[SCSI] qla4xxx: Use polling mode for disable interrupt mailbox completion
[linux-2.6.git] / drivers / firewire / net.c
blob7ed08fd1214eccc7bfd9f231e41a68de67ea6250
1 /*
2 * IPv4 over IEEE 1394, per RFC 2734
4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
6 * based on eth1394 by Ben Collins et al
7 */
9 #include <linux/bug.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/ethtool.h>
13 #include <linux/firewire.h>
14 #include <linux/firewire-constants.h>
15 #include <linux/highmem.h>
16 #include <linux/in.h>
17 #include <linux/ip.h>
18 #include <linux/jiffies.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mutex.h>
23 #include <linux/netdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
28 #include <asm/unaligned.h>
29 #include <net/arp.h>
31 /* rx limits */
32 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
33 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
35 /* tx limits */
36 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
37 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
38 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
40 #define IEEE1394_BROADCAST_CHANNEL 31
41 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
42 #define IEEE1394_MAX_PAYLOAD_S100 512
43 #define FWNET_NO_FIFO_ADDR (~0ULL)
45 #define IANA_SPECIFIER_ID 0x00005eU
46 #define RFC2734_SW_VERSION 0x000001U
48 #define IEEE1394_GASP_HDR_SIZE 8
50 #define RFC2374_UNFRAG_HDR_SIZE 4
51 #define RFC2374_FRAG_HDR_SIZE 8
52 #define RFC2374_FRAG_OVERHEAD 4
54 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
55 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
56 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
57 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */
59 #define RFC2734_HW_ADDR_LEN 16
61 struct rfc2734_arp {
62 __be16 hw_type; /* 0x0018 */
63 __be16 proto_type; /* 0x0806 */
64 u8 hw_addr_len; /* 16 */
65 u8 ip_addr_len; /* 4 */
66 __be16 opcode; /* ARP Opcode */
67 /* Above is exactly the same format as struct arphdr */
69 __be64 s_uniq_id; /* Sender's 64bit EUI */
70 u8 max_rec; /* Sender's max packet size */
71 u8 sspd; /* Sender's max speed */
72 __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */
73 __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */
74 __be32 sip; /* Sender's IP Address */
75 __be32 tip; /* IP Address of requested hw addr */
76 } __attribute__((packed));
78 /* This header format is specific to this driver implementation. */
79 #define FWNET_ALEN 8
80 #define FWNET_HLEN 10
81 struct fwnet_header {
82 u8 h_dest[FWNET_ALEN]; /* destination address */
83 __be16 h_proto; /* packet type ID field */
84 } __attribute__((packed));
86 /* IPv4 and IPv6 encapsulation header */
87 struct rfc2734_header {
88 u32 w0;
89 u32 w1;
92 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
93 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
94 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
95 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
96 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
98 #define fwnet_set_hdr_lf(lf) ((lf) << 30)
99 #define fwnet_set_hdr_ether_type(et) (et)
100 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
101 #define fwnet_set_hdr_fg_off(fgo) (fgo)
103 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
105 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
106 unsigned ether_type)
108 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
109 | fwnet_set_hdr_ether_type(ether_type);
112 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
113 unsigned ether_type, unsigned dg_size, unsigned dgl)
115 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
116 | fwnet_set_hdr_dg_size(dg_size)
117 | fwnet_set_hdr_ether_type(ether_type);
118 hdr->w1 = fwnet_set_hdr_dgl(dgl);
121 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
122 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
124 hdr->w0 = fwnet_set_hdr_lf(lf)
125 | fwnet_set_hdr_dg_size(dg_size)
126 | fwnet_set_hdr_fg_off(fg_off);
127 hdr->w1 = fwnet_set_hdr_dgl(dgl);
130 /* This list keeps track of what parts of the datagram have been filled in */
131 struct fwnet_fragment_info {
132 struct list_head fi_link;
133 u16 offset;
134 u16 len;
137 struct fwnet_partial_datagram {
138 struct list_head pd_link;
139 struct list_head fi_list;
140 struct sk_buff *skb;
141 /* FIXME Why not use skb->data? */
142 char *pbuf;
143 u16 datagram_label;
144 u16 ether_type;
145 u16 datagram_size;
148 static DEFINE_MUTEX(fwnet_device_mutex);
149 static LIST_HEAD(fwnet_device_list);
151 struct fwnet_device {
152 struct list_head dev_link;
153 spinlock_t lock;
154 enum {
155 FWNET_BROADCAST_ERROR,
156 FWNET_BROADCAST_RUNNING,
157 FWNET_BROADCAST_STOPPED,
158 } broadcast_state;
159 struct fw_iso_context *broadcast_rcv_context;
160 struct fw_iso_buffer broadcast_rcv_buffer;
161 void **broadcast_rcv_buffer_ptrs;
162 unsigned broadcast_rcv_next_ptr;
163 unsigned num_broadcast_rcv_ptrs;
164 unsigned rcv_buffer_size;
166 * This value is the maximum unfragmented datagram size that can be
167 * sent by the hardware. It already has the GASP overhead and the
168 * unfragmented datagram header overhead calculated into it.
170 unsigned broadcast_xmt_max_payload;
171 u16 broadcast_xmt_datagramlabel;
174 * The CSR address that remote nodes must send datagrams to for us to
175 * receive them.
177 struct fw_address_handler handler;
178 u64 local_fifo;
180 /* Number of tx datagrams that have been queued but not yet acked */
181 int queued_datagrams;
183 int peer_count;
184 struct list_head peer_list;
185 struct fw_card *card;
186 struct net_device *netdev;
189 struct fwnet_peer {
190 struct list_head peer_link;
191 struct fwnet_device *dev;
192 u64 guid;
193 u64 fifo;
194 __be32 ip;
196 /* guarded by dev->lock */
197 struct list_head pd_list; /* received partial datagrams */
198 unsigned pdg_size; /* pd_list size */
200 u16 datagram_label; /* outgoing datagram label */
201 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
202 int node_id;
203 int generation;
204 unsigned speed;
207 /* This is our task struct. It's used for the packet complete callback. */
208 struct fwnet_packet_task {
209 struct fw_transaction transaction;
210 struct rfc2734_header hdr;
211 struct sk_buff *skb;
212 struct fwnet_device *dev;
214 int outstanding_pkts;
215 u64 fifo_addr;
216 u16 dest_node;
217 u16 max_payload;
218 u8 generation;
219 u8 speed;
220 u8 enqueued;
224 * saddr == NULL means use device source address.
225 * daddr == NULL means leave destination address (eg unresolved arp).
227 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
228 unsigned short type, const void *daddr,
229 const void *saddr, unsigned len)
231 struct fwnet_header *h;
233 h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
234 put_unaligned_be16(type, &h->h_proto);
236 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
237 memset(h->h_dest, 0, net->addr_len);
239 return net->hard_header_len;
242 if (daddr) {
243 memcpy(h->h_dest, daddr, net->addr_len);
245 return net->hard_header_len;
248 return -net->hard_header_len;
251 static int fwnet_header_rebuild(struct sk_buff *skb)
253 struct fwnet_header *h = (struct fwnet_header *)skb->data;
255 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
256 return arp_find((unsigned char *)&h->h_dest, skb);
258 fw_notify("%s: unable to resolve type %04x addresses\n",
259 skb->dev->name, be16_to_cpu(h->h_proto));
260 return 0;
263 static int fwnet_header_cache(const struct neighbour *neigh,
264 struct hh_cache *hh)
266 struct net_device *net;
267 struct fwnet_header *h;
269 if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
270 return -1;
271 net = neigh->dev;
272 h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
273 h->h_proto = hh->hh_type;
274 memcpy(h->h_dest, neigh->ha, net->addr_len);
275 hh->hh_len = FWNET_HLEN;
277 return 0;
280 /* Called by Address Resolution module to notify changes in address. */
281 static void fwnet_header_cache_update(struct hh_cache *hh,
282 const struct net_device *net, const unsigned char *haddr)
284 memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
287 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
289 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
291 return FWNET_ALEN;
294 static const struct header_ops fwnet_header_ops = {
295 .create = fwnet_header_create,
296 .rebuild = fwnet_header_rebuild,
297 .cache = fwnet_header_cache,
298 .cache_update = fwnet_header_cache_update,
299 .parse = fwnet_header_parse,
302 /* FIXME: is this correct for all cases? */
303 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
304 unsigned offset, unsigned len)
306 struct fwnet_fragment_info *fi;
307 unsigned end = offset + len;
309 list_for_each_entry(fi, &pd->fi_list, fi_link)
310 if (offset < fi->offset + fi->len && end > fi->offset)
311 return true;
313 return false;
316 /* Assumes that new fragment does not overlap any existing fragments */
317 static struct fwnet_fragment_info *fwnet_frag_new(
318 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
320 struct fwnet_fragment_info *fi, *fi2, *new;
321 struct list_head *list;
323 list = &pd->fi_list;
324 list_for_each_entry(fi, &pd->fi_list, fi_link) {
325 if (fi->offset + fi->len == offset) {
326 /* The new fragment can be tacked on to the end */
327 /* Did the new fragment plug a hole? */
328 fi2 = list_entry(fi->fi_link.next,
329 struct fwnet_fragment_info, fi_link);
330 if (fi->offset + fi->len == fi2->offset) {
331 /* glue fragments together */
332 fi->len += len + fi2->len;
333 list_del(&fi2->fi_link);
334 kfree(fi2);
335 } else {
336 fi->len += len;
339 return fi;
341 if (offset + len == fi->offset) {
342 /* The new fragment can be tacked on to the beginning */
343 /* Did the new fragment plug a hole? */
344 fi2 = list_entry(fi->fi_link.prev,
345 struct fwnet_fragment_info, fi_link);
346 if (fi2->offset + fi2->len == fi->offset) {
347 /* glue fragments together */
348 fi2->len += fi->len + len;
349 list_del(&fi->fi_link);
350 kfree(fi);
352 return fi2;
354 fi->offset = offset;
355 fi->len += len;
357 return fi;
359 if (offset > fi->offset + fi->len) {
360 list = &fi->fi_link;
361 break;
363 if (offset + len < fi->offset) {
364 list = fi->fi_link.prev;
365 break;
369 new = kmalloc(sizeof(*new), GFP_ATOMIC);
370 if (!new) {
371 fw_error("out of memory\n");
372 return NULL;
375 new->offset = offset;
376 new->len = len;
377 list_add(&new->fi_link, list);
379 return new;
382 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
383 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
384 void *frag_buf, unsigned frag_off, unsigned frag_len)
386 struct fwnet_partial_datagram *new;
387 struct fwnet_fragment_info *fi;
389 new = kmalloc(sizeof(*new), GFP_ATOMIC);
390 if (!new)
391 goto fail;
393 INIT_LIST_HEAD(&new->fi_list);
394 fi = fwnet_frag_new(new, frag_off, frag_len);
395 if (fi == NULL)
396 goto fail_w_new;
398 new->datagram_label = datagram_label;
399 new->datagram_size = dg_size;
400 new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
401 if (new->skb == NULL)
402 goto fail_w_fi;
404 skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
405 new->pbuf = skb_put(new->skb, dg_size);
406 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
407 list_add_tail(&new->pd_link, &peer->pd_list);
409 return new;
411 fail_w_fi:
412 kfree(fi);
413 fail_w_new:
414 kfree(new);
415 fail:
416 fw_error("out of memory\n");
418 return NULL;
421 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
422 u16 datagram_label)
424 struct fwnet_partial_datagram *pd;
426 list_for_each_entry(pd, &peer->pd_list, pd_link)
427 if (pd->datagram_label == datagram_label)
428 return pd;
430 return NULL;
434 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
436 struct fwnet_fragment_info *fi, *n;
438 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
439 kfree(fi);
441 list_del(&old->pd_link);
442 dev_kfree_skb_any(old->skb);
443 kfree(old);
446 static bool fwnet_pd_update(struct fwnet_peer *peer,
447 struct fwnet_partial_datagram *pd, void *frag_buf,
448 unsigned frag_off, unsigned frag_len)
450 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
451 return false;
453 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
456 * Move list entry to beginnig of list so that oldest partial
457 * datagrams percolate to the end of the list
459 list_move_tail(&pd->pd_link, &peer->pd_list);
461 return true;
464 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
466 struct fwnet_fragment_info *fi;
468 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
470 return fi->len == pd->datagram_size;
473 /* caller must hold dev->lock */
474 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
475 u64 guid)
477 struct fwnet_peer *peer;
479 list_for_each_entry(peer, &dev->peer_list, peer_link)
480 if (peer->guid == guid)
481 return peer;
483 return NULL;
486 /* caller must hold dev->lock */
487 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
488 int node_id, int generation)
490 struct fwnet_peer *peer;
492 list_for_each_entry(peer, &dev->peer_list, peer_link)
493 if (peer->node_id == node_id &&
494 peer->generation == generation)
495 return peer;
497 return NULL;
500 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
501 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
503 max_rec = min(max_rec, speed + 8);
504 max_rec = min(max_rec, 0xbU); /* <= 4096 */
505 if (max_rec < 8) {
506 fw_notify("max_rec %x out of range\n", max_rec);
507 max_rec = 8;
510 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
514 static int fwnet_finish_incoming_packet(struct net_device *net,
515 struct sk_buff *skb, u16 source_node_id,
516 bool is_broadcast, u16 ether_type)
518 struct fwnet_device *dev;
519 static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
520 int status;
521 __be64 guid;
523 dev = netdev_priv(net);
524 /* Write metadata, and then pass to the receive level */
525 skb->dev = net;
526 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
529 * Parse the encapsulation header. This actually does the job of
530 * converting to an ethernet frame header, as well as arp
531 * conversion if needed. ARP conversion is easier in this
532 * direction, since we are using ethernet as our backend.
535 * If this is an ARP packet, convert it. First, we want to make
536 * use of some of the fields, since they tell us a little bit
537 * about the sending machine.
539 if (ether_type == ETH_P_ARP) {
540 struct rfc2734_arp *arp1394;
541 struct arphdr *arp;
542 unsigned char *arp_ptr;
543 u64 fifo_addr;
544 u64 peer_guid;
545 unsigned sspd;
546 u16 max_payload;
547 struct fwnet_peer *peer;
548 unsigned long flags;
550 arp1394 = (struct rfc2734_arp *)skb->data;
551 arp = (struct arphdr *)skb->data;
552 arp_ptr = (unsigned char *)(arp + 1);
553 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
554 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
555 | get_unaligned_be32(&arp1394->fifo_lo);
557 sspd = arp1394->sspd;
558 /* Sanity check. OS X 10.3 PPC reportedly sends 131. */
559 if (sspd > SCODE_3200) {
560 fw_notify("sspd %x out of range\n", sspd);
561 sspd = SCODE_3200;
563 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
565 spin_lock_irqsave(&dev->lock, flags);
566 peer = fwnet_peer_find_by_guid(dev, peer_guid);
567 if (peer) {
568 peer->fifo = fifo_addr;
570 if (peer->speed > sspd)
571 peer->speed = sspd;
572 if (peer->max_payload > max_payload)
573 peer->max_payload = max_payload;
575 peer->ip = arp1394->sip;
577 spin_unlock_irqrestore(&dev->lock, flags);
579 if (!peer) {
580 fw_notify("No peer for ARP packet from %016llx\n",
581 (unsigned long long)peer_guid);
582 goto no_peer;
586 * Now that we're done with the 1394 specific stuff, we'll
587 * need to alter some of the data. Believe it or not, all
588 * that needs to be done is sender_IP_address needs to be
589 * moved, the destination hardware address get stuffed
590 * in and the hardware address length set to 8.
592 * IMPORTANT: The code below overwrites 1394 specific data
593 * needed above so keep the munging of the data for the
594 * higher level IP stack last.
597 arp->ar_hln = 8;
598 /* skip over sender unique id */
599 arp_ptr += arp->ar_hln;
600 /* move sender IP addr */
601 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
602 /* skip over sender IP addr */
603 arp_ptr += arp->ar_pln;
605 if (arp->ar_op == htons(ARPOP_REQUEST))
606 memset(arp_ptr, 0, sizeof(u64));
607 else
608 memcpy(arp_ptr, net->dev_addr, sizeof(u64));
611 /* Now add the ethernet header. */
612 guid = cpu_to_be64(dev->card->guid);
613 if (dev_hard_header(skb, net, ether_type,
614 is_broadcast ? &broadcast_hw : &guid,
615 NULL, skb->len) >= 0) {
616 struct fwnet_header *eth;
617 u16 *rawp;
618 __be16 protocol;
620 skb_reset_mac_header(skb);
621 skb_pull(skb, sizeof(*eth));
622 eth = (struct fwnet_header *)skb_mac_header(skb);
623 if (*eth->h_dest & 1) {
624 if (memcmp(eth->h_dest, net->broadcast,
625 net->addr_len) == 0)
626 skb->pkt_type = PACKET_BROADCAST;
627 #if 0
628 else
629 skb->pkt_type = PACKET_MULTICAST;
630 #endif
631 } else {
632 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
633 skb->pkt_type = PACKET_OTHERHOST;
635 if (ntohs(eth->h_proto) >= 1536) {
636 protocol = eth->h_proto;
637 } else {
638 rawp = (u16 *)skb->data;
639 if (*rawp == 0xffff)
640 protocol = htons(ETH_P_802_3);
641 else
642 protocol = htons(ETH_P_802_2);
644 skb->protocol = protocol;
646 status = netif_rx(skb);
647 if (status == NET_RX_DROP) {
648 net->stats.rx_errors++;
649 net->stats.rx_dropped++;
650 } else {
651 net->stats.rx_packets++;
652 net->stats.rx_bytes += skb->len;
655 return 0;
657 no_peer:
658 net->stats.rx_errors++;
659 net->stats.rx_dropped++;
661 dev_kfree_skb_any(skb);
663 return -ENOENT;
666 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
667 int source_node_id, int generation,
668 bool is_broadcast)
670 struct sk_buff *skb;
671 struct net_device *net = dev->netdev;
672 struct rfc2734_header hdr;
673 unsigned lf;
674 unsigned long flags;
675 struct fwnet_peer *peer;
676 struct fwnet_partial_datagram *pd;
677 int fg_off;
678 int dg_size;
679 u16 datagram_label;
680 int retval;
681 u16 ether_type;
683 hdr.w0 = be32_to_cpu(buf[0]);
684 lf = fwnet_get_hdr_lf(&hdr);
685 if (lf == RFC2374_HDR_UNFRAG) {
687 * An unfragmented datagram has been received by the ieee1394
688 * bus. Build an skbuff around it so we can pass it to the
689 * high level network layer.
691 ether_type = fwnet_get_hdr_ether_type(&hdr);
692 buf++;
693 len -= RFC2374_UNFRAG_HDR_SIZE;
695 skb = dev_alloc_skb(len + net->hard_header_len + 15);
696 if (unlikely(!skb)) {
697 fw_error("out of memory\n");
698 net->stats.rx_dropped++;
700 return -ENOMEM;
702 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
703 memcpy(skb_put(skb, len), buf, len);
705 return fwnet_finish_incoming_packet(net, skb, source_node_id,
706 is_broadcast, ether_type);
708 /* A datagram fragment has been received, now the fun begins. */
709 hdr.w1 = ntohl(buf[1]);
710 buf += 2;
711 len -= RFC2374_FRAG_HDR_SIZE;
712 if (lf == RFC2374_HDR_FIRSTFRAG) {
713 ether_type = fwnet_get_hdr_ether_type(&hdr);
714 fg_off = 0;
715 } else {
716 ether_type = 0;
717 fg_off = fwnet_get_hdr_fg_off(&hdr);
719 datagram_label = fwnet_get_hdr_dgl(&hdr);
720 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
722 spin_lock_irqsave(&dev->lock, flags);
724 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
725 if (!peer) {
726 retval = -ENOENT;
727 goto fail;
730 pd = fwnet_pd_find(peer, datagram_label);
731 if (pd == NULL) {
732 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
733 /* remove the oldest */
734 fwnet_pd_delete(list_first_entry(&peer->pd_list,
735 struct fwnet_partial_datagram, pd_link));
736 peer->pdg_size--;
738 pd = fwnet_pd_new(net, peer, datagram_label,
739 dg_size, buf, fg_off, len);
740 if (pd == NULL) {
741 retval = -ENOMEM;
742 goto fail;
744 peer->pdg_size++;
745 } else {
746 if (fwnet_frag_overlap(pd, fg_off, len) ||
747 pd->datagram_size != dg_size) {
749 * Differing datagram sizes or overlapping fragments,
750 * discard old datagram and start a new one.
752 fwnet_pd_delete(pd);
753 pd = fwnet_pd_new(net, peer, datagram_label,
754 dg_size, buf, fg_off, len);
755 if (pd == NULL) {
756 peer->pdg_size--;
757 retval = -ENOMEM;
758 goto fail;
760 } else {
761 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
763 * Couldn't save off fragment anyway
764 * so might as well obliterate the
765 * datagram now.
767 fwnet_pd_delete(pd);
768 peer->pdg_size--;
769 retval = -ENOMEM;
770 goto fail;
773 } /* new datagram or add to existing one */
775 if (lf == RFC2374_HDR_FIRSTFRAG)
776 pd->ether_type = ether_type;
778 if (fwnet_pd_is_complete(pd)) {
779 ether_type = pd->ether_type;
780 peer->pdg_size--;
781 skb = skb_get(pd->skb);
782 fwnet_pd_delete(pd);
784 spin_unlock_irqrestore(&dev->lock, flags);
786 return fwnet_finish_incoming_packet(net, skb, source_node_id,
787 false, ether_type);
790 * Datagram is not complete, we're done for the
791 * moment.
793 retval = 0;
794 fail:
795 spin_unlock_irqrestore(&dev->lock, flags);
797 return retval;
800 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
801 int tcode, int destination, int source, int generation,
802 unsigned long long offset, void *payload, size_t length,
803 void *callback_data)
805 struct fwnet_device *dev = callback_data;
806 int rcode;
808 if (destination == IEEE1394_ALL_NODES) {
809 kfree(r);
811 return;
814 if (offset != dev->handler.offset)
815 rcode = RCODE_ADDRESS_ERROR;
816 else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
817 rcode = RCODE_TYPE_ERROR;
818 else if (fwnet_incoming_packet(dev, payload, length,
819 source, generation, false) != 0) {
820 fw_error("Incoming packet failure\n");
821 rcode = RCODE_CONFLICT_ERROR;
822 } else
823 rcode = RCODE_COMPLETE;
825 fw_send_response(card, r, rcode);
828 static void fwnet_receive_broadcast(struct fw_iso_context *context,
829 u32 cycle, size_t header_length, void *header, void *data)
831 struct fwnet_device *dev;
832 struct fw_iso_packet packet;
833 struct fw_card *card;
834 __be16 *hdr_ptr;
835 __be32 *buf_ptr;
836 int retval;
837 u32 length;
838 u16 source_node_id;
839 u32 specifier_id;
840 u32 ver;
841 unsigned long offset;
842 unsigned long flags;
844 dev = data;
845 card = dev->card;
846 hdr_ptr = header;
847 length = be16_to_cpup(hdr_ptr);
849 spin_lock_irqsave(&dev->lock, flags);
851 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
852 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
853 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
854 dev->broadcast_rcv_next_ptr = 0;
856 spin_unlock_irqrestore(&dev->lock, flags);
858 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
859 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
860 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
861 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
863 if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
864 buf_ptr += 2;
865 length -= IEEE1394_GASP_HDR_SIZE;
866 fwnet_incoming_packet(dev, buf_ptr, length,
867 source_node_id, -1, true);
870 packet.payload_length = dev->rcv_buffer_size;
871 packet.interrupt = 1;
872 packet.skip = 0;
873 packet.tag = 3;
874 packet.sy = 0;
875 packet.header_length = IEEE1394_GASP_HDR_SIZE;
877 spin_lock_irqsave(&dev->lock, flags);
879 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
880 &dev->broadcast_rcv_buffer, offset);
882 spin_unlock_irqrestore(&dev->lock, flags);
884 if (retval < 0)
885 fw_error("requeue failed\n");
888 static struct kmem_cache *fwnet_packet_task_cache;
890 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
892 dev_kfree_skb_any(ptask->skb);
893 kmem_cache_free(fwnet_packet_task_cache, ptask);
896 /* Caller must hold dev->lock. */
897 static void dec_queued_datagrams(struct fwnet_device *dev)
899 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
900 netif_wake_queue(dev->netdev);
903 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
905 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
907 struct fwnet_device *dev = ptask->dev;
908 struct sk_buff *skb = ptask->skb;
909 unsigned long flags;
910 bool free;
912 spin_lock_irqsave(&dev->lock, flags);
914 ptask->outstanding_pkts--;
916 /* Check whether we or the networking TX soft-IRQ is last user. */
917 free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
918 if (free)
919 dec_queued_datagrams(dev);
921 if (ptask->outstanding_pkts == 0) {
922 dev->netdev->stats.tx_packets++;
923 dev->netdev->stats.tx_bytes += skb->len;
926 spin_unlock_irqrestore(&dev->lock, flags);
928 if (ptask->outstanding_pkts > 0) {
929 u16 dg_size;
930 u16 fg_off;
931 u16 datagram_label;
932 u16 lf;
934 /* Update the ptask to point to the next fragment and send it */
935 lf = fwnet_get_hdr_lf(&ptask->hdr);
936 switch (lf) {
937 case RFC2374_HDR_LASTFRAG:
938 case RFC2374_HDR_UNFRAG:
939 default:
940 fw_error("Outstanding packet %x lf %x, header %x,%x\n",
941 ptask->outstanding_pkts, lf, ptask->hdr.w0,
942 ptask->hdr.w1);
943 BUG();
945 case RFC2374_HDR_FIRSTFRAG:
946 /* Set frag type here for future interior fragments */
947 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
948 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
949 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
950 break;
952 case RFC2374_HDR_INTFRAG:
953 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
954 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
955 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
956 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
957 break;
960 skb_pull(skb, ptask->max_payload);
961 if (ptask->outstanding_pkts > 1) {
962 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
963 dg_size, fg_off, datagram_label);
964 } else {
965 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
966 dg_size, fg_off, datagram_label);
967 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
969 fwnet_send_packet(ptask);
972 if (free)
973 fwnet_free_ptask(ptask);
976 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
978 struct fwnet_device *dev = ptask->dev;
979 unsigned long flags;
980 bool free;
982 spin_lock_irqsave(&dev->lock, flags);
984 /* One fragment failed; don't try to send remaining fragments. */
985 ptask->outstanding_pkts = 0;
987 /* Check whether we or the networking TX soft-IRQ is last user. */
988 free = ptask->enqueued;
989 if (free)
990 dec_queued_datagrams(dev);
992 dev->netdev->stats.tx_dropped++;
993 dev->netdev->stats.tx_errors++;
995 spin_unlock_irqrestore(&dev->lock, flags);
997 if (free)
998 fwnet_free_ptask(ptask);
1001 static void fwnet_write_complete(struct fw_card *card, int rcode,
1002 void *payload, size_t length, void *data)
1004 struct fwnet_packet_task *ptask = data;
1005 static unsigned long j;
1006 static int last_rcode, errors_skipped;
1008 if (rcode == RCODE_COMPLETE) {
1009 fwnet_transmit_packet_done(ptask);
1010 } else {
1011 fwnet_transmit_packet_failed(ptask);
1013 if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) {
1014 fw_error("fwnet_write_complete: "
1015 "failed: %x (skipped %d)\n", rcode, errors_skipped);
1017 errors_skipped = 0;
1018 last_rcode = rcode;
1019 } else
1020 errors_skipped++;
1024 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1026 struct fwnet_device *dev;
1027 unsigned tx_len;
1028 struct rfc2734_header *bufhdr;
1029 unsigned long flags;
1030 bool free;
1032 dev = ptask->dev;
1033 tx_len = ptask->max_payload;
1034 switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1035 case RFC2374_HDR_UNFRAG:
1036 bufhdr = (struct rfc2734_header *)
1037 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1038 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1039 break;
1041 case RFC2374_HDR_FIRSTFRAG:
1042 case RFC2374_HDR_INTFRAG:
1043 case RFC2374_HDR_LASTFRAG:
1044 bufhdr = (struct rfc2734_header *)
1045 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1046 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1047 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1048 break;
1050 default:
1051 BUG();
1053 if (ptask->dest_node == IEEE1394_ALL_NODES) {
1054 u8 *p;
1055 int generation;
1056 int node_id;
1058 /* ptask->generation may not have been set yet */
1059 generation = dev->card->generation;
1060 smp_rmb();
1061 node_id = dev->card->node_id;
1063 p = skb_push(ptask->skb, 8);
1064 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1065 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1066 | RFC2734_SW_VERSION, &p[4]);
1068 /* We should not transmit if broadcast_channel.valid == 0. */
1069 fw_send_request(dev->card, &ptask->transaction,
1070 TCODE_STREAM_DATA,
1071 fw_stream_packet_destination_id(3,
1072 IEEE1394_BROADCAST_CHANNEL, 0),
1073 generation, SCODE_100, 0ULL, ptask->skb->data,
1074 tx_len + 8, fwnet_write_complete, ptask);
1076 spin_lock_irqsave(&dev->lock, flags);
1078 /* If the AT tasklet already ran, we may be last user. */
1079 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1080 if (!free)
1081 ptask->enqueued = true;
1082 else
1083 dec_queued_datagrams(dev);
1085 spin_unlock_irqrestore(&dev->lock, flags);
1087 goto out;
1090 fw_send_request(dev->card, &ptask->transaction,
1091 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1092 ptask->generation, ptask->speed, ptask->fifo_addr,
1093 ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1095 spin_lock_irqsave(&dev->lock, flags);
1097 /* If the AT tasklet already ran, we may be last user. */
1098 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1099 if (!free)
1100 ptask->enqueued = true;
1101 else
1102 dec_queued_datagrams(dev);
1104 spin_unlock_irqrestore(&dev->lock, flags);
1106 dev->netdev->trans_start = jiffies;
1107 out:
1108 if (free)
1109 fwnet_free_ptask(ptask);
1111 return 0;
1114 static int fwnet_broadcast_start(struct fwnet_device *dev)
1116 struct fw_iso_context *context;
1117 int retval;
1118 unsigned num_packets;
1119 unsigned max_receive;
1120 struct fw_iso_packet packet;
1121 unsigned long offset;
1122 unsigned u;
1124 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1125 /* outside OHCI posted write area? */
1126 static const struct fw_address_region region = {
1127 .start = 0xffff00000000ULL,
1128 .end = CSR_REGISTER_BASE,
1131 dev->handler.length = 4096;
1132 dev->handler.address_callback = fwnet_receive_packet;
1133 dev->handler.callback_data = dev;
1135 retval = fw_core_add_address_handler(&dev->handler, &region);
1136 if (retval < 0)
1137 goto failed_initial;
1139 dev->local_fifo = dev->handler.offset;
1142 max_receive = 1U << (dev->card->max_receive + 1);
1143 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1145 if (!dev->broadcast_rcv_context) {
1146 void **ptrptr;
1148 context = fw_iso_context_create(dev->card,
1149 FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1150 dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1151 if (IS_ERR(context)) {
1152 retval = PTR_ERR(context);
1153 goto failed_context_create;
1156 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1157 dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1158 if (retval < 0)
1159 goto failed_buffer_init;
1161 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1162 if (!ptrptr) {
1163 retval = -ENOMEM;
1164 goto failed_ptrs_alloc;
1167 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1168 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1169 void *ptr;
1170 unsigned v;
1172 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1173 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1174 *ptrptr++ = (void *)
1175 ((char *)ptr + v * max_receive);
1177 dev->broadcast_rcv_context = context;
1178 } else {
1179 context = dev->broadcast_rcv_context;
1182 packet.payload_length = max_receive;
1183 packet.interrupt = 1;
1184 packet.skip = 0;
1185 packet.tag = 3;
1186 packet.sy = 0;
1187 packet.header_length = IEEE1394_GASP_HDR_SIZE;
1188 offset = 0;
1190 for (u = 0; u < num_packets; u++) {
1191 retval = fw_iso_context_queue(context, &packet,
1192 &dev->broadcast_rcv_buffer, offset);
1193 if (retval < 0)
1194 goto failed_rcv_queue;
1196 offset += max_receive;
1198 dev->num_broadcast_rcv_ptrs = num_packets;
1199 dev->rcv_buffer_size = max_receive;
1200 dev->broadcast_rcv_next_ptr = 0U;
1201 retval = fw_iso_context_start(context, -1, 0,
1202 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1203 if (retval < 0)
1204 goto failed_rcv_queue;
1206 /* FIXME: adjust it according to the min. speed of all known peers? */
1207 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1208 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1209 dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1211 return 0;
1213 failed_rcv_queue:
1214 kfree(dev->broadcast_rcv_buffer_ptrs);
1215 dev->broadcast_rcv_buffer_ptrs = NULL;
1216 failed_ptrs_alloc:
1217 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1218 failed_buffer_init:
1219 fw_iso_context_destroy(context);
1220 dev->broadcast_rcv_context = NULL;
1221 failed_context_create:
1222 fw_core_remove_address_handler(&dev->handler);
1223 failed_initial:
1224 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1226 return retval;
1229 static void set_carrier_state(struct fwnet_device *dev)
1231 if (dev->peer_count > 1)
1232 netif_carrier_on(dev->netdev);
1233 else
1234 netif_carrier_off(dev->netdev);
1237 /* ifup */
1238 static int fwnet_open(struct net_device *net)
1240 struct fwnet_device *dev = netdev_priv(net);
1241 int ret;
1243 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1244 ret = fwnet_broadcast_start(dev);
1245 if (ret)
1246 return ret;
1248 netif_start_queue(net);
1250 spin_lock_irq(&dev->lock);
1251 set_carrier_state(dev);
1252 spin_unlock_irq(&dev->lock);
1254 return 0;
1257 /* ifdown */
1258 static int fwnet_stop(struct net_device *net)
1260 netif_stop_queue(net);
1262 /* Deallocate iso context for use by other applications? */
1264 return 0;
1267 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1269 struct fwnet_header hdr_buf;
1270 struct fwnet_device *dev = netdev_priv(net);
1271 __be16 proto;
1272 u16 dest_node;
1273 unsigned max_payload;
1274 u16 dg_size;
1275 u16 *datagram_label_ptr;
1276 struct fwnet_packet_task *ptask;
1277 struct fwnet_peer *peer;
1278 unsigned long flags;
1280 spin_lock_irqsave(&dev->lock, flags);
1282 /* Can this happen? */
1283 if (netif_queue_stopped(dev->netdev)) {
1284 spin_unlock_irqrestore(&dev->lock, flags);
1286 return NETDEV_TX_BUSY;
1289 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1290 if (ptask == NULL)
1291 goto fail;
1293 skb = skb_share_check(skb, GFP_ATOMIC);
1294 if (!skb)
1295 goto fail;
1298 * Make a copy of the driver-specific header.
1299 * We might need to rebuild the header on tx failure.
1301 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1302 skb_pull(skb, sizeof(hdr_buf));
1304 proto = hdr_buf.h_proto;
1305 dg_size = skb->len;
1308 * Set the transmission type for the packet. ARP packets and IP
1309 * broadcast packets are sent via GASP.
1311 if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1312 || proto == htons(ETH_P_ARP)
1313 || (proto == htons(ETH_P_IP)
1314 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1315 max_payload = dev->broadcast_xmt_max_payload;
1316 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1318 ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1319 ptask->generation = 0;
1320 ptask->dest_node = IEEE1394_ALL_NODES;
1321 ptask->speed = SCODE_100;
1322 } else {
1323 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1324 u8 generation;
1326 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1327 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1328 goto fail;
1330 generation = peer->generation;
1331 dest_node = peer->node_id;
1332 max_payload = peer->max_payload;
1333 datagram_label_ptr = &peer->datagram_label;
1335 ptask->fifo_addr = peer->fifo;
1336 ptask->generation = generation;
1337 ptask->dest_node = dest_node;
1338 ptask->speed = peer->speed;
1341 /* If this is an ARP packet, convert it */
1342 if (proto == htons(ETH_P_ARP)) {
1343 struct arphdr *arp = (struct arphdr *)skb->data;
1344 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1345 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1346 __be32 ipaddr;
1348 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1350 arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN;
1351 arp1394->max_rec = dev->card->max_receive;
1352 arp1394->sspd = dev->card->link_speed;
1354 put_unaligned_be16(dev->local_fifo >> 32,
1355 &arp1394->fifo_hi);
1356 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1357 &arp1394->fifo_lo);
1358 put_unaligned(ipaddr, &arp1394->sip);
1361 ptask->hdr.w0 = 0;
1362 ptask->hdr.w1 = 0;
1363 ptask->skb = skb;
1364 ptask->dev = dev;
1366 /* Does it all fit in one packet? */
1367 if (dg_size <= max_payload) {
1368 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1369 ptask->outstanding_pkts = 1;
1370 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1371 } else {
1372 u16 datagram_label;
1374 max_payload -= RFC2374_FRAG_OVERHEAD;
1375 datagram_label = (*datagram_label_ptr)++;
1376 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1377 datagram_label);
1378 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1379 max_payload += RFC2374_FRAG_HDR_SIZE;
1382 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1383 netif_stop_queue(dev->netdev);
1385 spin_unlock_irqrestore(&dev->lock, flags);
1387 ptask->max_payload = max_payload;
1388 ptask->enqueued = 0;
1390 fwnet_send_packet(ptask);
1392 return NETDEV_TX_OK;
1394 fail:
1395 spin_unlock_irqrestore(&dev->lock, flags);
1397 if (ptask)
1398 kmem_cache_free(fwnet_packet_task_cache, ptask);
1400 if (skb != NULL)
1401 dev_kfree_skb(skb);
1403 net->stats.tx_dropped++;
1404 net->stats.tx_errors++;
1407 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1408 * causes serious problems" here, allegedly. Before that patch,
1409 * -ERRNO was returned which is not appropriate under Linux 2.6.
1410 * Perhaps more needs to be done? Stop the queue in serious
1411 * conditions and restart it elsewhere?
1413 return NETDEV_TX_OK;
1416 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1418 if (new_mtu < 68)
1419 return -EINVAL;
1421 net->mtu = new_mtu;
1422 return 0;
1425 static const struct ethtool_ops fwnet_ethtool_ops = {
1426 .get_link = ethtool_op_get_link,
1429 static const struct net_device_ops fwnet_netdev_ops = {
1430 .ndo_open = fwnet_open,
1431 .ndo_stop = fwnet_stop,
1432 .ndo_start_xmit = fwnet_tx,
1433 .ndo_change_mtu = fwnet_change_mtu,
1436 static void fwnet_init_dev(struct net_device *net)
1438 net->header_ops = &fwnet_header_ops;
1439 net->netdev_ops = &fwnet_netdev_ops;
1440 net->watchdog_timeo = 2 * HZ;
1441 net->flags = IFF_BROADCAST | IFF_MULTICAST;
1442 net->features = NETIF_F_HIGHDMA;
1443 net->addr_len = FWNET_ALEN;
1444 net->hard_header_len = FWNET_HLEN;
1445 net->type = ARPHRD_IEEE1394;
1446 net->tx_queue_len = FWNET_TX_QUEUE_LEN;
1447 net->ethtool_ops = &fwnet_ethtool_ops;
1450 /* caller must hold fwnet_device_mutex */
1451 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1453 struct fwnet_device *dev;
1455 list_for_each_entry(dev, &fwnet_device_list, dev_link)
1456 if (dev->card == card)
1457 return dev;
1459 return NULL;
1462 static int fwnet_add_peer(struct fwnet_device *dev,
1463 struct fw_unit *unit, struct fw_device *device)
1465 struct fwnet_peer *peer;
1467 peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1468 if (!peer)
1469 return -ENOMEM;
1471 dev_set_drvdata(&unit->device, peer);
1473 peer->dev = dev;
1474 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1475 peer->fifo = FWNET_NO_FIFO_ADDR;
1476 peer->ip = 0;
1477 INIT_LIST_HEAD(&peer->pd_list);
1478 peer->pdg_size = 0;
1479 peer->datagram_label = 0;
1480 peer->speed = device->max_speed;
1481 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1483 peer->generation = device->generation;
1484 smp_rmb();
1485 peer->node_id = device->node_id;
1487 spin_lock_irq(&dev->lock);
1488 list_add_tail(&peer->peer_link, &dev->peer_list);
1489 dev->peer_count++;
1490 set_carrier_state(dev);
1491 spin_unlock_irq(&dev->lock);
1493 return 0;
1496 static int fwnet_probe(struct device *_dev)
1498 struct fw_unit *unit = fw_unit(_dev);
1499 struct fw_device *device = fw_parent_device(unit);
1500 struct fw_card *card = device->card;
1501 struct net_device *net;
1502 bool allocated_netdev = false;
1503 struct fwnet_device *dev;
1504 unsigned max_mtu;
1505 int ret;
1507 mutex_lock(&fwnet_device_mutex);
1509 dev = fwnet_dev_find(card);
1510 if (dev) {
1511 net = dev->netdev;
1512 goto have_dev;
1515 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1516 if (net == NULL) {
1517 ret = -ENOMEM;
1518 goto out;
1521 allocated_netdev = true;
1522 SET_NETDEV_DEV(net, card->device);
1523 dev = netdev_priv(net);
1525 spin_lock_init(&dev->lock);
1526 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1527 dev->broadcast_rcv_context = NULL;
1528 dev->broadcast_xmt_max_payload = 0;
1529 dev->broadcast_xmt_datagramlabel = 0;
1530 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1531 dev->queued_datagrams = 0;
1532 INIT_LIST_HEAD(&dev->peer_list);
1533 dev->card = card;
1534 dev->netdev = net;
1537 * Use the RFC 2734 default 1500 octets or the maximum payload
1538 * as initial MTU
1540 max_mtu = (1 << (card->max_receive + 1))
1541 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1542 net->mtu = min(1500U, max_mtu);
1544 /* Set our hardware address while we're at it */
1545 put_unaligned_be64(card->guid, net->dev_addr);
1546 put_unaligned_be64(~0ULL, net->broadcast);
1547 ret = register_netdev(net);
1548 if (ret) {
1549 fw_error("Cannot register the driver\n");
1550 goto out;
1553 list_add_tail(&dev->dev_link, &fwnet_device_list);
1554 fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1555 net->name, (unsigned long long)card->guid);
1556 have_dev:
1557 ret = fwnet_add_peer(dev, unit, device);
1558 if (ret && allocated_netdev) {
1559 unregister_netdev(net);
1560 list_del(&dev->dev_link);
1562 out:
1563 if (ret && allocated_netdev)
1564 free_netdev(net);
1566 mutex_unlock(&fwnet_device_mutex);
1568 return ret;
1571 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1573 struct fwnet_partial_datagram *pd, *pd_next;
1575 spin_lock_irq(&dev->lock);
1576 list_del(&peer->peer_link);
1577 dev->peer_count--;
1578 set_carrier_state(dev);
1579 spin_unlock_irq(&dev->lock);
1581 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1582 fwnet_pd_delete(pd);
1584 kfree(peer);
1587 static int fwnet_remove(struct device *_dev)
1589 struct fwnet_peer *peer = dev_get_drvdata(_dev);
1590 struct fwnet_device *dev = peer->dev;
1591 struct net_device *net;
1592 int i;
1594 mutex_lock(&fwnet_device_mutex);
1596 net = dev->netdev;
1597 if (net && peer->ip)
1598 arp_invalidate(net, peer->ip);
1600 fwnet_remove_peer(peer, dev);
1602 if (list_empty(&dev->peer_list)) {
1603 unregister_netdev(net);
1605 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1606 fw_core_remove_address_handler(&dev->handler);
1607 if (dev->broadcast_rcv_context) {
1608 fw_iso_context_stop(dev->broadcast_rcv_context);
1609 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1610 dev->card);
1611 fw_iso_context_destroy(dev->broadcast_rcv_context);
1613 for (i = 0; dev->queued_datagrams && i < 5; i++)
1614 ssleep(1);
1615 WARN_ON(dev->queued_datagrams);
1616 list_del(&dev->dev_link);
1618 free_netdev(net);
1621 mutex_unlock(&fwnet_device_mutex);
1623 return 0;
1627 * FIXME abort partially sent fragmented datagrams,
1628 * discard partially received fragmented datagrams
1630 static void fwnet_update(struct fw_unit *unit)
1632 struct fw_device *device = fw_parent_device(unit);
1633 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1634 int generation;
1636 generation = device->generation;
1638 spin_lock_irq(&peer->dev->lock);
1639 peer->node_id = device->node_id;
1640 peer->generation = generation;
1641 spin_unlock_irq(&peer->dev->lock);
1644 static const struct ieee1394_device_id fwnet_id_table[] = {
1646 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1647 IEEE1394_MATCH_VERSION,
1648 .specifier_id = IANA_SPECIFIER_ID,
1649 .version = RFC2734_SW_VERSION,
1654 static struct fw_driver fwnet_driver = {
1655 .driver = {
1656 .owner = THIS_MODULE,
1657 .name = "net",
1658 .bus = &fw_bus_type,
1659 .probe = fwnet_probe,
1660 .remove = fwnet_remove,
1662 .update = fwnet_update,
1663 .id_table = fwnet_id_table,
1666 static const u32 rfc2374_unit_directory_data[] = {
1667 0x00040000, /* directory_length */
1668 0x1200005e, /* unit_specifier_id: IANA */
1669 0x81000003, /* textual descriptor offset */
1670 0x13000001, /* unit_sw_version: RFC 2734 */
1671 0x81000005, /* textual descriptor offset */
1672 0x00030000, /* descriptor_length */
1673 0x00000000, /* text */
1674 0x00000000, /* minimal ASCII, en */
1675 0x49414e41, /* I A N A */
1676 0x00030000, /* descriptor_length */
1677 0x00000000, /* text */
1678 0x00000000, /* minimal ASCII, en */
1679 0x49507634, /* I P v 4 */
1682 static struct fw_descriptor rfc2374_unit_directory = {
1683 .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1684 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1685 .data = rfc2374_unit_directory_data
1688 static int __init fwnet_init(void)
1690 int err;
1692 err = fw_core_add_descriptor(&rfc2374_unit_directory);
1693 if (err)
1694 return err;
1696 fwnet_packet_task_cache = kmem_cache_create("packet_task",
1697 sizeof(struct fwnet_packet_task), 0, 0, NULL);
1698 if (!fwnet_packet_task_cache) {
1699 err = -ENOMEM;
1700 goto out;
1703 err = driver_register(&fwnet_driver.driver);
1704 if (!err)
1705 return 0;
1707 kmem_cache_destroy(fwnet_packet_task_cache);
1708 out:
1709 fw_core_remove_descriptor(&rfc2374_unit_directory);
1711 return err;
1713 module_init(fwnet_init);
1715 static void __exit fwnet_cleanup(void)
1717 driver_unregister(&fwnet_driver.driver);
1718 kmem_cache_destroy(fwnet_packet_task_cache);
1719 fw_core_remove_descriptor(&rfc2374_unit_directory);
1721 module_exit(fwnet_cleanup);
1723 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1724 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1725 MODULE_LICENSE("GPL");
1726 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);