proc: clean the ip_misc_proc_init and ip_proc_init_net error paths
[linux-2.6.git] / drivers / mtd / chips / cfi_cmdset_0020.c
blob1b720cc571f315dfbb1ec2a7faed160835bbb00b
1 /*
2 * Common Flash Interface support:
3 * ST Advanced Architecture Command Set (ID 0x0020)
5 * (C) 2000 Red Hat. GPL'd
7 * $Id: cfi_cmdset_0020.c,v 1.22 2005/11/07 11:14:22 gleixner Exp $
9 * 10/10/2000 Nicolas Pitre <nico@cam.org>
10 * - completely revamped method functions so they are aware and
11 * independent of the flash geometry (buswidth, interleave, etc.)
12 * - scalability vs code size is completely set at compile-time
13 * (see include/linux/mtd/cfi.h for selection)
14 * - optimized write buffer method
15 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
16 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture
17 * (command set 0x0020)
18 * - added a writev function
19 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de>
20 * - Plugged memory leak in cfi_staa_writev().
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/cfi.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/compatmac.h>
41 static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
42 static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
43 static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
44 unsigned long count, loff_t to, size_t *retlen);
45 static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
46 static void cfi_staa_sync (struct mtd_info *);
47 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
48 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
49 static int cfi_staa_suspend (struct mtd_info *);
50 static void cfi_staa_resume (struct mtd_info *);
52 static void cfi_staa_destroy(struct mtd_info *);
54 struct mtd_info *cfi_cmdset_0020(struct map_info *, int);
56 static struct mtd_info *cfi_staa_setup (struct map_info *);
58 static struct mtd_chip_driver cfi_staa_chipdrv = {
59 .probe = NULL, /* Not usable directly */
60 .destroy = cfi_staa_destroy,
61 .name = "cfi_cmdset_0020",
62 .module = THIS_MODULE
65 /* #define DEBUG_LOCK_BITS */
66 //#define DEBUG_CFI_FEATURES
68 #ifdef DEBUG_CFI_FEATURES
69 static void cfi_tell_features(struct cfi_pri_intelext *extp)
71 int i;
72 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
73 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
74 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
75 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
76 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
77 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
78 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
79 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
80 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
81 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
82 for (i=9; i<32; i++) {
83 if (extp->FeatureSupport & (1<<i))
84 printk(" - Unknown Bit %X: supported\n", i);
87 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
88 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
89 for (i=1; i<8; i++) {
90 if (extp->SuspendCmdSupport & (1<<i))
91 printk(" - Unknown Bit %X: supported\n", i);
94 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
95 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
96 printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
97 for (i=2; i<16; i++) {
98 if (extp->BlkStatusRegMask & (1<<i))
99 printk(" - Unknown Bit %X Active: yes\n",i);
102 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
103 extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
104 if (extp->VppOptimal)
105 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
106 extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
108 #endif
110 /* This routine is made available to other mtd code via
111 * inter_module_register. It must only be accessed through
112 * inter_module_get which will bump the use count of this module. The
113 * addresses passed back in cfi are valid as long as the use count of
114 * this module is non-zero, i.e. between inter_module_get and
115 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
117 struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
119 struct cfi_private *cfi = map->fldrv_priv;
120 int i;
122 if (cfi->cfi_mode) {
124 * It's a real CFI chip, not one for which the probe
125 * routine faked a CFI structure. So we read the feature
126 * table from it.
128 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
129 struct cfi_pri_intelext *extp;
131 extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics");
132 if (!extp)
133 return NULL;
135 if (extp->MajorVersion != '1' ||
136 (extp->MinorVersion < '0' || extp->MinorVersion > '3')) {
137 printk(KERN_ERR " Unknown ST Microelectronics"
138 " Extended Query version %c.%c.\n",
139 extp->MajorVersion, extp->MinorVersion);
140 kfree(extp);
141 return NULL;
144 /* Do some byteswapping if necessary */
145 extp->FeatureSupport = cfi32_to_cpu(extp->FeatureSupport);
146 extp->BlkStatusRegMask = cfi32_to_cpu(extp->BlkStatusRegMask);
148 #ifdef DEBUG_CFI_FEATURES
149 /* Tell the user about it in lots of lovely detail */
150 cfi_tell_features(extp);
151 #endif
153 /* Install our own private info structure */
154 cfi->cmdset_priv = extp;
157 for (i=0; i< cfi->numchips; i++) {
158 cfi->chips[i].word_write_time = 128;
159 cfi->chips[i].buffer_write_time = 128;
160 cfi->chips[i].erase_time = 1024;
161 cfi->chips[i].ref_point_counter = 0;
162 init_waitqueue_head(&(cfi->chips[i].wq));
165 return cfi_staa_setup(map);
167 EXPORT_SYMBOL_GPL(cfi_cmdset_0020);
169 static struct mtd_info *cfi_staa_setup(struct map_info *map)
171 struct cfi_private *cfi = map->fldrv_priv;
172 struct mtd_info *mtd;
173 unsigned long offset = 0;
174 int i,j;
175 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
177 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
178 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
180 if (!mtd) {
181 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
182 kfree(cfi->cmdset_priv);
183 return NULL;
186 mtd->priv = map;
187 mtd->type = MTD_NORFLASH;
188 mtd->size = devsize * cfi->numchips;
190 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
191 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
192 * mtd->numeraseregions, GFP_KERNEL);
193 if (!mtd->eraseregions) {
194 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
195 kfree(cfi->cmdset_priv);
196 kfree(mtd);
197 return NULL;
200 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
201 unsigned long ernum, ersize;
202 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
203 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
205 if (mtd->erasesize < ersize) {
206 mtd->erasesize = ersize;
208 for (j=0; j<cfi->numchips; j++) {
209 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
210 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
211 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
213 offset += (ersize * ernum);
216 if (offset != devsize) {
217 /* Argh */
218 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
219 kfree(mtd->eraseregions);
220 kfree(cfi->cmdset_priv);
221 kfree(mtd);
222 return NULL;
225 for (i=0; i<mtd->numeraseregions;i++){
226 printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n",
227 i,mtd->eraseregions[i].offset,
228 mtd->eraseregions[i].erasesize,
229 mtd->eraseregions[i].numblocks);
232 /* Also select the correct geometry setup too */
233 mtd->erase = cfi_staa_erase_varsize;
234 mtd->read = cfi_staa_read;
235 mtd->write = cfi_staa_write_buffers;
236 mtd->writev = cfi_staa_writev;
237 mtd->sync = cfi_staa_sync;
238 mtd->lock = cfi_staa_lock;
239 mtd->unlock = cfi_staa_unlock;
240 mtd->suspend = cfi_staa_suspend;
241 mtd->resume = cfi_staa_resume;
242 mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE;
243 mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
244 map->fldrv = &cfi_staa_chipdrv;
245 __module_get(THIS_MODULE);
246 mtd->name = map->name;
247 return mtd;
251 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
253 map_word status, status_OK;
254 unsigned long timeo;
255 DECLARE_WAITQUEUE(wait, current);
256 int suspended = 0;
257 unsigned long cmd_addr;
258 struct cfi_private *cfi = map->fldrv_priv;
260 adr += chip->start;
262 /* Ensure cmd read/writes are aligned. */
263 cmd_addr = adr & ~(map_bankwidth(map)-1);
265 /* Let's determine this according to the interleave only once */
266 status_OK = CMD(0x80);
268 timeo = jiffies + HZ;
269 retry:
270 spin_lock_bh(chip->mutex);
272 /* Check that the chip's ready to talk to us.
273 * If it's in FL_ERASING state, suspend it and make it talk now.
275 switch (chip->state) {
276 case FL_ERASING:
277 if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2))
278 goto sleep; /* We don't support erase suspend */
280 map_write (map, CMD(0xb0), cmd_addr);
281 /* If the flash has finished erasing, then 'erase suspend'
282 * appears to make some (28F320) flash devices switch to
283 * 'read' mode. Make sure that we switch to 'read status'
284 * mode so we get the right data. --rmk
286 map_write(map, CMD(0x70), cmd_addr);
287 chip->oldstate = FL_ERASING;
288 chip->state = FL_ERASE_SUSPENDING;
289 // printk("Erase suspending at 0x%lx\n", cmd_addr);
290 for (;;) {
291 status = map_read(map, cmd_addr);
292 if (map_word_andequal(map, status, status_OK, status_OK))
293 break;
295 if (time_after(jiffies, timeo)) {
296 /* Urgh */
297 map_write(map, CMD(0xd0), cmd_addr);
298 /* make sure we're in 'read status' mode */
299 map_write(map, CMD(0x70), cmd_addr);
300 chip->state = FL_ERASING;
301 spin_unlock_bh(chip->mutex);
302 printk(KERN_ERR "Chip not ready after erase "
303 "suspended: status = 0x%lx\n", status.x[0]);
304 return -EIO;
307 spin_unlock_bh(chip->mutex);
308 cfi_udelay(1);
309 spin_lock_bh(chip->mutex);
312 suspended = 1;
313 map_write(map, CMD(0xff), cmd_addr);
314 chip->state = FL_READY;
315 break;
317 #if 0
318 case FL_WRITING:
319 /* Not quite yet */
320 #endif
322 case FL_READY:
323 break;
325 case FL_CFI_QUERY:
326 case FL_JEDEC_QUERY:
327 map_write(map, CMD(0x70), cmd_addr);
328 chip->state = FL_STATUS;
330 case FL_STATUS:
331 status = map_read(map, cmd_addr);
332 if (map_word_andequal(map, status, status_OK, status_OK)) {
333 map_write(map, CMD(0xff), cmd_addr);
334 chip->state = FL_READY;
335 break;
338 /* Urgh. Chip not yet ready to talk to us. */
339 if (time_after(jiffies, timeo)) {
340 spin_unlock_bh(chip->mutex);
341 printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]);
342 return -EIO;
345 /* Latency issues. Drop the lock, wait a while and retry */
346 spin_unlock_bh(chip->mutex);
347 cfi_udelay(1);
348 goto retry;
350 default:
351 sleep:
352 /* Stick ourselves on a wait queue to be woken when
353 someone changes the status */
354 set_current_state(TASK_UNINTERRUPTIBLE);
355 add_wait_queue(&chip->wq, &wait);
356 spin_unlock_bh(chip->mutex);
357 schedule();
358 remove_wait_queue(&chip->wq, &wait);
359 timeo = jiffies + HZ;
360 goto retry;
363 map_copy_from(map, buf, adr, len);
365 if (suspended) {
366 chip->state = chip->oldstate;
367 /* What if one interleaved chip has finished and the
368 other hasn't? The old code would leave the finished
369 one in READY mode. That's bad, and caused -EROFS
370 errors to be returned from do_erase_oneblock because
371 that's the only bit it checked for at the time.
372 As the state machine appears to explicitly allow
373 sending the 0x70 (Read Status) command to an erasing
374 chip and expecting it to be ignored, that's what we
375 do. */
376 map_write(map, CMD(0xd0), cmd_addr);
377 map_write(map, CMD(0x70), cmd_addr);
380 wake_up(&chip->wq);
381 spin_unlock_bh(chip->mutex);
382 return 0;
385 static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
387 struct map_info *map = mtd->priv;
388 struct cfi_private *cfi = map->fldrv_priv;
389 unsigned long ofs;
390 int chipnum;
391 int ret = 0;
393 /* ofs: offset within the first chip that the first read should start */
394 chipnum = (from >> cfi->chipshift);
395 ofs = from - (chipnum << cfi->chipshift);
397 *retlen = 0;
399 while (len) {
400 unsigned long thislen;
402 if (chipnum >= cfi->numchips)
403 break;
405 if ((len + ofs -1) >> cfi->chipshift)
406 thislen = (1<<cfi->chipshift) - ofs;
407 else
408 thislen = len;
410 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
411 if (ret)
412 break;
414 *retlen += thislen;
415 len -= thislen;
416 buf += thislen;
418 ofs = 0;
419 chipnum++;
421 return ret;
424 static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
425 unsigned long adr, const u_char *buf, int len)
427 struct cfi_private *cfi = map->fldrv_priv;
428 map_word status, status_OK;
429 unsigned long cmd_adr, timeo;
430 DECLARE_WAITQUEUE(wait, current);
431 int wbufsize, z;
433 /* M58LW064A requires bus alignment for buffer wriets -- saw */
434 if (adr & (map_bankwidth(map)-1))
435 return -EINVAL;
437 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
438 adr += chip->start;
439 cmd_adr = adr & ~(wbufsize-1);
441 /* Let's determine this according to the interleave only once */
442 status_OK = CMD(0x80);
444 timeo = jiffies + HZ;
445 retry:
447 #ifdef DEBUG_CFI_FEATURES
448 printk("%s: chip->state[%d]\n", __func__, chip->state);
449 #endif
450 spin_lock_bh(chip->mutex);
452 /* Check that the chip's ready to talk to us.
453 * Later, we can actually think about interrupting it
454 * if it's in FL_ERASING state.
455 * Not just yet, though.
457 switch (chip->state) {
458 case FL_READY:
459 break;
461 case FL_CFI_QUERY:
462 case FL_JEDEC_QUERY:
463 map_write(map, CMD(0x70), cmd_adr);
464 chip->state = FL_STATUS;
465 #ifdef DEBUG_CFI_FEATURES
466 printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr));
467 #endif
469 case FL_STATUS:
470 status = map_read(map, cmd_adr);
471 if (map_word_andequal(map, status, status_OK, status_OK))
472 break;
473 /* Urgh. Chip not yet ready to talk to us. */
474 if (time_after(jiffies, timeo)) {
475 spin_unlock_bh(chip->mutex);
476 printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
477 status.x[0], map_read(map, cmd_adr).x[0]);
478 return -EIO;
481 /* Latency issues. Drop the lock, wait a while and retry */
482 spin_unlock_bh(chip->mutex);
483 cfi_udelay(1);
484 goto retry;
486 default:
487 /* Stick ourselves on a wait queue to be woken when
488 someone changes the status */
489 set_current_state(TASK_UNINTERRUPTIBLE);
490 add_wait_queue(&chip->wq, &wait);
491 spin_unlock_bh(chip->mutex);
492 schedule();
493 remove_wait_queue(&chip->wq, &wait);
494 timeo = jiffies + HZ;
495 goto retry;
498 ENABLE_VPP(map);
499 map_write(map, CMD(0xe8), cmd_adr);
500 chip->state = FL_WRITING_TO_BUFFER;
502 z = 0;
503 for (;;) {
504 status = map_read(map, cmd_adr);
505 if (map_word_andequal(map, status, status_OK, status_OK))
506 break;
508 spin_unlock_bh(chip->mutex);
509 cfi_udelay(1);
510 spin_lock_bh(chip->mutex);
512 if (++z > 100) {
513 /* Argh. Not ready for write to buffer */
514 DISABLE_VPP(map);
515 map_write(map, CMD(0x70), cmd_adr);
516 chip->state = FL_STATUS;
517 spin_unlock_bh(chip->mutex);
518 printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]);
519 return -EIO;
523 /* Write length of data to come */
524 map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr );
526 /* Write data */
527 for (z = 0; z < len;
528 z += map_bankwidth(map), buf += map_bankwidth(map)) {
529 map_word d;
530 d = map_word_load(map, buf);
531 map_write(map, d, adr+z);
533 /* GO GO GO */
534 map_write(map, CMD(0xd0), cmd_adr);
535 chip->state = FL_WRITING;
537 spin_unlock_bh(chip->mutex);
538 cfi_udelay(chip->buffer_write_time);
539 spin_lock_bh(chip->mutex);
541 timeo = jiffies + (HZ/2);
542 z = 0;
543 for (;;) {
544 if (chip->state != FL_WRITING) {
545 /* Someone's suspended the write. Sleep */
546 set_current_state(TASK_UNINTERRUPTIBLE);
547 add_wait_queue(&chip->wq, &wait);
548 spin_unlock_bh(chip->mutex);
549 schedule();
550 remove_wait_queue(&chip->wq, &wait);
551 timeo = jiffies + (HZ / 2); /* FIXME */
552 spin_lock_bh(chip->mutex);
553 continue;
556 status = map_read(map, cmd_adr);
557 if (map_word_andequal(map, status, status_OK, status_OK))
558 break;
560 /* OK Still waiting */
561 if (time_after(jiffies, timeo)) {
562 /* clear status */
563 map_write(map, CMD(0x50), cmd_adr);
564 /* put back into read status register mode */
565 map_write(map, CMD(0x70), adr);
566 chip->state = FL_STATUS;
567 DISABLE_VPP(map);
568 spin_unlock_bh(chip->mutex);
569 printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
570 return -EIO;
573 /* Latency issues. Drop the lock, wait a while and retry */
574 spin_unlock_bh(chip->mutex);
575 cfi_udelay(1);
576 z++;
577 spin_lock_bh(chip->mutex);
579 if (!z) {
580 chip->buffer_write_time--;
581 if (!chip->buffer_write_time)
582 chip->buffer_write_time++;
584 if (z > 1)
585 chip->buffer_write_time++;
587 /* Done and happy. */
588 DISABLE_VPP(map);
589 chip->state = FL_STATUS;
591 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
592 if (map_word_bitsset(map, status, CMD(0x3a))) {
593 #ifdef DEBUG_CFI_FEATURES
594 printk("%s: 2 status[%lx]\n", __func__, status.x[0]);
595 #endif
596 /* clear status */
597 map_write(map, CMD(0x50), cmd_adr);
598 /* put back into read status register mode */
599 map_write(map, CMD(0x70), adr);
600 wake_up(&chip->wq);
601 spin_unlock_bh(chip->mutex);
602 return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO;
604 wake_up(&chip->wq);
605 spin_unlock_bh(chip->mutex);
607 return 0;
610 static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
611 size_t len, size_t *retlen, const u_char *buf)
613 struct map_info *map = mtd->priv;
614 struct cfi_private *cfi = map->fldrv_priv;
615 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
616 int ret = 0;
617 int chipnum;
618 unsigned long ofs;
620 *retlen = 0;
621 if (!len)
622 return 0;
624 chipnum = to >> cfi->chipshift;
625 ofs = to - (chipnum << cfi->chipshift);
627 #ifdef DEBUG_CFI_FEATURES
628 printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map));
629 printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize);
630 printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len);
631 #endif
633 /* Write buffer is worth it only if more than one word to write... */
634 while (len > 0) {
635 /* We must not cross write block boundaries */
636 int size = wbufsize - (ofs & (wbufsize-1));
638 if (size > len)
639 size = len;
641 ret = do_write_buffer(map, &cfi->chips[chipnum],
642 ofs, buf, size);
643 if (ret)
644 return ret;
646 ofs += size;
647 buf += size;
648 (*retlen) += size;
649 len -= size;
651 if (ofs >> cfi->chipshift) {
652 chipnum ++;
653 ofs = 0;
654 if (chipnum == cfi->numchips)
655 return 0;
659 return 0;
663 * Writev for ECC-Flashes is a little more complicated. We need to maintain
664 * a small buffer for this.
665 * XXX: If the buffer size is not a multiple of 2, this will break
667 #define ECCBUF_SIZE (mtd->writesize)
668 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
669 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
670 static int
671 cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
672 unsigned long count, loff_t to, size_t *retlen)
674 unsigned long i;
675 size_t totlen = 0, thislen;
676 int ret = 0;
677 size_t buflen = 0;
678 static char *buffer;
680 if (!ECCBUF_SIZE) {
681 /* We should fall back to a general writev implementation.
682 * Until that is written, just break.
684 return -EIO;
686 buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
687 if (!buffer)
688 return -ENOMEM;
690 for (i=0; i<count; i++) {
691 size_t elem_len = vecs[i].iov_len;
692 void *elem_base = vecs[i].iov_base;
693 if (!elem_len) /* FIXME: Might be unnecessary. Check that */
694 continue;
695 if (buflen) { /* cut off head */
696 if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
697 memcpy(buffer+buflen, elem_base, elem_len);
698 buflen += elem_len;
699 continue;
701 memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
702 ret = mtd->write(mtd, to, ECCBUF_SIZE, &thislen, buffer);
703 totlen += thislen;
704 if (ret || thislen != ECCBUF_SIZE)
705 goto write_error;
706 elem_len -= thislen-buflen;
707 elem_base += thislen-buflen;
708 to += ECCBUF_SIZE;
710 if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
711 ret = mtd->write(mtd, to, ECCBUF_DIV(elem_len), &thislen, elem_base);
712 totlen += thislen;
713 if (ret || thislen != ECCBUF_DIV(elem_len))
714 goto write_error;
715 to += thislen;
717 buflen = ECCBUF_MOD(elem_len); /* cut off tail */
718 if (buflen) {
719 memset(buffer, 0xff, ECCBUF_SIZE);
720 memcpy(buffer, elem_base + thislen, buflen);
723 if (buflen) { /* flush last page, even if not full */
724 /* This is sometimes intended behaviour, really */
725 ret = mtd->write(mtd, to, buflen, &thislen, buffer);
726 totlen += thislen;
727 if (ret || thislen != ECCBUF_SIZE)
728 goto write_error;
730 write_error:
731 if (retlen)
732 *retlen = totlen;
733 kfree(buffer);
734 return ret;
738 static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
740 struct cfi_private *cfi = map->fldrv_priv;
741 map_word status, status_OK;
742 unsigned long timeo;
743 int retries = 3;
744 DECLARE_WAITQUEUE(wait, current);
745 int ret = 0;
747 adr += chip->start;
749 /* Let's determine this according to the interleave only once */
750 status_OK = CMD(0x80);
752 timeo = jiffies + HZ;
753 retry:
754 spin_lock_bh(chip->mutex);
756 /* Check that the chip's ready to talk to us. */
757 switch (chip->state) {
758 case FL_CFI_QUERY:
759 case FL_JEDEC_QUERY:
760 case FL_READY:
761 map_write(map, CMD(0x70), adr);
762 chip->state = FL_STATUS;
764 case FL_STATUS:
765 status = map_read(map, adr);
766 if (map_word_andequal(map, status, status_OK, status_OK))
767 break;
769 /* Urgh. Chip not yet ready to talk to us. */
770 if (time_after(jiffies, timeo)) {
771 spin_unlock_bh(chip->mutex);
772 printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
773 return -EIO;
776 /* Latency issues. Drop the lock, wait a while and retry */
777 spin_unlock_bh(chip->mutex);
778 cfi_udelay(1);
779 goto retry;
781 default:
782 /* Stick ourselves on a wait queue to be woken when
783 someone changes the status */
784 set_current_state(TASK_UNINTERRUPTIBLE);
785 add_wait_queue(&chip->wq, &wait);
786 spin_unlock_bh(chip->mutex);
787 schedule();
788 remove_wait_queue(&chip->wq, &wait);
789 timeo = jiffies + HZ;
790 goto retry;
793 ENABLE_VPP(map);
794 /* Clear the status register first */
795 map_write(map, CMD(0x50), adr);
797 /* Now erase */
798 map_write(map, CMD(0x20), adr);
799 map_write(map, CMD(0xD0), adr);
800 chip->state = FL_ERASING;
802 spin_unlock_bh(chip->mutex);
803 msleep(1000);
804 spin_lock_bh(chip->mutex);
806 /* FIXME. Use a timer to check this, and return immediately. */
807 /* Once the state machine's known to be working I'll do that */
809 timeo = jiffies + (HZ*20);
810 for (;;) {
811 if (chip->state != FL_ERASING) {
812 /* Someone's suspended the erase. Sleep */
813 set_current_state(TASK_UNINTERRUPTIBLE);
814 add_wait_queue(&chip->wq, &wait);
815 spin_unlock_bh(chip->mutex);
816 schedule();
817 remove_wait_queue(&chip->wq, &wait);
818 timeo = jiffies + (HZ*20); /* FIXME */
819 spin_lock_bh(chip->mutex);
820 continue;
823 status = map_read(map, adr);
824 if (map_word_andequal(map, status, status_OK, status_OK))
825 break;
827 /* OK Still waiting */
828 if (time_after(jiffies, timeo)) {
829 map_write(map, CMD(0x70), adr);
830 chip->state = FL_STATUS;
831 printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
832 DISABLE_VPP(map);
833 spin_unlock_bh(chip->mutex);
834 return -EIO;
837 /* Latency issues. Drop the lock, wait a while and retry */
838 spin_unlock_bh(chip->mutex);
839 cfi_udelay(1);
840 spin_lock_bh(chip->mutex);
843 DISABLE_VPP(map);
844 ret = 0;
846 /* We've broken this before. It doesn't hurt to be safe */
847 map_write(map, CMD(0x70), adr);
848 chip->state = FL_STATUS;
849 status = map_read(map, adr);
851 /* check for lock bit */
852 if (map_word_bitsset(map, status, CMD(0x3a))) {
853 unsigned char chipstatus = status.x[0];
854 if (!map_word_equal(map, status, CMD(chipstatus))) {
855 int i, w;
856 for (w=0; w<map_words(map); w++) {
857 for (i = 0; i<cfi_interleave(cfi); i++) {
858 chipstatus |= status.x[w] >> (cfi->device_type * 8);
861 printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
862 status.x[0], chipstatus);
864 /* Reset the error bits */
865 map_write(map, CMD(0x50), adr);
866 map_write(map, CMD(0x70), adr);
868 if ((chipstatus & 0x30) == 0x30) {
869 printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
870 ret = -EIO;
871 } else if (chipstatus & 0x02) {
872 /* Protection bit set */
873 ret = -EROFS;
874 } else if (chipstatus & 0x8) {
875 /* Voltage */
876 printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
877 ret = -EIO;
878 } else if (chipstatus & 0x20) {
879 if (retries--) {
880 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
881 timeo = jiffies + HZ;
882 chip->state = FL_STATUS;
883 spin_unlock_bh(chip->mutex);
884 goto retry;
886 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
887 ret = -EIO;
891 wake_up(&chip->wq);
892 spin_unlock_bh(chip->mutex);
893 return ret;
896 static int cfi_staa_erase_varsize(struct mtd_info *mtd,
897 struct erase_info *instr)
898 { struct map_info *map = mtd->priv;
899 struct cfi_private *cfi = map->fldrv_priv;
900 unsigned long adr, len;
901 int chipnum, ret = 0;
902 int i, first;
903 struct mtd_erase_region_info *regions = mtd->eraseregions;
905 if (instr->addr > mtd->size)
906 return -EINVAL;
908 if ((instr->len + instr->addr) > mtd->size)
909 return -EINVAL;
911 /* Check that both start and end of the requested erase are
912 * aligned with the erasesize at the appropriate addresses.
915 i = 0;
917 /* Skip all erase regions which are ended before the start of
918 the requested erase. Actually, to save on the calculations,
919 we skip to the first erase region which starts after the
920 start of the requested erase, and then go back one.
923 while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
924 i++;
925 i--;
927 /* OK, now i is pointing at the erase region in which this
928 erase request starts. Check the start of the requested
929 erase range is aligned with the erase size which is in
930 effect here.
933 if (instr->addr & (regions[i].erasesize-1))
934 return -EINVAL;
936 /* Remember the erase region we start on */
937 first = i;
939 /* Next, check that the end of the requested erase is aligned
940 * with the erase region at that address.
943 while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
944 i++;
946 /* As before, drop back one to point at the region in which
947 the address actually falls
949 i--;
951 if ((instr->addr + instr->len) & (regions[i].erasesize-1))
952 return -EINVAL;
954 chipnum = instr->addr >> cfi->chipshift;
955 adr = instr->addr - (chipnum << cfi->chipshift);
956 len = instr->len;
958 i=first;
960 while(len) {
961 ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);
963 if (ret)
964 return ret;
966 adr += regions[i].erasesize;
967 len -= regions[i].erasesize;
969 if (adr % (1<< cfi->chipshift) == ((regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
970 i++;
972 if (adr >> cfi->chipshift) {
973 adr = 0;
974 chipnum++;
976 if (chipnum >= cfi->numchips)
977 break;
981 instr->state = MTD_ERASE_DONE;
982 mtd_erase_callback(instr);
984 return 0;
987 static void cfi_staa_sync (struct mtd_info *mtd)
989 struct map_info *map = mtd->priv;
990 struct cfi_private *cfi = map->fldrv_priv;
991 int i;
992 struct flchip *chip;
993 int ret = 0;
994 DECLARE_WAITQUEUE(wait, current);
996 for (i=0; !ret && i<cfi->numchips; i++) {
997 chip = &cfi->chips[i];
999 retry:
1000 spin_lock_bh(chip->mutex);
1002 switch(chip->state) {
1003 case FL_READY:
1004 case FL_STATUS:
1005 case FL_CFI_QUERY:
1006 case FL_JEDEC_QUERY:
1007 chip->oldstate = chip->state;
1008 chip->state = FL_SYNCING;
1009 /* No need to wake_up() on this state change -
1010 * as the whole point is that nobody can do anything
1011 * with the chip now anyway.
1013 case FL_SYNCING:
1014 spin_unlock_bh(chip->mutex);
1015 break;
1017 default:
1018 /* Not an idle state */
1019 set_current_state(TASK_UNINTERRUPTIBLE);
1020 add_wait_queue(&chip->wq, &wait);
1022 spin_unlock_bh(chip->mutex);
1023 schedule();
1024 remove_wait_queue(&chip->wq, &wait);
1026 goto retry;
1030 /* Unlock the chips again */
1032 for (i--; i >=0; i--) {
1033 chip = &cfi->chips[i];
1035 spin_lock_bh(chip->mutex);
1037 if (chip->state == FL_SYNCING) {
1038 chip->state = chip->oldstate;
1039 wake_up(&chip->wq);
1041 spin_unlock_bh(chip->mutex);
1045 static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1047 struct cfi_private *cfi = map->fldrv_priv;
1048 map_word status, status_OK;
1049 unsigned long timeo = jiffies + HZ;
1050 DECLARE_WAITQUEUE(wait, current);
1052 adr += chip->start;
1054 /* Let's determine this according to the interleave only once */
1055 status_OK = CMD(0x80);
1057 timeo = jiffies + HZ;
1058 retry:
1059 spin_lock_bh(chip->mutex);
1061 /* Check that the chip's ready to talk to us. */
1062 switch (chip->state) {
1063 case FL_CFI_QUERY:
1064 case FL_JEDEC_QUERY:
1065 case FL_READY:
1066 map_write(map, CMD(0x70), adr);
1067 chip->state = FL_STATUS;
1069 case FL_STATUS:
1070 status = map_read(map, adr);
1071 if (map_word_andequal(map, status, status_OK, status_OK))
1072 break;
1074 /* Urgh. Chip not yet ready to talk to us. */
1075 if (time_after(jiffies, timeo)) {
1076 spin_unlock_bh(chip->mutex);
1077 printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
1078 return -EIO;
1081 /* Latency issues. Drop the lock, wait a while and retry */
1082 spin_unlock_bh(chip->mutex);
1083 cfi_udelay(1);
1084 goto retry;
1086 default:
1087 /* Stick ourselves on a wait queue to be woken when
1088 someone changes the status */
1089 set_current_state(TASK_UNINTERRUPTIBLE);
1090 add_wait_queue(&chip->wq, &wait);
1091 spin_unlock_bh(chip->mutex);
1092 schedule();
1093 remove_wait_queue(&chip->wq, &wait);
1094 timeo = jiffies + HZ;
1095 goto retry;
1098 ENABLE_VPP(map);
1099 map_write(map, CMD(0x60), adr);
1100 map_write(map, CMD(0x01), adr);
1101 chip->state = FL_LOCKING;
1103 spin_unlock_bh(chip->mutex);
1104 msleep(1000);
1105 spin_lock_bh(chip->mutex);
1107 /* FIXME. Use a timer to check this, and return immediately. */
1108 /* Once the state machine's known to be working I'll do that */
1110 timeo = jiffies + (HZ*2);
1111 for (;;) {
1113 status = map_read(map, adr);
1114 if (map_word_andequal(map, status, status_OK, status_OK))
1115 break;
1117 /* OK Still waiting */
1118 if (time_after(jiffies, timeo)) {
1119 map_write(map, CMD(0x70), adr);
1120 chip->state = FL_STATUS;
1121 printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1122 DISABLE_VPP(map);
1123 spin_unlock_bh(chip->mutex);
1124 return -EIO;
1127 /* Latency issues. Drop the lock, wait a while and retry */
1128 spin_unlock_bh(chip->mutex);
1129 cfi_udelay(1);
1130 spin_lock_bh(chip->mutex);
1133 /* Done and happy. */
1134 chip->state = FL_STATUS;
1135 DISABLE_VPP(map);
1136 wake_up(&chip->wq);
1137 spin_unlock_bh(chip->mutex);
1138 return 0;
1140 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1142 struct map_info *map = mtd->priv;
1143 struct cfi_private *cfi = map->fldrv_priv;
1144 unsigned long adr;
1145 int chipnum, ret = 0;
1146 #ifdef DEBUG_LOCK_BITS
1147 int ofs_factor = cfi->interleave * cfi->device_type;
1148 #endif
1150 if (ofs & (mtd->erasesize - 1))
1151 return -EINVAL;
1153 if (len & (mtd->erasesize -1))
1154 return -EINVAL;
1156 if ((len + ofs) > mtd->size)
1157 return -EINVAL;
1159 chipnum = ofs >> cfi->chipshift;
1160 adr = ofs - (chipnum << cfi->chipshift);
1162 while(len) {
1164 #ifdef DEBUG_LOCK_BITS
1165 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1166 printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1167 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1168 #endif
1170 ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);
1172 #ifdef DEBUG_LOCK_BITS
1173 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1174 printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1175 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1176 #endif
1178 if (ret)
1179 return ret;
1181 adr += mtd->erasesize;
1182 len -= mtd->erasesize;
1184 if (adr >> cfi->chipshift) {
1185 adr = 0;
1186 chipnum++;
1188 if (chipnum >= cfi->numchips)
1189 break;
1192 return 0;
1194 static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1196 struct cfi_private *cfi = map->fldrv_priv;
1197 map_word status, status_OK;
1198 unsigned long timeo = jiffies + HZ;
1199 DECLARE_WAITQUEUE(wait, current);
1201 adr += chip->start;
1203 /* Let's determine this according to the interleave only once */
1204 status_OK = CMD(0x80);
1206 timeo = jiffies + HZ;
1207 retry:
1208 spin_lock_bh(chip->mutex);
1210 /* Check that the chip's ready to talk to us. */
1211 switch (chip->state) {
1212 case FL_CFI_QUERY:
1213 case FL_JEDEC_QUERY:
1214 case FL_READY:
1215 map_write(map, CMD(0x70), adr);
1216 chip->state = FL_STATUS;
1218 case FL_STATUS:
1219 status = map_read(map, adr);
1220 if (map_word_andequal(map, status, status_OK, status_OK))
1221 break;
1223 /* Urgh. Chip not yet ready to talk to us. */
1224 if (time_after(jiffies, timeo)) {
1225 spin_unlock_bh(chip->mutex);
1226 printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
1227 return -EIO;
1230 /* Latency issues. Drop the lock, wait a while and retry */
1231 spin_unlock_bh(chip->mutex);
1232 cfi_udelay(1);
1233 goto retry;
1235 default:
1236 /* Stick ourselves on a wait queue to be woken when
1237 someone changes the status */
1238 set_current_state(TASK_UNINTERRUPTIBLE);
1239 add_wait_queue(&chip->wq, &wait);
1240 spin_unlock_bh(chip->mutex);
1241 schedule();
1242 remove_wait_queue(&chip->wq, &wait);
1243 timeo = jiffies + HZ;
1244 goto retry;
1247 ENABLE_VPP(map);
1248 map_write(map, CMD(0x60), adr);
1249 map_write(map, CMD(0xD0), adr);
1250 chip->state = FL_UNLOCKING;
1252 spin_unlock_bh(chip->mutex);
1253 msleep(1000);
1254 spin_lock_bh(chip->mutex);
1256 /* FIXME. Use a timer to check this, and return immediately. */
1257 /* Once the state machine's known to be working I'll do that */
1259 timeo = jiffies + (HZ*2);
1260 for (;;) {
1262 status = map_read(map, adr);
1263 if (map_word_andequal(map, status, status_OK, status_OK))
1264 break;
1266 /* OK Still waiting */
1267 if (time_after(jiffies, timeo)) {
1268 map_write(map, CMD(0x70), adr);
1269 chip->state = FL_STATUS;
1270 printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1271 DISABLE_VPP(map);
1272 spin_unlock_bh(chip->mutex);
1273 return -EIO;
1276 /* Latency issues. Drop the unlock, wait a while and retry */
1277 spin_unlock_bh(chip->mutex);
1278 cfi_udelay(1);
1279 spin_lock_bh(chip->mutex);
1282 /* Done and happy. */
1283 chip->state = FL_STATUS;
1284 DISABLE_VPP(map);
1285 wake_up(&chip->wq);
1286 spin_unlock_bh(chip->mutex);
1287 return 0;
1289 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1291 struct map_info *map = mtd->priv;
1292 struct cfi_private *cfi = map->fldrv_priv;
1293 unsigned long adr;
1294 int chipnum, ret = 0;
1295 #ifdef DEBUG_LOCK_BITS
1296 int ofs_factor = cfi->interleave * cfi->device_type;
1297 #endif
1299 chipnum = ofs >> cfi->chipshift;
1300 adr = ofs - (chipnum << cfi->chipshift);
1302 #ifdef DEBUG_LOCK_BITS
1304 unsigned long temp_adr = adr;
1305 unsigned long temp_len = len;
1307 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1308 while (temp_len) {
1309 printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
1310 temp_adr += mtd->erasesize;
1311 temp_len -= mtd->erasesize;
1313 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1315 #endif
1317 ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);
1319 #ifdef DEBUG_LOCK_BITS
1320 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1321 printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1322 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1323 #endif
1325 return ret;
1328 static int cfi_staa_suspend(struct mtd_info *mtd)
1330 struct map_info *map = mtd->priv;
1331 struct cfi_private *cfi = map->fldrv_priv;
1332 int i;
1333 struct flchip *chip;
1334 int ret = 0;
1336 for (i=0; !ret && i<cfi->numchips; i++) {
1337 chip = &cfi->chips[i];
1339 spin_lock_bh(chip->mutex);
1341 switch(chip->state) {
1342 case FL_READY:
1343 case FL_STATUS:
1344 case FL_CFI_QUERY:
1345 case FL_JEDEC_QUERY:
1346 chip->oldstate = chip->state;
1347 chip->state = FL_PM_SUSPENDED;
1348 /* No need to wake_up() on this state change -
1349 * as the whole point is that nobody can do anything
1350 * with the chip now anyway.
1352 case FL_PM_SUSPENDED:
1353 break;
1355 default:
1356 ret = -EAGAIN;
1357 break;
1359 spin_unlock_bh(chip->mutex);
1362 /* Unlock the chips again */
1364 if (ret) {
1365 for (i--; i >=0; i--) {
1366 chip = &cfi->chips[i];
1368 spin_lock_bh(chip->mutex);
1370 if (chip->state == FL_PM_SUSPENDED) {
1371 /* No need to force it into a known state here,
1372 because we're returning failure, and it didn't
1373 get power cycled */
1374 chip->state = chip->oldstate;
1375 wake_up(&chip->wq);
1377 spin_unlock_bh(chip->mutex);
1381 return ret;
1384 static void cfi_staa_resume(struct mtd_info *mtd)
1386 struct map_info *map = mtd->priv;
1387 struct cfi_private *cfi = map->fldrv_priv;
1388 int i;
1389 struct flchip *chip;
1391 for (i=0; i<cfi->numchips; i++) {
1393 chip = &cfi->chips[i];
1395 spin_lock_bh(chip->mutex);
1397 /* Go to known state. Chip may have been power cycled */
1398 if (chip->state == FL_PM_SUSPENDED) {
1399 map_write(map, CMD(0xFF), 0);
1400 chip->state = FL_READY;
1401 wake_up(&chip->wq);
1404 spin_unlock_bh(chip->mutex);
1408 static void cfi_staa_destroy(struct mtd_info *mtd)
1410 struct map_info *map = mtd->priv;
1411 struct cfi_private *cfi = map->fldrv_priv;
1412 kfree(cfi->cmdset_priv);
1413 kfree(cfi);
1416 MODULE_LICENSE("GPL");