1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2011 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 /* Theory of operation:
12 * PTP support is assisted by firmware running on the MC, which provides
13 * the hardware timestamping capabilities. Both transmitted and received
14 * PTP event packets are queued onto internal queues for subsequent processing;
15 * this is because the MC operations are relatively long and would block
16 * block NAPI/interrupt operation.
18 * Receive event processing:
19 * The event contains the packet's UUID and sequence number, together
20 * with the hardware timestamp. The PTP receive packet queue is searched
21 * for this UUID/sequence number and, if found, put on a pending queue.
22 * Packets not matching are delivered without timestamps (MCDI events will
23 * always arrive after the actual packet).
24 * It is important for the operation of the PTP protocol that the ordering
25 * of packets between the event and general port is maintained.
27 * Work queue processing:
28 * If work waiting, synchronise host/hardware time
30 * Transmit: send packet through MC, which returns the transmission time
31 * that is converted to an appropriate timestamp.
33 * Receive: the packet's reception time is converted to an appropriate
37 #include <linux/udp.h>
38 #include <linux/time.h>
39 #include <linux/ktime.h>
40 #include <linux/module.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/pps_kernel.h>
43 #include <linux/ptp_clock_kernel.h>
44 #include "net_driver.h"
47 #include "mcdi_pcol.h"
52 /* Maximum number of events expected to make up a PTP event */
53 #define MAX_EVENT_FRAGS 3
55 /* Maximum delay, ms, to begin synchronisation */
56 #define MAX_SYNCHRONISE_WAIT_MS 2
58 /* How long, at most, to spend synchronising */
59 #define SYNCHRONISE_PERIOD_NS 250000
61 /* How often to update the shared memory time */
62 #define SYNCHRONISATION_GRANULARITY_NS 200
64 /* Minimum permitted length of a (corrected) synchronisation time */
65 #define MIN_SYNCHRONISATION_NS 120
67 /* Maximum permitted length of a (corrected) synchronisation time */
68 #define MAX_SYNCHRONISATION_NS 1000
70 /* How many (MC) receive events that can be queued */
71 #define MAX_RECEIVE_EVENTS 8
73 /* Length of (modified) moving average. */
74 #define AVERAGE_LENGTH 16
76 /* How long an unmatched event or packet can be held */
77 #define PKT_EVENT_LIFETIME_MS 10
79 /* Offsets into PTP packet for identification. These offsets are from the
80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
81 * PTP V2 permit the use of IPV4 options.
83 #define PTP_DPORT_OFFSET 22
85 #define PTP_V1_VERSION_LENGTH 2
86 #define PTP_V1_VERSION_OFFSET 28
88 #define PTP_V1_UUID_LENGTH 6
89 #define PTP_V1_UUID_OFFSET 50
91 #define PTP_V1_SEQUENCE_LENGTH 2
92 #define PTP_V1_SEQUENCE_OFFSET 58
94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
97 #define PTP_V1_MIN_LENGTH 64
99 #define PTP_V2_VERSION_LENGTH 1
100 #define PTP_V2_VERSION_OFFSET 29
102 #define PTP_V2_UUID_LENGTH 8
103 #define PTP_V2_UUID_OFFSET 48
105 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106 * the MC only captures the last six bytes of the clock identity. These values
107 * reflect those, not the ones used in the standard. The standard permits
108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
110 #define PTP_V2_MC_UUID_LENGTH 6
111 #define PTP_V2_MC_UUID_OFFSET 50
113 #define PTP_V2_SEQUENCE_LENGTH 2
114 #define PTP_V2_SEQUENCE_OFFSET 58
116 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117 * includes IP header.
119 #define PTP_V2_MIN_LENGTH 63
121 #define PTP_MIN_LENGTH 63
123 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
124 #define PTP_EVENT_PORT 319
125 #define PTP_GENERAL_PORT 320
127 /* Annoyingly the format of the version numbers are different between
128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
130 #define PTP_VERSION_V1 1
132 #define PTP_VERSION_V2 2
133 #define PTP_VERSION_V2_MASK 0x0f
135 enum ptp_packet_state
{
136 PTP_PACKET_STATE_UNMATCHED
= 0,
137 PTP_PACKET_STATE_MATCHED
,
138 PTP_PACKET_STATE_TIMED_OUT
,
139 PTP_PACKET_STATE_MATCH_UNWANTED
142 /* NIC synchronised with single word of time only comprising
143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
145 #define MC_NANOSECOND_BITS 30
146 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
147 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
149 /* Maximum parts-per-billion adjustment that is acceptable */
150 #define MAX_PPB 1000000
152 /* Number of bits required to hold the above */
153 #define MAX_PPB_BITS 20
155 /* Number of extra bits allowed when calculating fractional ns.
156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
159 #define PPB_EXTRA_BITS 2
161 /* Precalculate scale word to avoid long long division at runtime */
162 #define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
163 MAX_PPB_BITS)) / 1000000000LL)
165 #define PTP_SYNC_ATTEMPTS 4
168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
169 * @words: UUID and (partial) sequence number
170 * @expiry: Time after which the packet should be delivered irrespective of
172 * @state: The state of the packet - whether it is ready for processing or
173 * whether that is of no interest.
175 struct efx_ptp_match
{
176 u32 words
[DIV_ROUND_UP(PTP_V1_UUID_LENGTH
, 4)];
177 unsigned long expiry
;
178 enum ptp_packet_state state
;
182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
183 * @seq0: First part of (PTP) UUID
184 * @seq1: Second part of (PTP) UUID and sequence number
185 * @hwtimestamp: Event timestamp
187 struct efx_ptp_event_rx
{
188 struct list_head link
;
192 unsigned long expiry
;
196 * struct efx_ptp_timeset - Synchronisation between host and MC
197 * @host_start: Host time immediately before hardware timestamp taken
198 * @seconds: Hardware timestamp, seconds
199 * @nanoseconds: Hardware timestamp, nanoseconds
200 * @host_end: Host time immediately after hardware timestamp taken
201 * @waitns: Number of nanoseconds between hardware timestamp being read and
202 * host end time being seen
203 * @window: Difference of host_end and host_start
204 * @valid: Whether this timeset is valid
206 struct efx_ptp_timeset
{
212 u32 window
; /* Derived: end - start, allowing for wrap */
216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
217 * @channel: The PTP channel
218 * @rxq: Receive queue (awaiting timestamps)
219 * @txq: Transmit queue
220 * @evt_list: List of MC receive events awaiting packets
221 * @evt_free_list: List of free events
222 * @evt_lock: Lock for manipulating evt_list and evt_free_list
223 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
224 * @workwq: Work queue for processing pending PTP operations
226 * @reset_required: A serious error has occurred and the PTP task needs to be
227 * reset (disable, enable).
228 * @rxfilter_event: Receive filter when operating
229 * @rxfilter_general: Receive filter when operating
230 * @config: Current timestamp configuration
231 * @enabled: PTP operation enabled
232 * @mode: Mode in which PTP operating (PTP version)
233 * @evt_frags: Partly assembled PTP events
234 * @evt_frag_idx: Current fragment number
235 * @evt_code: Last event code
236 * @start: Address at which MC indicates ready for synchronisation
237 * @host_time_pps: Host time at last PPS
238 * @last_sync_ns: Last number of nanoseconds between readings when synchronising
239 * @base_sync_ns: Number of nanoseconds for last synchronisation.
240 * @base_sync_valid: Whether base_sync_time is valid.
241 * @current_adjfreq: Current ppb adjustment.
242 * @phc_clock: Pointer to registered phc device
243 * @phc_clock_info: Registration structure for phc device
244 * @pps_work: pps work task for handling pps events
245 * @pps_workwq: pps work queue
246 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
247 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
248 * allocations in main data path).
249 * @debug_ptp_dir: PTP debugfs directory
250 * @missed_rx_sync: Number of packets received without syncrhonisation.
251 * @good_syncs: Number of successful synchronisations.
252 * @no_time_syncs: Number of synchronisations with no good times.
253 * @bad_sync_durations: Number of synchronisations with bad durations.
254 * @bad_syncs: Number of failed synchronisations.
255 * @last_sync_time: Number of nanoseconds for last synchronisation.
256 * @sync_timeouts: Number of synchronisation timeouts
257 * @fast_syncs: Number of synchronisations requiring short delay
258 * @min_sync_delta: Minimum time between event and synchronisation
259 * @max_sync_delta: Maximum time between event and synchronisation
260 * @average_sync_delta: Average time between event and synchronisation.
261 * Modified moving average.
262 * @last_sync_delta: Last time between event and synchronisation
263 * @mc_stats: Context value for MC statistics
264 * @timeset: Last set of synchronisation statistics.
266 struct efx_ptp_data
{
267 struct efx_channel
*channel
;
268 struct sk_buff_head rxq
;
269 struct sk_buff_head txq
;
270 struct list_head evt_list
;
271 struct list_head evt_free_list
;
273 struct efx_ptp_event_rx rx_evts
[MAX_RECEIVE_EVENTS
];
274 struct workqueue_struct
*workwq
;
275 struct work_struct work
;
278 u32 rxfilter_general
;
279 bool rxfilter_installed
;
280 struct hwtstamp_config config
;
283 efx_qword_t evt_frags
[MAX_EVENT_FRAGS
];
286 struct efx_buffer start
;
287 struct pps_event_time host_time_pps
;
288 unsigned last_sync_ns
;
289 unsigned base_sync_ns
;
290 bool base_sync_valid
;
292 struct ptp_clock
*phc_clock
;
293 struct ptp_clock_info phc_clock_info
;
294 struct work_struct pps_work
;
295 struct workqueue_struct
*pps_workwq
;
297 u8 txbuf
[ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(
298 MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
), 4)];
299 struct efx_ptp_timeset
300 timeset
[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM
];
303 static int efx_phc_adjfreq(struct ptp_clock_info
*ptp
, s32 delta
);
304 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
);
305 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec
*ts
);
306 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
307 const struct timespec
*e_ts
);
308 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
309 struct ptp_clock_request
*request
, int on
);
311 /* Enable MCDI PTP support. */
312 static int efx_ptp_enable(struct efx_nic
*efx
)
314 u8 inbuf
[MC_CMD_PTP_IN_ENABLE_LEN
];
316 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ENABLE
);
317 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_QUEUE
,
318 efx
->ptp_data
->channel
->channel
);
319 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_MODE
, efx
->ptp_data
->mode
);
321 return efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
325 /* Disable MCDI PTP support.
327 * Note that this function should never rely on the presence of ptp_data -
328 * may be called before that exists.
330 static int efx_ptp_disable(struct efx_nic
*efx
)
332 u8 inbuf
[MC_CMD_PTP_IN_DISABLE_LEN
];
334 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_DISABLE
);
335 return efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
339 static void efx_ptp_deliver_rx_queue(struct sk_buff_head
*q
)
343 while ((skb
= skb_dequeue(q
))) {
345 netif_receive_skb(skb
);
350 static void efx_ptp_handle_no_channel(struct efx_nic
*efx
)
352 netif_err(efx
, drv
, efx
->net_dev
,
353 "ERROR: PTP requires MSI-X and 1 additional interrupt"
354 "vector. PTP disabled\n");
357 /* Repeatedly send the host time to the MC which will capture the hardware
360 static void efx_ptp_send_times(struct efx_nic
*efx
,
361 struct pps_event_time
*last_time
)
363 struct pps_event_time now
;
364 struct timespec limit
;
365 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
366 struct timespec start
;
367 int *mc_running
= ptp
->start
.addr
;
372 timespec_add_ns(&limit
, SYNCHRONISE_PERIOD_NS
);
374 /* Write host time for specified period or until MC is done */
375 while ((timespec_compare(&now
.ts_real
, &limit
) < 0) &&
376 ACCESS_ONCE(*mc_running
)) {
377 struct timespec update_time
;
378 unsigned int host_time
;
380 /* Don't update continuously to avoid saturating the PCIe bus */
381 update_time
= now
.ts_real
;
382 timespec_add_ns(&update_time
, SYNCHRONISATION_GRANULARITY_NS
);
385 } while ((timespec_compare(&now
.ts_real
, &update_time
) < 0) &&
386 ACCESS_ONCE(*mc_running
));
388 /* Synchronise NIC with single word of time only */
389 host_time
= (now
.ts_real
.tv_sec
<< MC_NANOSECOND_BITS
|
390 now
.ts_real
.tv_nsec
);
391 /* Update host time in NIC memory */
392 _efx_writed(efx
, cpu_to_le32(host_time
),
393 FR_CZ_MC_TREG_SMEM
+ MC_SMEM_P0_PTP_TIME_OFST
);
398 /* Read a timeset from the MC's results and partial process. */
399 static void efx_ptp_read_timeset(u8
*data
, struct efx_ptp_timeset
*timeset
)
401 unsigned start_ns
, end_ns
;
403 timeset
->host_start
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTSTART
);
404 timeset
->seconds
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_SECONDS
);
405 timeset
->nanoseconds
= MCDI_DWORD(data
,
406 PTP_OUT_SYNCHRONIZE_NANOSECONDS
);
407 timeset
->host_end
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTEND
),
408 timeset
->waitns
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_WAITNS
);
411 start_ns
= timeset
->host_start
& MC_NANOSECOND_MASK
;
412 end_ns
= timeset
->host_end
& MC_NANOSECOND_MASK
;
413 /* Allow for rollover */
414 if (end_ns
< start_ns
)
415 end_ns
+= NSEC_PER_SEC
;
416 /* Determine duration of operation */
417 timeset
->window
= end_ns
- start_ns
;
420 /* Process times received from MC.
422 * Extract times from returned results, and establish the minimum value
423 * seen. The minimum value represents the "best" possible time and events
424 * too much greater than this are rejected - the machine is, perhaps, too
425 * busy. A number of readings are taken so that, hopefully, at least one good
426 * synchronisation will be seen in the results.
428 static int efx_ptp_process_times(struct efx_nic
*efx
, u8
*synch_buf
,
429 size_t response_length
,
430 const struct pps_event_time
*last_time
)
432 unsigned number_readings
= (response_length
/
433 MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN
);
437 unsigned last_good
= 0;
438 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
441 struct timespec delta
;
443 if (number_readings
== 0)
446 /* Read the set of results and increment stats for any results that
447 * appera to be erroneous.
449 for (i
= 0; i
< number_readings
; i
++) {
450 efx_ptp_read_timeset(synch_buf
, &ptp
->timeset
[i
]);
451 synch_buf
+= MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN
;
454 /* Find the last good host-MC synchronization result. The MC times
455 * when it finishes reading the host time so the corrected window time
456 * should be fairly constant for a given platform.
459 for (i
= 0; i
< number_readings
; i
++)
460 if (ptp
->timeset
[i
].window
> ptp
->timeset
[i
].waitns
) {
463 win
= ptp
->timeset
[i
].window
- ptp
->timeset
[i
].waitns
;
464 if (win
>= MIN_SYNCHRONISATION_NS
&&
465 win
< MAX_SYNCHRONISATION_NS
) {
466 total
+= ptp
->timeset
[i
].window
;
473 netif_warn(efx
, drv
, efx
->net_dev
,
474 "PTP no suitable synchronisations %dns\n",
479 /* Average minimum this synchronisation */
480 ptp
->last_sync_ns
= DIV_ROUND_UP(total
, ngood
);
481 if (!ptp
->base_sync_valid
|| (ptp
->last_sync_ns
< ptp
->base_sync_ns
)) {
482 ptp
->base_sync_valid
= true;
483 ptp
->base_sync_ns
= ptp
->last_sync_ns
;
486 /* Calculate delay from actual PPS to last_time */
488 ptp
->timeset
[last_good
].nanoseconds
+
489 last_time
->ts_real
.tv_nsec
-
490 (ptp
->timeset
[last_good
].host_start
& MC_NANOSECOND_MASK
);
492 /* It is possible that the seconds rolled over between taking
493 * the start reading and the last value written by the host. The
494 * timescales are such that a gap of more than one second is never
497 start_sec
= ptp
->timeset
[last_good
].host_start
>> MC_NANOSECOND_BITS
;
498 last_sec
= last_time
->ts_real
.tv_sec
& MC_SECOND_MASK
;
499 if (start_sec
!= last_sec
) {
500 if (((start_sec
+ 1) & MC_SECOND_MASK
) != last_sec
) {
501 netif_warn(efx
, hw
, efx
->net_dev
,
502 "PTP bad synchronisation seconds\n");
511 ptp
->host_time_pps
= *last_time
;
512 pps_sub_ts(&ptp
->host_time_pps
, delta
);
517 /* Synchronize times between the host and the MC */
518 static int efx_ptp_synchronize(struct efx_nic
*efx
, unsigned int num_readings
)
520 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
521 u8 synch_buf
[MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX
];
522 size_t response_length
;
524 unsigned long timeout
;
525 struct pps_event_time last_time
= {};
526 unsigned int loops
= 0;
527 int *start
= ptp
->start
.addr
;
529 MCDI_SET_DWORD(synch_buf
, PTP_IN_OP
, MC_CMD_PTP_OP_SYNCHRONIZE
);
530 MCDI_SET_DWORD(synch_buf
, PTP_IN_SYNCHRONIZE_NUMTIMESETS
,
532 MCDI_SET_DWORD(synch_buf
, PTP_IN_SYNCHRONIZE_START_ADDR_LO
,
533 (u32
)ptp
->start
.dma_addr
);
534 MCDI_SET_DWORD(synch_buf
, PTP_IN_SYNCHRONIZE_START_ADDR_HI
,
535 (u32
)((u64
)ptp
->start
.dma_addr
>> 32));
537 /* Clear flag that signals MC ready */
538 ACCESS_ONCE(*start
) = 0;
539 efx_mcdi_rpc_start(efx
, MC_CMD_PTP
, synch_buf
,
540 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
);
542 /* Wait for start from MCDI (or timeout) */
543 timeout
= jiffies
+ msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS
);
544 while (!ACCESS_ONCE(*start
) && (time_before(jiffies
, timeout
))) {
545 udelay(20); /* Usually start MCDI execution quickly */
549 if (ACCESS_ONCE(*start
))
550 efx_ptp_send_times(efx
, &last_time
);
552 /* Collect results */
553 rc
= efx_mcdi_rpc_finish(efx
, MC_CMD_PTP
,
554 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
,
555 synch_buf
, sizeof(synch_buf
),
558 rc
= efx_ptp_process_times(efx
, synch_buf
, response_length
,
564 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
565 static int efx_ptp_xmit_skb(struct efx_nic
*efx
, struct sk_buff
*skb
)
567 u8
*txbuf
= efx
->ptp_data
->txbuf
;
568 struct skb_shared_hwtstamps timestamps
;
570 /* MCDI driver requires word aligned lengths */
571 size_t len
= ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(skb
->len
), 4);
572 u8 txtime
[MC_CMD_PTP_OUT_TRANSMIT_LEN
];
574 MCDI_SET_DWORD(txbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TRANSMIT
);
575 MCDI_SET_DWORD(txbuf
, PTP_IN_TRANSMIT_LENGTH
, skb
->len
);
576 if (skb_shinfo(skb
)->nr_frags
!= 0) {
577 rc
= skb_linearize(skb
);
582 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
583 rc
= skb_checksum_help(skb
);
587 skb_copy_from_linear_data(skb
,
588 &txbuf
[MC_CMD_PTP_IN_TRANSMIT_PACKET_OFST
],
590 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, txbuf
, len
, txtime
,
591 sizeof(txtime
), &len
);
595 memset(×tamps
, 0, sizeof(timestamps
));
596 timestamps
.hwtstamp
= ktime_set(
597 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_SECONDS
),
598 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_NANOSECONDS
));
600 skb_tstamp_tx(skb
, ×tamps
);
610 static void efx_ptp_drop_time_expired_events(struct efx_nic
*efx
)
612 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
613 struct list_head
*cursor
;
614 struct list_head
*next
;
616 /* Drop time-expired events */
617 spin_lock_bh(&ptp
->evt_lock
);
618 if (!list_empty(&ptp
->evt_list
)) {
619 list_for_each_safe(cursor
, next
, &ptp
->evt_list
) {
620 struct efx_ptp_event_rx
*evt
;
622 evt
= list_entry(cursor
, struct efx_ptp_event_rx
,
624 if (time_after(jiffies
, evt
->expiry
)) {
625 list_move(&evt
->link
, &ptp
->evt_free_list
);
626 netif_warn(efx
, hw
, efx
->net_dev
,
627 "PTP rx event dropped\n");
631 spin_unlock_bh(&ptp
->evt_lock
);
634 static enum ptp_packet_state
efx_ptp_match_rx(struct efx_nic
*efx
,
637 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
639 struct list_head
*cursor
;
640 struct list_head
*next
;
641 struct efx_ptp_match
*match
;
642 enum ptp_packet_state rc
= PTP_PACKET_STATE_UNMATCHED
;
644 spin_lock_bh(&ptp
->evt_lock
);
645 evts_waiting
= !list_empty(&ptp
->evt_list
);
646 spin_unlock_bh(&ptp
->evt_lock
);
649 return PTP_PACKET_STATE_UNMATCHED
;
651 match
= (struct efx_ptp_match
*)skb
->cb
;
652 /* Look for a matching timestamp in the event queue */
653 spin_lock_bh(&ptp
->evt_lock
);
654 list_for_each_safe(cursor
, next
, &ptp
->evt_list
) {
655 struct efx_ptp_event_rx
*evt
;
657 evt
= list_entry(cursor
, struct efx_ptp_event_rx
, link
);
658 if ((evt
->seq0
== match
->words
[0]) &&
659 (evt
->seq1
== match
->words
[1])) {
660 struct skb_shared_hwtstamps
*timestamps
;
662 /* Match - add in hardware timestamp */
663 timestamps
= skb_hwtstamps(skb
);
664 timestamps
->hwtstamp
= evt
->hwtimestamp
;
666 match
->state
= PTP_PACKET_STATE_MATCHED
;
667 rc
= PTP_PACKET_STATE_MATCHED
;
668 list_move(&evt
->link
, &ptp
->evt_free_list
);
672 spin_unlock_bh(&ptp
->evt_lock
);
677 /* Process any queued receive events and corresponding packets
679 * q is returned with all the packets that are ready for delivery.
680 * true is returned if at least one of those packets requires
683 static bool efx_ptp_process_events(struct efx_nic
*efx
, struct sk_buff_head
*q
)
685 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
689 while ((skb
= skb_dequeue(&ptp
->rxq
))) {
690 struct efx_ptp_match
*match
;
692 match
= (struct efx_ptp_match
*)skb
->cb
;
693 if (match
->state
== PTP_PACKET_STATE_MATCH_UNWANTED
) {
694 __skb_queue_tail(q
, skb
);
695 } else if (efx_ptp_match_rx(efx
, skb
) ==
696 PTP_PACKET_STATE_MATCHED
) {
698 __skb_queue_tail(q
, skb
);
699 } else if (time_after(jiffies
, match
->expiry
)) {
700 match
->state
= PTP_PACKET_STATE_TIMED_OUT
;
701 netif_warn(efx
, rx_err
, efx
->net_dev
,
702 "PTP packet - no timestamp seen\n");
703 __skb_queue_tail(q
, skb
);
705 /* Replace unprocessed entry and stop */
706 skb_queue_head(&ptp
->rxq
, skb
);
714 /* Complete processing of a received packet */
715 static inline void efx_ptp_process_rx(struct efx_nic
*efx
, struct sk_buff
*skb
)
718 netif_receive_skb(skb
);
722 static int efx_ptp_start(struct efx_nic
*efx
)
724 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
725 struct efx_filter_spec rxfilter
;
728 ptp
->reset_required
= false;
730 /* Must filter on both event and general ports to ensure
731 * that there is no packet re-ordering.
733 efx_filter_init_rx(&rxfilter
, EFX_FILTER_PRI_REQUIRED
, 0,
735 efx_channel_get_rx_queue(ptp
->channel
)));
736 rc
= efx_filter_set_ipv4_local(&rxfilter
, IPPROTO_UDP
,
738 htons(PTP_EVENT_PORT
));
742 rc
= efx_filter_insert_filter(efx
, &rxfilter
, true);
745 ptp
->rxfilter_event
= rc
;
747 efx_filter_init_rx(&rxfilter
, EFX_FILTER_PRI_REQUIRED
, 0,
749 efx_channel_get_rx_queue(ptp
->channel
)));
750 rc
= efx_filter_set_ipv4_local(&rxfilter
, IPPROTO_UDP
,
752 htons(PTP_GENERAL_PORT
));
756 rc
= efx_filter_insert_filter(efx
, &rxfilter
, true);
759 ptp
->rxfilter_general
= rc
;
761 rc
= efx_ptp_enable(efx
);
765 ptp
->evt_frag_idx
= 0;
766 ptp
->current_adjfreq
= 0;
767 ptp
->rxfilter_installed
= true;
772 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
773 ptp
->rxfilter_general
);
775 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
776 ptp
->rxfilter_event
);
781 static int efx_ptp_stop(struct efx_nic
*efx
)
783 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
784 int rc
= efx_ptp_disable(efx
);
785 struct list_head
*cursor
;
786 struct list_head
*next
;
788 if (ptp
->rxfilter_installed
) {
789 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
790 ptp
->rxfilter_general
);
791 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
792 ptp
->rxfilter_event
);
793 ptp
->rxfilter_installed
= false;
796 /* Make sure RX packets are really delivered */
797 efx_ptp_deliver_rx_queue(&efx
->ptp_data
->rxq
);
798 skb_queue_purge(&efx
->ptp_data
->txq
);
800 /* Drop any pending receive events */
801 spin_lock_bh(&efx
->ptp_data
->evt_lock
);
802 list_for_each_safe(cursor
, next
, &efx
->ptp_data
->evt_list
) {
803 list_move(cursor
, &efx
->ptp_data
->evt_free_list
);
805 spin_unlock_bh(&efx
->ptp_data
->evt_lock
);
810 static void efx_ptp_pps_worker(struct work_struct
*work
)
812 struct efx_ptp_data
*ptp
=
813 container_of(work
, struct efx_ptp_data
, pps_work
);
814 struct efx_nic
*efx
= ptp
->channel
->efx
;
815 struct ptp_clock_event ptp_evt
;
817 if (efx_ptp_synchronize(efx
, PTP_SYNC_ATTEMPTS
))
820 ptp_evt
.type
= PTP_CLOCK_PPSUSR
;
821 ptp_evt
.pps_times
= ptp
->host_time_pps
;
822 ptp_clock_event(ptp
->phc_clock
, &ptp_evt
);
825 /* Process any pending transmissions and timestamp any received packets.
827 static void efx_ptp_worker(struct work_struct
*work
)
829 struct efx_ptp_data
*ptp_data
=
830 container_of(work
, struct efx_ptp_data
, work
);
831 struct efx_nic
*efx
= ptp_data
->channel
->efx
;
833 struct sk_buff_head tempq
;
835 if (ptp_data
->reset_required
) {
841 efx_ptp_drop_time_expired_events(efx
);
843 __skb_queue_head_init(&tempq
);
844 if (efx_ptp_process_events(efx
, &tempq
) ||
845 !skb_queue_empty(&ptp_data
->txq
)) {
847 while ((skb
= skb_dequeue(&ptp_data
->txq
)))
848 efx_ptp_xmit_skb(efx
, skb
);
851 while ((skb
= __skb_dequeue(&tempq
)))
852 efx_ptp_process_rx(efx
, skb
);
855 /* Initialise PTP channel and state.
857 * Setting core_index to zero causes the queue to be initialised and doesn't
858 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
860 static int efx_ptp_probe_channel(struct efx_channel
*channel
)
862 struct efx_nic
*efx
= channel
->efx
;
863 struct efx_ptp_data
*ptp
;
867 channel
->irq_moderation
= 0;
868 channel
->rx_queue
.core_index
= 0;
870 ptp
= kzalloc(sizeof(struct efx_ptp_data
), GFP_KERNEL
);
875 rc
= efx_nic_alloc_buffer(efx
, &ptp
->start
, sizeof(int));
879 ptp
->channel
= channel
;
880 skb_queue_head_init(&ptp
->rxq
);
881 skb_queue_head_init(&ptp
->txq
);
882 ptp
->workwq
= create_singlethread_workqueue("sfc_ptp");
888 INIT_WORK(&ptp
->work
, efx_ptp_worker
);
889 ptp
->config
.flags
= 0;
890 ptp
->config
.tx_type
= HWTSTAMP_TX_OFF
;
891 ptp
->config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
892 INIT_LIST_HEAD(&ptp
->evt_list
);
893 INIT_LIST_HEAD(&ptp
->evt_free_list
);
894 spin_lock_init(&ptp
->evt_lock
);
895 for (pos
= 0; pos
< MAX_RECEIVE_EVENTS
; pos
++)
896 list_add(&ptp
->rx_evts
[pos
].link
, &ptp
->evt_free_list
);
898 ptp
->phc_clock_info
.owner
= THIS_MODULE
;
899 snprintf(ptp
->phc_clock_info
.name
,
900 sizeof(ptp
->phc_clock_info
.name
),
901 "%pm", efx
->net_dev
->perm_addr
);
902 ptp
->phc_clock_info
.max_adj
= MAX_PPB
;
903 ptp
->phc_clock_info
.n_alarm
= 0;
904 ptp
->phc_clock_info
.n_ext_ts
= 0;
905 ptp
->phc_clock_info
.n_per_out
= 0;
906 ptp
->phc_clock_info
.pps
= 1;
907 ptp
->phc_clock_info
.adjfreq
= efx_phc_adjfreq
;
908 ptp
->phc_clock_info
.adjtime
= efx_phc_adjtime
;
909 ptp
->phc_clock_info
.gettime
= efx_phc_gettime
;
910 ptp
->phc_clock_info
.settime
= efx_phc_settime
;
911 ptp
->phc_clock_info
.enable
= efx_phc_enable
;
913 ptp
->phc_clock
= ptp_clock_register(&ptp
->phc_clock_info
,
915 if (IS_ERR(ptp
->phc_clock
)) {
916 rc
= PTR_ERR(ptp
->phc_clock
);
920 INIT_WORK(&ptp
->pps_work
, efx_ptp_pps_worker
);
921 ptp
->pps_workwq
= create_singlethread_workqueue("sfc_pps");
922 if (!ptp
->pps_workwq
) {
926 ptp
->nic_ts_enabled
= false;
930 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
933 destroy_workqueue(efx
->ptp_data
->workwq
);
936 efx_nic_free_buffer(efx
, &ptp
->start
);
939 kfree(efx
->ptp_data
);
940 efx
->ptp_data
= NULL
;
945 static void efx_ptp_remove_channel(struct efx_channel
*channel
)
947 struct efx_nic
*efx
= channel
->efx
;
952 (void)efx_ptp_disable(channel
->efx
);
954 cancel_work_sync(&efx
->ptp_data
->work
);
955 cancel_work_sync(&efx
->ptp_data
->pps_work
);
957 skb_queue_purge(&efx
->ptp_data
->rxq
);
958 skb_queue_purge(&efx
->ptp_data
->txq
);
960 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
962 destroy_workqueue(efx
->ptp_data
->workwq
);
963 destroy_workqueue(efx
->ptp_data
->pps_workwq
);
965 efx_nic_free_buffer(efx
, &efx
->ptp_data
->start
);
966 kfree(efx
->ptp_data
);
969 static void efx_ptp_get_channel_name(struct efx_channel
*channel
,
970 char *buf
, size_t len
)
972 snprintf(buf
, len
, "%s-ptp", channel
->efx
->name
);
975 /* Determine whether this packet should be processed by the PTP module
976 * or transmitted conventionally.
978 bool efx_ptp_is_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
980 return efx
->ptp_data
&&
981 efx
->ptp_data
->enabled
&&
982 skb
->len
>= PTP_MIN_LENGTH
&&
983 skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
&&
984 likely(skb
->protocol
== htons(ETH_P_IP
)) &&
985 ip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
986 udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
);
989 /* Receive a PTP packet. Packets are queued until the arrival of
990 * the receive timestamp from the MC - this will probably occur after the
991 * packet arrival because of the processing in the MC.
993 static bool efx_ptp_rx(struct efx_channel
*channel
, struct sk_buff
*skb
)
995 struct efx_nic
*efx
= channel
->efx
;
996 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
997 struct efx_ptp_match
*match
= (struct efx_ptp_match
*)skb
->cb
;
998 u8
*match_data_012
, *match_data_345
;
999 unsigned int version
;
1001 match
->expiry
= jiffies
+ msecs_to_jiffies(PKT_EVENT_LIFETIME_MS
);
1003 /* Correct version? */
1004 if (ptp
->mode
== MC_CMD_PTP_MODE_V1
) {
1005 if (!pskb_may_pull(skb
, PTP_V1_MIN_LENGTH
)) {
1008 version
= ntohs(*(__be16
*)&skb
->data
[PTP_V1_VERSION_OFFSET
]);
1009 if (version
!= PTP_VERSION_V1
) {
1013 /* PTP V1 uses all six bytes of the UUID to match the packet
1016 match_data_012
= skb
->data
+ PTP_V1_UUID_OFFSET
;
1017 match_data_345
= skb
->data
+ PTP_V1_UUID_OFFSET
+ 3;
1019 if (!pskb_may_pull(skb
, PTP_V2_MIN_LENGTH
)) {
1022 version
= skb
->data
[PTP_V2_VERSION_OFFSET
];
1023 if ((version
& PTP_VERSION_V2_MASK
) != PTP_VERSION_V2
) {
1027 /* The original V2 implementation uses bytes 2-7 of
1028 * the UUID to match the packet to the timestamp. This
1029 * discards two of the bytes of the MAC address used
1030 * to create the UUID (SF bug 33070). The PTP V2
1031 * enhanced mode fixes this issue and uses bytes 0-2
1032 * and byte 5-7 of the UUID.
1034 match_data_345
= skb
->data
+ PTP_V2_UUID_OFFSET
+ 5;
1035 if (ptp
->mode
== MC_CMD_PTP_MODE_V2
) {
1036 match_data_012
= skb
->data
+ PTP_V2_UUID_OFFSET
+ 2;
1038 match_data_012
= skb
->data
+ PTP_V2_UUID_OFFSET
+ 0;
1039 BUG_ON(ptp
->mode
!= MC_CMD_PTP_MODE_V2_ENHANCED
);
1043 /* Does this packet require timestamping? */
1044 if (ntohs(*(__be16
*)&skb
->data
[PTP_DPORT_OFFSET
]) == PTP_EVENT_PORT
) {
1045 struct skb_shared_hwtstamps
*timestamps
;
1047 match
->state
= PTP_PACKET_STATE_UNMATCHED
;
1049 /* Clear all timestamps held: filled in later */
1050 timestamps
= skb_hwtstamps(skb
);
1051 memset(timestamps
, 0, sizeof(*timestamps
));
1053 /* We expect the sequence number to be in the same position in
1054 * the packet for PTP V1 and V2
1056 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET
!= PTP_V2_SEQUENCE_OFFSET
);
1057 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH
!= PTP_V2_SEQUENCE_LENGTH
);
1059 /* Extract UUID/Sequence information */
1060 match
->words
[0] = (match_data_012
[0] |
1061 (match_data_012
[1] << 8) |
1062 (match_data_012
[2] << 16) |
1063 (match_data_345
[0] << 24));
1064 match
->words
[1] = (match_data_345
[1] |
1065 (match_data_345
[2] << 8) |
1066 (skb
->data
[PTP_V1_SEQUENCE_OFFSET
+
1067 PTP_V1_SEQUENCE_LENGTH
- 1] <<
1070 match
->state
= PTP_PACKET_STATE_MATCH_UNWANTED
;
1073 skb_queue_tail(&ptp
->rxq
, skb
);
1074 queue_work(ptp
->workwq
, &ptp
->work
);
1079 /* Transmit a PTP packet. This has to be transmitted by the MC
1080 * itself, through an MCDI call. MCDI calls aren't permitted
1081 * in the transmit path so defer the actual transmission to a suitable worker.
1083 int efx_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1085 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1087 skb_queue_tail(&ptp
->txq
, skb
);
1089 if ((udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
)) &&
1090 (skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
))
1091 efx_xmit_hwtstamp_pending(skb
);
1092 queue_work(ptp
->workwq
, &ptp
->work
);
1094 return NETDEV_TX_OK
;
1097 static int efx_ptp_change_mode(struct efx_nic
*efx
, bool enable_wanted
,
1098 unsigned int new_mode
)
1100 if ((enable_wanted
!= efx
->ptp_data
->enabled
) ||
1101 (enable_wanted
&& (efx
->ptp_data
->mode
!= new_mode
))) {
1104 if (enable_wanted
) {
1105 /* Change of mode requires disable */
1106 if (efx
->ptp_data
->enabled
&&
1107 (efx
->ptp_data
->mode
!= new_mode
)) {
1108 efx
->ptp_data
->enabled
= false;
1109 rc
= efx_ptp_stop(efx
);
1114 /* Set new operating mode and establish
1115 * baseline synchronisation, which must
1118 efx
->ptp_data
->mode
= new_mode
;
1119 rc
= efx_ptp_start(efx
);
1121 rc
= efx_ptp_synchronize(efx
,
1122 PTP_SYNC_ATTEMPTS
* 2);
1127 rc
= efx_ptp_stop(efx
);
1133 efx
->ptp_data
->enabled
= enable_wanted
;
1139 static int efx_ptp_ts_init(struct efx_nic
*efx
, struct hwtstamp_config
*init
)
1141 bool enable_wanted
= false;
1142 unsigned int new_mode
;
1148 if ((init
->tx_type
!= HWTSTAMP_TX_OFF
) &&
1149 (init
->tx_type
!= HWTSTAMP_TX_ON
))
1152 new_mode
= efx
->ptp_data
->mode
;
1153 /* Determine whether any PTP HW operations are required */
1154 switch (init
->rx_filter
) {
1155 case HWTSTAMP_FILTER_NONE
:
1157 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
1158 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
1159 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
1160 init
->rx_filter
= HWTSTAMP_FILTER_PTP_V1_L4_EVENT
;
1161 new_mode
= MC_CMD_PTP_MODE_V1
;
1162 enable_wanted
= true;
1164 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
1165 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
1166 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
1167 /* Although these three are accepted only IPV4 packets will be
1170 init
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_L4_EVENT
;
1171 new_mode
= MC_CMD_PTP_MODE_V2_ENHANCED
;
1172 enable_wanted
= true;
1174 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
1175 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
1176 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
1177 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
1178 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
1179 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
1180 /* Non-IP + IPv6 timestamping not supported */
1187 if (init
->tx_type
!= HWTSTAMP_TX_OFF
)
1188 enable_wanted
= true;
1190 /* Old versions of the firmware do not support the improved
1191 * UUID filtering option (SF bug 33070). If the firmware does
1192 * not accept the enhanced mode, fall back to the standard PTP
1193 * v2 UUID filtering.
1195 rc
= efx_ptp_change_mode(efx
, enable_wanted
, new_mode
);
1196 if ((rc
!= 0) && (new_mode
== MC_CMD_PTP_MODE_V2_ENHANCED
))
1197 rc
= efx_ptp_change_mode(efx
, enable_wanted
, MC_CMD_PTP_MODE_V2
);
1201 efx
->ptp_data
->config
= *init
;
1206 void efx_ptp_get_ts_info(struct efx_nic
*efx
, struct ethtool_ts_info
*ts_info
)
1208 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1213 ts_info
->so_timestamping
|= (SOF_TIMESTAMPING_TX_HARDWARE
|
1214 SOF_TIMESTAMPING_RX_HARDWARE
|
1215 SOF_TIMESTAMPING_RAW_HARDWARE
);
1216 ts_info
->phc_index
= ptp_clock_index(ptp
->phc_clock
);
1217 ts_info
->tx_types
= 1 << HWTSTAMP_TX_OFF
| 1 << HWTSTAMP_TX_ON
;
1218 ts_info
->rx_filters
= (1 << HWTSTAMP_FILTER_NONE
|
1219 1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT
|
1220 1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC
|
1221 1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
|
1222 1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT
|
1223 1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC
|
1224 1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
);
1227 int efx_ptp_ioctl(struct efx_nic
*efx
, struct ifreq
*ifr
, int cmd
)
1229 struct hwtstamp_config config
;
1232 /* Not a PTP enabled port */
1236 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
1239 rc
= efx_ptp_ts_init(efx
, &config
);
1243 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
))
1247 static void ptp_event_failure(struct efx_nic
*efx
, int expected_frag_len
)
1249 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1251 netif_err(efx
, hw
, efx
->net_dev
,
1252 "PTP unexpected event length: got %d expected %d\n",
1253 ptp
->evt_frag_idx
, expected_frag_len
);
1254 ptp
->reset_required
= true;
1255 queue_work(ptp
->workwq
, &ptp
->work
);
1258 /* Process a completed receive event. Put it on the event queue and
1259 * start worker thread. This is required because event and their
1260 * correspoding packets may come in either order.
1262 static void ptp_event_rx(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1264 struct efx_ptp_event_rx
*evt
= NULL
;
1266 if (ptp
->evt_frag_idx
!= 3) {
1267 ptp_event_failure(efx
, 3);
1271 spin_lock_bh(&ptp
->evt_lock
);
1272 if (!list_empty(&ptp
->evt_free_list
)) {
1273 evt
= list_first_entry(&ptp
->evt_free_list
,
1274 struct efx_ptp_event_rx
, link
);
1275 list_del(&evt
->link
);
1277 evt
->seq0
= EFX_QWORD_FIELD(ptp
->evt_frags
[2], MCDI_EVENT_DATA
);
1278 evt
->seq1
= (EFX_QWORD_FIELD(ptp
->evt_frags
[2],
1280 (EFX_QWORD_FIELD(ptp
->evt_frags
[1],
1281 MCDI_EVENT_SRC
) << 8) |
1282 (EFX_QWORD_FIELD(ptp
->evt_frags
[0],
1283 MCDI_EVENT_SRC
) << 16));
1284 evt
->hwtimestamp
= ktime_set(
1285 EFX_QWORD_FIELD(ptp
->evt_frags
[0], MCDI_EVENT_DATA
),
1286 EFX_QWORD_FIELD(ptp
->evt_frags
[1], MCDI_EVENT_DATA
));
1287 evt
->expiry
= jiffies
+ msecs_to_jiffies(PKT_EVENT_LIFETIME_MS
);
1288 list_add_tail(&evt
->link
, &ptp
->evt_list
);
1290 queue_work(ptp
->workwq
, &ptp
->work
);
1292 netif_err(efx
, rx_err
, efx
->net_dev
, "No free PTP event");
1294 spin_unlock_bh(&ptp
->evt_lock
);
1297 static void ptp_event_fault(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1299 int code
= EFX_QWORD_FIELD(ptp
->evt_frags
[0], MCDI_EVENT_DATA
);
1300 if (ptp
->evt_frag_idx
!= 1) {
1301 ptp_event_failure(efx
, 1);
1305 netif_err(efx
, hw
, efx
->net_dev
, "PTP error %d\n", code
);
1308 static void ptp_event_pps(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1310 if (ptp
->nic_ts_enabled
)
1311 queue_work(ptp
->pps_workwq
, &ptp
->pps_work
);
1314 void efx_ptp_event(struct efx_nic
*efx
, efx_qword_t
*ev
)
1316 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1317 int code
= EFX_QWORD_FIELD(*ev
, MCDI_EVENT_CODE
);
1322 if (ptp
->evt_frag_idx
== 0) {
1323 ptp
->evt_code
= code
;
1324 } else if (ptp
->evt_code
!= code
) {
1325 netif_err(efx
, hw
, efx
->net_dev
,
1326 "PTP out of sequence event %d\n", code
);
1327 ptp
->evt_frag_idx
= 0;
1330 ptp
->evt_frags
[ptp
->evt_frag_idx
++] = *ev
;
1331 if (!MCDI_EVENT_FIELD(*ev
, CONT
)) {
1332 /* Process resulting event */
1334 case MCDI_EVENT_CODE_PTP_RX
:
1335 ptp_event_rx(efx
, ptp
);
1337 case MCDI_EVENT_CODE_PTP_FAULT
:
1338 ptp_event_fault(efx
, ptp
);
1340 case MCDI_EVENT_CODE_PTP_PPS
:
1341 ptp_event_pps(efx
, ptp
);
1344 netif_err(efx
, hw
, efx
->net_dev
,
1345 "PTP unknown event %d\n", code
);
1348 ptp
->evt_frag_idx
= 0;
1349 } else if (MAX_EVENT_FRAGS
== ptp
->evt_frag_idx
) {
1350 netif_err(efx
, hw
, efx
->net_dev
,
1351 "PTP too many event fragments\n");
1352 ptp
->evt_frag_idx
= 0;
1356 static int efx_phc_adjfreq(struct ptp_clock_info
*ptp
, s32 delta
)
1358 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
1359 struct efx_ptp_data
,
1361 struct efx_nic
*efx
= ptp_data
->channel
->efx
;
1362 u8 inadj
[MC_CMD_PTP_IN_ADJUST_LEN
];
1366 if (delta
> MAX_PPB
)
1368 else if (delta
< -MAX_PPB
)
1371 /* Convert ppb to fixed point ns. */
1372 adjustment_ns
= (((s64
)delta
* PPB_SCALE_WORD
) >>
1373 (PPB_EXTRA_BITS
+ MAX_PPB_BITS
));
1375 MCDI_SET_DWORD(inadj
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
1376 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_FREQ_LO
, (u32
)adjustment_ns
);
1377 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_FREQ_HI
,
1378 (u32
)(adjustment_ns
>> 32));
1379 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_SECONDS
, 0);
1380 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_NANOSECONDS
, 0);
1381 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inadj
, sizeof(inadj
),
1386 ptp_data
->current_adjfreq
= delta
;
1390 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
)
1392 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
1393 struct efx_ptp_data
,
1395 struct efx_nic
*efx
= ptp_data
->channel
->efx
;
1396 struct timespec delta_ts
= ns_to_timespec(delta
);
1397 u8 inbuf
[MC_CMD_PTP_IN_ADJUST_LEN
];
1399 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
1400 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_FREQ_LO
, 0);
1401 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_FREQ_HI
, 0);
1402 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_SECONDS
, (u32
)delta_ts
.tv_sec
);
1403 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_NANOSECONDS
, (u32
)delta_ts
.tv_nsec
);
1404 return efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
1408 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec
*ts
)
1410 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
1411 struct efx_ptp_data
,
1413 struct efx_nic
*efx
= ptp_data
->channel
->efx
;
1414 u8 inbuf
[MC_CMD_PTP_IN_READ_NIC_TIME_LEN
];
1415 u8 outbuf
[MC_CMD_PTP_OUT_READ_NIC_TIME_LEN
];
1418 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_READ_NIC_TIME
);
1420 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
1421 outbuf
, sizeof(outbuf
), NULL
);
1425 ts
->tv_sec
= MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_SECONDS
);
1426 ts
->tv_nsec
= MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_NANOSECONDS
);
1430 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
1431 const struct timespec
*e_ts
)
1433 /* Get the current NIC time, efx_phc_gettime.
1434 * Subtract from the desired time to get the offset
1435 * call efx_phc_adjtime with the offset
1438 struct timespec time_now
;
1439 struct timespec delta
;
1441 rc
= efx_phc_gettime(ptp
, &time_now
);
1445 delta
= timespec_sub(*e_ts
, time_now
);
1447 rc
= efx_phc_adjtime(ptp
, timespec_to_ns(&delta
));
1454 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
1455 struct ptp_clock_request
*request
,
1458 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
1459 struct efx_ptp_data
,
1461 if (request
->type
!= PTP_CLK_REQ_PPS
)
1464 ptp_data
->nic_ts_enabled
= !!enable
;
1468 static const struct efx_channel_type efx_ptp_channel_type
= {
1469 .handle_no_channel
= efx_ptp_handle_no_channel
,
1470 .pre_probe
= efx_ptp_probe_channel
,
1471 .post_remove
= efx_ptp_remove_channel
,
1472 .get_name
= efx_ptp_get_channel_name
,
1473 /* no copy operation; there is no need to reallocate this channel */
1474 .receive_skb
= efx_ptp_rx
,
1475 .keep_eventq
= false,
1478 void efx_ptp_probe(struct efx_nic
*efx
)
1480 /* Check whether PTP is implemented on this NIC. The DISABLE
1481 * operation will succeed if and only if it is implemented.
1483 if (efx_ptp_disable(efx
) == 0)
1484 efx
->extra_channel_type
[EFX_EXTRA_CHANNEL_PTP
] =
1485 &efx_ptp_channel_type
;