net/smsc911x: Check if PHY is in operational mode before software reset
[linux-2.6.git] / mm / page-writeback.c
blob50f08241f9815668d73b1adfcd5c9585f11bbc15
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * Sleep at most 200ms at a time in balance_dirty_pages().
42 #define MAX_PAUSE max(HZ/5, 1)
45 * Estimate write bandwidth at 200ms intervals.
47 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
49 #define RATELIMIT_CALC_SHIFT 10
52 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53 * will look to see if it needs to force writeback or throttling.
55 static long ratelimit_pages = 32;
57 /* The following parameters are exported via /proc/sys/vm */
60 * Start background writeback (via writeback threads) at this percentage
62 int dirty_background_ratio = 10;
65 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66 * dirty_background_ratio * the amount of dirtyable memory
68 unsigned long dirty_background_bytes;
71 * free highmem will not be subtracted from the total free memory
72 * for calculating free ratios if vm_highmem_is_dirtyable is true
74 int vm_highmem_is_dirtyable;
77 * The generator of dirty data starts writeback at this percentage
79 int vm_dirty_ratio = 20;
82 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83 * vm_dirty_ratio * the amount of dirtyable memory
85 unsigned long vm_dirty_bytes;
88 * The interval between `kupdate'-style writebacks
90 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
93 * The longest time for which data is allowed to remain dirty
95 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
98 * Flag that makes the machine dump writes/reads and block dirtyings.
100 int block_dump;
103 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104 * a full sync is triggered after this time elapses without any disk activity.
106 int laptop_mode;
108 EXPORT_SYMBOL(laptop_mode);
110 /* End of sysctl-exported parameters */
112 unsigned long global_dirty_limit;
115 * Scale the writeback cache size proportional to the relative writeout speeds.
117 * We do this by keeping a floating proportion between BDIs, based on page
118 * writeback completions [end_page_writeback()]. Those devices that write out
119 * pages fastest will get the larger share, while the slower will get a smaller
120 * share.
122 * We use page writeout completions because we are interested in getting rid of
123 * dirty pages. Having them written out is the primary goal.
125 * We introduce a concept of time, a period over which we measure these events,
126 * because demand can/will vary over time. The length of this period itself is
127 * measured in page writeback completions.
130 static struct prop_descriptor vm_completions;
133 * couple the period to the dirty_ratio:
135 * period/2 ~ roundup_pow_of_two(dirty limit)
137 static int calc_period_shift(void)
139 unsigned long dirty_total;
141 if (vm_dirty_bytes)
142 dirty_total = vm_dirty_bytes / PAGE_SIZE;
143 else
144 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
145 100;
146 return 2 + ilog2(dirty_total - 1);
150 * update the period when the dirty threshold changes.
152 static void update_completion_period(void)
154 int shift = calc_period_shift();
155 prop_change_shift(&vm_completions, shift);
157 writeback_set_ratelimit();
160 int dirty_background_ratio_handler(struct ctl_table *table, int write,
161 void __user *buffer, size_t *lenp,
162 loff_t *ppos)
164 int ret;
166 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
167 if (ret == 0 && write)
168 dirty_background_bytes = 0;
169 return ret;
172 int dirty_background_bytes_handler(struct ctl_table *table, int write,
173 void __user *buffer, size_t *lenp,
174 loff_t *ppos)
176 int ret;
178 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
179 if (ret == 0 && write)
180 dirty_background_ratio = 0;
181 return ret;
184 int dirty_ratio_handler(struct ctl_table *table, int write,
185 void __user *buffer, size_t *lenp,
186 loff_t *ppos)
188 int old_ratio = vm_dirty_ratio;
189 int ret;
191 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
192 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
193 update_completion_period();
194 vm_dirty_bytes = 0;
196 return ret;
200 int dirty_bytes_handler(struct ctl_table *table, int write,
201 void __user *buffer, size_t *lenp,
202 loff_t *ppos)
204 unsigned long old_bytes = vm_dirty_bytes;
205 int ret;
207 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
208 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
209 update_completion_period();
210 vm_dirty_ratio = 0;
212 return ret;
216 * Increment the BDI's writeout completion count and the global writeout
217 * completion count. Called from test_clear_page_writeback().
219 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221 __inc_bdi_stat(bdi, BDI_WRITTEN);
222 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 bdi->max_prop_frac);
226 void bdi_writeout_inc(struct backing_dev_info *bdi)
228 unsigned long flags;
230 local_irq_save(flags);
231 __bdi_writeout_inc(bdi);
232 local_irq_restore(flags);
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
237 * Obtain an accurate fraction of the BDI's portion.
239 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
240 long *numerator, long *denominator)
242 prop_fraction_percpu(&vm_completions, &bdi->completions,
243 numerator, denominator);
247 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
248 * registered backing devices, which, for obvious reasons, can not
249 * exceed 100%.
251 static unsigned int bdi_min_ratio;
253 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
255 int ret = 0;
257 spin_lock_bh(&bdi_lock);
258 if (min_ratio > bdi->max_ratio) {
259 ret = -EINVAL;
260 } else {
261 min_ratio -= bdi->min_ratio;
262 if (bdi_min_ratio + min_ratio < 100) {
263 bdi_min_ratio += min_ratio;
264 bdi->min_ratio += min_ratio;
265 } else {
266 ret = -EINVAL;
269 spin_unlock_bh(&bdi_lock);
271 return ret;
274 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
276 int ret = 0;
278 if (max_ratio > 100)
279 return -EINVAL;
281 spin_lock_bh(&bdi_lock);
282 if (bdi->min_ratio > max_ratio) {
283 ret = -EINVAL;
284 } else {
285 bdi->max_ratio = max_ratio;
286 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
288 spin_unlock_bh(&bdi_lock);
290 return ret;
292 EXPORT_SYMBOL(bdi_set_max_ratio);
295 * Work out the current dirty-memory clamping and background writeout
296 * thresholds.
298 * The main aim here is to lower them aggressively if there is a lot of mapped
299 * memory around. To avoid stressing page reclaim with lots of unreclaimable
300 * pages. It is better to clamp down on writers than to start swapping, and
301 * performing lots of scanning.
303 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
305 * We don't permit the clamping level to fall below 5% - that is getting rather
306 * excessive.
308 * We make sure that the background writeout level is below the adjusted
309 * clamping level.
312 static unsigned long highmem_dirtyable_memory(unsigned long total)
314 #ifdef CONFIG_HIGHMEM
315 int node;
316 unsigned long x = 0;
318 for_each_node_state(node, N_HIGH_MEMORY) {
319 struct zone *z =
320 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
322 x += zone_page_state(z, NR_FREE_PAGES) +
323 zone_reclaimable_pages(z);
326 * Make sure that the number of highmem pages is never larger
327 * than the number of the total dirtyable memory. This can only
328 * occur in very strange VM situations but we want to make sure
329 * that this does not occur.
331 return min(x, total);
332 #else
333 return 0;
334 #endif
338 * determine_dirtyable_memory - amount of memory that may be used
340 * Returns the numebr of pages that can currently be freed and used
341 * by the kernel for direct mappings.
343 unsigned long determine_dirtyable_memory(void)
345 unsigned long x;
347 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
349 if (!vm_highmem_is_dirtyable)
350 x -= highmem_dirtyable_memory(x);
352 return x + 1; /* Ensure that we never return 0 */
355 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
356 unsigned long bg_thresh)
358 return (thresh + bg_thresh) / 2;
361 static unsigned long hard_dirty_limit(unsigned long thresh)
363 return max(thresh, global_dirty_limit);
367 * global_dirty_limits - background-writeback and dirty-throttling thresholds
369 * Calculate the dirty thresholds based on sysctl parameters
370 * - vm.dirty_background_ratio or vm.dirty_background_bytes
371 * - vm.dirty_ratio or vm.dirty_bytes
372 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
373 * real-time tasks.
375 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
377 unsigned long background;
378 unsigned long dirty;
379 unsigned long uninitialized_var(available_memory);
380 struct task_struct *tsk;
382 if (!vm_dirty_bytes || !dirty_background_bytes)
383 available_memory = determine_dirtyable_memory();
385 if (vm_dirty_bytes)
386 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
387 else
388 dirty = (vm_dirty_ratio * available_memory) / 100;
390 if (dirty_background_bytes)
391 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
392 else
393 background = (dirty_background_ratio * available_memory) / 100;
395 if (background >= dirty)
396 background = dirty / 2;
397 tsk = current;
398 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
399 background += background / 4;
400 dirty += dirty / 4;
402 *pbackground = background;
403 *pdirty = dirty;
404 trace_global_dirty_state(background, dirty);
408 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
409 * @bdi: the backing_dev_info to query
410 * @dirty: global dirty limit in pages
412 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
413 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
415 * Note that balance_dirty_pages() will only seriously take it as a hard limit
416 * when sleeping max_pause per page is not enough to keep the dirty pages under
417 * control. For example, when the device is completely stalled due to some error
418 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
419 * In the other normal situations, it acts more gently by throttling the tasks
420 * more (rather than completely block them) when the bdi dirty pages go high.
422 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
423 * - starving fast devices
424 * - piling up dirty pages (that will take long time to sync) on slow devices
426 * The bdi's share of dirty limit will be adapting to its throughput and
427 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
429 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
431 u64 bdi_dirty;
432 long numerator, denominator;
435 * Calculate this BDI's share of the dirty ratio.
437 bdi_writeout_fraction(bdi, &numerator, &denominator);
439 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
440 bdi_dirty *= numerator;
441 do_div(bdi_dirty, denominator);
443 bdi_dirty += (dirty * bdi->min_ratio) / 100;
444 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
445 bdi_dirty = dirty * bdi->max_ratio / 100;
447 return bdi_dirty;
451 * Dirty position control.
453 * (o) global/bdi setpoints
455 * We want the dirty pages be balanced around the global/bdi setpoints.
456 * When the number of dirty pages is higher/lower than the setpoint, the
457 * dirty position control ratio (and hence task dirty ratelimit) will be
458 * decreased/increased to bring the dirty pages back to the setpoint.
460 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
462 * if (dirty < setpoint) scale up pos_ratio
463 * if (dirty > setpoint) scale down pos_ratio
465 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
466 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
468 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
470 * (o) global control line
472 * ^ pos_ratio
474 * | |<===== global dirty control scope ======>|
475 * 2.0 .............*
476 * | .*
477 * | . *
478 * | . *
479 * | . *
480 * | . *
481 * | . *
482 * 1.0 ................................*
483 * | . . *
484 * | . . *
485 * | . . *
486 * | . . *
487 * | . . *
488 * 0 +------------.------------------.----------------------*------------->
489 * freerun^ setpoint^ limit^ dirty pages
491 * (o) bdi control line
493 * ^ pos_ratio
495 * | *
496 * | *
497 * | *
498 * | *
499 * | * |<=========== span ============>|
500 * 1.0 .......................*
501 * | . *
502 * | . *
503 * | . *
504 * | . *
505 * | . *
506 * | . *
507 * | . *
508 * | . *
509 * | . *
510 * | . *
511 * | . *
512 * 1/4 ...............................................* * * * * * * * * * * *
513 * | . .
514 * | . .
515 * | . .
516 * 0 +----------------------.-------------------------------.------------->
517 * bdi_setpoint^ x_intercept^
519 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
520 * be smoothly throttled down to normal if it starts high in situations like
521 * - start writing to a slow SD card and a fast disk at the same time. The SD
522 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
523 * - the bdi dirty thresh drops quickly due to change of JBOD workload
525 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
526 unsigned long thresh,
527 unsigned long bg_thresh,
528 unsigned long dirty,
529 unsigned long bdi_thresh,
530 unsigned long bdi_dirty)
532 unsigned long write_bw = bdi->avg_write_bandwidth;
533 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
534 unsigned long limit = hard_dirty_limit(thresh);
535 unsigned long x_intercept;
536 unsigned long setpoint; /* dirty pages' target balance point */
537 unsigned long bdi_setpoint;
538 unsigned long span;
539 long long pos_ratio; /* for scaling up/down the rate limit */
540 long x;
542 if (unlikely(dirty >= limit))
543 return 0;
546 * global setpoint
548 * setpoint - dirty 3
549 * f(dirty) := 1.0 + (----------------)
550 * limit - setpoint
552 * it's a 3rd order polynomial that subjects to
554 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
555 * (2) f(setpoint) = 1.0 => the balance point
556 * (3) f(limit) = 0 => the hard limit
557 * (4) df/dx <= 0 => negative feedback control
558 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
559 * => fast response on large errors; small oscillation near setpoint
561 setpoint = (freerun + limit) / 2;
562 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
563 limit - setpoint + 1);
564 pos_ratio = x;
565 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
566 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
567 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
570 * We have computed basic pos_ratio above based on global situation. If
571 * the bdi is over/under its share of dirty pages, we want to scale
572 * pos_ratio further down/up. That is done by the following mechanism.
576 * bdi setpoint
578 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
580 * x_intercept - bdi_dirty
581 * := --------------------------
582 * x_intercept - bdi_setpoint
584 * The main bdi control line is a linear function that subjects to
586 * (1) f(bdi_setpoint) = 1.0
587 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
588 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
590 * For single bdi case, the dirty pages are observed to fluctuate
591 * regularly within range
592 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
593 * for various filesystems, where (2) can yield in a reasonable 12.5%
594 * fluctuation range for pos_ratio.
596 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
597 * own size, so move the slope over accordingly and choose a slope that
598 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
600 if (unlikely(bdi_thresh > thresh))
601 bdi_thresh = thresh;
603 * It's very possible that bdi_thresh is close to 0 not because the
604 * device is slow, but that it has remained inactive for long time.
605 * Honour such devices a reasonable good (hopefully IO efficient)
606 * threshold, so that the occasional writes won't be blocked and active
607 * writes can rampup the threshold quickly.
609 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
611 * scale global setpoint to bdi's:
612 * bdi_setpoint = setpoint * bdi_thresh / thresh
614 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
615 bdi_setpoint = setpoint * (u64)x >> 16;
617 * Use span=(8*write_bw) in single bdi case as indicated by
618 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
620 * bdi_thresh thresh - bdi_thresh
621 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
622 * thresh thresh
624 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
625 x_intercept = bdi_setpoint + span;
627 if (bdi_dirty < x_intercept - span / 4) {
628 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
629 x_intercept - bdi_setpoint + 1);
630 } else
631 pos_ratio /= 4;
634 * bdi reserve area, safeguard against dirty pool underrun and disk idle
635 * It may push the desired control point of global dirty pages higher
636 * than setpoint.
638 x_intercept = bdi_thresh / 2;
639 if (bdi_dirty < x_intercept) {
640 if (bdi_dirty > x_intercept / 8)
641 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
642 else
643 pos_ratio *= 8;
646 return pos_ratio;
649 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
650 unsigned long elapsed,
651 unsigned long written)
653 const unsigned long period = roundup_pow_of_two(3 * HZ);
654 unsigned long avg = bdi->avg_write_bandwidth;
655 unsigned long old = bdi->write_bandwidth;
656 u64 bw;
659 * bw = written * HZ / elapsed
661 * bw * elapsed + write_bandwidth * (period - elapsed)
662 * write_bandwidth = ---------------------------------------------------
663 * period
665 bw = written - bdi->written_stamp;
666 bw *= HZ;
667 if (unlikely(elapsed > period)) {
668 do_div(bw, elapsed);
669 avg = bw;
670 goto out;
672 bw += (u64)bdi->write_bandwidth * (period - elapsed);
673 bw >>= ilog2(period);
676 * one more level of smoothing, for filtering out sudden spikes
678 if (avg > old && old >= (unsigned long)bw)
679 avg -= (avg - old) >> 3;
681 if (avg < old && old <= (unsigned long)bw)
682 avg += (old - avg) >> 3;
684 out:
685 bdi->write_bandwidth = bw;
686 bdi->avg_write_bandwidth = avg;
690 * The global dirtyable memory and dirty threshold could be suddenly knocked
691 * down by a large amount (eg. on the startup of KVM in a swapless system).
692 * This may throw the system into deep dirty exceeded state and throttle
693 * heavy/light dirtiers alike. To retain good responsiveness, maintain
694 * global_dirty_limit for tracking slowly down to the knocked down dirty
695 * threshold.
697 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
699 unsigned long limit = global_dirty_limit;
702 * Follow up in one step.
704 if (limit < thresh) {
705 limit = thresh;
706 goto update;
710 * Follow down slowly. Use the higher one as the target, because thresh
711 * may drop below dirty. This is exactly the reason to introduce
712 * global_dirty_limit which is guaranteed to lie above the dirty pages.
714 thresh = max(thresh, dirty);
715 if (limit > thresh) {
716 limit -= (limit - thresh) >> 5;
717 goto update;
719 return;
720 update:
721 global_dirty_limit = limit;
724 static void global_update_bandwidth(unsigned long thresh,
725 unsigned long dirty,
726 unsigned long now)
728 static DEFINE_SPINLOCK(dirty_lock);
729 static unsigned long update_time;
732 * check locklessly first to optimize away locking for the most time
734 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
735 return;
737 spin_lock(&dirty_lock);
738 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
739 update_dirty_limit(thresh, dirty);
740 update_time = now;
742 spin_unlock(&dirty_lock);
746 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
748 * Normal bdi tasks will be curbed at or below it in long term.
749 * Obviously it should be around (write_bw / N) when there are N dd tasks.
751 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
752 unsigned long thresh,
753 unsigned long bg_thresh,
754 unsigned long dirty,
755 unsigned long bdi_thresh,
756 unsigned long bdi_dirty,
757 unsigned long dirtied,
758 unsigned long elapsed)
760 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
761 unsigned long limit = hard_dirty_limit(thresh);
762 unsigned long setpoint = (freerun + limit) / 2;
763 unsigned long write_bw = bdi->avg_write_bandwidth;
764 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
765 unsigned long dirty_rate;
766 unsigned long task_ratelimit;
767 unsigned long balanced_dirty_ratelimit;
768 unsigned long pos_ratio;
769 unsigned long step;
770 unsigned long x;
773 * The dirty rate will match the writeout rate in long term, except
774 * when dirty pages are truncated by userspace or re-dirtied by FS.
776 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
778 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
779 bdi_thresh, bdi_dirty);
781 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
783 task_ratelimit = (u64)dirty_ratelimit *
784 pos_ratio >> RATELIMIT_CALC_SHIFT;
785 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
788 * A linear estimation of the "balanced" throttle rate. The theory is,
789 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
790 * dirty_rate will be measured to be (N * task_ratelimit). So the below
791 * formula will yield the balanced rate limit (write_bw / N).
793 * Note that the expanded form is not a pure rate feedback:
794 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
795 * but also takes pos_ratio into account:
796 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
798 * (1) is not realistic because pos_ratio also takes part in balancing
799 * the dirty rate. Consider the state
800 * pos_ratio = 0.5 (3)
801 * rate = 2 * (write_bw / N) (4)
802 * If (1) is used, it will stuck in that state! Because each dd will
803 * be throttled at
804 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
805 * yielding
806 * dirty_rate = N * task_ratelimit = write_bw (6)
807 * put (6) into (1) we get
808 * rate_(i+1) = rate_(i) (7)
810 * So we end up using (2) to always keep
811 * rate_(i+1) ~= (write_bw / N) (8)
812 * regardless of the value of pos_ratio. As long as (8) is satisfied,
813 * pos_ratio is able to drive itself to 1.0, which is not only where
814 * the dirty count meet the setpoint, but also where the slope of
815 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
817 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
818 dirty_rate | 1);
821 * We could safely do this and return immediately:
823 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
825 * However to get a more stable dirty_ratelimit, the below elaborated
826 * code makes use of task_ratelimit to filter out sigular points and
827 * limit the step size.
829 * The below code essentially only uses the relative value of
831 * task_ratelimit - dirty_ratelimit
832 * = (pos_ratio - 1) * dirty_ratelimit
834 * which reflects the direction and size of dirty position error.
838 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
839 * task_ratelimit is on the same side of dirty_ratelimit, too.
840 * For example, when
841 * - dirty_ratelimit > balanced_dirty_ratelimit
842 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
843 * lowering dirty_ratelimit will help meet both the position and rate
844 * control targets. Otherwise, don't update dirty_ratelimit if it will
845 * only help meet the rate target. After all, what the users ultimately
846 * feel and care are stable dirty rate and small position error.
848 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
849 * and filter out the sigular points of balanced_dirty_ratelimit. Which
850 * keeps jumping around randomly and can even leap far away at times
851 * due to the small 200ms estimation period of dirty_rate (we want to
852 * keep that period small to reduce time lags).
854 step = 0;
855 if (dirty < setpoint) {
856 x = min(bdi->balanced_dirty_ratelimit,
857 min(balanced_dirty_ratelimit, task_ratelimit));
858 if (dirty_ratelimit < x)
859 step = x - dirty_ratelimit;
860 } else {
861 x = max(bdi->balanced_dirty_ratelimit,
862 max(balanced_dirty_ratelimit, task_ratelimit));
863 if (dirty_ratelimit > x)
864 step = dirty_ratelimit - x;
868 * Don't pursue 100% rate matching. It's impossible since the balanced
869 * rate itself is constantly fluctuating. So decrease the track speed
870 * when it gets close to the target. Helps eliminate pointless tremors.
872 step >>= dirty_ratelimit / (2 * step + 1);
874 * Limit the tracking speed to avoid overshooting.
876 step = (step + 7) / 8;
878 if (dirty_ratelimit < balanced_dirty_ratelimit)
879 dirty_ratelimit += step;
880 else
881 dirty_ratelimit -= step;
883 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
884 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
886 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
889 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
890 unsigned long thresh,
891 unsigned long bg_thresh,
892 unsigned long dirty,
893 unsigned long bdi_thresh,
894 unsigned long bdi_dirty,
895 unsigned long start_time)
897 unsigned long now = jiffies;
898 unsigned long elapsed = now - bdi->bw_time_stamp;
899 unsigned long dirtied;
900 unsigned long written;
903 * rate-limit, only update once every 200ms.
905 if (elapsed < BANDWIDTH_INTERVAL)
906 return;
908 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
909 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
912 * Skip quiet periods when disk bandwidth is under-utilized.
913 * (at least 1s idle time between two flusher runs)
915 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
916 goto snapshot;
918 if (thresh) {
919 global_update_bandwidth(thresh, dirty, now);
920 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
921 bdi_thresh, bdi_dirty,
922 dirtied, elapsed);
924 bdi_update_write_bandwidth(bdi, elapsed, written);
926 snapshot:
927 bdi->dirtied_stamp = dirtied;
928 bdi->written_stamp = written;
929 bdi->bw_time_stamp = now;
932 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
933 unsigned long thresh,
934 unsigned long bg_thresh,
935 unsigned long dirty,
936 unsigned long bdi_thresh,
937 unsigned long bdi_dirty,
938 unsigned long start_time)
940 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
941 return;
942 spin_lock(&bdi->wb.list_lock);
943 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
944 bdi_thresh, bdi_dirty, start_time);
945 spin_unlock(&bdi->wb.list_lock);
949 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
950 * will look to see if it needs to start dirty throttling.
952 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
953 * global_page_state() too often. So scale it near-sqrt to the safety margin
954 * (the number of pages we may dirty without exceeding the dirty limits).
956 static unsigned long dirty_poll_interval(unsigned long dirty,
957 unsigned long thresh)
959 if (thresh > dirty)
960 return 1UL << (ilog2(thresh - dirty) >> 1);
962 return 1;
965 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
966 unsigned long bdi_dirty)
968 unsigned long bw = bdi->avg_write_bandwidth;
969 unsigned long hi = ilog2(bw);
970 unsigned long lo = ilog2(bdi->dirty_ratelimit);
971 unsigned long t;
973 /* target for 20ms max pause on 1-dd case */
974 t = HZ / 50;
977 * Scale up pause time for concurrent dirtiers in order to reduce CPU
978 * overheads.
980 * (N * 20ms) on 2^N concurrent tasks.
982 if (hi > lo)
983 t += (hi - lo) * (20 * HZ) / 1024;
986 * Limit pause time for small memory systems. If sleeping for too long
987 * time, a small pool of dirty/writeback pages may go empty and disk go
988 * idle.
990 * 8 serves as the safety ratio.
992 t = min(t, bdi_dirty * HZ / (8 * bw + 1));
995 * The pause time will be settled within range (max_pause/4, max_pause).
996 * Apply a minimal value of 4 to get a non-zero max_pause/4.
998 return clamp_val(t, 4, MAX_PAUSE);
1002 * balance_dirty_pages() must be called by processes which are generating dirty
1003 * data. It looks at the number of dirty pages in the machine and will force
1004 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1005 * If we're over `background_thresh' then the writeback threads are woken to
1006 * perform some writeout.
1008 static void balance_dirty_pages(struct address_space *mapping,
1009 unsigned long pages_dirtied)
1011 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1012 unsigned long bdi_reclaimable;
1013 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1014 unsigned long bdi_dirty;
1015 unsigned long freerun;
1016 unsigned long background_thresh;
1017 unsigned long dirty_thresh;
1018 unsigned long bdi_thresh;
1019 long pause = 0;
1020 long uninitialized_var(max_pause);
1021 bool dirty_exceeded = false;
1022 unsigned long task_ratelimit;
1023 unsigned long uninitialized_var(dirty_ratelimit);
1024 unsigned long pos_ratio;
1025 struct backing_dev_info *bdi = mapping->backing_dev_info;
1026 unsigned long start_time = jiffies;
1028 for (;;) {
1030 * Unstable writes are a feature of certain networked
1031 * filesystems (i.e. NFS) in which data may have been
1032 * written to the server's write cache, but has not yet
1033 * been flushed to permanent storage.
1035 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1036 global_page_state(NR_UNSTABLE_NFS);
1037 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1039 global_dirty_limits(&background_thresh, &dirty_thresh);
1042 * Throttle it only when the background writeback cannot
1043 * catch-up. This avoids (excessively) small writeouts
1044 * when the bdi limits are ramping up.
1046 freerun = dirty_freerun_ceiling(dirty_thresh,
1047 background_thresh);
1048 if (nr_dirty <= freerun)
1049 break;
1051 if (unlikely(!writeback_in_progress(bdi)))
1052 bdi_start_background_writeback(bdi);
1055 * bdi_thresh is not treated as some limiting factor as
1056 * dirty_thresh, due to reasons
1057 * - in JBOD setup, bdi_thresh can fluctuate a lot
1058 * - in a system with HDD and USB key, the USB key may somehow
1059 * go into state (bdi_dirty >> bdi_thresh) either because
1060 * bdi_dirty starts high, or because bdi_thresh drops low.
1061 * In this case we don't want to hard throttle the USB key
1062 * dirtiers for 100 seconds until bdi_dirty drops under
1063 * bdi_thresh. Instead the auxiliary bdi control line in
1064 * bdi_position_ratio() will let the dirtier task progress
1065 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1067 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1070 * In order to avoid the stacked BDI deadlock we need
1071 * to ensure we accurately count the 'dirty' pages when
1072 * the threshold is low.
1074 * Otherwise it would be possible to get thresh+n pages
1075 * reported dirty, even though there are thresh-m pages
1076 * actually dirty; with m+n sitting in the percpu
1077 * deltas.
1079 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1080 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1081 bdi_dirty = bdi_reclaimable +
1082 bdi_stat_sum(bdi, BDI_WRITEBACK);
1083 } else {
1084 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1085 bdi_dirty = bdi_reclaimable +
1086 bdi_stat(bdi, BDI_WRITEBACK);
1089 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1090 (nr_dirty > dirty_thresh);
1091 if (dirty_exceeded && !bdi->dirty_exceeded)
1092 bdi->dirty_exceeded = 1;
1094 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1095 nr_dirty, bdi_thresh, bdi_dirty,
1096 start_time);
1098 max_pause = bdi_max_pause(bdi, bdi_dirty);
1100 dirty_ratelimit = bdi->dirty_ratelimit;
1101 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1102 background_thresh, nr_dirty,
1103 bdi_thresh, bdi_dirty);
1104 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1105 RATELIMIT_CALC_SHIFT;
1106 if (unlikely(task_ratelimit == 0)) {
1107 pause = max_pause;
1108 goto pause;
1110 pause = HZ * pages_dirtied / task_ratelimit;
1111 if (unlikely(pause <= 0)) {
1112 trace_balance_dirty_pages(bdi,
1113 dirty_thresh,
1114 background_thresh,
1115 nr_dirty,
1116 bdi_thresh,
1117 bdi_dirty,
1118 dirty_ratelimit,
1119 task_ratelimit,
1120 pages_dirtied,
1121 pause,
1122 start_time);
1123 pause = 1; /* avoid resetting nr_dirtied_pause below */
1124 break;
1126 pause = min(pause, max_pause);
1128 pause:
1129 trace_balance_dirty_pages(bdi,
1130 dirty_thresh,
1131 background_thresh,
1132 nr_dirty,
1133 bdi_thresh,
1134 bdi_dirty,
1135 dirty_ratelimit,
1136 task_ratelimit,
1137 pages_dirtied,
1138 pause,
1139 start_time);
1140 __set_current_state(TASK_KILLABLE);
1141 io_schedule_timeout(pause);
1144 * This is typically equal to (nr_dirty < dirty_thresh) and can
1145 * also keep "1000+ dd on a slow USB stick" under control.
1147 if (task_ratelimit)
1148 break;
1151 * In the case of an unresponding NFS server and the NFS dirty
1152 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1153 * to go through, so that tasks on them still remain responsive.
1155 * In theory 1 page is enough to keep the comsumer-producer
1156 * pipe going: the flusher cleans 1 page => the task dirties 1
1157 * more page. However bdi_dirty has accounting errors. So use
1158 * the larger and more IO friendly bdi_stat_error.
1160 if (bdi_dirty <= bdi_stat_error(bdi))
1161 break;
1163 if (fatal_signal_pending(current))
1164 break;
1167 if (!dirty_exceeded && bdi->dirty_exceeded)
1168 bdi->dirty_exceeded = 0;
1170 current->nr_dirtied = 0;
1171 if (pause == 0) { /* in freerun area */
1172 current->nr_dirtied_pause =
1173 dirty_poll_interval(nr_dirty, dirty_thresh);
1174 } else if (pause <= max_pause / 4 &&
1175 pages_dirtied >= current->nr_dirtied_pause) {
1176 current->nr_dirtied_pause = clamp_val(
1177 dirty_ratelimit * (max_pause / 2) / HZ,
1178 pages_dirtied + pages_dirtied / 8,
1179 pages_dirtied * 4);
1180 } else if (pause >= max_pause) {
1181 current->nr_dirtied_pause = 1 | clamp_val(
1182 dirty_ratelimit * (max_pause / 2) / HZ,
1183 pages_dirtied / 4,
1184 pages_dirtied - pages_dirtied / 8);
1187 if (writeback_in_progress(bdi))
1188 return;
1191 * In laptop mode, we wait until hitting the higher threshold before
1192 * starting background writeout, and then write out all the way down
1193 * to the lower threshold. So slow writers cause minimal disk activity.
1195 * In normal mode, we start background writeout at the lower
1196 * background_thresh, to keep the amount of dirty memory low.
1198 if (laptop_mode)
1199 return;
1201 if (nr_reclaimable > background_thresh)
1202 bdi_start_background_writeback(bdi);
1205 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1207 if (set_page_dirty(page) || page_mkwrite) {
1208 struct address_space *mapping = page_mapping(page);
1210 if (mapping)
1211 balance_dirty_pages_ratelimited(mapping);
1215 static DEFINE_PER_CPU(int, bdp_ratelimits);
1218 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1219 * @mapping: address_space which was dirtied
1220 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1222 * Processes which are dirtying memory should call in here once for each page
1223 * which was newly dirtied. The function will periodically check the system's
1224 * dirty state and will initiate writeback if needed.
1226 * On really big machines, get_writeback_state is expensive, so try to avoid
1227 * calling it too often (ratelimiting). But once we're over the dirty memory
1228 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1229 * from overshooting the limit by (ratelimit_pages) each.
1231 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1232 unsigned long nr_pages_dirtied)
1234 struct backing_dev_info *bdi = mapping->backing_dev_info;
1235 int ratelimit;
1236 int *p;
1238 if (!bdi_cap_account_dirty(bdi))
1239 return;
1241 ratelimit = current->nr_dirtied_pause;
1242 if (bdi->dirty_exceeded)
1243 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1245 current->nr_dirtied += nr_pages_dirtied;
1247 preempt_disable();
1249 * This prevents one CPU to accumulate too many dirtied pages without
1250 * calling into balance_dirty_pages(), which can happen when there are
1251 * 1000+ tasks, all of them start dirtying pages at exactly the same
1252 * time, hence all honoured too large initial task->nr_dirtied_pause.
1254 p = &__get_cpu_var(bdp_ratelimits);
1255 if (unlikely(current->nr_dirtied >= ratelimit))
1256 *p = 0;
1257 else {
1258 *p += nr_pages_dirtied;
1259 if (unlikely(*p >= ratelimit_pages)) {
1260 *p = 0;
1261 ratelimit = 0;
1264 preempt_enable();
1266 if (unlikely(current->nr_dirtied >= ratelimit))
1267 balance_dirty_pages(mapping, current->nr_dirtied);
1269 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1271 void throttle_vm_writeout(gfp_t gfp_mask)
1273 unsigned long background_thresh;
1274 unsigned long dirty_thresh;
1276 for ( ; ; ) {
1277 global_dirty_limits(&background_thresh, &dirty_thresh);
1280 * Boost the allowable dirty threshold a bit for page
1281 * allocators so they don't get DoS'ed by heavy writers
1283 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1285 if (global_page_state(NR_UNSTABLE_NFS) +
1286 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1287 break;
1288 congestion_wait(BLK_RW_ASYNC, HZ/10);
1291 * The caller might hold locks which can prevent IO completion
1292 * or progress in the filesystem. So we cannot just sit here
1293 * waiting for IO to complete.
1295 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1296 break;
1301 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1303 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1304 void __user *buffer, size_t *length, loff_t *ppos)
1306 proc_dointvec(table, write, buffer, length, ppos);
1307 bdi_arm_supers_timer();
1308 return 0;
1311 #ifdef CONFIG_BLOCK
1312 void laptop_mode_timer_fn(unsigned long data)
1314 struct request_queue *q = (struct request_queue *)data;
1315 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1316 global_page_state(NR_UNSTABLE_NFS);
1319 * We want to write everything out, not just down to the dirty
1320 * threshold
1322 if (bdi_has_dirty_io(&q->backing_dev_info))
1323 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1324 WB_REASON_LAPTOP_TIMER);
1328 * We've spun up the disk and we're in laptop mode: schedule writeback
1329 * of all dirty data a few seconds from now. If the flush is already scheduled
1330 * then push it back - the user is still using the disk.
1332 void laptop_io_completion(struct backing_dev_info *info)
1334 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1338 * We're in laptop mode and we've just synced. The sync's writes will have
1339 * caused another writeback to be scheduled by laptop_io_completion.
1340 * Nothing needs to be written back anymore, so we unschedule the writeback.
1342 void laptop_sync_completion(void)
1344 struct backing_dev_info *bdi;
1346 rcu_read_lock();
1348 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1349 del_timer(&bdi->laptop_mode_wb_timer);
1351 rcu_read_unlock();
1353 #endif
1356 * If ratelimit_pages is too high then we can get into dirty-data overload
1357 * if a large number of processes all perform writes at the same time.
1358 * If it is too low then SMP machines will call the (expensive)
1359 * get_writeback_state too often.
1361 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1362 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1363 * thresholds.
1366 void writeback_set_ratelimit(void)
1368 unsigned long background_thresh;
1369 unsigned long dirty_thresh;
1370 global_dirty_limits(&background_thresh, &dirty_thresh);
1371 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1372 if (ratelimit_pages < 16)
1373 ratelimit_pages = 16;
1376 static int __cpuinit
1377 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1379 writeback_set_ratelimit();
1380 return NOTIFY_DONE;
1383 static struct notifier_block __cpuinitdata ratelimit_nb = {
1384 .notifier_call = ratelimit_handler,
1385 .next = NULL,
1389 * Called early on to tune the page writeback dirty limits.
1391 * We used to scale dirty pages according to how total memory
1392 * related to pages that could be allocated for buffers (by
1393 * comparing nr_free_buffer_pages() to vm_total_pages.
1395 * However, that was when we used "dirty_ratio" to scale with
1396 * all memory, and we don't do that any more. "dirty_ratio"
1397 * is now applied to total non-HIGHPAGE memory (by subtracting
1398 * totalhigh_pages from vm_total_pages), and as such we can't
1399 * get into the old insane situation any more where we had
1400 * large amounts of dirty pages compared to a small amount of
1401 * non-HIGHMEM memory.
1403 * But we might still want to scale the dirty_ratio by how
1404 * much memory the box has..
1406 void __init page_writeback_init(void)
1408 int shift;
1410 writeback_set_ratelimit();
1411 register_cpu_notifier(&ratelimit_nb);
1413 shift = calc_period_shift();
1414 prop_descriptor_init(&vm_completions, shift);
1418 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1419 * @mapping: address space structure to write
1420 * @start: starting page index
1421 * @end: ending page index (inclusive)
1423 * This function scans the page range from @start to @end (inclusive) and tags
1424 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1425 * that write_cache_pages (or whoever calls this function) will then use
1426 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1427 * used to avoid livelocking of writeback by a process steadily creating new
1428 * dirty pages in the file (thus it is important for this function to be quick
1429 * so that it can tag pages faster than a dirtying process can create them).
1432 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1434 void tag_pages_for_writeback(struct address_space *mapping,
1435 pgoff_t start, pgoff_t end)
1437 #define WRITEBACK_TAG_BATCH 4096
1438 unsigned long tagged;
1440 do {
1441 spin_lock_irq(&mapping->tree_lock);
1442 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1443 &start, end, WRITEBACK_TAG_BATCH,
1444 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1445 spin_unlock_irq(&mapping->tree_lock);
1446 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1447 cond_resched();
1448 /* We check 'start' to handle wrapping when end == ~0UL */
1449 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1451 EXPORT_SYMBOL(tag_pages_for_writeback);
1454 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1455 * @mapping: address space structure to write
1456 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1457 * @writepage: function called for each page
1458 * @data: data passed to writepage function
1460 * If a page is already under I/O, write_cache_pages() skips it, even
1461 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1462 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1463 * and msync() need to guarantee that all the data which was dirty at the time
1464 * the call was made get new I/O started against them. If wbc->sync_mode is
1465 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1466 * existing IO to complete.
1468 * To avoid livelocks (when other process dirties new pages), we first tag
1469 * pages which should be written back with TOWRITE tag and only then start
1470 * writing them. For data-integrity sync we have to be careful so that we do
1471 * not miss some pages (e.g., because some other process has cleared TOWRITE
1472 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1473 * by the process clearing the DIRTY tag (and submitting the page for IO).
1475 int write_cache_pages(struct address_space *mapping,
1476 struct writeback_control *wbc, writepage_t writepage,
1477 void *data)
1479 int ret = 0;
1480 int done = 0;
1481 struct pagevec pvec;
1482 int nr_pages;
1483 pgoff_t uninitialized_var(writeback_index);
1484 pgoff_t index;
1485 pgoff_t end; /* Inclusive */
1486 pgoff_t done_index;
1487 int cycled;
1488 int range_whole = 0;
1489 int tag;
1491 pagevec_init(&pvec, 0);
1492 if (wbc->range_cyclic) {
1493 writeback_index = mapping->writeback_index; /* prev offset */
1494 index = writeback_index;
1495 if (index == 0)
1496 cycled = 1;
1497 else
1498 cycled = 0;
1499 end = -1;
1500 } else {
1501 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1502 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1503 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1504 range_whole = 1;
1505 cycled = 1; /* ignore range_cyclic tests */
1507 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1508 tag = PAGECACHE_TAG_TOWRITE;
1509 else
1510 tag = PAGECACHE_TAG_DIRTY;
1511 retry:
1512 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1513 tag_pages_for_writeback(mapping, index, end);
1514 done_index = index;
1515 while (!done && (index <= end)) {
1516 int i;
1518 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1519 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1520 if (nr_pages == 0)
1521 break;
1523 for (i = 0; i < nr_pages; i++) {
1524 struct page *page = pvec.pages[i];
1527 * At this point, the page may be truncated or
1528 * invalidated (changing page->mapping to NULL), or
1529 * even swizzled back from swapper_space to tmpfs file
1530 * mapping. However, page->index will not change
1531 * because we have a reference on the page.
1533 if (page->index > end) {
1535 * can't be range_cyclic (1st pass) because
1536 * end == -1 in that case.
1538 done = 1;
1539 break;
1542 done_index = page->index;
1544 lock_page(page);
1547 * Page truncated or invalidated. We can freely skip it
1548 * then, even for data integrity operations: the page
1549 * has disappeared concurrently, so there could be no
1550 * real expectation of this data interity operation
1551 * even if there is now a new, dirty page at the same
1552 * pagecache address.
1554 if (unlikely(page->mapping != mapping)) {
1555 continue_unlock:
1556 unlock_page(page);
1557 continue;
1560 if (!PageDirty(page)) {
1561 /* someone wrote it for us */
1562 goto continue_unlock;
1565 if (PageWriteback(page)) {
1566 if (wbc->sync_mode != WB_SYNC_NONE)
1567 wait_on_page_writeback(page);
1568 else
1569 goto continue_unlock;
1572 BUG_ON(PageWriteback(page));
1573 if (!clear_page_dirty_for_io(page))
1574 goto continue_unlock;
1576 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1577 ret = (*writepage)(page, wbc, data);
1578 if (unlikely(ret)) {
1579 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1580 unlock_page(page);
1581 ret = 0;
1582 } else {
1584 * done_index is set past this page,
1585 * so media errors will not choke
1586 * background writeout for the entire
1587 * file. This has consequences for
1588 * range_cyclic semantics (ie. it may
1589 * not be suitable for data integrity
1590 * writeout).
1592 done_index = page->index + 1;
1593 done = 1;
1594 break;
1599 * We stop writing back only if we are not doing
1600 * integrity sync. In case of integrity sync we have to
1601 * keep going until we have written all the pages
1602 * we tagged for writeback prior to entering this loop.
1604 if (--wbc->nr_to_write <= 0 &&
1605 wbc->sync_mode == WB_SYNC_NONE) {
1606 done = 1;
1607 break;
1610 pagevec_release(&pvec);
1611 cond_resched();
1613 if (!cycled && !done) {
1615 * range_cyclic:
1616 * We hit the last page and there is more work to be done: wrap
1617 * back to the start of the file
1619 cycled = 1;
1620 index = 0;
1621 end = writeback_index - 1;
1622 goto retry;
1624 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1625 mapping->writeback_index = done_index;
1627 return ret;
1629 EXPORT_SYMBOL(write_cache_pages);
1632 * Function used by generic_writepages to call the real writepage
1633 * function and set the mapping flags on error
1635 static int __writepage(struct page *page, struct writeback_control *wbc,
1636 void *data)
1638 struct address_space *mapping = data;
1639 int ret = mapping->a_ops->writepage(page, wbc);
1640 mapping_set_error(mapping, ret);
1641 return ret;
1645 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1646 * @mapping: address space structure to write
1647 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1649 * This is a library function, which implements the writepages()
1650 * address_space_operation.
1652 int generic_writepages(struct address_space *mapping,
1653 struct writeback_control *wbc)
1655 struct blk_plug plug;
1656 int ret;
1658 /* deal with chardevs and other special file */
1659 if (!mapping->a_ops->writepage)
1660 return 0;
1662 blk_start_plug(&plug);
1663 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1664 blk_finish_plug(&plug);
1665 return ret;
1668 EXPORT_SYMBOL(generic_writepages);
1670 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1672 int ret;
1674 if (wbc->nr_to_write <= 0)
1675 return 0;
1676 if (mapping->a_ops->writepages)
1677 ret = mapping->a_ops->writepages(mapping, wbc);
1678 else
1679 ret = generic_writepages(mapping, wbc);
1680 return ret;
1684 * write_one_page - write out a single page and optionally wait on I/O
1685 * @page: the page to write
1686 * @wait: if true, wait on writeout
1688 * The page must be locked by the caller and will be unlocked upon return.
1690 * write_one_page() returns a negative error code if I/O failed.
1692 int write_one_page(struct page *page, int wait)
1694 struct address_space *mapping = page->mapping;
1695 int ret = 0;
1696 struct writeback_control wbc = {
1697 .sync_mode = WB_SYNC_ALL,
1698 .nr_to_write = 1,
1701 BUG_ON(!PageLocked(page));
1703 if (wait)
1704 wait_on_page_writeback(page);
1706 if (clear_page_dirty_for_io(page)) {
1707 page_cache_get(page);
1708 ret = mapping->a_ops->writepage(page, &wbc);
1709 if (ret == 0 && wait) {
1710 wait_on_page_writeback(page);
1711 if (PageError(page))
1712 ret = -EIO;
1714 page_cache_release(page);
1715 } else {
1716 unlock_page(page);
1718 return ret;
1720 EXPORT_SYMBOL(write_one_page);
1723 * For address_spaces which do not use buffers nor write back.
1725 int __set_page_dirty_no_writeback(struct page *page)
1727 if (!PageDirty(page))
1728 return !TestSetPageDirty(page);
1729 return 0;
1733 * Helper function for set_page_dirty family.
1734 * NOTE: This relies on being atomic wrt interrupts.
1736 void account_page_dirtied(struct page *page, struct address_space *mapping)
1738 if (mapping_cap_account_dirty(mapping)) {
1739 __inc_zone_page_state(page, NR_FILE_DIRTY);
1740 __inc_zone_page_state(page, NR_DIRTIED);
1741 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1742 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1743 task_io_account_write(PAGE_CACHE_SIZE);
1746 EXPORT_SYMBOL(account_page_dirtied);
1749 * Helper function for set_page_writeback family.
1750 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1751 * wrt interrupts.
1753 void account_page_writeback(struct page *page)
1755 inc_zone_page_state(page, NR_WRITEBACK);
1757 EXPORT_SYMBOL(account_page_writeback);
1760 * For address_spaces which do not use buffers. Just tag the page as dirty in
1761 * its radix tree.
1763 * This is also used when a single buffer is being dirtied: we want to set the
1764 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1765 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1767 * Most callers have locked the page, which pins the address_space in memory.
1768 * But zap_pte_range() does not lock the page, however in that case the
1769 * mapping is pinned by the vma's ->vm_file reference.
1771 * We take care to handle the case where the page was truncated from the
1772 * mapping by re-checking page_mapping() inside tree_lock.
1774 int __set_page_dirty_nobuffers(struct page *page)
1776 if (!TestSetPageDirty(page)) {
1777 struct address_space *mapping = page_mapping(page);
1778 struct address_space *mapping2;
1780 if (!mapping)
1781 return 1;
1783 spin_lock_irq(&mapping->tree_lock);
1784 mapping2 = page_mapping(page);
1785 if (mapping2) { /* Race with truncate? */
1786 BUG_ON(mapping2 != mapping);
1787 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1788 account_page_dirtied(page, mapping);
1789 radix_tree_tag_set(&mapping->page_tree,
1790 page_index(page), PAGECACHE_TAG_DIRTY);
1792 spin_unlock_irq(&mapping->tree_lock);
1793 if (mapping->host) {
1794 /* !PageAnon && !swapper_space */
1795 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1797 return 1;
1799 return 0;
1801 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1804 * When a writepage implementation decides that it doesn't want to write this
1805 * page for some reason, it should redirty the locked page via
1806 * redirty_page_for_writepage() and it should then unlock the page and return 0
1808 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1810 wbc->pages_skipped++;
1811 return __set_page_dirty_nobuffers(page);
1813 EXPORT_SYMBOL(redirty_page_for_writepage);
1816 * Dirty a page.
1818 * For pages with a mapping this should be done under the page lock
1819 * for the benefit of asynchronous memory errors who prefer a consistent
1820 * dirty state. This rule can be broken in some special cases,
1821 * but should be better not to.
1823 * If the mapping doesn't provide a set_page_dirty a_op, then
1824 * just fall through and assume that it wants buffer_heads.
1826 int set_page_dirty(struct page *page)
1828 struct address_space *mapping = page_mapping(page);
1830 if (likely(mapping)) {
1831 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1833 * readahead/lru_deactivate_page could remain
1834 * PG_readahead/PG_reclaim due to race with end_page_writeback
1835 * About readahead, if the page is written, the flags would be
1836 * reset. So no problem.
1837 * About lru_deactivate_page, if the page is redirty, the flag
1838 * will be reset. So no problem. but if the page is used by readahead
1839 * it will confuse readahead and make it restart the size rampup
1840 * process. But it's a trivial problem.
1842 ClearPageReclaim(page);
1843 #ifdef CONFIG_BLOCK
1844 if (!spd)
1845 spd = __set_page_dirty_buffers;
1846 #endif
1847 return (*spd)(page);
1849 if (!PageDirty(page)) {
1850 if (!TestSetPageDirty(page))
1851 return 1;
1853 return 0;
1855 EXPORT_SYMBOL(set_page_dirty);
1858 * set_page_dirty() is racy if the caller has no reference against
1859 * page->mapping->host, and if the page is unlocked. This is because another
1860 * CPU could truncate the page off the mapping and then free the mapping.
1862 * Usually, the page _is_ locked, or the caller is a user-space process which
1863 * holds a reference on the inode by having an open file.
1865 * In other cases, the page should be locked before running set_page_dirty().
1867 int set_page_dirty_lock(struct page *page)
1869 int ret;
1871 lock_page(page);
1872 ret = set_page_dirty(page);
1873 unlock_page(page);
1874 return ret;
1876 EXPORT_SYMBOL(set_page_dirty_lock);
1879 * Clear a page's dirty flag, while caring for dirty memory accounting.
1880 * Returns true if the page was previously dirty.
1882 * This is for preparing to put the page under writeout. We leave the page
1883 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1884 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1885 * implementation will run either set_page_writeback() or set_page_dirty(),
1886 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1887 * back into sync.
1889 * This incoherency between the page's dirty flag and radix-tree tag is
1890 * unfortunate, but it only exists while the page is locked.
1892 int clear_page_dirty_for_io(struct page *page)
1894 struct address_space *mapping = page_mapping(page);
1896 BUG_ON(!PageLocked(page));
1898 if (mapping && mapping_cap_account_dirty(mapping)) {
1900 * Yes, Virginia, this is indeed insane.
1902 * We use this sequence to make sure that
1903 * (a) we account for dirty stats properly
1904 * (b) we tell the low-level filesystem to
1905 * mark the whole page dirty if it was
1906 * dirty in a pagetable. Only to then
1907 * (c) clean the page again and return 1 to
1908 * cause the writeback.
1910 * This way we avoid all nasty races with the
1911 * dirty bit in multiple places and clearing
1912 * them concurrently from different threads.
1914 * Note! Normally the "set_page_dirty(page)"
1915 * has no effect on the actual dirty bit - since
1916 * that will already usually be set. But we
1917 * need the side effects, and it can help us
1918 * avoid races.
1920 * We basically use the page "master dirty bit"
1921 * as a serialization point for all the different
1922 * threads doing their things.
1924 if (page_mkclean(page))
1925 set_page_dirty(page);
1927 * We carefully synchronise fault handlers against
1928 * installing a dirty pte and marking the page dirty
1929 * at this point. We do this by having them hold the
1930 * page lock at some point after installing their
1931 * pte, but before marking the page dirty.
1932 * Pages are always locked coming in here, so we get
1933 * the desired exclusion. See mm/memory.c:do_wp_page()
1934 * for more comments.
1936 if (TestClearPageDirty(page)) {
1937 dec_zone_page_state(page, NR_FILE_DIRTY);
1938 dec_bdi_stat(mapping->backing_dev_info,
1939 BDI_RECLAIMABLE);
1940 return 1;
1942 return 0;
1944 return TestClearPageDirty(page);
1946 EXPORT_SYMBOL(clear_page_dirty_for_io);
1948 int test_clear_page_writeback(struct page *page)
1950 struct address_space *mapping = page_mapping(page);
1951 int ret;
1953 if (mapping) {
1954 struct backing_dev_info *bdi = mapping->backing_dev_info;
1955 unsigned long flags;
1957 spin_lock_irqsave(&mapping->tree_lock, flags);
1958 ret = TestClearPageWriteback(page);
1959 if (ret) {
1960 radix_tree_tag_clear(&mapping->page_tree,
1961 page_index(page),
1962 PAGECACHE_TAG_WRITEBACK);
1963 if (bdi_cap_account_writeback(bdi)) {
1964 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1965 __bdi_writeout_inc(bdi);
1968 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1969 } else {
1970 ret = TestClearPageWriteback(page);
1972 if (ret) {
1973 dec_zone_page_state(page, NR_WRITEBACK);
1974 inc_zone_page_state(page, NR_WRITTEN);
1976 return ret;
1979 int test_set_page_writeback(struct page *page)
1981 struct address_space *mapping = page_mapping(page);
1982 int ret;
1984 if (mapping) {
1985 struct backing_dev_info *bdi = mapping->backing_dev_info;
1986 unsigned long flags;
1988 spin_lock_irqsave(&mapping->tree_lock, flags);
1989 ret = TestSetPageWriteback(page);
1990 if (!ret) {
1991 radix_tree_tag_set(&mapping->page_tree,
1992 page_index(page),
1993 PAGECACHE_TAG_WRITEBACK);
1994 if (bdi_cap_account_writeback(bdi))
1995 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1997 if (!PageDirty(page))
1998 radix_tree_tag_clear(&mapping->page_tree,
1999 page_index(page),
2000 PAGECACHE_TAG_DIRTY);
2001 radix_tree_tag_clear(&mapping->page_tree,
2002 page_index(page),
2003 PAGECACHE_TAG_TOWRITE);
2004 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2005 } else {
2006 ret = TestSetPageWriteback(page);
2008 if (!ret)
2009 account_page_writeback(page);
2010 return ret;
2013 EXPORT_SYMBOL(test_set_page_writeback);
2016 * Return true if any of the pages in the mapping are marked with the
2017 * passed tag.
2019 int mapping_tagged(struct address_space *mapping, int tag)
2021 return radix_tree_tagged(&mapping->page_tree, tag);
2023 EXPORT_SYMBOL(mapping_tagged);