PCI: Cleanup the includes of <linux/pci.h>
[linux-2.6.git] / drivers / scsi / aacraid / dpcsup.c
blob66aeb57dcc2d1e9f00f6872f21004d2e15046ef7
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Module Name:
25 * dpcsup.c
27 * Abstract: All DPC processing routines for the cyclone board occur here.
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/spinlock.h>
36 #include <linux/slab.h>
37 #include <linux/completion.h>
38 #include <linux/blkdev.h>
39 #include <asm/semaphore.h>
41 #include "aacraid.h"
43 /**
44 * aac_response_normal - Handle command replies
45 * @q: Queue to read from
47 * This DPC routine will be run when the adapter interrupts us to let us
48 * know there is a response on our normal priority queue. We will pull off
49 * all QE there are and wake up all the waiters before exiting. We will
50 * take a spinlock out on the queue before operating on it.
53 unsigned int aac_response_normal(struct aac_queue * q)
55 struct aac_dev * dev = q->dev;
56 struct aac_entry *entry;
57 struct hw_fib * hwfib;
58 struct fib * fib;
59 int consumed = 0;
60 unsigned long flags;
62 spin_lock_irqsave(q->lock, flags);
64 * Keep pulling response QEs off the response queue and waking
65 * up the waiters until there are no more QEs. We then return
66 * back to the system. If no response was requesed we just
67 * deallocate the Fib here and continue.
69 while(aac_consumer_get(dev, q, &entry))
71 int fast;
72 u32 index = le32_to_cpu(entry->addr);
73 fast = index & 0x01;
74 fib = &dev->fibs[index >> 2];
75 hwfib = fib->hw_fib;
77 aac_consumer_free(dev, q, HostNormRespQueue);
79 * Remove this fib from the Outstanding I/O queue.
80 * But only if it has not already been timed out.
82 * If the fib has been timed out already, then just
83 * continue. The caller has already been notified that
84 * the fib timed out.
86 if (!(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
87 dev->queues->queue[AdapNormCmdQueue].numpending--;
88 else {
89 printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
90 printk(KERN_DEBUG"aacraid: hwfib=%p fib index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
91 continue;
93 spin_unlock_irqrestore(q->lock, flags);
95 if (fast) {
97 * Doctor the fib
99 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
100 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
103 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
105 if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
107 __le32 *pstatus = (__le32 *)hwfib->data;
108 if (*pstatus & cpu_to_le32(0xffff0000))
109 *pstatus = cpu_to_le32(ST_OK);
111 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
113 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
114 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
115 else
116 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
118 * NOTE: we cannot touch the fib after this
119 * call, because it may have been deallocated.
121 fib->callback(fib->callback_data, fib);
122 } else {
123 unsigned long flagv;
124 spin_lock_irqsave(&fib->event_lock, flagv);
125 if (!fib->done)
126 fib->done = 1;
127 up(&fib->event_wait);
128 spin_unlock_irqrestore(&fib->event_lock, flagv);
129 FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
130 if (fib->done == 2) {
131 aac_fib_complete(fib);
132 aac_fib_free(fib);
135 consumed++;
136 spin_lock_irqsave(q->lock, flags);
139 if (consumed > aac_config.peak_fibs)
140 aac_config.peak_fibs = consumed;
141 if (consumed == 0)
142 aac_config.zero_fibs++;
144 spin_unlock_irqrestore(q->lock, flags);
145 return 0;
150 * aac_command_normal - handle commands
151 * @q: queue to process
153 * This DPC routine will be queued when the adapter interrupts us to
154 * let us know there is a command on our normal priority queue. We will
155 * pull off all QE there are and wake up all the waiters before exiting.
156 * We will take a spinlock out on the queue before operating on it.
159 unsigned int aac_command_normal(struct aac_queue *q)
161 struct aac_dev * dev = q->dev;
162 struct aac_entry *entry;
163 unsigned long flags;
165 spin_lock_irqsave(q->lock, flags);
168 * Keep pulling response QEs off the response queue and waking
169 * up the waiters until there are no more QEs. We then return
170 * back to the system.
172 while(aac_consumer_get(dev, q, &entry))
174 struct fib fibctx;
175 struct hw_fib * hw_fib;
176 u32 index;
177 struct fib *fib = &fibctx;
179 index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
180 hw_fib = &dev->aif_base_va[index];
183 * Allocate a FIB at all costs. For non queued stuff
184 * we can just use the stack so we are happy. We need
185 * a fib object in order to manage the linked lists
187 if (dev->aif_thread)
188 if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
189 fib = &fibctx;
191 memset(fib, 0, sizeof(struct fib));
192 INIT_LIST_HEAD(&fib->fiblink);
193 fib->type = FSAFS_NTC_FIB_CONTEXT;
194 fib->size = sizeof(struct fib);
195 fib->hw_fib = hw_fib;
196 fib->data = hw_fib->data;
197 fib->dev = dev;
200 if (dev->aif_thread && fib != &fibctx) {
201 list_add_tail(&fib->fiblink, &q->cmdq);
202 aac_consumer_free(dev, q, HostNormCmdQueue);
203 wake_up_interruptible(&q->cmdready);
204 } else {
205 aac_consumer_free(dev, q, HostNormCmdQueue);
206 spin_unlock_irqrestore(q->lock, flags);
208 * Set the status of this FIB
210 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
211 aac_fib_adapter_complete(fib, sizeof(u32));
212 spin_lock_irqsave(q->lock, flags);
215 spin_unlock_irqrestore(q->lock, flags);
216 return 0;
221 * aac_intr_normal - Handle command replies
222 * @dev: Device
223 * @index: completion reference
225 * This DPC routine will be run when the adapter interrupts us to let us
226 * know there is a response on our normal priority queue. We will pull off
227 * all QE there are and wake up all the waiters before exiting.
230 unsigned int aac_intr_normal(struct aac_dev * dev, u32 Index)
232 u32 index = le32_to_cpu(Index);
234 dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, Index));
235 if ((index & 0x00000002L)) {
236 struct hw_fib * hw_fib;
237 struct fib * fib;
238 struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
239 unsigned long flags;
241 if (index == 0xFFFFFFFEL) /* Special Case */
242 return 0; /* Do nothing */
244 * Allocate a FIB. For non queued stuff we can just use
245 * the stack so we are happy. We need a fib object in order to
246 * manage the linked lists.
248 if ((!dev->aif_thread)
249 || (!(fib = kmalloc(sizeof(struct fib),GFP_ATOMIC))))
250 return 1;
251 if (!(hw_fib = kmalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
252 kfree (fib);
253 return 1;
255 memset(hw_fib, 0, sizeof(struct hw_fib));
256 memcpy(hw_fib, (struct hw_fib *)(((unsigned long)(dev->regs.sa)) + (index & ~0x00000002L)), sizeof(struct hw_fib));
257 memset(fib, 0, sizeof(struct fib));
258 INIT_LIST_HEAD(&fib->fiblink);
259 fib->type = FSAFS_NTC_FIB_CONTEXT;
260 fib->size = sizeof(struct fib);
261 fib->hw_fib = hw_fib;
262 fib->data = hw_fib->data;
263 fib->dev = dev;
265 spin_lock_irqsave(q->lock, flags);
266 list_add_tail(&fib->fiblink, &q->cmdq);
267 wake_up_interruptible(&q->cmdready);
268 spin_unlock_irqrestore(q->lock, flags);
269 return 1;
270 } else {
271 int fast = index & 0x01;
272 struct fib * fib = &dev->fibs[index >> 2];
273 struct hw_fib * hwfib = fib->hw_fib;
276 * Remove this fib from the Outstanding I/O queue.
277 * But only if it has not already been timed out.
279 * If the fib has been timed out already, then just
280 * continue. The caller has already been notified that
281 * the fib timed out.
283 if ((fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
284 printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
285 printk(KERN_DEBUG"aacraid: hwfib=%p index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
286 return 0;
289 dev->queues->queue[AdapNormCmdQueue].numpending--;
291 if (fast) {
293 * Doctor the fib
295 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
296 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
299 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
301 if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
303 u32 *pstatus = (u32 *)hwfib->data;
304 if (*pstatus & cpu_to_le32(0xffff0000))
305 *pstatus = cpu_to_le32(ST_OK);
307 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
309 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
310 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
311 else
312 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
314 * NOTE: we cannot touch the fib after this
315 * call, because it may have been deallocated.
317 fib->callback(fib->callback_data, fib);
318 } else {
319 unsigned long flagv;
320 dprintk((KERN_INFO "event_wait up\n"));
321 spin_lock_irqsave(&fib->event_lock, flagv);
322 if (!fib->done)
323 fib->done = 1;
324 up(&fib->event_wait);
325 spin_unlock_irqrestore(&fib->event_lock, flagv);
326 FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
328 return 0;