sparc32: generic clockevent support
[linux-2.6.git] / arch / sparc / kernel / sun4m_smp.c
blob29f8ace10b596949302513f564d1acfc95ef108d
1 /*
2 * sun4m SMP support.
4 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
5 */
7 #include <linux/clockchips.h>
8 #include <linux/interrupt.h>
9 #include <linux/profile.h>
10 #include <linux/delay.h>
11 #include <linux/cpu.h>
13 #include <asm/cacheflush.h>
14 #include <asm/switch_to.h>
15 #include <asm/tlbflush.h>
16 #include <asm/timer.h>
18 #include "irq.h"
19 #include "kernel.h"
21 #define IRQ_IPI_SINGLE 12
22 #define IRQ_IPI_MASK 13
23 #define IRQ_IPI_RESCHED 14
24 #define IRQ_CROSS_CALL 15
26 static inline unsigned long
27 swap_ulong(volatile unsigned long *ptr, unsigned long val)
29 __asm__ __volatile__("swap [%1], %0\n\t" :
30 "=&r" (val), "=&r" (ptr) :
31 "0" (val), "1" (ptr));
32 return val;
35 static void smp4m_ipi_init(void);
37 void __cpuinit smp4m_callin(void)
39 int cpuid = hard_smp_processor_id();
41 local_flush_cache_all();
42 local_flush_tlb_all();
44 notify_cpu_starting(cpuid);
46 register_percpu_ce(cpuid);
48 calibrate_delay();
49 smp_store_cpu_info(cpuid);
51 local_flush_cache_all();
52 local_flush_tlb_all();
55 * Unblock the master CPU _only_ when the scheduler state
56 * of all secondary CPUs will be up-to-date, so after
57 * the SMP initialization the master will be just allowed
58 * to call the scheduler code.
60 /* Allow master to continue. */
61 swap_ulong(&cpu_callin_map[cpuid], 1);
63 /* XXX: What's up with all the flushes? */
64 local_flush_cache_all();
65 local_flush_tlb_all();
67 /* Fix idle thread fields. */
68 __asm__ __volatile__("ld [%0], %%g6\n\t"
69 : : "r" (&current_set[cpuid])
70 : "memory" /* paranoid */);
72 /* Attach to the address space of init_task. */
73 atomic_inc(&init_mm.mm_count);
74 current->active_mm = &init_mm;
76 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
77 mb();
79 local_irq_enable();
81 set_cpu_online(cpuid, true);
85 * Cycle through the processors asking the PROM to start each one.
87 void __init smp4m_boot_cpus(void)
89 smp4m_ipi_init();
90 sun4m_unmask_profile_irq();
91 local_flush_cache_all();
94 int __cpuinit smp4m_boot_one_cpu(int i)
96 unsigned long *entry = &sun4m_cpu_startup;
97 struct task_struct *p;
98 int timeout;
99 int cpu_node;
101 cpu_find_by_mid(i, &cpu_node);
103 /* Cook up an idler for this guy. */
104 p = fork_idle(i);
105 current_set[i] = task_thread_info(p);
106 /* See trampoline.S for details... */
107 entry += ((i - 1) * 3);
110 * Initialize the contexts table
111 * Since the call to prom_startcpu() trashes the structure,
112 * we need to re-initialize it for each cpu
114 smp_penguin_ctable.which_io = 0;
115 smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
116 smp_penguin_ctable.reg_size = 0;
118 /* whirrr, whirrr, whirrrrrrrrr... */
119 printk(KERN_INFO "Starting CPU %d at %p\n", i, entry);
120 local_flush_cache_all();
121 prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry);
123 /* wheee... it's going... */
124 for (timeout = 0; timeout < 10000; timeout++) {
125 if (cpu_callin_map[i])
126 break;
127 udelay(200);
130 if (!(cpu_callin_map[i])) {
131 printk(KERN_ERR "Processor %d is stuck.\n", i);
132 return -ENODEV;
135 local_flush_cache_all();
136 return 0;
139 void __init smp4m_smp_done(void)
141 int i, first;
142 int *prev;
144 /* setup cpu list for irq rotation */
145 first = 0;
146 prev = &first;
147 for_each_online_cpu(i) {
148 *prev = i;
149 prev = &cpu_data(i).next;
151 *prev = first;
152 local_flush_cache_all();
154 /* Ok, they are spinning and ready to go. */
158 /* Initialize IPIs on the SUN4M SMP machine */
159 static void __init smp4m_ipi_init(void)
163 static void smp4m_ipi_resched(int cpu)
165 set_cpu_int(cpu, IRQ_IPI_RESCHED);
168 static void smp4m_ipi_single(int cpu)
170 set_cpu_int(cpu, IRQ_IPI_SINGLE);
173 static void smp4m_ipi_mask_one(int cpu)
175 set_cpu_int(cpu, IRQ_IPI_MASK);
178 static struct smp_funcall {
179 smpfunc_t func;
180 unsigned long arg1;
181 unsigned long arg2;
182 unsigned long arg3;
183 unsigned long arg4;
184 unsigned long arg5;
185 unsigned long processors_in[SUN4M_NCPUS]; /* Set when ipi entered. */
186 unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
187 } ccall_info;
189 static DEFINE_SPINLOCK(cross_call_lock);
191 /* Cross calls must be serialized, at least currently. */
192 static void smp4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1,
193 unsigned long arg2, unsigned long arg3,
194 unsigned long arg4)
196 register int ncpus = SUN4M_NCPUS;
197 unsigned long flags;
199 spin_lock_irqsave(&cross_call_lock, flags);
201 /* Init function glue. */
202 ccall_info.func = func;
203 ccall_info.arg1 = arg1;
204 ccall_info.arg2 = arg2;
205 ccall_info.arg3 = arg3;
206 ccall_info.arg4 = arg4;
207 ccall_info.arg5 = 0;
209 /* Init receive/complete mapping, plus fire the IPI's off. */
211 register int i;
213 cpumask_clear_cpu(smp_processor_id(), &mask);
214 cpumask_and(&mask, cpu_online_mask, &mask);
215 for (i = 0; i < ncpus; i++) {
216 if (cpumask_test_cpu(i, &mask)) {
217 ccall_info.processors_in[i] = 0;
218 ccall_info.processors_out[i] = 0;
219 set_cpu_int(i, IRQ_CROSS_CALL);
220 } else {
221 ccall_info.processors_in[i] = 1;
222 ccall_info.processors_out[i] = 1;
228 register int i;
230 i = 0;
231 do {
232 if (!cpumask_test_cpu(i, &mask))
233 continue;
234 while (!ccall_info.processors_in[i])
235 barrier();
236 } while (++i < ncpus);
238 i = 0;
239 do {
240 if (!cpumask_test_cpu(i, &mask))
241 continue;
242 while (!ccall_info.processors_out[i])
243 barrier();
244 } while (++i < ncpus);
246 spin_unlock_irqrestore(&cross_call_lock, flags);
249 /* Running cross calls. */
250 void smp4m_cross_call_irq(void)
252 int i = smp_processor_id();
254 ccall_info.processors_in[i] = 1;
255 ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
256 ccall_info.arg4, ccall_info.arg5);
257 ccall_info.processors_out[i] = 1;
260 void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
262 struct pt_regs *old_regs;
263 struct clock_event_device *ce;
264 int cpu = smp_processor_id();
266 old_regs = set_irq_regs(regs);
268 ce = &per_cpu(sparc32_clockevent, cpu);
270 if (ce->mode & CLOCK_EVT_MODE_PERIODIC)
271 sun4m_clear_profile_irq(cpu);
272 else
273 load_profile_irq(cpu, 0); /* Is this needless? */
275 irq_enter();
276 ce->event_handler(ce);
277 irq_exit();
279 set_irq_regs(old_regs);
282 static void __init smp4m_blackbox_id(unsigned *addr)
284 int rd = *addr & 0x3e000000;
285 int rs1 = rd >> 11;
287 addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
288 addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */
289 addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */
292 static void __init smp4m_blackbox_current(unsigned *addr)
294 int rd = *addr & 0x3e000000;
295 int rs1 = rd >> 11;
297 addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
298 addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */
299 addr[4] = 0x8008200c | rd | rs1; /* and reg, 0xc, reg */
302 void __init sun4m_init_smp(void)
304 BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4m_blackbox_id);
305 BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current);
306 BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM);
307 BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM);
308 BTFIXUPSET_CALL(smp_ipi_resched, smp4m_ipi_resched, BTFIXUPCALL_NORM);
309 BTFIXUPSET_CALL(smp_ipi_single, smp4m_ipi_single, BTFIXUPCALL_NORM);
310 BTFIXUPSET_CALL(smp_ipi_mask_one, smp4m_ipi_mask_one, BTFIXUPCALL_NORM);