd->root.mnt) {
1064 break;
1066 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1067 struct dentry *old = nd->path.dentry;
1068 struct dentry *parent = old->d_parent;
1069 unsigned seq;
1071 seq = read_seqcount_begin(&parent->d_seq);
1072 if (read_seqcount_retry(&old->d_seq, nd->seq))
1073 return -ECHILD;
1074 inode = parent->d_inode;
1075 nd->path.dentry = parent;
1076 nd->seq = seq;
1077 break;
1079 if (!follow_up_rcu(&nd->path))
1080 break;
1081 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1082 inode = nd->path.dentry->d_inode;
1084 __follow_mount_rcu(nd, &nd->path, &inode, true);
1085 nd->inode = inode;
1087 return 0;
1091 * Follow down to the covering mount currently visible to userspace. At each
1092 * point, the filesystem owning that dentry may be queried as to whether the
1093 * caller is permitted to proceed or not.
1095 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1096 * being true).
1098 int follow_down(struct path *path, bool mounting_here)
1100 unsigned managed;
1101 int ret;
1103 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1104 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1105 /* Allow the filesystem to manage the transit without i_mutex
1106 * being held.
1108 * We indicate to the filesystem if someone is trying to mount
1109 * something here. This gives autofs the chance to deny anyone
1110 * other than its daemon the right to mount on its
1111 * superstructure.
1113 * The filesystem may sleep at this point.
1115 if (managed & DCACHE_MANAGE_TRANSIT) {
1116 BUG_ON(!path->dentry->d_op);
1117 BUG_ON(!path->dentry->d_op->d_manage);
1118 ret = path->dentry->d_op->d_manage(
1119 path->dentry, mounting_here, false);
1120 if (ret < 0)
1121 return ret == -EISDIR ? 0 : ret;
1124 /* Transit to a mounted filesystem. */
1125 if (managed & DCACHE_MOUNTED) {
1126 struct vfsmount *mounted = lookup_mnt(path);
1127 if (!mounted)
1128 break;
1129 dput(path->dentry);
1130 mntput(path->mnt);
1131 path->mnt = mounted;
1132 path->dentry = dget(mounted->mnt_root);
1133 continue;
1136 /* Don't handle automount points here */
1137 break;
1139 return 0;
1143 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1145 static void follow_mount(struct path *path)
1147 while (d_mountpoint(path->dentry)) {
1148 struct vfsmount *mounted = lookup_mnt(path);
1149 if (!mounted)
1150 break;
1151 dput(path->dentry);
1152 mntput(path->mnt);
1153 path->mnt = mounted;
1154 path->dentry = dget(mounted->mnt_root);
1158 static void follow_dotdot(struct nameidata *nd)
1160 set_root(nd);
1162 while(1) {
1163 struct dentry *old = nd->path.dentry;
1165 if (nd->path.dentry == nd->root.dentry &&
1166 nd->path.mnt == nd->root.mnt) {
1167 break;
1169 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1170 /* rare case of legitimate dget_parent()... */
1171 nd->path.dentry = dget_parent(nd->path.dentry);
1172 dput(old);
1173 break;
1175 if (!follow_up(&nd->path))
1176 break;
1178 follow_mount(&nd->path);
1179 nd->inode = nd->path.dentry->d_inode;
1183 * Allocate a dentry with name and parent, and perform a parent
1184 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1185 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1186 * have verified that no child exists while under i_mutex.
1188 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1189 struct qstr *name, struct nameidata *nd)
1191 struct inode *inode = parent->d_inode;
1192 struct dentry *dentry;
1193 struct dentry *old;
1195 /* Don't create child dentry for a dead directory. */
1196 if (unlikely(IS_DEADDIR(inode)))
1197 return ERR_PTR(-ENOENT);
1199 dentry = d_alloc(parent, name);
1200 if (unlikely(!dentry))
1201 return ERR_PTR(-ENOMEM);
1203 old = inode->i_op->lookup(inode, dentry, nd);
1204 if (unlikely(old)) {
1205 dput(dentry);
1206 dentry = old;
1208 return dentry;
1212 * It's more convoluted than I'd like it to be, but... it's still fairly
1213 * small and for now I'd prefer to have fast path as straight as possible.
1214 * It _is_ time-critical.
1216 static int do_lookup(struct nameidata *nd, struct qstr *name,
1217 struct path *path, struct inode **inode)
1219 struct vfsmount *mnt = nd->path.mnt;
1220 struct dentry *dentry, *parent = nd->path.dentry;
1221 struct inode *dir;
1222 int err;
1225 * See if the low-level filesystem might want
1226 * to use its own hash..
1228 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1229 err = parent->d_op->d_hash(parent, nd->inode, name);
1230 if (err < 0)
1231 return err;
1235 * Rename seqlock is not required here because in the off chance
1236 * of a false negative due to a concurrent rename, we're going to
1237 * do the non-racy lookup, below.
1239 if (nd->flags & LOOKUP_RCU) {
1240 unsigned seq;
1242 *inode = nd->inode;
1243 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1244 if (!dentry) {
1245 if (nameidata_drop_rcu(nd))
1246 return -ECHILD;
1247 goto need_lookup;
1249 /* Memory barrier in read_seqcount_begin of child is enough */
1250 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1251 return -ECHILD;
1253 nd->seq = seq;
1254 if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1255 goto need_revalidate;
1256 done2:
1257 path->mnt = mnt;
1258 path->dentry = dentry;
1259 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1260 return 0;
1261 if (nameidata_drop_rcu(nd))
1262 return -ECHILD;
1263 /* fallthru */
1265 dentry = __d_lookup(parent, name);
1266 if (!dentry)
1267 goto need_lookup;
1268 found:
1269 if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1270 goto need_revalidate;
1271 done:
1272 path->mnt = mnt;
1273 path->dentry = dentry;
1274 err = follow_managed(path, nd->flags);
1275 if (unlikely(err < 0))
1276 return err;
1277 *inode = path->dentry->d_inode;
1278 return 0;
1280 need_lookup:
1281 dir = parent->d_inode;
1282 BUG_ON(nd->inode != dir);
1284 mutex_lock(&dir->i_mutex);
1286 * First re-do the cached lookup just in case it was created
1287 * while we waited for the directory semaphore, or the first
1288 * lookup failed due to an unrelated rename.
1290 * This could use version numbering or similar to avoid unnecessary
1291 * cache lookups, but then we'd have to do the first lookup in the
1292 * non-racy way. However in the common case here, everything should
1293 * be hot in cache, so would it be a big win?
1295 dentry = d_lookup(parent, name);
1296 if (likely(!dentry)) {
1297 dentry = d_alloc_and_lookup(parent, name, nd);
1298 mutex_unlock(&dir->i_mutex);
1299 if (IS_ERR(dentry))
1300 goto fail;
1301 goto done;
1304 * Uhhuh! Nasty case: the cache was re-populated while
1305 * we waited on the semaphore. Need to revalidate.
1307 mutex_unlock(&dir->i_mutex);
1308 goto found;
1310 need_revalidate:
1311 dentry = do_revalidate(dentry, nd);
1312 if (!dentry)
1313 goto need_lookup;
1314 if (IS_ERR(dentry))
1315 goto fail;
1316 if (nd->flags & LOOKUP_RCU)
1317 goto done2;
1318 goto done;
1320 fail:
1321 return PTR_ERR(dentry);
1325 * Name resolution.
1326 * This is the basic name resolution function, turning a pathname into
1327 * the final dentry. We expect 'base' to be positive and a directory.
1329 * Returns 0 and nd will have valid dentry and mnt on success.
1330 * Returns error and drops reference to input namei data on failure.
1332 static int link_path_walk(const char *name, struct nameidata *nd)
1334 struct path next;
1335 int err;
1336 unsigned int lookup_flags = nd->flags;
1338 while (*name=='/')
1339 name++;
1340 if (!*name)
1341 goto return_reval;
1343 if (nd->depth)
1344 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1346 /* At this point we know we have a real path component. */
1347 for(;;) {
1348 struct inode *inode;
1349 unsigned long hash;
1350 struct qstr this;
1351 unsigned int c;
1353 nd->flags |= LOOKUP_CONTINUE;
1354 if (nd->flags & LOOKUP_RCU) {
1355 err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1356 if (err == -ECHILD) {
1357 if (nameidata_drop_rcu(nd))
1358 return -ECHILD;
1359 goto exec_again;
1361 } else {
1362 exec_again:
1363 err = exec_permission(nd->inode, 0);
1365 if (err)
1366 break;
1368 this.name = name;
1369 c = *(const unsigned char *)name;
1371 hash = init_name_hash();
1372 do {
1373 name++;
1374 hash = partial_name_hash(c, hash);
1375 c = *(const unsigned char *)name;
1376 } while (c && (c != '/'));
1377 this.len = name - (const char *) this.name;
1378 this.hash = end_name_hash(hash);
1380 /* remove trailing slashes? */
1381 if (!c)
1382 goto last_component;
1383 while (*++name == '/');
1384 if (!*name)
1385 goto last_with_slashes;
1388 * "." and ".." are special - ".." especially so because it has
1389 * to be able to know about the current root directory and
1390 * parent relationships.
1392 if (this.name[0] == '.') switch (this.len) {
1393 default:
1394 break;
1395 case 2:
1396 if (this.name[1] != '.')
1397 break;
1398 if (nd->flags & LOOKUP_RCU) {
1399 if (follow_dotdot_rcu(nd))
1400 return -ECHILD;
1401 } else
1402 follow_dotdot(nd);
1403 /* fallthrough */
1404 case 1:
1405 continue;
1407 /* This does the actual lookups.. */
1408 err = do_lookup(nd, &this, &next, &inode);
1409 if (err)
1410 break;
1411 err = -ENOENT;
1412 if (!inode)
1413 goto out_dput;
1415 if (inode->i_op->follow_link) {
1416 /* We commonly drop rcu-walk here */
1417 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1418 return -ECHILD;
1419 BUG_ON(inode != next.dentry->d_inode);
1420 err = do_follow_link(&next, nd);
1421 if (err)
1422 goto return_err;
1423 nd->inode = nd->path.dentry->d_inode;
1424 err = -ENOENT;
1425 if (!nd->inode)
1426 break;
1427 } else {
1428 path_to_nameidata(&next, nd);
1429 nd->inode = inode;
1431 err = -ENOTDIR;
1432 if (!nd->inode->i_op->lookup)
1433 break;
1434 continue;
1435 /* here ends the main loop */
1437 last_with_slashes:
1438 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1439 last_component:
1440 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1441 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1442 if (lookup_flags & LOOKUP_PARENT)
1443 goto lookup_parent;
1444 if (this.name[0] == '.') switch (this.len) {
1445 default:
1446 break;
1447 case 2:
1448 if (this.name[1] != '.')
1449 break;
1450 if (nd->flags & LOOKUP_RCU) {
1451 if (follow_dotdot_rcu(nd))
1452 return -ECHILD;
1453 } else
1454 follow_dotdot(nd);
1455 /* fallthrough */
1456 case 1:
1457 goto return_reval;
1459 err = do_lookup(nd, &this, &next, &inode);
1460 if (err)
1461 break;
1462 if (inode && unlikely(inode->i_op->follow_link) &&
1463 (lookup_flags & LOOKUP_FOLLOW)) {
1464 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1465 return -ECHILD;
1466 BUG_ON(inode != next.dentry->d_inode);
1467 err = do_follow_link(&next, nd);
1468 if (err)
1469 goto return_err;
1470 nd->inode = nd->path.dentry->d_inode;
1471 } else {
1472 path_to_nameidata(&next, nd);
1473 nd->inode = inode;
1475 err = -ENOENT;
1476 if (!nd->inode)
1477 break;
1478 if (lookup_flags & LOOKUP_DIRECTORY) {
1479 err = -ENOTDIR;
1480 if (!nd->inode->i_op->lookup)
1481 break;
1483 goto return_base;
1484 lookup_parent:
1485 nd->last = this;
1486 nd->last_type = LAST_NORM;
1487 if (this.name[0] != '.')
1488 goto return_base;
1489 if (this.len == 1)
1490 nd->last_type = LAST_DOT;
1491 else if (this.len == 2 && this.name[1] == '.')
1492 nd->last_type = LAST_DOTDOT;
1493 else
1494 goto return_base;
1495 return_reval:
1497 * We bypassed the ordinary revalidation routines.
1498 * We may need to check the cached dentry for staleness.
1500 if (need_reval_dot(nd->path.dentry)) {
1501 /* Note: we do not d_invalidate() */
1502 err = d_revalidate(nd->path.dentry, nd);
1503 if (!err)
1504 err = -ESTALE;
1505 if (err < 0)
1506 break;
1508 return_base:
1509 if (nameidata_drop_rcu_last_maybe(nd))
1510 return -ECHILD;
1511 return 0;
1512 out_dput:
1513 if (!(nd->flags & LOOKUP_RCU))
1514 path_put_conditional(&next, nd);
1515 break;
1517 if (!(nd->flags & LOOKUP_RCU))
1518 path_put(&nd->path);
1519 return_err:
1520 return err;
1523 static inline int path_walk_rcu(const char *name, struct nameidata *nd)
1525 current->total_link_count = 0;
1527 return link_path_walk(name, nd);
1530 static inline int path_walk_simple(const char *name, struct nameidata *nd)
1532 current->total_link_count = 0;
1534 return link_path_walk(name, nd);
1537 static int path_walk(const char *name, struct nameidata *nd)
1539 struct path save = nd->path;
1540 int result;
1542 current->total_link_count = 0;
1544 /* make sure the stuff we saved doesn't go away */
1545 path_get(&save);
1547 result = link_path_walk(name, nd);
1548 if (result == -ESTALE) {
1549 /* nd->path had been dropped */
1550 current->total_link_count = 0;
1551 nd->path = save;
1552 path_get(&nd->path);
1553 nd->flags |= LOOKUP_REVAL;
1554 result = link_path_walk(name, nd);
1557 path_put(&save);
1559 return result;
1562 static void path_finish_rcu(struct nameidata *nd)
1564 if (nd->flags & LOOKUP_RCU) {
1565 /* RCU dangling. Cancel it. */
1566 nd->flags &= ~LOOKUP_RCU;
1567 nd->root.mnt = NULL;
1568 rcu_read_unlock();
1569 br_read_unlock(vfsmount_lock);
1571 if (nd->file)
1572 fput(nd->file);
1575 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1577 int retval = 0;
1578 int fput_needed;
1579 struct file *file;
1581 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1582 nd->flags = flags | LOOKUP_RCU;
1583 nd->depth = 0;
1584 nd->root.mnt = NULL;
1585 nd->file = NULL;
1587 if (*name=='/') {
1588 struct fs_struct *fs = current->fs;
1589 unsigned seq;
1591 br_read_lock(vfsmount_lock);
1592 rcu_read_lock();
1594 do {
1595 seq = read_seqcount_begin(&fs->seq);
1596 nd->root = fs->root;
1597 nd->path = nd->root;
1598 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1599 } while (read_seqcount_retry(&fs->seq, seq));
1601 } else if (dfd == AT_FDCWD) {
1602 struct fs_struct *fs = current->fs;
1603 unsigned seq;
1605 br_read_lock(vfsmount_lock);
1606 rcu_read_lock();
1608 do {
1609 seq = read_seqcount_begin(&fs->seq);
1610 nd->path = fs->pwd;
1611 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1612 } while (read_seqcount_retry(&fs->seq, seq));
1614 } else {
1615 struct dentry *dentry;
1617 file = fget_light(dfd, &fput_needed);
1618 retval = -EBADF;
1619 if (!file)
1620 goto out_fail;
1622 dentry = file->f_path.dentry;
1624 retval = -ENOTDIR;
1625 if (!S_ISDIR(dentry->d_inode->i_mode))
1626 goto fput_fail;
1628 retval = file_permission(file, MAY_EXEC);
1629 if (retval)
1630 goto fput_fail;
1632 nd->path = file->f_path;
1633 if (fput_needed)
1634 nd->file = file;
1636 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1637 br_read_lock(vfsmount_lock);
1638 rcu_read_lock();
1640 nd->inode = nd->path.dentry->d_inode;
1641 return 0;
1643 fput_fail:
1644 fput_light(file, fput_needed);
1645 out_fail:
1646 return retval;
1649 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1651 int retval = 0;
1652 int fput_needed;
1653 struct file *file;
1655 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1656 nd->flags = flags;
1657 nd->depth = 0;
1658 nd->root.mnt = NULL;
1660 if (*name=='/') {
1661 set_root(nd);
1662 nd->path = nd->root;
1663 path_get(&nd->root);
1664 } else if (dfd == AT_FDCWD) {
1665 get_fs_pwd(current->fs, &nd->path);
1666 } else {
1667 struct dentry *dentry;
1669 file = fget_light(dfd, &fput_needed);
1670 retval = -EBADF;
1671 if (!file)
1672 goto out_fail;
1674 dentry = file->f_path.dentry;
1676 retval = -ENOTDIR;
1677 if (!S_ISDIR(dentry->d_inode->i_mode))
1678 goto fput_fail;
1680 retval = file_permission(file, MAY_EXEC);
1681 if (retval)
1682 goto fput_fail;
1684 nd->path = file->f_path;
1685 path_get(&file->f_path);
1687 fput_light(file, fput_needed);
1689 nd->inode = nd->path.dentry->d_inode;
1690 return 0;
1692 fput_fail:
1693 fput_light(file, fput_needed);
1694 out_fail:
1695 return retval;
1698 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1699 static int do_path_lookup(int dfd, const char *name,
1700 unsigned int flags, struct nameidata *nd)
1702 int retval;
1705 * Path walking is largely split up into 2 different synchronisation
1706 * schemes, rcu-walk and ref-walk (explained in
1707 * Documentation/filesystems/path-lookup.txt). These share much of the
1708 * path walk code, but some things particularly setup, cleanup, and
1709 * following mounts are sufficiently divergent that functions are
1710 * duplicated. Typically there is a function foo(), and its RCU
1711 * analogue, foo_rcu().
1713 * -ECHILD is the error number of choice (just to avoid clashes) that
1714 * is returned if some aspect of an rcu-walk fails. Such an error must
1715 * be handled by restarting a traditional ref-walk (which will always
1716 * be able to complete).
1718 retval = path_init_rcu(dfd, name, flags, nd);
1719 if (unlikely(retval))
1720 return retval;
1721 retval = path_walk_rcu(name, nd);
1722 path_finish_rcu(nd);
1723 if (nd->root.mnt) {
1724 path_put(&nd->root);
1725 nd->root.mnt = NULL;
1728 if (unlikely(retval == -ECHILD || retval == -ESTALE)) {
1729 /* slower, locked walk */
1730 if (retval == -ESTALE)
1731 flags |= LOOKUP_REVAL;
1732 retval = path_init(dfd, name, flags, nd);
1733 if (unlikely(retval))
1734 return retval;
1735 retval = path_walk(name, nd);
1736 if (nd->root.mnt) {
1737 path_put(&nd->root);
1738 nd->root.mnt = NULL;
1742 if (likely(!retval)) {
1743 if (unlikely(!audit_dummy_context())) {
1744 if (nd->path.dentry && nd->inode)
1745 audit_inode(name, nd->path.dentry);
1749 return retval;
1752 int path_lookup(const char *name, unsigned int flags,
1753 struct nameidata *nd)
1755 return do_path_lookup(AT_FDCWD, name, flags, nd);
1758 int kern_path(const char *name, unsigned int flags, struct path *path)
1760 struct nameidata nd;
1761 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1762 if (!res)
1763 *path = nd.path;
1764 return res;
1768 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1769 * @dentry: pointer to dentry of the base directory
1770 * @mnt: pointer to vfs mount of the base directory
1771 * @name: pointer to file name
1772 * @flags: lookup flags
1773 * @nd: pointer to nameidata
1775 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1776 const char *name, unsigned int flags,
1777 struct nameidata *nd)
1779 int retval;
1781 /* same as do_path_lookup */
1782 nd->last_type = LAST_ROOT;
1783 nd->flags = flags;
1784 nd->depth = 0;
1786 nd->path.dentry = dentry;
1787 nd->path.mnt = mnt;
1788 path_get(&nd->path);
1789 nd->root = nd->path;
1790 path_get(&nd->root);
1791 nd->inode = nd->path.dentry->d_inode;
1793 retval = path_walk(name, nd);
1794 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1795 nd->inode))
1796 audit_inode(name, nd->path.dentry);
1798 path_put(&nd->root);
1799 nd->root.mnt = NULL;
1801 return retval;
1804 static struct dentry *__lookup_hash(struct qstr *name,
1805 struct dentry *base, struct nameidata *nd)
1807 struct inode *inode = base->d_inode;
1808 struct dentry *dentry;
1809 int err;
1811 err = exec_permission(inode, 0);
1812 if (err)
1813 return ERR_PTR(err);
1816 * See if the low-level filesystem might want
1817 * to use its own hash..
1819 if (base->d_flags & DCACHE_OP_HASH) {
1820 err = base->d_op->d_hash(base, inode, name);
1821 dentry = ERR_PTR(err);
1822 if (err < 0)
1823 goto out;
1827 * Don't bother with __d_lookup: callers are for creat as
1828 * well as unlink, so a lot of the time it would cost
1829 * a double lookup.
1831 dentry = d_lookup(base, name);
1833 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1834 dentry = do_revalidate(dentry, nd);
1836 if (!dentry)
1837 dentry = d_alloc_and_lookup(base, name, nd);
1838 out:
1839 return dentry;
1843 * Restricted form of lookup. Doesn't follow links, single-component only,
1844 * needs parent already locked. Doesn't follow mounts.
1845 * SMP-safe.
1847 static struct dentry *lookup_hash(struct nameidata *nd)
1849 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1852 static int __lookup_one_len(const char *name, struct qstr *this,
1853 struct dentry *base, int len)
1855 unsigned long hash;
1856 unsigned int c;
1858 this->name = name;
1859 this->len = len;
1860 if (!len)
1861 return -EACCES;
1863 hash = init_name_hash();
1864 while (len--) {
1865 c = *(const unsigned char *)name++;
1866 if (c == '/' || c == '\0')
1867 return -EACCES;
1868 hash = partial_name_hash(c, hash);
1870 this->hash = end_name_hash(hash);
1871 return 0;
1875 * lookup_one_len - filesystem helper to lookup single pathname component
1876 * @name: pathname component to lookup
1877 * @base: base directory to lookup from
1878 * @len: maximum length @len should be interpreted to
1880 * Note that this routine is purely a helper for filesystem usage and should
1881 * not be called by generic code. Also note that by using this function the
1882 * nameidata argument is passed to the filesystem methods and a filesystem
1883 * using this helper needs to be prepared for that.
1885 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1887 int err;
1888 struct qstr this;
1890 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1892 err = __lookup_one_len(name, &this, base, len);
1893 if (err)
1894 return ERR_PTR(err);
1896 return __lookup_hash(&this, base, NULL);
1899 int user_path_at(int dfd, const char __user *name, unsigned flags,
1900 struct path *path)
1902 struct nameidata nd;
1903 char *tmp = getname(name);
1904 int err = PTR_ERR(tmp);
1905 if (!IS_ERR(tmp)) {
1907 BUG_ON(flags & LOOKUP_PARENT);
1909 err = do_path_lookup(dfd, tmp, flags, &nd);
1910 putname(tmp);
1911 if (!err)
1912 *path = nd.path;
1914 return err;
1917 static int user_path_parent(int dfd, const char __user *path,
1918 struct nameidata *nd, char **name)
1920 char *s = getname(path);
1921 int error;
1923 if (IS_ERR(s))
1924 return PTR_ERR(s);
1926 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1927 if (error)
1928 putname(s);
1929 else
1930 *name = s;
1932 return error;
1936 * It's inline, so penalty for filesystems that don't use sticky bit is
1937 * minimal.
1939 static inline int check_sticky(struct inode *dir, struct inode *inode)
1941 uid_t fsuid = current_fsuid();
1943 if (!(dir->i_mode & S_ISVTX))
1944 return 0;
1945 if (inode->i_uid == fsuid)
1946 return 0;
1947 if (dir->i_uid == fsuid)
1948 return 0;
1949 return !capable(CAP_FOWNER);
1953 * Check whether we can remove a link victim from directory dir, check
1954 * whether the type of victim is right.
1955 * 1. We can't do it if dir is read-only (done in permission())
1956 * 2. We should have write and exec permissions on dir
1957 * 3. We can't remove anything from append-only dir
1958 * 4. We can't do anything with immutable dir (done in permission())
1959 * 5. If the sticky bit on dir is set we should either
1960 * a. be owner of dir, or
1961 * b. be owner of victim, or
1962 * c. have CAP_FOWNER capability
1963 * 6. If the victim is append-only or immutable we can't do antyhing with
1964 * links pointing to it.
1965 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1966 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1967 * 9. We can't remove a root or mountpoint.
1968 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1969 * nfs_async_unlink().
1971 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1973 int error;
1975 if (!victim->d_inode)
1976 return -ENOENT;
1978 BUG_ON(victim->d_parent->d_inode != dir);
1979 audit_inode_child(victim, dir);
1981 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1982 if (error)
1983 return error;
1984 if (IS_APPEND(dir))
1985 return -EPERM;
1986 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1987 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1988 return -EPERM;
1989 if (isdir) {
1990 if (!S_ISDIR(victim->d_inode->i_mode))
1991 return -ENOTDIR;
1992 if (IS_ROOT(victim))
1993 return -EBUSY;
1994 } else if (S_ISDIR(victim->d_inode->i_mode))
1995 return -EISDIR;
1996 if (IS_DEADDIR(dir))
1997 return -ENOENT;
1998 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1999 return -EBUSY;
2000 return 0;
2003 /* Check whether we can create an object with dentry child in directory
2004 * dir.
2005 * 1. We can't do it if child already exists (open has special treatment for
2006 * this case, but since we are inlined it's OK)
2007 * 2. We can't do it if dir is read-only (done in permission())
2008 * 3. We should have write and exec permissions on dir
2009 * 4. We can't do it if dir is immutable (done in permission())
2011 static inline int may_create(struct inode *dir, struct dentry *child)
2013 if (child->d_inode)
2014 return -EEXIST;
2015 if (IS_DEADDIR(dir))
2016 return -ENOENT;
2017 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2021 * p1 and p2 should be directories on the same fs.
2023 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2025 struct dentry *p;
2027 if (p1 == p2) {
2028 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2029 return NULL;
2032 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2034 p = d_ancestor(p2, p1);
2035 if (p) {
2036 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2037 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2038 return p;
2041 p = d_ancestor(p1, p2);
2042 if (p) {
2043 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2044 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2045 return p;
2048 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2049 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2050 return NULL;
2053 void unlock_rename(struct dentry *p1, struct dentry *p2)
2055 mutex_unlock(&p1->d_inode->i_mutex);
2056 if (p1 != p2) {
2057 mutex_unlock(&p2->d_inode->i_mutex);
2058 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2062 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
2063 struct nameidata *nd)
2065 int error = may_create(dir, dentry);
2067 if (error)
2068 return error;
2070 if (!dir->i_op->create)
2071 return -EACCES; /* shouldn't it be ENOSYS? */
2072 mode &= S_IALLUGO;
2073 mode |= S_IFREG;
2074 error = security_inode_create(dir, dentry, mode);
2075 if (error)
2076 return error;
2077 error = dir->i_op->create(dir, dentry, mode, nd);
2078 if (!error)
2079 fsnotify_create(dir, dentry);
2080 return error;
2083 int may_open(struct path *path, int acc_mode, int flag)
2085 struct dentry *dentry = path->dentry;
2086 struct inode *inode = dentry->d_inode;
2087 int error;
2089 if (!inode)
2090 return -ENOENT;
2092 switch (inode->i_mode & S_IFMT) {
2093 case S_IFLNK:
2094 return -ELOOP;
2095 case S_IFDIR:
2096 if (acc_mode & MAY_WRITE)
2097 return -EISDIR;
2098 break;
2099 case S_IFBLK:
2100 case S_IFCHR:
2101 if (path->mnt->mnt_flags & MNT_NODEV)
2102 return -EACCES;
2103 /*FALLTHRU*/
2104 case S_IFIFO:
2105 case S_IFSOCK:
2106 flag &= ~O_TRUNC;
2107 break;
2110 error = inode_permission(inode, acc_mode);
2111 if (error)
2112 return error;
2115 * An append-only file must be opened in append mode for writing.
2117 if (IS_APPEND(inode)) {
2118 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2119 return -EPERM;
2120 if (flag & O_TRUNC)
2121 return -EPERM;
2124 /* O_NOATIME can only be set by the owner or superuser */
2125 if (flag & O_NOATIME && !is_owner_or_cap(inode))
2126 return -EPERM;
2129 * Ensure there are no outstanding leases on the file.
2131 return break_lease(inode, flag);
2134 static int handle_truncate(struct file *filp)
2136 struct path *path = &filp->f_path;
2137 struct inode *inode = path->dentry->d_inode;
2138 int error = get_write_access(inode);
2139 if (error)
2140 return error;
2142 * Refuse to truncate files with mandatory locks held on them.
2144 error = locks_verify_locked(inode);
2145 if (!error)
2146 error = security_path_truncate(path);
2147 if (!error) {
2148 error = do_truncate(path->dentry, 0,
2149 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2150 filp);
2152 put_write_access(inode);
2153 return error;
2157 * Be careful about ever adding any more callers of this
2158 * function. Its flags must be in the namei format, not
2159 * what get passed to sys_open().
2161 static int __open_namei_create(struct nameidata *nd, struct path *path,
2162 int open_flag, int mode)
2164 int error;
2165 struct dentry *dir = nd->path.dentry;
2167 if (!IS_POSIXACL(dir->d_inode))
2168 mode &= ~current_umask();
2169 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
2170 if (error)
2171 goto out_unlock;
2172 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
2173 out_unlock:
2174 mutex_unlock(&dir->d_inode->i_mutex);
2175 dput(nd->path.dentry);
2176 nd->path.dentry = path->dentry;
2178 if (error)
2179 return error;
2180 /* Don't check for write permission, don't truncate */
2181 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
2185 * Note that while the flag value (low two bits) for sys_open means:
2186 * 00 - read-only
2187 * 01 - write-only
2188 * 10 - read-write
2189 * 11 - special
2190 * it is changed into
2191 * 00 - no permissions needed
2192 * 01 - read-permission
2193 * 10 - write-permission
2194 * 11 - read-write
2195 * for the internal routines (ie open_namei()/follow_link() etc)
2196 * This is more logical, and also allows the 00 "no perm needed"
2197 * to be used for symlinks (where the permissions are checked
2198 * later).
2201 static inline int open_to_namei_flags(int flag)
2203 if ((flag+1) & O_ACCMODE)
2204 flag++;
2205 return flag;
2208 static int open_will_truncate(int flag, struct inode *inode)
2211 * We'll never write to the fs underlying
2212 * a device file.
2214 if (special_file(inode->i_mode))
2215 return 0;
2216 return (flag & O_TRUNC);
2219 static struct file *finish_open(struct nameidata *nd,
2220 int open_flag, int acc_mode)
2222 struct file *filp;
2223 int will_truncate;
2224 int error;
2226 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
2227 if (will_truncate) {
2228 error = mnt_want_write(nd->path.mnt);
2229 if (error)
2230 goto exit;
2232 error = may_open(&nd->path, acc_mode, open_flag);
2233 if (error) {
2234 if (will_truncate)
2235 mnt_drop_write(nd->path.mnt);
2236 goto exit;
2238 filp = nameidata_to_filp(nd);
2239 if (!IS_ERR(filp)) {
2240 error = ima_file_check(filp, acc_mode);
2241 if (error) {
2242 fput(filp);
2243 filp = ERR_PTR(error);
2246 if (!IS_ERR(filp)) {
2247 if (will_truncate) {
2248 error = handle_truncate(filp);
2249 if (error) {
2250 fput(filp);
2251 filp = ERR_PTR(error);
2256 * It is now safe to drop the mnt write
2257 * because the filp has had a write taken
2258 * on its behalf.
2260 if (will_truncate)
2261 mnt_drop_write(nd->path.mnt);
2262 path_put(&nd->path);
2263 return filp;
2265 exit:
2266 if (!IS_ERR(nd->intent.open.file))
2267 release_open_intent(nd);
2268 path_put(&nd->path);
2269 return ERR_PTR(error);
2273 * Handle O_CREAT case for do_filp_open
2275 static struct file *do_last(struct nameidata *nd, struct path *path,
2276 int open_flag, int acc_mode,
2277 int mode, const char *pathname)
2279 struct dentry *dir = nd->path.dentry;
2280 struct file *filp;
2281 int error = -EISDIR;
2283 switch (nd->last_type) {
2284 case LAST_DOTDOT:
2285 follow_dotdot(nd);
2286 dir = nd->path.dentry;
2287 case LAST_DOT:
2288 if (need_reval_dot(dir)) {
2289 int status = d_revalidate(nd->path.dentry, nd);
2290 if (!status)
2291 status = -ESTALE;
2292 if (status < 0) {
2293 error = status;
2294 goto exit;
2297 /* fallthrough */
2298 case LAST_ROOT:
2299 goto exit;
2300 case LAST_BIND:
2301 audit_inode(pathname, dir);
2302 goto ok;
2305 /* trailing slashes? */
2306 if (nd->last.name[nd->last.len])
2307 goto exit;
2309 mutex_lock(&dir->d_inode->i_mutex);
2311 path->dentry = lookup_hash(nd);
2312 path->mnt = nd->path.mnt;
2314 error = PTR_ERR(path->dentry);
2315 if (IS_ERR(path->dentry)) {
2316 mutex_unlock(&dir->d_inode->i_mutex);
2317 goto exit;
2320 if (IS_ERR(nd->intent.open.file)) {
2321 error = PTR_ERR(nd->intent.open.file);
2322 goto exit_mutex_unlock;
2325 /* Negative dentry, just create the file */
2326 if (!path->dentry->d_inode) {
2328 * This write is needed to ensure that a
2329 * ro->rw transition does not occur between
2330 * the time when the file is created and when
2331 * a permanent write count is taken through
2332 * the 'struct file' in nameidata_to_filp().
2334 error = mnt_want_write(nd->path.mnt);
2335 if (error)
2336 goto exit_mutex_unlock;
2337 error = __open_namei_create(nd, path, open_flag, mode);
2338 if (error) {
2339 mnt_drop_write(nd->path.mnt);
2340 goto exit;
2342 filp = nameidata_to_filp(nd);
2343 mnt_drop_write(nd->path.mnt);
2344 path_put(&nd->path);
2345 if (!IS_ERR(filp)) {
2346 error = ima_file_check(filp, acc_mode);
2347 if (error) {
2348 fput(filp);
2349 filp = ERR_PTR(error);
2352 return filp;
2356 * It already exists.
2358 mutex_unlock(&dir->d_inode->i_mutex);
2359 audit_inode(pathname, path->dentry);
2361 error = -EEXIST;
2362 if (open_flag & O_EXCL)
2363 goto exit_dput;
2365 error = follow_managed(path, nd->flags);
2366 if (error < 0)
2367 goto exit_dput;
2369 error = -ENOENT;
2370 if (!path->dentry->d_inode)
2371 goto exit_dput;
2373 if (path->dentry->d_inode->i_op->follow_link)
2374 return NULL;
2376 path_to_nameidata(path, nd);
2377 nd->inode = path->dentry->d_inode;
2378 error = -EISDIR;
2379 if (S_ISDIR(nd->inode->i_mode))
2380 goto exit;
2382 filp = finish_open(nd, open_flag, acc_mode);
2383 return filp;
2385 exit_mutex_unlock:
2386 mutex_unlock(&dir->d_inode->i_mutex);
2387 exit_dput:
2388 path_put_conditional(path, nd);
2389 exit:
2390 if (!IS_ERR(nd->intent.open.file))
2391 release_open_intent(nd);
2392 path_put(&nd->path);
2393 return ERR_PTR(error);
2397 * Note that the low bits of the passed in "open_flag"
2398 * are not the same as in the local variable "flag". See
2399 * open_to_namei_flags() for more details.
2401 struct file *do_filp_open(int dfd, const char *pathname,
2402 int open_flag, int mode, int acc_mode)
2404 struct file *filp;
2405 struct nameidata nd;
2406 int error;
2407 struct path path;
2408 int count = 0;
2409 int flag = open_to_namei_flags(open_flag);
2410 int flags;
2412 if (!(open_flag & O_CREAT))
2413 mode = 0;
2415 /* Must never be set by userspace */
2416 open_flag &= ~FMODE_NONOTIFY;
2419 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
2420 * check for O_DSYNC if the need any syncing at all we enforce it's
2421 * always set instead of having to deal with possibly weird behaviour
2422 * for malicious applications setting only __O_SYNC.
2424 if (open_flag & __O_SYNC)
2425 open_flag |= O_DSYNC;
2427 if (!acc_mode)
2428 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
2430 /* O_TRUNC implies we need access checks for write permissions */
2431 if (open_flag & O_TRUNC)
2432 acc_mode |= MAY_WRITE;
2434 /* Allow the LSM permission hook to distinguish append
2435 access from general write access. */
2436 if (open_flag & O_APPEND)
2437 acc_mode |= MAY_APPEND;
2439 flags = LOOKUP_OPEN;
2440 if (open_flag & O_CREAT) {
2441 flags |= LOOKUP_CREATE;
2442 if (open_flag & O_EXCL)
2443 flags |= LOOKUP_EXCL;
2445 if (open_flag & O_DIRECTORY)
2446 flags |= LOOKUP_DIRECTORY;
2447 if (!(open_flag & O_NOFOLLOW))
2448 flags |= LOOKUP_FOLLOW;
2450 filp = get_empty_filp();
2451 if (!filp)
2452 return ERR_PTR(-ENFILE);
2454 filp->f_flags = open_flag;
2455 nd.intent.open.file = filp;
2456 nd.intent.open.flags = flag;
2457 nd.intent.open.create_mode = mode;
2459 if (open_flag & O_CREAT)
2460 goto creat;
2462 /* !O_CREAT, simple open */
2463 error = do_path_lookup(dfd, pathname, flags, &nd);
2464 if (unlikely(error))
2465 goto out_filp;
2466 error = -ELOOP;
2467 if (!(nd.flags & LOOKUP_FOLLOW)) {
2468 if (nd.inode->i_op->follow_link)
2469 goto out_path;
2471 error = -ENOTDIR;
2472 if (nd.flags & LOOKUP_DIRECTORY) {
2473 if (!nd.inode->i_op->lookup)
2474 goto out_path;
2476 audit_inode(pathname, nd.path.dentry);
2477 filp = finish_open(&nd, open_flag, acc_mode);
2478 return filp;
2480 creat:
2481 /* OK, have to create the file. Find the parent. */
2482 error = path_init_rcu(dfd, pathname,
2483 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2484 if (error)
2485 goto out_filp;
2486 error = path_walk_rcu(pathname, &nd);
2487 path_finish_rcu(&nd);
2488 if (unlikely(error == -ECHILD || error == -ESTALE)) {
2489 /* slower, locked walk */
2490 if (error == -ESTALE) {
2491 reval:
2492 flags |= LOOKUP_REVAL;
2494 error = path_init(dfd, pathname,
2495 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2496 if (error)
2497 goto out_filp;
2499 error = path_walk_simple(pathname, &nd);
2501 if (unlikely(error))
2502 goto out_filp;
2503 if (unlikely(!audit_dummy_context()))
2504 audit_inode(pathname, nd.path.dentry);
2507 * We have the parent and last component.
2509 nd.flags = flags;
2510 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2511 while (unlikely(!filp)) { /* trailing symlink */
2512 struct path link = path;
2513 struct inode *linki = link.dentry->d_inode;
2514 void *cookie;
2515 error = -ELOOP;
2516 if (!(nd.flags & LOOKUP_FOLLOW))
2517 goto exit_dput;
2518 if (count++ == 32)
2519 goto exit_dput;
2521 * This is subtle. Instead of calling do_follow_link() we do
2522 * the thing by hands. The reason is that this way we have zero
2523 * link_count and path_walk() (called from ->follow_link)
2524 * honoring LOOKUP_PARENT. After that we have the parent and
2525 * last component, i.e. we are in the same situation as after
2526 * the first path_walk(). Well, almost - if the last component
2527 * is normal we get its copy stored in nd->last.name and we will
2528 * have to putname() it when we are done. Procfs-like symlinks
2529 * just set LAST_BIND.
2531 nd.flags |= LOOKUP_PARENT;
2532 error = security_inode_follow_link(link.dentry, &nd);
2533 if (error)
2534 goto exit_dput;
2535 error = __do_follow_link(&link, &nd, &cookie);
2536 if (unlikely(error)) {
2537 if (!IS_ERR(cookie) && linki->i_op->put_link)
2538 linki->i_op->put_link(link.dentry, &nd, cookie);
2539 /* nd.path had been dropped */
2540 nd.path = link;
2541 goto out_path;
2543 nd.flags &= ~LOOKUP_PARENT;
2544 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2545 if (linki->i_op->put_link)
2546 linki->i_op->put_link(link.dentry, &nd, cookie);
2547 path_put(&link);
2549 out:
2550 if (nd.root.mnt)
2551 path_put(&nd.root);
2552 if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL))
2553 goto reval;
2554 return filp;
2556 exit_dput:
2557 path_put_conditional(&path, &nd);
2558 out_path:
2559 path_put(&nd.path);
2560 out_filp:
2561 if (!IS_ERR(nd.intent.open.file))
2562 release_open_intent(&nd);
2563 filp = ERR_PTR(error);
2564 goto out;
2568 * filp_open - open file and return file pointer
2570 * @filename: path to open
2571 * @flags: open flags as per the open(2) second argument
2572 * @mode: mode for the new file if O_CREAT is set, else ignored
2574 * This is the helper to open a file from kernelspace if you really
2575 * have to. But in generally you should not do this, so please move
2576 * along, nothing to see here..
2578 struct file *filp_open(const char *filename, int flags, int mode)
2580 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
2582 EXPORT_SYMBOL(filp_open);
2585 * lookup_create - lookup a dentry, creating it if it doesn't exist
2586 * @nd: nameidata info
2587 * @is_dir: directory flag
2589 * Simple function to lookup and return a dentry and create it
2590 * if it doesn't exist. Is SMP-safe.
2592 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2594 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2596 struct dentry *dentry = ERR_PTR(-EEXIST);
2598 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2600 * Yucky last component or no last component at all?
2601 * (foo/., foo/.., /////)
2603 if (nd->last_type != LAST_NORM)
2604 goto fail;
2605 nd->flags &= ~LOOKUP_PARENT;
2606 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2607 nd->intent.open.flags = O_EXCL;
2610 * Do the final lookup.
2612 dentry = lookup_hash(nd);
2613 if (IS_ERR(dentry))
2614 goto fail;
2616 if (dentry->d_inode)
2617 goto eexist;
2619 * Special case - lookup gave negative, but... we had foo/bar/
2620 * From the vfs_mknod() POV we just have a negative dentry -
2621 * all is fine. Let's be bastards - you had / on the end, you've
2622 * been asking for (non-existent) directory. -ENOENT for you.
2624 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2625 dput(dentry);
2626 dentry = ERR_PTR(-ENOENT);
2628 return dentry;
2629 eexist:
2630 dput(dentry);
2631 dentry = ERR_PTR(-EEXIST);
2632 fail:
2633 return dentry;
2635 EXPORT_SYMBOL_GPL(lookup_create);
2637 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2639 int error = may_create(dir, dentry);
2641 if (error)
2642 return error;
2644 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2645 return -EPERM;
2647 if (!dir->i_op->mknod)
2648 return -EPERM;
2650 error = devcgroup_inode_mknod(mode, dev);
2651 if (error)
2652 return error;
2654 error = security_inode_mknod(dir, dentry, mode, dev);
2655 if (error)
2656 return error;
2658 error = dir->i_op->mknod(dir, dentry, mode, dev);
2659 if (!error)
2660 fsnotify_create(dir, dentry);
2661 return error;
2664 static int may_mknod(mode_t mode)
2666 switch (mode & S_IFMT) {
2667 case S_IFREG:
2668 case S_IFCHR:
2669 case S_IFBLK:
2670 case S_IFIFO:
2671 case S_IFSOCK:
2672 case 0: /* zero mode translates to S_IFREG */
2673 return 0;
2674 case S_IFDIR:
2675 return -EPERM;
2676 default:
2677 return -EINVAL;
2681 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2682 unsigned, dev)
2684 int error;
2685 char *tmp;
2686 struct dentry *dentry;
2687 struct nameidata nd;
2689 if (S_ISDIR(mode))
2690 return -EPERM;
2692 error = user_path_parent(dfd, filename, &nd, &tmp);
2693 if (error)
2694 return error;
2696 dentry = lookup_create(&nd, 0);
2697 if (IS_ERR(dentry)) {
2698 error = PTR_ERR(dentry);
2699 goto out_unlock;
2701 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2702 mode &= ~current_umask();
2703 error = may_mknod(mode);
2704 if (error)
2705 goto out_dput;
2706 error = mnt_want_write(nd.path.mnt);
2707 if (error)
2708 goto out_dput;
2709 error = security_path_mknod(&nd.path, dentry, mode, dev);
2710 if (error)
2711 goto out_drop_write;
2712 switch (mode & S_IFMT) {
2713 case 0: case S_IFREG:
2714 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2715 break;
2716 case S_IFCHR: case S_IFBLK:
2717 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2718 new_decode_dev(dev));
2719 break;
2720 case S_IFIFO: case S_IFSOCK:
2721 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2722 break;
2724 out_drop_write:
2725 mnt_drop_write(nd.path.mnt);
2726 out_dput:
2727 dput(dentry);
2728 out_unlock:
2729 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2730 path_put(&nd.path);
2731 putname(tmp);
2733 return error;
2736 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2738 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2741 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2743 int error = may_create(dir, dentry);
2745 if (error)
2746 return error;
2748 if (!dir->i_op->mkdir)
2749 return -EPERM;
2751 mode &= (S_IRWXUGO|S_ISVTX);
2752 error = security_inode_mkdir(dir, dentry, mode);
2753 if (error)
2754 return error;
2756 error = dir->i_op->mkdir(dir, dentry, mode);
2757 if (!error)
2758 fsnotify_mkdir(dir, dentry);
2759 return error;
2762 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2764 int error = 0;
2765 char * tmp;
2766 struct dentry *dentry;
2767 struct nameidata nd;
2769 error = user_path_parent(dfd, pathname, &nd, &tmp);
2770 if (error)
2771 goto out_err;
2773 dentry = lookup_create(&nd, 1);
2774 error = PTR_ERR(dentry);
2775 if (IS_ERR(dentry))
2776 goto out_unlock;
2778 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2779 mode &= ~current_umask();
2780 error = mnt_want_write(nd.path.mnt);
2781 if (error)
2782 goto out_dput;
2783 error = security_path_mkdir(&nd.path, dentry, mode);
2784 if (error)
2785 goto out_drop_write;
2786 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2787 out_drop_write:
2788 mnt_drop_write(nd.path.mnt);
2789 out_dput:
2790 dput(dentry);
2791 out_unlock:
2792 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2793 path_put(&nd.path);
2794 putname(tmp);
2795 out_err:
2796 return error;
2799 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2801 return sys_mkdirat(AT_FDCWD, pathname, mode);
2805 * We try to drop the dentry early: we should have
2806 * a usage count of 2 if we're the only user of this
2807 * dentry, and if that is true (possibly after pruning
2808 * the dcache), then we drop the dentry now.
2810 * A low-level filesystem can, if it choses, legally
2811 * do a
2813 * if (!d_unhashed(dentry))
2814 * return -EBUSY;
2816 * if it cannot handle the case of removing a directory
2817 * that is still in use by something else..
2819 void dentry_unhash(struct dentry *dentry)
2821 dget(dentry);
2822 shrink_dcache_parent(dentry);
2823 spin_lock(&dentry->d_lock);
2824 if (dentry->d_count == 2)
2825 __d_drop(dentry);
2826 spin_unlock(&dentry->d_lock);
2829 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2831 int error = may_delete(dir, dentry, 1);
2833 if (error)
2834 return error;
2836 if (!dir->i_op->rmdir)
2837 return -EPERM;
2839 mutex_lock(&dentry->d_inode->i_mutex);
2840 dentry_unhash(dentry);
2841 if (d_mountpoint(dentry))
2842 error = -EBUSY;
2843 else {
2844 error = security_inode_rmdir(dir, dentry);
2845 if (!error) {
2846 error = dir->i_op->rmdir(dir, dentry);
2847 if (!error) {
2848 dentry->d_inode->i_flags |= S_DEAD;
2849 dont_mount(dentry);
2853 mutex_unlock(&dentry->d_inode->i_mutex);
2854 if (!error) {
2855 d_delete(dentry);
2857 dput(dentry);
2859 return error;
2862 static long do_rmdir(int dfd, const char __user *pathname)
2864 int error = 0;
2865 char * name;
2866 struct dentry *dentry;
2867 struct nameidata nd;
2869 error = user_path_parent(dfd, pathname, &nd, &name);
2870 if (error)
2871 return error;
2873 switch(nd.last_type) {
2874 case LAST_DOTDOT:
2875 error = -ENOTEMPTY;
2876 goto exit1;
2877 case LAST_DOT:
2878 error = -EINVAL;
2879 goto exit1;
2880 case LAST_ROOT:
2881 error = -EBUSY;
2882 goto exit1;
2885 nd.flags &= ~LOOKUP_PARENT;
2887 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2888 dentry = lookup_hash(&nd);
2889 error = PTR_ERR(dentry);
2890 if (IS_ERR(dentry))
2891 goto exit2;
2892 error = mnt_want_write(nd.path.mnt);
2893 if (error)
2894 goto exit3;
2895 error = security_path_rmdir(&nd.path, dentry);
2896 if (error)
2897 goto exit4;
2898 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2899 exit4:
2900 mnt_drop_write(nd.path.mnt);
2901 exit3:
2902 dput(dentry);
2903 exit2:
2904 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2905 exit1:
2906 path_put(&nd.path);
2907 putname(name);
2908 return error;
2911 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2913 return do_rmdir(AT_FDCWD, pathname);
2916 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2918 int error = may_delete(dir, dentry, 0);
2920 if (error)
2921 return error;
2923 if (!dir->i_op->unlink)
2924 return -EPERM;
2926 mutex_lock(&dentry->d_inode->i_mutex);
2927 if (d_mountpoint(dentry))
2928 error = -EBUSY;
2929 else {
2930 error = security_inode_unlink(dir, dentry);
2931 if (!error) {
2932 error = dir->i_op->unlink(dir, dentry);
2933 if (!error)
2934 dont_mount(dentry);
2937 mutex_unlock(&dentry->d_inode->i_mutex);
2939 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2940 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2941 fsnotify_link_count(dentry->d_inode);
2942 d_delete(dentry);
2945 return error;
2949 * Make sure that the actual truncation of the file will occur outside its
2950 * directory's i_mutex. Truncate can take a long time if there is a lot of
2951 * writeout happening, and we don't want to prevent access to the directory
2952 * while waiting on the I/O.
2954 static long do_unlinkat(int dfd, const char __user *pathname)
2956 int error;
2957 char *name;
2958 struct dentry *dentry;
2959 struct nameidata nd;
2960 struct inode *inode = NULL;
2962 error = user_path_parent(dfd, pathname, &nd, &name);
2963 if (error)
2964 return error;
2966 error = -EISDIR;
2967 if (nd.last_type != LAST_NORM)
2968 goto exit1;
2970 nd.flags &= ~LOOKUP_PARENT;
2972 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2973 dentry = lookup_hash(&nd);
2974 error = PTR_ERR(dentry);
2975 if (!IS_ERR(dentry)) {
2976 /* Why not before? Because we want correct error value */
2977 if (nd.last.name[nd.last.len])
2978 goto slashes;
2979 inode = dentry->d_inode;
2980 if (inode)
2981 ihold(inode);
2982 error = mnt_want_write(nd.path.mnt);
2983 if (error)
2984 goto exit2;
2985 error = security_path_unlink(&nd.path, dentry);
2986 if (error)
2987 goto exit3;
2988 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2989 exit3:
2990 mnt_drop_write(nd.path.mnt);
2991 exit2:
2992 dput(dentry);
2994 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2995 if (inode)
2996 iput(inode); /* truncate the inode here */
2997 exit1:
2998 path_put(&nd.path);
2999 putname(name);
3000 return error;
3002 slashes:
3003 error = !dentry->d_inode ? -ENOENT :
3004 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3005 goto exit2;
3008 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3010 if ((flag & ~AT_REMOVEDIR) != 0)
3011 return -EINVAL;
3013 if (flag & AT_REMOVEDIR)
3014 return do_rmdir(dfd, pathname);
3016 return do_unlinkat(dfd, pathname);
3019 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3021 return do_unlinkat(AT_FDCWD, pathname);
3024 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3026 int error = may_create(dir, dentry);
3028 if (error)
3029 return error;
3031 if (!dir->i_op->symlink)
3032 return -EPERM;
3034 error = security_inode_symlink(dir, dentry, oldname);
3035 if (error)
3036 return error;
3038 error = dir->i_op->symlink(dir, dentry, oldname);
3039 if (!error)
3040 fsnotify_create(dir, dentry);
3041 return error;
3044 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3045 int, newdfd, const char __user *, newname)
3047 int error;
3048 char *from;
3049 char *to;
3050 struct dentry *dentry;
3051 struct nameidata nd;
3053 from = getname(oldname);
3054 if (IS_ERR(from))
3055 return PTR_ERR(from);
3057 error = user_path_parent(newdfd, newname, &nd, &to);
3058 if (error)
3059 goto out_putname;
3061 dentry = lookup_create(&nd, 0);
3062 error = PTR_ERR(dentry);
3063 if (IS_ERR(dentry))
3064 goto out_unlock;
3066 error = mnt_want_write(nd.path.mnt);
3067 if (error)
3068 goto out_dput;
3069 error = security_path_symlink(&nd.path, dentry, from);
3070 if (error)
3071 goto out_drop_write;
3072 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
3073 out_drop_write:
3074 mnt_drop_write(nd.path.mnt);
3075 out_dput:
3076 dput(dentry);
3077 out_unlock:
3078 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3079 path_put(&nd.path);
3080 putname(to);
3081 out_putname:
3082 putname(from);
3083 return error;
3086 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3088 return sys_symlinkat(oldname, AT_FDCWD, newname);
3091 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3093 struct inode *inode = old_dentry->d_inode;
3094 int error;
3096 if (!inode)
3097 return -ENOENT;
3099 error = may_create(dir, new_dentry);
3100 if (error)
3101 return error;
3103 if (dir->i_sb != inode->i_sb)
3104 return -EXDEV;
3107 * A link to an append-only or immutable file cannot be created.
3109 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3110 return -EPERM;
3111 if (!dir->i_op->link)
3112 return -EPERM;
3113 if (S_ISDIR(inode->i_mode))
3114 return -EPERM;
3116 error = security_inode_link(old_dentry, dir, new_dentry);
3117 if (error)
3118 return error;
3120 mutex_lock(&inode->i_mutex);
3121 error = dir->i_op->link(old_dentry, dir, new_dentry);
3122 mutex_unlock(&inode->i_mutex);
3123 if (!error)
3124 fsnotify_link(dir, inode, new_dentry);
3125 return error;
3129 * Hardlinks are often used in delicate situations. We avoid
3130 * security-related surprises by not following symlinks on the
3131 * newname. --KAB
3133 * We don't follow them on the oldname either to be compatible
3134 * with linux 2.0, and to avoid hard-linking to directories
3135 * and other special files. --ADM
3137 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3138 int, newdfd, const char __user *, newname, int, flags)
3140 struct dentry *new_dentry;
3141 struct nameidata nd;
3142 struct path old_path;
3143 int error;
3144 char *to;
3146 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
3147 return -EINVAL;
3149 error = user_path_at(olddfd, oldname,
3150 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
3151 &old_path);
3152 if (error)
3153 return error;
3155 error = user_path_parent(newdfd, newname, &nd, &to);
3156 if (error)
3157 goto out;
3158 error = -EXDEV;
3159 if (old_path.mnt != nd.path.mnt)
3160 goto out_release;
3161 new_dentry = lookup_create(&nd, 0);
3162 error = PTR_ERR(new_dentry);
3163 if (IS_ERR(new_dentry))
3164 goto out_unlock;
3165 error = mnt_want_write(nd.path.mnt);
3166 if (error)
3167 goto out_dput;
3168 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3169 if (error)
3170 goto out_drop_write;
3171 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3172 out_drop_write:
3173 mnt_drop_write(nd.path.mnt);
3174 out_dput:
3175 dput(new_dentry);
3176 out_unlock:
3177 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3178 out_release:
3179 path_put(&nd.path);
3180 putname(to);
3181 out:
3182 path_put(&old_path);
3184 return error;
3187 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3189 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3193 * The worst of all namespace operations - renaming directory. "Perverted"
3194 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3195 * Problems:
3196 * a) we can get into loop creation. Check is done in is_subdir().
3197 * b) race potential - two innocent renames can create a loop together.
3198 * That's where 4.4 screws up. Current fix: serialization on
3199 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3200 * story.
3201 * c) we have to lock _three_ objects - parents and victim (if it exists).
3202 * And that - after we got ->i_mutex on parents (until then we don't know
3203 * whether the target exists). Solution: try to be smart with locking
3204 * order for inodes. We rely on the fact that tree topology may change
3205 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3206 * move will be locked. Thus we can rank directories by the tree
3207 * (ancestors first) and rank all non-directories after them.
3208 * That works since everybody except rename does "lock parent, lookup,
3209 * lock child" and rename is under ->s_vfs_rename_mutex.
3210 * HOWEVER, it relies on the assumption that any object with ->lookup()
3211 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3212 * we'd better make sure that there's no link(2) for them.
3213 * d) some filesystems don't support opened-but-unlinked directories,
3214 * either because of layout or because they are not ready to deal with
3215 * all cases correctly. The latter will be fixed (taking this sort of
3216 * stuff into VFS), but the former is not going away. Solution: the same
3217 * trick as in rmdir().
3218 * e) conversion from fhandle to dentry may come in the wrong moment - when
3219 * we are removing the target. Solution: we will have to grab ->i_mutex
3220 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3221 * ->i_mutex on parents, which works but leads to some truly excessive
3222 * locking].
3224 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3225 struct inode *new_dir, struct dentry *new_dentry)
3227 int error = 0;
3228 struct inode *target;
3231 * If we are going to change the parent - check write permissions,
3232 * we'll need to flip '..'.
3234 if (new_dir != old_dir) {
3235 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3236 if (error)
3237 return error;
3240 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3241 if (error)
3242 return error;
3244 target = new_dentry->d_inode;
3245 if (target)
3246 mutex_lock(&target->i_mutex);
3247 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3248 error = -EBUSY;
3249 else {
3250 if (target)
3251 dentry_unhash(new_dentry);
3252 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3254 if (target) {
3255 if (!error) {
3256 target->i_flags |= S_DEAD;
3257 dont_mount(new_dentry);
3259 mutex_unlock(&target->i_mutex);
3260 if (d_unhashed(new_dentry))
3261 d_rehash(new_dentry);
3262 dput(new_dentry);
3264 if (!error)
3265 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3266 d_move(old_dentry,new_dentry);
3267 return error;
3270 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3271 struct inode *new_dir, struct dentry *new_dentry)
3273 struct inode *target;
3274 int error;
3276 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3277 if (error)
3278 return error;
3280 dget(new_dentry);
3281 target = new_dentry->d_inode;
3282 if (target)
3283 mutex_lock(&target->i_mutex);
3284 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3285 error = -EBUSY;
3286 else
3287 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3288 if (!error) {
3289 if (target)
3290 dont_mount(new_dentry);
3291 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3292 d_move(old_dentry, new_dentry);
3294 if (target)
3295 mutex_unlock(&target->i_mutex);
3296 dput(new_dentry);
3297 return error;
3300 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3301 struct inode *new_dir, struct dentry *new_dentry)
3303 int error;
3304 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3305 const unsigned char *old_name;
3307 if (old_dentry->d_inode == new_dentry->d_inode)
3308 return 0;
3310 error = may_delete(old_dir, old_dentry, is_dir);
3311 if (error)
3312 return error;
3314 if (!new_dentry->d_inode)
3315 error = may_create(new_dir, new_dentry);
3316 else
3317 error = may_delete(new_dir, new_dentry, is_dir);
3318 if (error)
3319 return error;
3321 if (!old_dir->i_op->rename)
3322 return -EPERM;
3324 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3326 if (is_dir)
3327 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3328 else
3329 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3330 if (!error)
3331 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3332 new_dentry->d_inode, old_dentry);
3333 fsnotify_oldname_free(old_name);
3335 return error;
3338 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3339 int, newdfd, const char __user *, newname)
3341 struct dentry *old_dir, *new_dir;
3342 struct dentry *old_dentry, *new_dentry;
3343 struct dentry *trap;
3344 struct nameidata oldnd, newnd;
3345 char *from;
3346 char *to;
3347 int error;
3349 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3350 if (error)
3351 goto exit;
3353 error = user_path_parent(newdfd, newname, &newnd, &to);
3354 if (error)
3355 goto exit1;
3357 error = -EXDEV;
3358 if (oldnd.path.mnt != newnd.path.mnt)
3359 goto exit2;
3361 old_dir = oldnd.path.dentry;
3362 error = -EBUSY;
3363 if (oldnd.last_type != LAST_NORM)
3364 goto exit2;
3366 new_dir = newnd.path.dentry;
3367 if (newnd.last_type != LAST_NORM)
3368 goto exit2;
3370 oldnd.flags &= ~LOOKUP_PARENT;
3371 newnd.flags &= ~LOOKUP_PARENT;
3372 newnd.flags |= LOOKUP_RENAME_TARGET;
3374 trap = lock_rename(new_dir, old_dir);
3376 old_dentry = lookup_hash(&oldnd);
3377 error = PTR_ERR(old_dentry);
3378 if (IS_ERR(old_dentry))
3379 goto exit3;
3380 /* source must exist */
3381 error = -ENOENT;
3382 if (!old_dentry->d_inode)
3383 goto exit4;
3384 /* unless the source is a directory trailing slashes give -ENOTDIR */
3385 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3386 error = -ENOTDIR;
3387 if (oldnd.last.name[oldnd.last.len])
3388 goto exit4;
3389 if (newnd.last.name[newnd.last.len])
3390 goto exit4;
3392 /* source should not be ancestor of target */
3393 error = -EINVAL;
3394 if (old_dentry == trap)
3395 goto exit4;
3396 new_dentry = lookup_hash(&newnd);
3397 error = PTR_ERR(new_dentry);
3398 if (IS_ERR(new_dentry))
3399 goto exit4;
3400 /* target should not be an ancestor of source */
3401 error = -ENOTEMPTY;
3402 if (new_dentry == trap)
3403 goto exit5;
3405 error = mnt_want_write(oldnd.path.mnt);
3406 if (error)
3407 goto exit5;
3408 error = security_path_rename(&oldnd.path, old_dentry,
3409 &newnd.path, new_dentry);
3410 if (error)
3411 goto exit6;
3412 error = vfs_rename(old_dir->d_inode, old_dentry,
3413 new_dir->d_inode, new_dentry);
3414 exit6:
3415 mnt_drop_write(oldnd.path.mnt);
3416 exit5:
3417 dput(new_dentry);
3418 exit4:
3419 dput(old_dentry);
3420 exit3:
3421 unlock_rename(new_dir, old_dir);
3422 exit2:
3423 path_put(&newnd.path);
3424 putname(to);
3425 exit1:
3426 path_put(&oldnd.path);
3427 putname(from);
3428 exit:
3429 return error;
3432 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3434 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3437 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3439 int len;
3441 len = PTR_ERR(link);
3442 if (IS_ERR(link))
3443 goto out;
3445 len = strlen(link);
3446 if (len > (unsigned) buflen)
3447 len = buflen;
3448 if (copy_to_user(buffer, link, len))
3449 len = -EFAULT;
3450 out:
3451 return len;
3455 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3456 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3457 * using) it for any given inode is up to filesystem.
3459 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3461 struct nameidata nd;
3462 void *cookie;
3463 int res;
3465 nd.depth = 0;
3466 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3467 if (IS_ERR(cookie))
3468 return PTR_ERR(cookie);
3470 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3471 if (dentry->d_inode->i_op->put_link)
3472 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3473 return res;
3476 int vfs_follow_link(struct nameidata *nd, const char *link)
3478 return __vfs_follow_link(nd, link);
3481 /* get the link contents into pagecache */
3482 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3484 char *kaddr;
3485 struct page *page;
3486 struct address_space *mapping = dentry->d_inode->i_mapping;
3487 page = read_mapping_page(mapping, 0, NULL);
3488 if (IS_ERR(page))
3489 return (char*)page;
3490 *ppage = page;
3491 kaddr = kmap(page);
3492 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3493 return kaddr;
3496 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3498 struct page *page = NULL;
3499 char *s = page_getlink(dentry, &page);
3500 int res = vfs_readlink(dentry,buffer,buflen,s);
3501 if (page) {
3502 kunmap(page);
3503 page_cache_release(page);
3505 return res;
3508 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3510 struct page *page = NULL;
3511 nd_set_link(nd, page_getlink(dentry, &page));
3512 return page;
3515 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3517 struct page *page = cookie;
3519 if (page) {
3520 kunmap(page);
3521 page_cache_release(page);
3526 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3528 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3530 struct address_space *mapping = inode->i_mapping;
3531 struct page *page;
3532 void *fsdata;
3533 int err;
3534 char *kaddr;
3535 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3536 if (nofs)
3537 flags |= AOP_FLAG_NOFS;
3539 retry:
3540 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3541 flags, &page, &fsdata);
3542 if (err)
3543 goto fail;
3545 kaddr = kmap_atomic(page, KM_USER0);
3546 memcpy(kaddr, symname, len-1);
3547 kunmap_atomic(kaddr, KM_USER0);
3549 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3550 page, fsdata);
3551 if (err < 0)
3552 goto fail;
3553 if (err < len-1)
3554 goto retry;
3556 mark_inode_dirty(inode);
3557 return 0;
3558 fail:
3559 return err;
3562 int page_symlink(struct inode *inode, const char *symname, int len)
3564 return __page_symlink(inode, symname, len,
3565 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3568 const struct inode_operations page_symlink_inode_operations = {
3569 .readlink = generic_readlink,
3570 .follow_link = page_follow_link_light,
3571 .put_link = page_put_link,
3574 EXPORT_SYMBOL(user_path_at);
3575 EXPORT_SYMBOL(follow_down_one);
3576 EXPORT_SYMBOL(follow_down);
3577 EXPORT_SYMBOL(follow_up);
3578 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3579 EXPORT_SYMBOL(getname);
3580 EXPORT_SYMBOL(lock_rename);
3581 EXPORT_SYMBOL(lookup_one_len);
3582 EXPORT_SYMBOL(page_follow_link_light);
3583 EXPORT_SYMBOL(page_put_link);
3584 EXPORT_SYMBOL(page_readlink);
3585 EXPORT_SYMBOL(__page_symlink);
3586 EXPORT_SYMBOL(page_symlink);
3587 EXPORT_SYMBOL(page_symlink_inode_operations);
3588 EXPORT_SYMBOL(path_lookup);
3589 EXPORT_SYMBOL(kern_path);
3590 EXPORT_SYMBOL(vfs_path_lookup);
3591 EXPORT_SYMBOL(inode_permission);
3592 EXPORT_SYMBOL(file_permission);
3593 EXPORT_SYMBOL(unlock_rename);
3594 EXPORT_SYMBOL(vfs_create);
3595 EXPORT_SYMBOL(vfs_follow_link);
3596 EXPORT_SYMBOL(vfs_link);
3597 EXPORT_SYMBOL(vfs_mkdir);
3598 EXPORT_SYMBOL(vfs_mknod);
3599 EXPORT_SYMBOL(generic_permission);
3600 EXPORT_SYMBOL(vfs_readlink);
3601 EXPORT_SYMBOL(vfs_rename);
3602 EXPORT_SYMBOL(vfs_rmdir);
3603 EXPORT_SYMBOL(vfs_symlink);
3604 EXPORT_SYMBOL(vfs_unlink);
3605 EXPORT_SYMBOL(dentry_unhash);
3606 EXPORT_SYMBOL(generic_readlink);