4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/pagemap.h>
40 /* How many pages do we try to swap or page in/out together? */
43 static DEFINE_PER_CPU(struct pagevec
, lru_add_pvec
);
44 static DEFINE_PER_CPU(struct pagevec
, lru_rotate_pvecs
);
45 static DEFINE_PER_CPU(struct pagevec
, lru_deactivate_pvecs
);
48 * This path almost never happens for VM activity - pages are normally
49 * freed via pagevecs. But it gets used by networking.
51 static void __page_cache_release(struct page
*page
)
54 struct zone
*zone
= page_zone(page
);
55 struct lruvec
*lruvec
;
58 spin_lock_irqsave(&zone
->lru_lock
, flags
);
59 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
60 VM_BUG_ON(!PageLRU(page
));
62 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
63 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
67 static void __put_single_page(struct page
*page
)
69 __page_cache_release(page
);
70 free_hot_cold_page(page
, 0);
73 static void __put_compound_page(struct page
*page
)
75 compound_page_dtor
*dtor
;
77 __page_cache_release(page
);
78 dtor
= get_compound_page_dtor(page
);
82 static void put_compound_page(struct page
*page
)
84 if (unlikely(PageTail(page
))) {
85 /* __split_huge_page_refcount can run under us */
86 struct page
*page_head
= compound_trans_head(page
);
88 if (likely(page
!= page_head
&&
89 get_page_unless_zero(page_head
))) {
93 * THP can not break up slab pages so avoid taking
94 * compound_lock(). Slab performs non-atomic bit ops
95 * on page->flags for better performance. In particular
96 * slab_unlock() in slub used to be a hot path. It is
97 * still hot on arches that do not support
98 * this_cpu_cmpxchg_double().
100 if (PageSlab(page_head
)) {
101 if (PageTail(page
)) {
102 if (put_page_testzero(page_head
))
105 atomic_dec(&page
->_mapcount
);
111 * page_head wasn't a dangling pointer but it
112 * may not be a head page anymore by the time
113 * we obtain the lock. That is ok as long as it
114 * can't be freed from under us.
116 flags
= compound_lock_irqsave(page_head
);
117 if (unlikely(!PageTail(page
))) {
118 /* __split_huge_page_refcount run before us */
119 compound_unlock_irqrestore(page_head
, flags
);
121 if (put_page_testzero(page_head
))
122 __put_single_page(page_head
);
124 if (put_page_testzero(page
))
125 __put_single_page(page
);
128 VM_BUG_ON(page_head
!= page
->first_page
);
130 * We can release the refcount taken by
131 * get_page_unless_zero() now that
132 * __split_huge_page_refcount() is blocked on
135 if (put_page_testzero(page_head
))
137 /* __split_huge_page_refcount will wait now */
138 VM_BUG_ON(page_mapcount(page
) <= 0);
139 atomic_dec(&page
->_mapcount
);
140 VM_BUG_ON(atomic_read(&page_head
->_count
) <= 0);
141 VM_BUG_ON(atomic_read(&page
->_count
) != 0);
142 compound_unlock_irqrestore(page_head
, flags
);
145 if (put_page_testzero(page_head
)) {
146 if (PageHead(page_head
))
147 __put_compound_page(page_head
);
149 __put_single_page(page_head
);
152 /* page_head is a dangling pointer */
153 VM_BUG_ON(PageTail(page
));
156 } else if (put_page_testzero(page
)) {
158 __put_compound_page(page
);
160 __put_single_page(page
);
164 void put_page(struct page
*page
)
166 if (unlikely(PageCompound(page
)))
167 put_compound_page(page
);
168 else if (put_page_testzero(page
))
169 __put_single_page(page
);
171 EXPORT_SYMBOL(put_page
);
174 * This function is exported but must not be called by anything other
175 * than get_page(). It implements the slow path of get_page().
177 bool __get_page_tail(struct page
*page
)
180 * This takes care of get_page() if run on a tail page
181 * returned by one of the get_user_pages/follow_page variants.
182 * get_user_pages/follow_page itself doesn't need the compound
183 * lock because it runs __get_page_tail_foll() under the
184 * proper PT lock that already serializes against
189 struct page
*page_head
= compound_trans_head(page
);
191 if (likely(page
!= page_head
&& get_page_unless_zero(page_head
))) {
193 /* Ref to put_compound_page() comment. */
194 if (PageSlab(page_head
)) {
195 if (likely(PageTail(page
))) {
196 __get_page_tail_foll(page
, false);
205 * page_head wasn't a dangling pointer but it
206 * may not be a head page anymore by the time
207 * we obtain the lock. That is ok as long as it
208 * can't be freed from under us.
210 flags
= compound_lock_irqsave(page_head
);
211 /* here __split_huge_page_refcount won't run anymore */
212 if (likely(PageTail(page
))) {
213 __get_page_tail_foll(page
, false);
216 compound_unlock_irqrestore(page_head
, flags
);
222 EXPORT_SYMBOL(__get_page_tail
);
225 * put_pages_list() - release a list of pages
226 * @pages: list of pages threaded on page->lru
228 * Release a list of pages which are strung together on page.lru. Currently
229 * used by read_cache_pages() and related error recovery code.
231 void put_pages_list(struct list_head
*pages
)
233 while (!list_empty(pages
)) {
236 victim
= list_entry(pages
->prev
, struct page
, lru
);
237 list_del(&victim
->lru
);
238 page_cache_release(victim
);
241 EXPORT_SYMBOL(put_pages_list
);
244 * get_kernel_pages() - pin kernel pages in memory
245 * @kiov: An array of struct kvec structures
246 * @nr_segs: number of segments to pin
247 * @write: pinning for read/write, currently ignored
248 * @pages: array that receives pointers to the pages pinned.
249 * Should be at least nr_segs long.
251 * Returns number of pages pinned. This may be fewer than the number
252 * requested. If nr_pages is 0 or negative, returns 0. If no pages
253 * were pinned, returns -errno. Each page returned must be released
254 * with a put_page() call when it is finished with.
256 int get_kernel_pages(const struct kvec
*kiov
, int nr_segs
, int write
,
261 for (seg
= 0; seg
< nr_segs
; seg
++) {
262 if (WARN_ON(kiov
[seg
].iov_len
!= PAGE_SIZE
))
265 pages
[seg
] = kmap_to_page(kiov
[seg
].iov_base
);
266 page_cache_get(pages
[seg
]);
271 EXPORT_SYMBOL_GPL(get_kernel_pages
);
274 * get_kernel_page() - pin a kernel page in memory
275 * @start: starting kernel address
276 * @write: pinning for read/write, currently ignored
277 * @pages: array that receives pointer to the page pinned.
278 * Must be at least nr_segs long.
280 * Returns 1 if page is pinned. If the page was not pinned, returns
281 * -errno. The page returned must be released with a put_page() call
282 * when it is finished with.
284 int get_kernel_page(unsigned long start
, int write
, struct page
**pages
)
286 const struct kvec kiov
= {
287 .iov_base
= (void *)start
,
291 return get_kernel_pages(&kiov
, 1, write
, pages
);
293 EXPORT_SYMBOL_GPL(get_kernel_page
);
295 static void pagevec_lru_move_fn(struct pagevec
*pvec
,
296 void (*move_fn
)(struct page
*page
, struct lruvec
*lruvec
, void *arg
),
300 struct zone
*zone
= NULL
;
301 struct lruvec
*lruvec
;
302 unsigned long flags
= 0;
304 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
305 struct page
*page
= pvec
->pages
[i
];
306 struct zone
*pagezone
= page_zone(page
);
308 if (pagezone
!= zone
) {
310 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
312 spin_lock_irqsave(&zone
->lru_lock
, flags
);
315 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
316 (*move_fn
)(page
, lruvec
, arg
);
319 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
320 release_pages(pvec
->pages
, pvec
->nr
, pvec
->cold
);
321 pagevec_reinit(pvec
);
324 static void pagevec_move_tail_fn(struct page
*page
, struct lruvec
*lruvec
,
329 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
330 enum lru_list lru
= page_lru_base_type(page
);
331 list_move_tail(&page
->lru
, &lruvec
->lists
[lru
]);
337 * pagevec_move_tail() must be called with IRQ disabled.
338 * Otherwise this may cause nasty races.
340 static void pagevec_move_tail(struct pagevec
*pvec
)
344 pagevec_lru_move_fn(pvec
, pagevec_move_tail_fn
, &pgmoved
);
345 __count_vm_events(PGROTATED
, pgmoved
);
349 * Writeback is about to end against a page which has been marked for immediate
350 * reclaim. If it still appears to be reclaimable, move it to the tail of the
353 void rotate_reclaimable_page(struct page
*page
)
355 if (!PageLocked(page
) && !PageDirty(page
) && !PageActive(page
) &&
356 !PageUnevictable(page
) && PageLRU(page
)) {
357 struct pagevec
*pvec
;
360 page_cache_get(page
);
361 local_irq_save(flags
);
362 pvec
= &__get_cpu_var(lru_rotate_pvecs
);
363 if (!pagevec_add(pvec
, page
))
364 pagevec_move_tail(pvec
);
365 local_irq_restore(flags
);
369 static void update_page_reclaim_stat(struct lruvec
*lruvec
,
370 int file
, int rotated
)
372 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
374 reclaim_stat
->recent_scanned
[file
]++;
376 reclaim_stat
->recent_rotated
[file
]++;
379 static void __activate_page(struct page
*page
, struct lruvec
*lruvec
,
382 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
383 int file
= page_is_file_cache(page
);
384 int lru
= page_lru_base_type(page
);
386 del_page_from_lru_list(page
, lruvec
, lru
);
389 add_page_to_lru_list(page
, lruvec
, lru
);
390 trace_mm_lru_activate(page
, page_to_pfn(page
));
392 __count_vm_event(PGACTIVATE
);
393 update_page_reclaim_stat(lruvec
, file
, 1);
398 static DEFINE_PER_CPU(struct pagevec
, activate_page_pvecs
);
400 static void activate_page_drain(int cpu
)
402 struct pagevec
*pvec
= &per_cpu(activate_page_pvecs
, cpu
);
404 if (pagevec_count(pvec
))
405 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
408 void activate_page(struct page
*page
)
410 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
411 struct pagevec
*pvec
= &get_cpu_var(activate_page_pvecs
);
413 page_cache_get(page
);
414 if (!pagevec_add(pvec
, page
))
415 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
416 put_cpu_var(activate_page_pvecs
);
421 static inline void activate_page_drain(int cpu
)
425 void activate_page(struct page
*page
)
427 struct zone
*zone
= page_zone(page
);
429 spin_lock_irq(&zone
->lru_lock
);
430 __activate_page(page
, mem_cgroup_page_lruvec(page
, zone
), NULL
);
431 spin_unlock_irq(&zone
->lru_lock
);
435 static void __lru_cache_activate_page(struct page
*page
)
437 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
441 * Search backwards on the optimistic assumption that the page being
442 * activated has just been added to this pagevec. Note that only
443 * the local pagevec is examined as a !PageLRU page could be in the
444 * process of being released, reclaimed, migrated or on a remote
445 * pagevec that is currently being drained. Furthermore, marking
446 * a remote pagevec's page PageActive potentially hits a race where
447 * a page is marked PageActive just after it is added to the inactive
448 * list causing accounting errors and BUG_ON checks to trigger.
450 for (i
= pagevec_count(pvec
) - 1; i
>= 0; i
--) {
451 struct page
*pagevec_page
= pvec
->pages
[i
];
453 if (pagevec_page
== page
) {
459 put_cpu_var(lru_add_pvec
);
463 * Mark a page as having seen activity.
465 * inactive,unreferenced -> inactive,referenced
466 * inactive,referenced -> active,unreferenced
467 * active,unreferenced -> active,referenced
469 void mark_page_accessed(struct page
*page
)
471 if (!PageActive(page
) && !PageUnevictable(page
) &&
472 PageReferenced(page
)) {
475 * If the page is on the LRU, queue it for activation via
476 * activate_page_pvecs. Otherwise, assume the page is on a
477 * pagevec, mark it active and it'll be moved to the active
478 * LRU on the next drain.
483 __lru_cache_activate_page(page
);
484 ClearPageReferenced(page
);
485 } else if (!PageReferenced(page
)) {
486 SetPageReferenced(page
);
489 EXPORT_SYMBOL(mark_page_accessed
);
492 * Queue the page for addition to the LRU via pagevec. The decision on whether
493 * to add the page to the [in]active [file|anon] list is deferred until the
494 * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
495 * have the page added to the active list using mark_page_accessed().
497 void __lru_cache_add(struct page
*page
)
499 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
501 page_cache_get(page
);
502 if (!pagevec_space(pvec
))
503 __pagevec_lru_add(pvec
);
504 pagevec_add(pvec
, page
);
505 put_cpu_var(lru_add_pvec
);
507 EXPORT_SYMBOL(__lru_cache_add
);
510 * lru_cache_add - add a page to a page list
511 * @page: the page to be added to the LRU.
513 void lru_cache_add(struct page
*page
)
515 if (PageActive(page
)) {
516 VM_BUG_ON(PageUnevictable(page
));
517 } else if (PageUnevictable(page
)) {
518 VM_BUG_ON(PageActive(page
));
521 VM_BUG_ON(PageLRU(page
));
522 __lru_cache_add(page
);
526 * add_page_to_unevictable_list - add a page to the unevictable list
527 * @page: the page to be added to the unevictable list
529 * Add page directly to its zone's unevictable list. To avoid races with
530 * tasks that might be making the page evictable, through eg. munlock,
531 * munmap or exit, while it's not on the lru, we want to add the page
532 * while it's locked or otherwise "invisible" to other tasks. This is
533 * difficult to do when using the pagevec cache, so bypass that.
535 void add_page_to_unevictable_list(struct page
*page
)
537 struct zone
*zone
= page_zone(page
);
538 struct lruvec
*lruvec
;
540 spin_lock_irq(&zone
->lru_lock
);
541 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
542 SetPageUnevictable(page
);
544 add_page_to_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
545 spin_unlock_irq(&zone
->lru_lock
);
549 * If the page can not be invalidated, it is moved to the
550 * inactive list to speed up its reclaim. It is moved to the
551 * head of the list, rather than the tail, to give the flusher
552 * threads some time to write it out, as this is much more
553 * effective than the single-page writeout from reclaim.
555 * If the page isn't page_mapped and dirty/writeback, the page
556 * could reclaim asap using PG_reclaim.
558 * 1. active, mapped page -> none
559 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
560 * 3. inactive, mapped page -> none
561 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
562 * 5. inactive, clean -> inactive, tail
565 * In 4, why it moves inactive's head, the VM expects the page would
566 * be write it out by flusher threads as this is much more effective
567 * than the single-page writeout from reclaim.
569 static void lru_deactivate_fn(struct page
*page
, struct lruvec
*lruvec
,
578 if (PageUnevictable(page
))
581 /* Some processes are using the page */
582 if (page_mapped(page
))
585 active
= PageActive(page
);
586 file
= page_is_file_cache(page
);
587 lru
= page_lru_base_type(page
);
589 del_page_from_lru_list(page
, lruvec
, lru
+ active
);
590 ClearPageActive(page
);
591 ClearPageReferenced(page
);
592 add_page_to_lru_list(page
, lruvec
, lru
);
594 if (PageWriteback(page
) || PageDirty(page
)) {
596 * PG_reclaim could be raced with end_page_writeback
597 * It can make readahead confusing. But race window
598 * is _really_ small and it's non-critical problem.
600 SetPageReclaim(page
);
603 * The page's writeback ends up during pagevec
604 * We moves tha page into tail of inactive.
606 list_move_tail(&page
->lru
, &lruvec
->lists
[lru
]);
607 __count_vm_event(PGROTATED
);
611 __count_vm_event(PGDEACTIVATE
);
612 update_page_reclaim_stat(lruvec
, file
, 0);
616 * Drain pages out of the cpu's pagevecs.
617 * Either "cpu" is the current CPU, and preemption has already been
618 * disabled; or "cpu" is being hot-unplugged, and is already dead.
620 void lru_add_drain_cpu(int cpu
)
622 struct pagevec
*pvec
= &per_cpu(lru_add_pvec
, cpu
);
624 if (pagevec_count(pvec
))
625 __pagevec_lru_add(pvec
);
627 pvec
= &per_cpu(lru_rotate_pvecs
, cpu
);
628 if (pagevec_count(pvec
)) {
631 /* No harm done if a racing interrupt already did this */
632 local_irq_save(flags
);
633 pagevec_move_tail(pvec
);
634 local_irq_restore(flags
);
637 pvec
= &per_cpu(lru_deactivate_pvecs
, cpu
);
638 if (pagevec_count(pvec
))
639 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
641 activate_page_drain(cpu
);
645 * deactivate_page - forcefully deactivate a page
646 * @page: page to deactivate
648 * This function hints the VM that @page is a good reclaim candidate,
649 * for example if its invalidation fails due to the page being dirty
650 * or under writeback.
652 void deactivate_page(struct page
*page
)
655 * In a workload with many unevictable page such as mprotect, unevictable
656 * page deactivation for accelerating reclaim is pointless.
658 if (PageUnevictable(page
))
661 if (likely(get_page_unless_zero(page
))) {
662 struct pagevec
*pvec
= &get_cpu_var(lru_deactivate_pvecs
);
664 if (!pagevec_add(pvec
, page
))
665 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
666 put_cpu_var(lru_deactivate_pvecs
);
670 void lru_add_drain(void)
672 lru_add_drain_cpu(get_cpu());
676 static void lru_add_drain_per_cpu(struct work_struct
*dummy
)
682 * Returns 0 for success
684 int lru_add_drain_all(void)
686 return schedule_on_each_cpu(lru_add_drain_per_cpu
);
690 * Batched page_cache_release(). Decrement the reference count on all the
691 * passed pages. If it fell to zero then remove the page from the LRU and
694 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
695 * for the remainder of the operation.
697 * The locking in this function is against shrink_inactive_list(): we recheck
698 * the page count inside the lock to see whether shrink_inactive_list()
699 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
702 void release_pages(struct page
**pages
, int nr
, int cold
)
705 LIST_HEAD(pages_to_free
);
706 struct zone
*zone
= NULL
;
707 struct lruvec
*lruvec
;
708 unsigned long uninitialized_var(flags
);
710 for (i
= 0; i
< nr
; i
++) {
711 struct page
*page
= pages
[i
];
713 if (unlikely(PageCompound(page
))) {
715 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
718 put_compound_page(page
);
722 if (!put_page_testzero(page
))
726 struct zone
*pagezone
= page_zone(page
);
728 if (pagezone
!= zone
) {
730 spin_unlock_irqrestore(&zone
->lru_lock
,
733 spin_lock_irqsave(&zone
->lru_lock
, flags
);
736 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
737 VM_BUG_ON(!PageLRU(page
));
738 __ClearPageLRU(page
);
739 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
742 /* Clear Active bit in case of parallel mark_page_accessed */
743 ClearPageActive(page
);
745 list_add(&page
->lru
, &pages_to_free
);
748 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
750 free_hot_cold_page_list(&pages_to_free
, cold
);
752 EXPORT_SYMBOL(release_pages
);
755 * The pages which we're about to release may be in the deferred lru-addition
756 * queues. That would prevent them from really being freed right now. That's
757 * OK from a correctness point of view but is inefficient - those pages may be
758 * cache-warm and we want to give them back to the page allocator ASAP.
760 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
761 * and __pagevec_lru_add_active() call release_pages() directly to avoid
764 void __pagevec_release(struct pagevec
*pvec
)
767 release_pages(pvec
->pages
, pagevec_count(pvec
), pvec
->cold
);
768 pagevec_reinit(pvec
);
770 EXPORT_SYMBOL(__pagevec_release
);
772 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
773 /* used by __split_huge_page_refcount() */
774 void lru_add_page_tail(struct page
*page
, struct page
*page_tail
,
775 struct lruvec
*lruvec
, struct list_head
*list
)
777 int uninitialized_var(active
);
781 VM_BUG_ON(!PageHead(page
));
782 VM_BUG_ON(PageCompound(page_tail
));
783 VM_BUG_ON(PageLRU(page_tail
));
784 VM_BUG_ON(NR_CPUS
!= 1 &&
785 !spin_is_locked(&lruvec_zone(lruvec
)->lru_lock
));
788 SetPageLRU(page_tail
);
790 if (page_evictable(page_tail
)) {
791 if (PageActive(page
)) {
792 SetPageActive(page_tail
);
794 lru
= LRU_ACTIVE_ANON
;
797 lru
= LRU_INACTIVE_ANON
;
800 SetPageUnevictable(page_tail
);
801 lru
= LRU_UNEVICTABLE
;
804 if (likely(PageLRU(page
)))
805 list_add_tail(&page_tail
->lru
, &page
->lru
);
807 /* page reclaim is reclaiming a huge page */
809 list_add_tail(&page_tail
->lru
, list
);
811 struct list_head
*list_head
;
813 * Head page has not yet been counted, as an hpage,
814 * so we must account for each subpage individually.
816 * Use the standard add function to put page_tail on the list,
817 * but then correct its position so they all end up in order.
819 add_page_to_lru_list(page_tail
, lruvec
, lru
);
820 list_head
= page_tail
->lru
.prev
;
821 list_move_tail(&page_tail
->lru
, list_head
);
824 if (!PageUnevictable(page
))
825 update_page_reclaim_stat(lruvec
, file
, active
);
827 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
829 static void __pagevec_lru_add_fn(struct page
*page
, struct lruvec
*lruvec
,
832 int file
= page_is_file_cache(page
);
833 int active
= PageActive(page
);
834 enum lru_list lru
= page_lru(page
);
836 VM_BUG_ON(PageUnevictable(page
));
837 VM_BUG_ON(PageLRU(page
));
840 add_page_to_lru_list(page
, lruvec
, lru
);
841 update_page_reclaim_stat(lruvec
, file
, active
);
842 trace_mm_lru_insertion(page
, page_to_pfn(page
), lru
, trace_pagemap_flags(page
));
846 * Add the passed pages to the LRU, then drop the caller's refcount
847 * on them. Reinitialises the caller's pagevec.
849 void __pagevec_lru_add(struct pagevec
*pvec
)
851 pagevec_lru_move_fn(pvec
, __pagevec_lru_add_fn
, NULL
);
853 EXPORT_SYMBOL(__pagevec_lru_add
);
856 * pagevec_lookup - gang pagecache lookup
857 * @pvec: Where the resulting pages are placed
858 * @mapping: The address_space to search
859 * @start: The starting page index
860 * @nr_pages: The maximum number of pages
862 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
863 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
864 * reference against the pages in @pvec.
866 * The search returns a group of mapping-contiguous pages with ascending
867 * indexes. There may be holes in the indices due to not-present pages.
869 * pagevec_lookup() returns the number of pages which were found.
871 unsigned pagevec_lookup(struct pagevec
*pvec
, struct address_space
*mapping
,
872 pgoff_t start
, unsigned nr_pages
)
874 pvec
->nr
= find_get_pages(mapping
, start
, nr_pages
, pvec
->pages
);
875 return pagevec_count(pvec
);
877 EXPORT_SYMBOL(pagevec_lookup
);
879 unsigned pagevec_lookup_tag(struct pagevec
*pvec
, struct address_space
*mapping
,
880 pgoff_t
*index
, int tag
, unsigned nr_pages
)
882 pvec
->nr
= find_get_pages_tag(mapping
, index
, tag
,
883 nr_pages
, pvec
->pages
);
884 return pagevec_count(pvec
);
886 EXPORT_SYMBOL(pagevec_lookup_tag
);
889 * Perform any setup for the swap system
891 void __init
swap_setup(void)
893 unsigned long megs
= totalram_pages
>> (20 - PAGE_SHIFT
);
897 bdi_init(swapper_spaces
[0].backing_dev_info
);
898 for (i
= 0; i
< MAX_SWAPFILES
; i
++) {
899 spin_lock_init(&swapper_spaces
[i
].tree_lock
);
900 INIT_LIST_HEAD(&swapper_spaces
[i
].i_mmap_nonlinear
);
904 /* Use a smaller cluster for small-memory machines */
910 * Right now other parts of the system means that we
911 * _really_ don't want to cluster much more