2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info
*pipe
,
44 struct pipe_buffer
*buf
)
46 struct page
*page
= buf
->page
;
47 struct address_space
*mapping
;
51 mapping
= page_mapping(page
);
53 WARN_ON(!PageUptodate(page
));
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
63 wait_on_page_writeback(page
);
65 if (page_has_private(page
) &&
66 !try_to_release_page(page
, GFP_KERNEL
))
70 * If we succeeded in removing the mapping, set LRU flag
73 if (remove_mapping(mapping
, page
)) {
74 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
88 static void page_cache_pipe_buf_release(struct pipe_inode_info
*pipe
,
89 struct pipe_buffer
*buf
)
91 page_cache_release(buf
->page
);
92 buf
->flags
&= ~PIPE_BUF_FLAG_LRU
;
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info
*pipe
,
100 struct pipe_buffer
*buf
)
102 struct page
*page
= buf
->page
;
105 if (!PageUptodate(page
)) {
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
112 if (!page
->mapping
) {
118 * Uh oh, read-error from disk.
120 if (!PageUptodate(page
)) {
126 * Page is ok afterall, we are done.
137 const struct pipe_buf_operations page_cache_pipe_buf_ops
= {
139 .map
= generic_pipe_buf_map
,
140 .unmap
= generic_pipe_buf_unmap
,
141 .confirm
= page_cache_pipe_buf_confirm
,
142 .release
= page_cache_pipe_buf_release
,
143 .steal
= page_cache_pipe_buf_steal
,
144 .get
= generic_pipe_buf_get
,
147 static int user_page_pipe_buf_steal(struct pipe_inode_info
*pipe
,
148 struct pipe_buffer
*buf
)
150 if (!(buf
->flags
& PIPE_BUF_FLAG_GIFT
))
153 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
154 return generic_pipe_buf_steal(pipe
, buf
);
157 static const struct pipe_buf_operations user_page_pipe_buf_ops
= {
159 .map
= generic_pipe_buf_map
,
160 .unmap
= generic_pipe_buf_unmap
,
161 .confirm
= generic_pipe_buf_confirm
,
162 .release
= page_cache_pipe_buf_release
,
163 .steal
= user_page_pipe_buf_steal
,
164 .get
= generic_pipe_buf_get
,
167 static void wakeup_pipe_readers(struct pipe_inode_info
*pipe
)
170 if (waitqueue_active(&pipe
->wait
))
171 wake_up_interruptible(&pipe
->wait
);
172 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
176 * splice_to_pipe - fill passed data into a pipe
177 * @pipe: pipe to fill
181 * @spd contains a map of pages and len/offset tuples, along with
182 * the struct pipe_buf_operations associated with these pages. This
183 * function will link that data to the pipe.
186 ssize_t
splice_to_pipe(struct pipe_inode_info
*pipe
,
187 struct splice_pipe_desc
*spd
)
189 unsigned int spd_pages
= spd
->nr_pages
;
190 int ret
, do_wakeup
, page_nr
;
199 if (!pipe
->readers
) {
200 send_sig(SIGPIPE
, current
, 0);
206 if (pipe
->nrbufs
< pipe
->buffers
) {
207 int newbuf
= (pipe
->curbuf
+ pipe
->nrbufs
) & (pipe
->buffers
- 1);
208 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
210 buf
->page
= spd
->pages
[page_nr
];
211 buf
->offset
= spd
->partial
[page_nr
].offset
;
212 buf
->len
= spd
->partial
[page_nr
].len
;
213 buf
->private = spd
->partial
[page_nr
].private;
215 if (spd
->flags
& SPLICE_F_GIFT
)
216 buf
->flags
|= PIPE_BUF_FLAG_GIFT
;
225 if (!--spd
->nr_pages
)
227 if (pipe
->nrbufs
< pipe
->buffers
)
233 if (spd
->flags
& SPLICE_F_NONBLOCK
) {
239 if (signal_pending(current
)) {
247 if (waitqueue_active(&pipe
->wait
))
248 wake_up_interruptible_sync(&pipe
->wait
);
249 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
253 pipe
->waiting_writers
++;
255 pipe
->waiting_writers
--;
261 wakeup_pipe_readers(pipe
);
263 while (page_nr
< spd_pages
)
264 spd
->spd_release(spd
, page_nr
++);
269 void spd_release_page(struct splice_pipe_desc
*spd
, unsigned int i
)
271 page_cache_release(spd
->pages
[i
]);
275 * Check if we need to grow the arrays holding pages and partial page
278 int splice_grow_spd(const struct pipe_inode_info
*pipe
, struct splice_pipe_desc
*spd
)
280 unsigned int buffers
= ACCESS_ONCE(pipe
->buffers
);
282 spd
->nr_pages_max
= buffers
;
283 if (buffers
<= PIPE_DEF_BUFFERS
)
286 spd
->pages
= kmalloc(buffers
* sizeof(struct page
*), GFP_KERNEL
);
287 spd
->partial
= kmalloc(buffers
* sizeof(struct partial_page
), GFP_KERNEL
);
289 if (spd
->pages
&& spd
->partial
)
297 void splice_shrink_spd(struct splice_pipe_desc
*spd
)
299 if (spd
->nr_pages_max
<= PIPE_DEF_BUFFERS
)
307 __generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
308 struct pipe_inode_info
*pipe
, size_t len
,
311 struct address_space
*mapping
= in
->f_mapping
;
312 unsigned int loff
, nr_pages
, req_pages
;
313 struct page
*pages
[PIPE_DEF_BUFFERS
];
314 struct partial_page partial
[PIPE_DEF_BUFFERS
];
316 pgoff_t index
, end_index
;
319 struct splice_pipe_desc spd
= {
322 .nr_pages_max
= PIPE_DEF_BUFFERS
,
324 .ops
= &page_cache_pipe_buf_ops
,
325 .spd_release
= spd_release_page
,
328 if (splice_grow_spd(pipe
, &spd
))
331 index
= *ppos
>> PAGE_CACHE_SHIFT
;
332 loff
= *ppos
& ~PAGE_CACHE_MASK
;
333 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
334 nr_pages
= min(req_pages
, spd
.nr_pages_max
);
337 * Lookup the (hopefully) full range of pages we need.
339 spd
.nr_pages
= find_get_pages_contig(mapping
, index
, nr_pages
, spd
.pages
);
340 index
+= spd
.nr_pages
;
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
346 if (spd
.nr_pages
< nr_pages
)
347 page_cache_sync_readahead(mapping
, &in
->f_ra
, in
,
348 index
, req_pages
- spd
.nr_pages
);
351 while (spd
.nr_pages
< nr_pages
) {
353 * Page could be there, find_get_pages_contig() breaks on
356 page
= find_get_page(mapping
, index
);
359 * page didn't exist, allocate one.
361 page
= page_cache_alloc_cold(mapping
);
365 error
= add_to_page_cache_lru(page
, mapping
, index
,
367 if (unlikely(error
)) {
368 page_cache_release(page
);
369 if (error
== -EEXIST
)
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
380 spd
.pages
[spd
.nr_pages
++] = page
;
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
388 index
= *ppos
>> PAGE_CACHE_SHIFT
;
389 nr_pages
= spd
.nr_pages
;
391 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
392 unsigned int this_len
;
398 * this_len is the max we'll use from this page
400 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
401 page
= spd
.pages
[page_nr
];
403 if (PageReadahead(page
))
404 page_cache_async_readahead(mapping
, &in
->f_ra
, in
,
405 page
, index
, req_pages
- page_nr
);
408 * If the page isn't uptodate, we may need to start io on it
410 if (!PageUptodate(page
)) {
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
419 if (!page
->mapping
) {
421 page
= find_or_create_page(mapping
, index
,
422 mapping_gfp_mask(mapping
));
428 page_cache_release(spd
.pages
[page_nr
]);
429 spd
.pages
[page_nr
] = page
;
432 * page was already under io and is now done, great
434 if (PageUptodate(page
)) {
440 * need to read in the page
442 error
= mapping
->a_ops
->readpage(in
, page
);
443 if (unlikely(error
)) {
445 * We really should re-lookup the page here,
446 * but it complicates things a lot. Instead
447 * lets just do what we already stored, and
448 * we'll get it the next time we are called.
450 if (error
== AOP_TRUNCATED_PAGE
)
458 * i_size must be checked after PageUptodate.
460 isize
= i_size_read(mapping
->host
);
461 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
462 if (unlikely(!isize
|| index
> end_index
))
466 * if this is the last page, see if we need to shrink
467 * the length and stop
469 if (end_index
== index
) {
473 * max good bytes in this page
475 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
480 * force quit after adding this page
482 this_len
= min(this_len
, plen
- loff
);
486 spd
.partial
[page_nr
].offset
= loff
;
487 spd
.partial
[page_nr
].len
= this_len
;
495 * Release any pages at the end, if we quit early. 'page_nr' is how far
496 * we got, 'nr_pages' is how many pages are in the map.
498 while (page_nr
< nr_pages
)
499 page_cache_release(spd
.pages
[page_nr
++]);
500 in
->f_ra
.prev_pos
= (loff_t
)index
<< PAGE_CACHE_SHIFT
;
503 error
= splice_to_pipe(pipe
, &spd
);
505 splice_shrink_spd(&spd
);
510 * generic_file_splice_read - splice data from file to a pipe
511 * @in: file to splice from
512 * @ppos: position in @in
513 * @pipe: pipe to splice to
514 * @len: number of bytes to splice
515 * @flags: splice modifier flags
518 * Will read pages from given file and fill them into a pipe. Can be
519 * used as long as the address_space operations for the source implements
523 ssize_t
generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
524 struct pipe_inode_info
*pipe
, size_t len
,
530 isize
= i_size_read(in
->f_mapping
->host
);
531 if (unlikely(*ppos
>= isize
))
534 left
= isize
- *ppos
;
535 if (unlikely(left
< len
))
538 ret
= __generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
546 EXPORT_SYMBOL(generic_file_splice_read
);
548 static const struct pipe_buf_operations default_pipe_buf_ops
= {
550 .map
= generic_pipe_buf_map
,
551 .unmap
= generic_pipe_buf_unmap
,
552 .confirm
= generic_pipe_buf_confirm
,
553 .release
= generic_pipe_buf_release
,
554 .steal
= generic_pipe_buf_steal
,
555 .get
= generic_pipe_buf_get
,
558 static ssize_t
kernel_readv(struct file
*file
, const struct iovec
*vec
,
559 unsigned long vlen
, loff_t offset
)
567 /* The cast to a user pointer is valid due to the set_fs() */
568 res
= vfs_readv(file
, (const struct iovec __user
*)vec
, vlen
, &pos
);
574 ssize_t
kernel_write(struct file
*file
, const char *buf
, size_t count
,
582 /* The cast to a user pointer is valid due to the set_fs() */
583 res
= vfs_write(file
, (__force
const char __user
*)buf
, count
, &pos
);
588 EXPORT_SYMBOL(kernel_write
);
590 ssize_t
default_file_splice_read(struct file
*in
, loff_t
*ppos
,
591 struct pipe_inode_info
*pipe
, size_t len
,
594 unsigned int nr_pages
;
595 unsigned int nr_freed
;
597 struct page
*pages
[PIPE_DEF_BUFFERS
];
598 struct partial_page partial
[PIPE_DEF_BUFFERS
];
599 struct iovec
*vec
, __vec
[PIPE_DEF_BUFFERS
];
604 struct splice_pipe_desc spd
= {
607 .nr_pages_max
= PIPE_DEF_BUFFERS
,
609 .ops
= &default_pipe_buf_ops
,
610 .spd_release
= spd_release_page
,
613 if (splice_grow_spd(pipe
, &spd
))
618 if (spd
.nr_pages_max
> PIPE_DEF_BUFFERS
) {
619 vec
= kmalloc(spd
.nr_pages_max
* sizeof(struct iovec
), GFP_KERNEL
);
624 offset
= *ppos
& ~PAGE_CACHE_MASK
;
625 nr_pages
= (len
+ offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
627 for (i
= 0; i
< nr_pages
&& i
< spd
.nr_pages_max
&& len
; i
++) {
630 page
= alloc_page(GFP_USER
);
635 this_len
= min_t(size_t, len
, PAGE_CACHE_SIZE
- offset
);
636 vec
[i
].iov_base
= (void __user
*) page_address(page
);
637 vec
[i
].iov_len
= this_len
;
644 res
= kernel_readv(in
, vec
, spd
.nr_pages
, *ppos
);
655 for (i
= 0; i
< spd
.nr_pages
; i
++) {
656 this_len
= min_t(size_t, vec
[i
].iov_len
, res
);
657 spd
.partial
[i
].offset
= 0;
658 spd
.partial
[i
].len
= this_len
;
660 __free_page(spd
.pages
[i
]);
666 spd
.nr_pages
-= nr_freed
;
668 res
= splice_to_pipe(pipe
, &spd
);
675 splice_shrink_spd(&spd
);
679 for (i
= 0; i
< spd
.nr_pages
; i
++)
680 __free_page(spd
.pages
[i
]);
685 EXPORT_SYMBOL(default_file_splice_read
);
688 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
689 * using sendpage(). Return the number of bytes sent.
691 static int pipe_to_sendpage(struct pipe_inode_info
*pipe
,
692 struct pipe_buffer
*buf
, struct splice_desc
*sd
)
694 struct file
*file
= sd
->u
.file
;
695 loff_t pos
= sd
->pos
;
698 if (!likely(file
->f_op
&& file
->f_op
->sendpage
))
701 more
= (sd
->flags
& SPLICE_F_MORE
) ? MSG_MORE
: 0;
703 if (sd
->len
< sd
->total_len
&& pipe
->nrbufs
> 1)
704 more
|= MSG_SENDPAGE_NOTLAST
;
706 return file
->f_op
->sendpage(file
, buf
->page
, buf
->offset
,
707 sd
->len
, &pos
, more
);
711 * This is a little more tricky than the file -> pipe splicing. There are
712 * basically three cases:
714 * - Destination page already exists in the address space and there
715 * are users of it. For that case we have no other option that
716 * copying the data. Tough luck.
717 * - Destination page already exists in the address space, but there
718 * are no users of it. Make sure it's uptodate, then drop it. Fall
719 * through to last case.
720 * - Destination page does not exist, we can add the pipe page to
721 * the page cache and avoid the copy.
723 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
724 * sd->flags), we attempt to migrate pages from the pipe to the output
725 * file address space page cache. This is possible if no one else has
726 * the pipe page referenced outside of the pipe and page cache. If
727 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
728 * a new page in the output file page cache and fill/dirty that.
730 int pipe_to_file(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
731 struct splice_desc
*sd
)
733 struct file
*file
= sd
->u
.file
;
734 struct address_space
*mapping
= file
->f_mapping
;
735 unsigned int offset
, this_len
;
740 offset
= sd
->pos
& ~PAGE_CACHE_MASK
;
743 if (this_len
+ offset
> PAGE_CACHE_SIZE
)
744 this_len
= PAGE_CACHE_SIZE
- offset
;
746 ret
= pagecache_write_begin(file
, mapping
, sd
->pos
, this_len
,
747 AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
751 if (buf
->page
!= page
) {
752 char *src
= buf
->ops
->map(pipe
, buf
, 1);
753 char *dst
= kmap_atomic(page
);
755 memcpy(dst
+ offset
, src
+ buf
->offset
, this_len
);
756 flush_dcache_page(page
);
758 buf
->ops
->unmap(pipe
, buf
, src
);
760 ret
= pagecache_write_end(file
, mapping
, sd
->pos
, this_len
, this_len
,
765 EXPORT_SYMBOL(pipe_to_file
);
767 static void wakeup_pipe_writers(struct pipe_inode_info
*pipe
)
770 if (waitqueue_active(&pipe
->wait
))
771 wake_up_interruptible(&pipe
->wait
);
772 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
776 * splice_from_pipe_feed - feed available data from a pipe to a file
777 * @pipe: pipe to splice from
778 * @sd: information to @actor
779 * @actor: handler that splices the data
782 * This function loops over the pipe and calls @actor to do the
783 * actual moving of a single struct pipe_buffer to the desired
784 * destination. It returns when there's no more buffers left in
785 * the pipe or if the requested number of bytes (@sd->total_len)
786 * have been copied. It returns a positive number (one) if the
787 * pipe needs to be filled with more data, zero if the required
788 * number of bytes have been copied and -errno on error.
790 * This, together with splice_from_pipe_{begin,end,next}, may be
791 * used to implement the functionality of __splice_from_pipe() when
792 * locking is required around copying the pipe buffers to the
795 int splice_from_pipe_feed(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
800 while (pipe
->nrbufs
) {
801 struct pipe_buffer
*buf
= pipe
->bufs
+ pipe
->curbuf
;
802 const struct pipe_buf_operations
*ops
= buf
->ops
;
805 if (sd
->len
> sd
->total_len
)
806 sd
->len
= sd
->total_len
;
808 ret
= buf
->ops
->confirm(pipe
, buf
);
815 ret
= actor(pipe
, buf
, sd
);
822 sd
->num_spliced
+= ret
;
825 sd
->total_len
-= ret
;
829 ops
->release(pipe
, buf
);
830 pipe
->curbuf
= (pipe
->curbuf
+ 1) & (pipe
->buffers
- 1);
833 sd
->need_wakeup
= true;
842 EXPORT_SYMBOL(splice_from_pipe_feed
);
845 * splice_from_pipe_next - wait for some data to splice from
846 * @pipe: pipe to splice from
847 * @sd: information about the splice operation
850 * This function will wait for some data and return a positive
851 * value (one) if pipe buffers are available. It will return zero
852 * or -errno if no more data needs to be spliced.
854 int splice_from_pipe_next(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
856 while (!pipe
->nrbufs
) {
860 if (!pipe
->waiting_writers
&& sd
->num_spliced
)
863 if (sd
->flags
& SPLICE_F_NONBLOCK
)
866 if (signal_pending(current
))
869 if (sd
->need_wakeup
) {
870 wakeup_pipe_writers(pipe
);
871 sd
->need_wakeup
= false;
879 EXPORT_SYMBOL(splice_from_pipe_next
);
882 * splice_from_pipe_begin - start splicing from pipe
883 * @sd: information about the splice operation
886 * This function should be called before a loop containing
887 * splice_from_pipe_next() and splice_from_pipe_feed() to
888 * initialize the necessary fields of @sd.
890 void splice_from_pipe_begin(struct splice_desc
*sd
)
893 sd
->need_wakeup
= false;
895 EXPORT_SYMBOL(splice_from_pipe_begin
);
898 * splice_from_pipe_end - finish splicing from pipe
899 * @pipe: pipe to splice from
900 * @sd: information about the splice operation
903 * This function will wake up pipe writers if necessary. It should
904 * be called after a loop containing splice_from_pipe_next() and
905 * splice_from_pipe_feed().
907 void splice_from_pipe_end(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
910 wakeup_pipe_writers(pipe
);
912 EXPORT_SYMBOL(splice_from_pipe_end
);
915 * __splice_from_pipe - splice data from a pipe to given actor
916 * @pipe: pipe to splice from
917 * @sd: information to @actor
918 * @actor: handler that splices the data
921 * This function does little more than loop over the pipe and call
922 * @actor to do the actual moving of a single struct pipe_buffer to
923 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
927 ssize_t
__splice_from_pipe(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
932 splice_from_pipe_begin(sd
);
934 ret
= splice_from_pipe_next(pipe
, sd
);
936 ret
= splice_from_pipe_feed(pipe
, sd
, actor
);
938 splice_from_pipe_end(pipe
, sd
);
940 return sd
->num_spliced
? sd
->num_spliced
: ret
;
942 EXPORT_SYMBOL(__splice_from_pipe
);
945 * splice_from_pipe - splice data from a pipe to a file
946 * @pipe: pipe to splice from
947 * @out: file to splice to
948 * @ppos: position in @out
949 * @len: how many bytes to splice
950 * @flags: splice modifier flags
951 * @actor: handler that splices the data
954 * See __splice_from_pipe. This function locks the pipe inode,
955 * otherwise it's identical to __splice_from_pipe().
958 ssize_t
splice_from_pipe(struct pipe_inode_info
*pipe
, struct file
*out
,
959 loff_t
*ppos
, size_t len
, unsigned int flags
,
963 struct splice_desc sd
= {
971 ret
= __splice_from_pipe(pipe
, &sd
, actor
);
978 * generic_file_splice_write - splice data from a pipe to a file
980 * @out: file to write to
981 * @ppos: position in @out
982 * @len: number of bytes to splice
983 * @flags: splice modifier flags
986 * Will either move or copy pages (determined by @flags options) from
987 * the given pipe inode to the given file.
991 generic_file_splice_write(struct pipe_inode_info
*pipe
, struct file
*out
,
992 loff_t
*ppos
, size_t len
, unsigned int flags
)
994 struct address_space
*mapping
= out
->f_mapping
;
995 struct inode
*inode
= mapping
->host
;
996 struct splice_desc sd
= {
1006 splice_from_pipe_begin(&sd
);
1008 ret
= splice_from_pipe_next(pipe
, &sd
);
1012 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
1013 ret
= file_remove_suid(out
);
1015 ret
= file_update_time(out
);
1017 ret
= splice_from_pipe_feed(pipe
, &sd
,
1020 mutex_unlock(&inode
->i_mutex
);
1022 splice_from_pipe_end(pipe
, &sd
);
1027 ret
= sd
.num_spliced
;
1032 err
= generic_write_sync(out
, *ppos
, ret
);
1037 balance_dirty_pages_ratelimited(mapping
);
1043 EXPORT_SYMBOL(generic_file_splice_write
);
1045 static int write_pipe_buf(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1046 struct splice_desc
*sd
)
1050 loff_t tmp
= sd
->pos
;
1052 data
= buf
->ops
->map(pipe
, buf
, 0);
1053 ret
= __kernel_write(sd
->u
.file
, data
+ buf
->offset
, sd
->len
, &tmp
);
1054 buf
->ops
->unmap(pipe
, buf
, data
);
1059 static ssize_t
default_file_splice_write(struct pipe_inode_info
*pipe
,
1060 struct file
*out
, loff_t
*ppos
,
1061 size_t len
, unsigned int flags
)
1065 ret
= splice_from_pipe(pipe
, out
, ppos
, len
, flags
, write_pipe_buf
);
1073 * generic_splice_sendpage - splice data from a pipe to a socket
1074 * @pipe: pipe to splice from
1075 * @out: socket to write to
1076 * @ppos: position in @out
1077 * @len: number of bytes to splice
1078 * @flags: splice modifier flags
1081 * Will send @len bytes from the pipe to a network socket. No data copying
1085 ssize_t
generic_splice_sendpage(struct pipe_inode_info
*pipe
, struct file
*out
,
1086 loff_t
*ppos
, size_t len
, unsigned int flags
)
1088 return splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_sendpage
);
1091 EXPORT_SYMBOL(generic_splice_sendpage
);
1094 * Attempt to initiate a splice from pipe to file.
1096 static long do_splice_from(struct pipe_inode_info
*pipe
, struct file
*out
,
1097 loff_t
*ppos
, size_t len
, unsigned int flags
)
1099 ssize_t (*splice_write
)(struct pipe_inode_info
*, struct file
*,
1100 loff_t
*, size_t, unsigned int);
1102 if (out
->f_op
&& out
->f_op
->splice_write
)
1103 splice_write
= out
->f_op
->splice_write
;
1105 splice_write
= default_file_splice_write
;
1107 return splice_write(pipe
, out
, ppos
, len
, flags
);
1111 * Attempt to initiate a splice from a file to a pipe.
1113 static long do_splice_to(struct file
*in
, loff_t
*ppos
,
1114 struct pipe_inode_info
*pipe
, size_t len
,
1117 ssize_t (*splice_read
)(struct file
*, loff_t
*,
1118 struct pipe_inode_info
*, size_t, unsigned int);
1121 if (unlikely(!(in
->f_mode
& FMODE_READ
)))
1124 ret
= rw_verify_area(READ
, in
, ppos
, len
);
1125 if (unlikely(ret
< 0))
1128 if (in
->f_op
&& in
->f_op
->splice_read
)
1129 splice_read
= in
->f_op
->splice_read
;
1131 splice_read
= default_file_splice_read
;
1133 return splice_read(in
, ppos
, pipe
, len
, flags
);
1137 * splice_direct_to_actor - splices data directly between two non-pipes
1138 * @in: file to splice from
1139 * @sd: actor information on where to splice to
1140 * @actor: handles the data splicing
1143 * This is a special case helper to splice directly between two
1144 * points, without requiring an explicit pipe. Internally an allocated
1145 * pipe is cached in the process, and reused during the lifetime of
1149 ssize_t
splice_direct_to_actor(struct file
*in
, struct splice_desc
*sd
,
1150 splice_direct_actor
*actor
)
1152 struct pipe_inode_info
*pipe
;
1159 * We require the input being a regular file, as we don't want to
1160 * randomly drop data for eg socket -> socket splicing. Use the
1161 * piped splicing for that!
1163 i_mode
= file_inode(in
)->i_mode
;
1164 if (unlikely(!S_ISREG(i_mode
) && !S_ISBLK(i_mode
)))
1168 * neither in nor out is a pipe, setup an internal pipe attached to
1169 * 'out' and transfer the wanted data from 'in' to 'out' through that
1171 pipe
= current
->splice_pipe
;
1172 if (unlikely(!pipe
)) {
1173 pipe
= alloc_pipe_info();
1178 * We don't have an immediate reader, but we'll read the stuff
1179 * out of the pipe right after the splice_to_pipe(). So set
1180 * PIPE_READERS appropriately.
1184 current
->splice_pipe
= pipe
;
1192 len
= sd
->total_len
;
1196 * Don't block on output, we have to drain the direct pipe.
1198 sd
->flags
&= ~SPLICE_F_NONBLOCK
;
1202 loff_t pos
= sd
->pos
, prev_pos
= pos
;
1204 ret
= do_splice_to(in
, &pos
, pipe
, len
, flags
);
1205 if (unlikely(ret
<= 0))
1209 sd
->total_len
= read_len
;
1212 * NOTE: nonblocking mode only applies to the input. We
1213 * must not do the output in nonblocking mode as then we
1214 * could get stuck data in the internal pipe:
1216 ret
= actor(pipe
, sd
);
1217 if (unlikely(ret
<= 0)) {
1226 if (ret
< read_len
) {
1227 sd
->pos
= prev_pos
+ ret
;
1233 pipe
->nrbufs
= pipe
->curbuf
= 0;
1239 * If we did an incomplete transfer we must release
1240 * the pipe buffers in question:
1242 for (i
= 0; i
< pipe
->buffers
; i
++) {
1243 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
1246 buf
->ops
->release(pipe
, buf
);
1256 EXPORT_SYMBOL(splice_direct_to_actor
);
1258 static int direct_splice_actor(struct pipe_inode_info
*pipe
,
1259 struct splice_desc
*sd
)
1261 struct file
*file
= sd
->u
.file
;
1263 return do_splice_from(pipe
, file
, sd
->opos
, sd
->total_len
,
1268 * do_splice_direct - splices data directly between two files
1269 * @in: file to splice from
1270 * @ppos: input file offset
1271 * @out: file to splice to
1272 * @opos: output file offset
1273 * @len: number of bytes to splice
1274 * @flags: splice modifier flags
1277 * For use by do_sendfile(). splice can easily emulate sendfile, but
1278 * doing it in the application would incur an extra system call
1279 * (splice in + splice out, as compared to just sendfile()). So this helper
1280 * can splice directly through a process-private pipe.
1283 long do_splice_direct(struct file
*in
, loff_t
*ppos
, struct file
*out
,
1284 loff_t
*opos
, size_t len
, unsigned int flags
)
1286 struct splice_desc sd
= {
1296 if (unlikely(!(out
->f_mode
& FMODE_WRITE
)))
1299 if (unlikely(out
->f_flags
& O_APPEND
))
1302 ret
= rw_verify_area(WRITE
, out
, opos
, len
);
1303 if (unlikely(ret
< 0))
1306 ret
= splice_direct_to_actor(in
, &sd
, direct_splice_actor
);
1313 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1314 struct pipe_inode_info
*opipe
,
1315 size_t len
, unsigned int flags
);
1318 * Determine where to splice to/from.
1320 static long do_splice(struct file
*in
, loff_t __user
*off_in
,
1321 struct file
*out
, loff_t __user
*off_out
,
1322 size_t len
, unsigned int flags
)
1324 struct pipe_inode_info
*ipipe
;
1325 struct pipe_inode_info
*opipe
;
1329 ipipe
= get_pipe_info(in
);
1330 opipe
= get_pipe_info(out
);
1332 if (ipipe
&& opipe
) {
1333 if (off_in
|| off_out
)
1336 if (!(in
->f_mode
& FMODE_READ
))
1339 if (!(out
->f_mode
& FMODE_WRITE
))
1342 /* Splicing to self would be fun, but... */
1346 return splice_pipe_to_pipe(ipipe
, opipe
, len
, flags
);
1353 if (!(out
->f_mode
& FMODE_PWRITE
))
1355 if (copy_from_user(&offset
, off_out
, sizeof(loff_t
)))
1358 offset
= out
->f_pos
;
1361 if (unlikely(!(out
->f_mode
& FMODE_WRITE
)))
1364 if (unlikely(out
->f_flags
& O_APPEND
))
1367 ret
= rw_verify_area(WRITE
, out
, &offset
, len
);
1368 if (unlikely(ret
< 0))
1371 file_start_write(out
);
1372 ret
= do_splice_from(ipipe
, out
, &offset
, len
, flags
);
1373 file_end_write(out
);
1376 out
->f_pos
= offset
;
1377 else if (copy_to_user(off_out
, &offset
, sizeof(loff_t
)))
1387 if (!(in
->f_mode
& FMODE_PREAD
))
1389 if (copy_from_user(&offset
, off_in
, sizeof(loff_t
)))
1395 ret
= do_splice_to(in
, &offset
, opipe
, len
, flags
);
1399 else if (copy_to_user(off_in
, &offset
, sizeof(loff_t
)))
1409 * Map an iov into an array of pages and offset/length tupples. With the
1410 * partial_page structure, we can map several non-contiguous ranges into
1411 * our ones pages[] map instead of splitting that operation into pieces.
1412 * Could easily be exported as a generic helper for other users, in which
1413 * case one would probably want to add a 'max_nr_pages' parameter as well.
1415 static int get_iovec_page_array(const struct iovec __user
*iov
,
1416 unsigned int nr_vecs
, struct page
**pages
,
1417 struct partial_page
*partial
, bool aligned
,
1418 unsigned int pipe_buffers
)
1420 int buffers
= 0, error
= 0;
1423 unsigned long off
, npages
;
1430 if (copy_from_user(&entry
, iov
, sizeof(entry
)))
1433 base
= entry
.iov_base
;
1434 len
= entry
.iov_len
;
1437 * Sanity check this iovec. 0 read succeeds.
1443 if (!access_ok(VERIFY_READ
, base
, len
))
1447 * Get this base offset and number of pages, then map
1448 * in the user pages.
1450 off
= (unsigned long) base
& ~PAGE_MASK
;
1453 * If asked for alignment, the offset must be zero and the
1454 * length a multiple of the PAGE_SIZE.
1457 if (aligned
&& (off
|| len
& ~PAGE_MASK
))
1460 npages
= (off
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1461 if (npages
> pipe_buffers
- buffers
)
1462 npages
= pipe_buffers
- buffers
;
1464 error
= get_user_pages_fast((unsigned long)base
, npages
,
1465 0, &pages
[buffers
]);
1467 if (unlikely(error
<= 0))
1471 * Fill this contiguous range into the partial page map.
1473 for (i
= 0; i
< error
; i
++) {
1474 const int plen
= min_t(size_t, len
, PAGE_SIZE
- off
);
1476 partial
[buffers
].offset
= off
;
1477 partial
[buffers
].len
= plen
;
1485 * We didn't complete this iov, stop here since it probably
1486 * means we have to move some of this into a pipe to
1487 * be able to continue.
1493 * Don't continue if we mapped fewer pages than we asked for,
1494 * or if we mapped the max number of pages that we have
1497 if (error
< npages
|| buffers
== pipe_buffers
)
1510 static int pipe_to_user(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1511 struct splice_desc
*sd
)
1517 * See if we can use the atomic maps, by prefaulting in the
1518 * pages and doing an atomic copy
1520 if (!fault_in_pages_writeable(sd
->u
.userptr
, sd
->len
)) {
1521 src
= buf
->ops
->map(pipe
, buf
, 1);
1522 ret
= __copy_to_user_inatomic(sd
->u
.userptr
, src
+ buf
->offset
,
1524 buf
->ops
->unmap(pipe
, buf
, src
);
1532 * No dice, use slow non-atomic map and copy
1534 src
= buf
->ops
->map(pipe
, buf
, 0);
1537 if (copy_to_user(sd
->u
.userptr
, src
+ buf
->offset
, sd
->len
))
1540 buf
->ops
->unmap(pipe
, buf
, src
);
1543 sd
->u
.userptr
+= ret
;
1548 * For lack of a better implementation, implement vmsplice() to userspace
1549 * as a simple copy of the pipes pages to the user iov.
1551 static long vmsplice_to_user(struct file
*file
, const struct iovec __user
*iov
,
1552 unsigned long nr_segs
, unsigned int flags
)
1554 struct pipe_inode_info
*pipe
;
1555 struct splice_desc sd
;
1560 pipe
= get_pipe_info(file
);
1572 * Get user address base and length for this iovec.
1574 error
= get_user(base
, &iov
->iov_base
);
1575 if (unlikely(error
))
1577 error
= get_user(len
, &iov
->iov_len
);
1578 if (unlikely(error
))
1582 * Sanity check this iovec. 0 read succeeds.
1586 if (unlikely(!base
)) {
1591 if (unlikely(!access_ok(VERIFY_WRITE
, base
, len
))) {
1599 sd
.u
.userptr
= base
;
1602 size
= __splice_from_pipe(pipe
, &sd
, pipe_to_user
);
1628 * vmsplice splices a user address range into a pipe. It can be thought of
1629 * as splice-from-memory, where the regular splice is splice-from-file (or
1630 * to file). In both cases the output is a pipe, naturally.
1632 static long vmsplice_to_pipe(struct file
*file
, const struct iovec __user
*iov
,
1633 unsigned long nr_segs
, unsigned int flags
)
1635 struct pipe_inode_info
*pipe
;
1636 struct page
*pages
[PIPE_DEF_BUFFERS
];
1637 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1638 struct splice_pipe_desc spd
= {
1641 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1643 .ops
= &user_page_pipe_buf_ops
,
1644 .spd_release
= spd_release_page
,
1648 pipe
= get_pipe_info(file
);
1652 if (splice_grow_spd(pipe
, &spd
))
1655 spd
.nr_pages
= get_iovec_page_array(iov
, nr_segs
, spd
.pages
,
1658 if (spd
.nr_pages
<= 0)
1661 ret
= splice_to_pipe(pipe
, &spd
);
1663 splice_shrink_spd(&spd
);
1668 * Note that vmsplice only really supports true splicing _from_ user memory
1669 * to a pipe, not the other way around. Splicing from user memory is a simple
1670 * operation that can be supported without any funky alignment restrictions
1671 * or nasty vm tricks. We simply map in the user memory and fill them into
1672 * a pipe. The reverse isn't quite as easy, though. There are two possible
1673 * solutions for that:
1675 * - memcpy() the data internally, at which point we might as well just
1676 * do a regular read() on the buffer anyway.
1677 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1678 * has restriction limitations on both ends of the pipe).
1680 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1683 SYSCALL_DEFINE4(vmsplice
, int, fd
, const struct iovec __user
*, iov
,
1684 unsigned long, nr_segs
, unsigned int, flags
)
1689 if (unlikely(nr_segs
> UIO_MAXIOV
))
1691 else if (unlikely(!nr_segs
))
1697 if (f
.file
->f_mode
& FMODE_WRITE
)
1698 error
= vmsplice_to_pipe(f
.file
, iov
, nr_segs
, flags
);
1699 else if (f
.file
->f_mode
& FMODE_READ
)
1700 error
= vmsplice_to_user(f
.file
, iov
, nr_segs
, flags
);
1708 #ifdef CONFIG_COMPAT
1709 COMPAT_SYSCALL_DEFINE4(vmsplice
, int, fd
, const struct compat_iovec __user
*, iov32
,
1710 unsigned int, nr_segs
, unsigned int, flags
)
1713 struct iovec __user
*iov
;
1714 if (nr_segs
> UIO_MAXIOV
)
1716 iov
= compat_alloc_user_space(nr_segs
* sizeof(struct iovec
));
1717 for (i
= 0; i
< nr_segs
; i
++) {
1718 struct compat_iovec v
;
1719 if (get_user(v
.iov_base
, &iov32
[i
].iov_base
) ||
1720 get_user(v
.iov_len
, &iov32
[i
].iov_len
) ||
1721 put_user(compat_ptr(v
.iov_base
), &iov
[i
].iov_base
) ||
1722 put_user(v
.iov_len
, &iov
[i
].iov_len
))
1725 return sys_vmsplice(fd
, iov
, nr_segs
, flags
);
1729 SYSCALL_DEFINE6(splice
, int, fd_in
, loff_t __user
*, off_in
,
1730 int, fd_out
, loff_t __user
*, off_out
,
1731 size_t, len
, unsigned int, flags
)
1742 if (in
.file
->f_mode
& FMODE_READ
) {
1743 out
= fdget(fd_out
);
1745 if (out
.file
->f_mode
& FMODE_WRITE
)
1746 error
= do_splice(in
.file
, off_in
,
1758 * Make sure there's data to read. Wait for input if we can, otherwise
1759 * return an appropriate error.
1761 static int ipipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1766 * Check ->nrbufs without the inode lock first. This function
1767 * is speculative anyways, so missing one is ok.
1775 while (!pipe
->nrbufs
) {
1776 if (signal_pending(current
)) {
1782 if (!pipe
->waiting_writers
) {
1783 if (flags
& SPLICE_F_NONBLOCK
) {
1796 * Make sure there's writeable room. Wait for room if we can, otherwise
1797 * return an appropriate error.
1799 static int opipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1804 * Check ->nrbufs without the inode lock first. This function
1805 * is speculative anyways, so missing one is ok.
1807 if (pipe
->nrbufs
< pipe
->buffers
)
1813 while (pipe
->nrbufs
>= pipe
->buffers
) {
1814 if (!pipe
->readers
) {
1815 send_sig(SIGPIPE
, current
, 0);
1819 if (flags
& SPLICE_F_NONBLOCK
) {
1823 if (signal_pending(current
)) {
1827 pipe
->waiting_writers
++;
1829 pipe
->waiting_writers
--;
1837 * Splice contents of ipipe to opipe.
1839 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1840 struct pipe_inode_info
*opipe
,
1841 size_t len
, unsigned int flags
)
1843 struct pipe_buffer
*ibuf
, *obuf
;
1845 bool input_wakeup
= false;
1849 ret
= ipipe_prep(ipipe
, flags
);
1853 ret
= opipe_prep(opipe
, flags
);
1858 * Potential ABBA deadlock, work around it by ordering lock
1859 * grabbing by pipe info address. Otherwise two different processes
1860 * could deadlock (one doing tee from A -> B, the other from B -> A).
1862 pipe_double_lock(ipipe
, opipe
);
1865 if (!opipe
->readers
) {
1866 send_sig(SIGPIPE
, current
, 0);
1872 if (!ipipe
->nrbufs
&& !ipipe
->writers
)
1876 * Cannot make any progress, because either the input
1877 * pipe is empty or the output pipe is full.
1879 if (!ipipe
->nrbufs
|| opipe
->nrbufs
>= opipe
->buffers
) {
1880 /* Already processed some buffers, break */
1884 if (flags
& SPLICE_F_NONBLOCK
) {
1890 * We raced with another reader/writer and haven't
1891 * managed to process any buffers. A zero return
1892 * value means EOF, so retry instead.
1899 ibuf
= ipipe
->bufs
+ ipipe
->curbuf
;
1900 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (opipe
->buffers
- 1);
1901 obuf
= opipe
->bufs
+ nbuf
;
1903 if (len
>= ibuf
->len
) {
1905 * Simply move the whole buffer from ipipe to opipe
1910 ipipe
->curbuf
= (ipipe
->curbuf
+ 1) & (ipipe
->buffers
- 1);
1912 input_wakeup
= true;
1915 * Get a reference to this pipe buffer,
1916 * so we can copy the contents over.
1918 ibuf
->ops
->get(ipipe
, ibuf
);
1922 * Don't inherit the gift flag, we need to
1923 * prevent multiple steals of this page.
1925 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1929 ibuf
->offset
+= obuf
->len
;
1930 ibuf
->len
-= obuf
->len
;
1940 * If we put data in the output pipe, wakeup any potential readers.
1943 wakeup_pipe_readers(opipe
);
1946 wakeup_pipe_writers(ipipe
);
1952 * Link contents of ipipe to opipe.
1954 static int link_pipe(struct pipe_inode_info
*ipipe
,
1955 struct pipe_inode_info
*opipe
,
1956 size_t len
, unsigned int flags
)
1958 struct pipe_buffer
*ibuf
, *obuf
;
1959 int ret
= 0, i
= 0, nbuf
;
1962 * Potential ABBA deadlock, work around it by ordering lock
1963 * grabbing by pipe info address. Otherwise two different processes
1964 * could deadlock (one doing tee from A -> B, the other from B -> A).
1966 pipe_double_lock(ipipe
, opipe
);
1969 if (!opipe
->readers
) {
1970 send_sig(SIGPIPE
, current
, 0);
1977 * If we have iterated all input buffers or ran out of
1978 * output room, break.
1980 if (i
>= ipipe
->nrbufs
|| opipe
->nrbufs
>= opipe
->buffers
)
1983 ibuf
= ipipe
->bufs
+ ((ipipe
->curbuf
+ i
) & (ipipe
->buffers
-1));
1984 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (opipe
->buffers
- 1);
1987 * Get a reference to this pipe buffer,
1988 * so we can copy the contents over.
1990 ibuf
->ops
->get(ipipe
, ibuf
);
1992 obuf
= opipe
->bufs
+ nbuf
;
1996 * Don't inherit the gift flag, we need to
1997 * prevent multiple steals of this page.
1999 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
2001 if (obuf
->len
> len
)
2011 * return EAGAIN if we have the potential of some data in the
2012 * future, otherwise just return 0
2014 if (!ret
&& ipipe
->waiting_writers
&& (flags
& SPLICE_F_NONBLOCK
))
2021 * If we put data in the output pipe, wakeup any potential readers.
2024 wakeup_pipe_readers(opipe
);
2030 * This is a tee(1) implementation that works on pipes. It doesn't copy
2031 * any data, it simply references the 'in' pages on the 'out' pipe.
2032 * The 'flags' used are the SPLICE_F_* variants, currently the only
2033 * applicable one is SPLICE_F_NONBLOCK.
2035 static long do_tee(struct file
*in
, struct file
*out
, size_t len
,
2038 struct pipe_inode_info
*ipipe
= get_pipe_info(in
);
2039 struct pipe_inode_info
*opipe
= get_pipe_info(out
);
2043 * Duplicate the contents of ipipe to opipe without actually
2046 if (ipipe
&& opipe
&& ipipe
!= opipe
) {
2048 * Keep going, unless we encounter an error. The ipipe/opipe
2049 * ordering doesn't really matter.
2051 ret
= ipipe_prep(ipipe
, flags
);
2053 ret
= opipe_prep(opipe
, flags
);
2055 ret
= link_pipe(ipipe
, opipe
, len
, flags
);
2062 SYSCALL_DEFINE4(tee
, int, fdin
, int, fdout
, size_t, len
, unsigned int, flags
)
2073 if (in
.file
->f_mode
& FMODE_READ
) {
2074 struct fd out
= fdget(fdout
);
2076 if (out
.file
->f_mode
& FMODE_WRITE
)
2077 error
= do_tee(in
.file
, out
.file
,