rtc: mxc: Initialize drvdata before registering device
[linux-2.6.git] / net / bluetooth / hci_core.c
blobb5a8afc2be331f5ac5b26649e4609e21039f8b85
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
25 /* Bluetooth HCI core. */
27 #include <linux/jiffies.h>
28 #include <linux/module.h>
29 #include <linux/kmod.h>
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fcntl.h>
38 #include <linux/init.h>
39 #include <linux/skbuff.h>
40 #include <linux/workqueue.h>
41 #include <linux/interrupt.h>
42 #include <linux/notifier.h>
43 #include <linux/rfkill.h>
44 #include <linux/timer.h>
45 #include <net/sock.h>
47 #include <asm/system.h>
48 #include <linux/uaccess.h>
49 #include <asm/unaligned.h>
51 #include <net/bluetooth/bluetooth.h>
52 #include <net/bluetooth/hci_core.h>
54 #define AUTO_OFF_TIMEOUT 2000
56 static void hci_cmd_task(unsigned long arg);
57 static void hci_rx_task(unsigned long arg);
58 static void hci_tx_task(unsigned long arg);
59 static void hci_notify(struct hci_dev *hdev, int event);
61 static DEFINE_RWLOCK(hci_task_lock);
63 /* HCI device list */
64 LIST_HEAD(hci_dev_list);
65 DEFINE_RWLOCK(hci_dev_list_lock);
67 /* HCI callback list */
68 LIST_HEAD(hci_cb_list);
69 DEFINE_RWLOCK(hci_cb_list_lock);
71 /* HCI protocols */
72 #define HCI_MAX_PROTO 2
73 struct hci_proto *hci_proto[HCI_MAX_PROTO];
75 /* HCI notifiers list */
76 static ATOMIC_NOTIFIER_HEAD(hci_notifier);
78 /* ---- HCI notifications ---- */
80 int hci_register_notifier(struct notifier_block *nb)
82 return atomic_notifier_chain_register(&hci_notifier, nb);
85 int hci_unregister_notifier(struct notifier_block *nb)
87 return atomic_notifier_chain_unregister(&hci_notifier, nb);
90 static void hci_notify(struct hci_dev *hdev, int event)
92 atomic_notifier_call_chain(&hci_notifier, event, hdev);
95 /* ---- HCI requests ---- */
97 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
99 BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
101 /* If this is the init phase check if the completed command matches
102 * the last init command, and if not just return.
104 if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
105 return;
107 if (hdev->req_status == HCI_REQ_PEND) {
108 hdev->req_result = result;
109 hdev->req_status = HCI_REQ_DONE;
110 wake_up_interruptible(&hdev->req_wait_q);
114 static void hci_req_cancel(struct hci_dev *hdev, int err)
116 BT_DBG("%s err 0x%2.2x", hdev->name, err);
118 if (hdev->req_status == HCI_REQ_PEND) {
119 hdev->req_result = err;
120 hdev->req_status = HCI_REQ_CANCELED;
121 wake_up_interruptible(&hdev->req_wait_q);
125 /* Execute request and wait for completion. */
126 static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
127 unsigned long opt, __u32 timeout)
129 DECLARE_WAITQUEUE(wait, current);
130 int err = 0;
132 BT_DBG("%s start", hdev->name);
134 hdev->req_status = HCI_REQ_PEND;
136 add_wait_queue(&hdev->req_wait_q, &wait);
137 set_current_state(TASK_INTERRUPTIBLE);
139 req(hdev, opt);
140 schedule_timeout(timeout);
142 remove_wait_queue(&hdev->req_wait_q, &wait);
144 if (signal_pending(current))
145 return -EINTR;
147 switch (hdev->req_status) {
148 case HCI_REQ_DONE:
149 err = -bt_err(hdev->req_result);
150 break;
152 case HCI_REQ_CANCELED:
153 err = -hdev->req_result;
154 break;
156 default:
157 err = -ETIMEDOUT;
158 break;
161 hdev->req_status = hdev->req_result = 0;
163 BT_DBG("%s end: err %d", hdev->name, err);
165 return err;
168 static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
169 unsigned long opt, __u32 timeout)
171 int ret;
173 if (!test_bit(HCI_UP, &hdev->flags))
174 return -ENETDOWN;
176 /* Serialize all requests */
177 hci_req_lock(hdev);
178 ret = __hci_request(hdev, req, opt, timeout);
179 hci_req_unlock(hdev);
181 return ret;
184 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
186 BT_DBG("%s %ld", hdev->name, opt);
188 /* Reset device */
189 set_bit(HCI_RESET, &hdev->flags);
190 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
193 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
195 struct hci_cp_delete_stored_link_key cp;
196 struct sk_buff *skb;
197 __le16 param;
198 __u8 flt_type;
200 BT_DBG("%s %ld", hdev->name, opt);
202 /* Driver initialization */
204 /* Special commands */
205 while ((skb = skb_dequeue(&hdev->driver_init))) {
206 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
207 skb->dev = (void *) hdev;
209 skb_queue_tail(&hdev->cmd_q, skb);
210 tasklet_schedule(&hdev->cmd_task);
212 skb_queue_purge(&hdev->driver_init);
214 /* Mandatory initialization */
216 /* Reset */
217 if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
218 set_bit(HCI_RESET, &hdev->flags);
219 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
222 /* Read Local Supported Features */
223 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
225 /* Read Local Version */
226 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
228 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
229 hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
231 #if 0
232 /* Host buffer size */
234 struct hci_cp_host_buffer_size cp;
235 cp.acl_mtu = cpu_to_le16(HCI_MAX_ACL_SIZE);
236 cp.sco_mtu = HCI_MAX_SCO_SIZE;
237 cp.acl_max_pkt = cpu_to_le16(0xffff);
238 cp.sco_max_pkt = cpu_to_le16(0xffff);
239 hci_send_cmd(hdev, HCI_OP_HOST_BUFFER_SIZE, sizeof(cp), &cp);
241 #endif
243 /* Read BD Address */
244 hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
246 /* Read Class of Device */
247 hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
249 /* Read Local Name */
250 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
252 /* Read Voice Setting */
253 hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
255 /* Optional initialization */
257 /* Clear Event Filters */
258 flt_type = HCI_FLT_CLEAR_ALL;
259 hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
261 /* Connection accept timeout ~20 secs */
262 param = cpu_to_le16(0x7d00);
263 hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
265 bacpy(&cp.bdaddr, BDADDR_ANY);
266 cp.delete_all = 1;
267 hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
270 static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
272 BT_DBG("%s", hdev->name);
274 /* Read LE buffer size */
275 hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
278 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
280 __u8 scan = opt;
282 BT_DBG("%s %x", hdev->name, scan);
284 /* Inquiry and Page scans */
285 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
288 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
290 __u8 auth = opt;
292 BT_DBG("%s %x", hdev->name, auth);
294 /* Authentication */
295 hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
298 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
300 __u8 encrypt = opt;
302 BT_DBG("%s %x", hdev->name, encrypt);
304 /* Encryption */
305 hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
308 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
310 __le16 policy = cpu_to_le16(opt);
312 BT_DBG("%s %x", hdev->name, policy);
314 /* Default link policy */
315 hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
318 /* Get HCI device by index.
319 * Device is held on return. */
320 struct hci_dev *hci_dev_get(int index)
322 struct hci_dev *hdev = NULL;
323 struct list_head *p;
325 BT_DBG("%d", index);
327 if (index < 0)
328 return NULL;
330 read_lock(&hci_dev_list_lock);
331 list_for_each(p, &hci_dev_list) {
332 struct hci_dev *d = list_entry(p, struct hci_dev, list);
333 if (d->id == index) {
334 hdev = hci_dev_hold(d);
335 break;
338 read_unlock(&hci_dev_list_lock);
339 return hdev;
342 /* ---- Inquiry support ---- */
343 static void inquiry_cache_flush(struct hci_dev *hdev)
345 struct inquiry_cache *cache = &hdev->inq_cache;
346 struct inquiry_entry *next = cache->list, *e;
348 BT_DBG("cache %p", cache);
350 cache->list = NULL;
351 while ((e = next)) {
352 next = e->next;
353 kfree(e);
357 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
359 struct inquiry_cache *cache = &hdev->inq_cache;
360 struct inquiry_entry *e;
362 BT_DBG("cache %p, %s", cache, batostr(bdaddr));
364 for (e = cache->list; e; e = e->next)
365 if (!bacmp(&e->data.bdaddr, bdaddr))
366 break;
367 return e;
370 void hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data)
372 struct inquiry_cache *cache = &hdev->inq_cache;
373 struct inquiry_entry *ie;
375 BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
377 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
378 if (!ie) {
379 /* Entry not in the cache. Add new one. */
380 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
381 if (!ie)
382 return;
384 ie->next = cache->list;
385 cache->list = ie;
388 memcpy(&ie->data, data, sizeof(*data));
389 ie->timestamp = jiffies;
390 cache->timestamp = jiffies;
393 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
395 struct inquiry_cache *cache = &hdev->inq_cache;
396 struct inquiry_info *info = (struct inquiry_info *) buf;
397 struct inquiry_entry *e;
398 int copied = 0;
400 for (e = cache->list; e && copied < num; e = e->next, copied++) {
401 struct inquiry_data *data = &e->data;
402 bacpy(&info->bdaddr, &data->bdaddr);
403 info->pscan_rep_mode = data->pscan_rep_mode;
404 info->pscan_period_mode = data->pscan_period_mode;
405 info->pscan_mode = data->pscan_mode;
406 memcpy(info->dev_class, data->dev_class, 3);
407 info->clock_offset = data->clock_offset;
408 info++;
411 BT_DBG("cache %p, copied %d", cache, copied);
412 return copied;
415 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
417 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
418 struct hci_cp_inquiry cp;
420 BT_DBG("%s", hdev->name);
422 if (test_bit(HCI_INQUIRY, &hdev->flags))
423 return;
425 /* Start Inquiry */
426 memcpy(&cp.lap, &ir->lap, 3);
427 cp.length = ir->length;
428 cp.num_rsp = ir->num_rsp;
429 hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
432 int hci_inquiry(void __user *arg)
434 __u8 __user *ptr = arg;
435 struct hci_inquiry_req ir;
436 struct hci_dev *hdev;
437 int err = 0, do_inquiry = 0, max_rsp;
438 long timeo;
439 __u8 *buf;
441 if (copy_from_user(&ir, ptr, sizeof(ir)))
442 return -EFAULT;
444 hdev = hci_dev_get(ir.dev_id);
445 if (!hdev)
446 return -ENODEV;
448 hci_dev_lock_bh(hdev);
449 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
450 inquiry_cache_empty(hdev) ||
451 ir.flags & IREQ_CACHE_FLUSH) {
452 inquiry_cache_flush(hdev);
453 do_inquiry = 1;
455 hci_dev_unlock_bh(hdev);
457 timeo = ir.length * msecs_to_jiffies(2000);
459 if (do_inquiry) {
460 err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
461 if (err < 0)
462 goto done;
465 /* for unlimited number of responses we will use buffer with 255 entries */
466 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
468 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
469 * copy it to the user space.
471 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
472 if (!buf) {
473 err = -ENOMEM;
474 goto done;
477 hci_dev_lock_bh(hdev);
478 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
479 hci_dev_unlock_bh(hdev);
481 BT_DBG("num_rsp %d", ir.num_rsp);
483 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
484 ptr += sizeof(ir);
485 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
486 ir.num_rsp))
487 err = -EFAULT;
488 } else
489 err = -EFAULT;
491 kfree(buf);
493 done:
494 hci_dev_put(hdev);
495 return err;
498 /* ---- HCI ioctl helpers ---- */
500 int hci_dev_open(__u16 dev)
502 struct hci_dev *hdev;
503 int ret = 0;
505 hdev = hci_dev_get(dev);
506 if (!hdev)
507 return -ENODEV;
509 BT_DBG("%s %p", hdev->name, hdev);
511 hci_req_lock(hdev);
513 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
514 ret = -ERFKILL;
515 goto done;
518 if (test_bit(HCI_UP, &hdev->flags)) {
519 ret = -EALREADY;
520 goto done;
523 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
524 set_bit(HCI_RAW, &hdev->flags);
526 /* Treat all non BR/EDR controllers as raw devices for now */
527 if (hdev->dev_type != HCI_BREDR)
528 set_bit(HCI_RAW, &hdev->flags);
530 if (hdev->open(hdev)) {
531 ret = -EIO;
532 goto done;
535 if (!test_bit(HCI_RAW, &hdev->flags)) {
536 atomic_set(&hdev->cmd_cnt, 1);
537 set_bit(HCI_INIT, &hdev->flags);
538 hdev->init_last_cmd = 0;
540 ret = __hci_request(hdev, hci_init_req, 0,
541 msecs_to_jiffies(HCI_INIT_TIMEOUT));
543 if (lmp_le_capable(hdev))
544 ret = __hci_request(hdev, hci_le_init_req, 0,
545 msecs_to_jiffies(HCI_INIT_TIMEOUT));
547 clear_bit(HCI_INIT, &hdev->flags);
550 if (!ret) {
551 hci_dev_hold(hdev);
552 set_bit(HCI_UP, &hdev->flags);
553 hci_notify(hdev, HCI_DEV_UP);
554 if (!test_bit(HCI_SETUP, &hdev->flags))
555 mgmt_powered(hdev->id, 1);
556 } else {
557 /* Init failed, cleanup */
558 tasklet_kill(&hdev->rx_task);
559 tasklet_kill(&hdev->tx_task);
560 tasklet_kill(&hdev->cmd_task);
562 skb_queue_purge(&hdev->cmd_q);
563 skb_queue_purge(&hdev->rx_q);
565 if (hdev->flush)
566 hdev->flush(hdev);
568 if (hdev->sent_cmd) {
569 kfree_skb(hdev->sent_cmd);
570 hdev->sent_cmd = NULL;
573 hdev->close(hdev);
574 hdev->flags = 0;
577 done:
578 hci_req_unlock(hdev);
579 hci_dev_put(hdev);
580 return ret;
583 static int hci_dev_do_close(struct hci_dev *hdev)
585 BT_DBG("%s %p", hdev->name, hdev);
587 hci_req_cancel(hdev, ENODEV);
588 hci_req_lock(hdev);
590 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
591 del_timer_sync(&hdev->cmd_timer);
592 hci_req_unlock(hdev);
593 return 0;
596 /* Kill RX and TX tasks */
597 tasklet_kill(&hdev->rx_task);
598 tasklet_kill(&hdev->tx_task);
600 hci_dev_lock_bh(hdev);
601 inquiry_cache_flush(hdev);
602 hci_conn_hash_flush(hdev);
603 hci_dev_unlock_bh(hdev);
605 hci_notify(hdev, HCI_DEV_DOWN);
607 if (hdev->flush)
608 hdev->flush(hdev);
610 /* Reset device */
611 skb_queue_purge(&hdev->cmd_q);
612 atomic_set(&hdev->cmd_cnt, 1);
613 if (!test_bit(HCI_RAW, &hdev->flags)) {
614 set_bit(HCI_INIT, &hdev->flags);
615 __hci_request(hdev, hci_reset_req, 0,
616 msecs_to_jiffies(250));
617 clear_bit(HCI_INIT, &hdev->flags);
620 /* Kill cmd task */
621 tasklet_kill(&hdev->cmd_task);
623 /* Drop queues */
624 skb_queue_purge(&hdev->rx_q);
625 skb_queue_purge(&hdev->cmd_q);
626 skb_queue_purge(&hdev->raw_q);
628 /* Drop last sent command */
629 if (hdev->sent_cmd) {
630 del_timer_sync(&hdev->cmd_timer);
631 kfree_skb(hdev->sent_cmd);
632 hdev->sent_cmd = NULL;
635 /* After this point our queues are empty
636 * and no tasks are scheduled. */
637 hdev->close(hdev);
639 mgmt_powered(hdev->id, 0);
641 /* Clear flags */
642 hdev->flags = 0;
644 hci_req_unlock(hdev);
646 hci_dev_put(hdev);
647 return 0;
650 int hci_dev_close(__u16 dev)
652 struct hci_dev *hdev;
653 int err;
655 hdev = hci_dev_get(dev);
656 if (!hdev)
657 return -ENODEV;
658 err = hci_dev_do_close(hdev);
659 hci_dev_put(hdev);
660 return err;
663 int hci_dev_reset(__u16 dev)
665 struct hci_dev *hdev;
666 int ret = 0;
668 hdev = hci_dev_get(dev);
669 if (!hdev)
670 return -ENODEV;
672 hci_req_lock(hdev);
673 tasklet_disable(&hdev->tx_task);
675 if (!test_bit(HCI_UP, &hdev->flags))
676 goto done;
678 /* Drop queues */
679 skb_queue_purge(&hdev->rx_q);
680 skb_queue_purge(&hdev->cmd_q);
682 hci_dev_lock_bh(hdev);
683 inquiry_cache_flush(hdev);
684 hci_conn_hash_flush(hdev);
685 hci_dev_unlock_bh(hdev);
687 if (hdev->flush)
688 hdev->flush(hdev);
690 atomic_set(&hdev->cmd_cnt, 1);
691 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
693 if (!test_bit(HCI_RAW, &hdev->flags))
694 ret = __hci_request(hdev, hci_reset_req, 0,
695 msecs_to_jiffies(HCI_INIT_TIMEOUT));
697 done:
698 tasklet_enable(&hdev->tx_task);
699 hci_req_unlock(hdev);
700 hci_dev_put(hdev);
701 return ret;
704 int hci_dev_reset_stat(__u16 dev)
706 struct hci_dev *hdev;
707 int ret = 0;
709 hdev = hci_dev_get(dev);
710 if (!hdev)
711 return -ENODEV;
713 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
715 hci_dev_put(hdev);
717 return ret;
720 int hci_dev_cmd(unsigned int cmd, void __user *arg)
722 struct hci_dev *hdev;
723 struct hci_dev_req dr;
724 int err = 0;
726 if (copy_from_user(&dr, arg, sizeof(dr)))
727 return -EFAULT;
729 hdev = hci_dev_get(dr.dev_id);
730 if (!hdev)
731 return -ENODEV;
733 switch (cmd) {
734 case HCISETAUTH:
735 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
736 msecs_to_jiffies(HCI_INIT_TIMEOUT));
737 break;
739 case HCISETENCRYPT:
740 if (!lmp_encrypt_capable(hdev)) {
741 err = -EOPNOTSUPP;
742 break;
745 if (!test_bit(HCI_AUTH, &hdev->flags)) {
746 /* Auth must be enabled first */
747 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
748 msecs_to_jiffies(HCI_INIT_TIMEOUT));
749 if (err)
750 break;
753 err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
754 msecs_to_jiffies(HCI_INIT_TIMEOUT));
755 break;
757 case HCISETSCAN:
758 err = hci_request(hdev, hci_scan_req, dr.dev_opt,
759 msecs_to_jiffies(HCI_INIT_TIMEOUT));
760 break;
762 case HCISETLINKPOL:
763 err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
764 msecs_to_jiffies(HCI_INIT_TIMEOUT));
765 break;
767 case HCISETLINKMODE:
768 hdev->link_mode = ((__u16) dr.dev_opt) &
769 (HCI_LM_MASTER | HCI_LM_ACCEPT);
770 break;
772 case HCISETPTYPE:
773 hdev->pkt_type = (__u16) dr.dev_opt;
774 break;
776 case HCISETACLMTU:
777 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
778 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
779 break;
781 case HCISETSCOMTU:
782 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
783 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
784 break;
786 default:
787 err = -EINVAL;
788 break;
791 hci_dev_put(hdev);
792 return err;
795 int hci_get_dev_list(void __user *arg)
797 struct hci_dev_list_req *dl;
798 struct hci_dev_req *dr;
799 struct list_head *p;
800 int n = 0, size, err;
801 __u16 dev_num;
803 if (get_user(dev_num, (__u16 __user *) arg))
804 return -EFAULT;
806 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
807 return -EINVAL;
809 size = sizeof(*dl) + dev_num * sizeof(*dr);
811 dl = kzalloc(size, GFP_KERNEL);
812 if (!dl)
813 return -ENOMEM;
815 dr = dl->dev_req;
817 read_lock_bh(&hci_dev_list_lock);
818 list_for_each(p, &hci_dev_list) {
819 struct hci_dev *hdev;
821 hdev = list_entry(p, struct hci_dev, list);
823 hci_del_off_timer(hdev);
825 if (!test_bit(HCI_MGMT, &hdev->flags))
826 set_bit(HCI_PAIRABLE, &hdev->flags);
828 (dr + n)->dev_id = hdev->id;
829 (dr + n)->dev_opt = hdev->flags;
831 if (++n >= dev_num)
832 break;
834 read_unlock_bh(&hci_dev_list_lock);
836 dl->dev_num = n;
837 size = sizeof(*dl) + n * sizeof(*dr);
839 err = copy_to_user(arg, dl, size);
840 kfree(dl);
842 return err ? -EFAULT : 0;
845 int hci_get_dev_info(void __user *arg)
847 struct hci_dev *hdev;
848 struct hci_dev_info di;
849 int err = 0;
851 if (copy_from_user(&di, arg, sizeof(di)))
852 return -EFAULT;
854 hdev = hci_dev_get(di.dev_id);
855 if (!hdev)
856 return -ENODEV;
858 hci_del_off_timer(hdev);
860 if (!test_bit(HCI_MGMT, &hdev->flags))
861 set_bit(HCI_PAIRABLE, &hdev->flags);
863 strcpy(di.name, hdev->name);
864 di.bdaddr = hdev->bdaddr;
865 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
866 di.flags = hdev->flags;
867 di.pkt_type = hdev->pkt_type;
868 di.acl_mtu = hdev->acl_mtu;
869 di.acl_pkts = hdev->acl_pkts;
870 di.sco_mtu = hdev->sco_mtu;
871 di.sco_pkts = hdev->sco_pkts;
872 di.link_policy = hdev->link_policy;
873 di.link_mode = hdev->link_mode;
875 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
876 memcpy(&di.features, &hdev->features, sizeof(di.features));
878 if (copy_to_user(arg, &di, sizeof(di)))
879 err = -EFAULT;
881 hci_dev_put(hdev);
883 return err;
886 /* ---- Interface to HCI drivers ---- */
888 static int hci_rfkill_set_block(void *data, bool blocked)
890 struct hci_dev *hdev = data;
892 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
894 if (!blocked)
895 return 0;
897 hci_dev_do_close(hdev);
899 return 0;
902 static const struct rfkill_ops hci_rfkill_ops = {
903 .set_block = hci_rfkill_set_block,
906 /* Alloc HCI device */
907 struct hci_dev *hci_alloc_dev(void)
909 struct hci_dev *hdev;
911 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
912 if (!hdev)
913 return NULL;
915 skb_queue_head_init(&hdev->driver_init);
917 return hdev;
919 EXPORT_SYMBOL(hci_alloc_dev);
921 /* Free HCI device */
922 void hci_free_dev(struct hci_dev *hdev)
924 skb_queue_purge(&hdev->driver_init);
926 /* will free via device release */
927 put_device(&hdev->dev);
929 EXPORT_SYMBOL(hci_free_dev);
931 static void hci_power_on(struct work_struct *work)
933 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
935 BT_DBG("%s", hdev->name);
937 if (hci_dev_open(hdev->id) < 0)
938 return;
940 if (test_bit(HCI_AUTO_OFF, &hdev->flags))
941 mod_timer(&hdev->off_timer,
942 jiffies + msecs_to_jiffies(AUTO_OFF_TIMEOUT));
944 if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
945 mgmt_index_added(hdev->id);
948 static void hci_power_off(struct work_struct *work)
950 struct hci_dev *hdev = container_of(work, struct hci_dev, power_off);
952 BT_DBG("%s", hdev->name);
954 hci_dev_close(hdev->id);
957 static void hci_auto_off(unsigned long data)
959 struct hci_dev *hdev = (struct hci_dev *) data;
961 BT_DBG("%s", hdev->name);
963 clear_bit(HCI_AUTO_OFF, &hdev->flags);
965 queue_work(hdev->workqueue, &hdev->power_off);
968 void hci_del_off_timer(struct hci_dev *hdev)
970 BT_DBG("%s", hdev->name);
972 clear_bit(HCI_AUTO_OFF, &hdev->flags);
973 del_timer(&hdev->off_timer);
976 int hci_uuids_clear(struct hci_dev *hdev)
978 struct list_head *p, *n;
980 list_for_each_safe(p, n, &hdev->uuids) {
981 struct bt_uuid *uuid;
983 uuid = list_entry(p, struct bt_uuid, list);
985 list_del(p);
986 kfree(uuid);
989 return 0;
992 int hci_link_keys_clear(struct hci_dev *hdev)
994 struct list_head *p, *n;
996 list_for_each_safe(p, n, &hdev->link_keys) {
997 struct link_key *key;
999 key = list_entry(p, struct link_key, list);
1001 list_del(p);
1002 kfree(key);
1005 return 0;
1008 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1010 struct list_head *p;
1012 list_for_each(p, &hdev->link_keys) {
1013 struct link_key *k;
1015 k = list_entry(p, struct link_key, list);
1017 if (bacmp(bdaddr, &k->bdaddr) == 0)
1018 return k;
1021 return NULL;
1024 int hci_add_link_key(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1025 u8 *val, u8 type, u8 pin_len)
1027 struct link_key *key, *old_key;
1028 u8 old_key_type;
1030 old_key = hci_find_link_key(hdev, bdaddr);
1031 if (old_key) {
1032 old_key_type = old_key->type;
1033 key = old_key;
1034 } else {
1035 old_key_type = 0xff;
1036 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1037 if (!key)
1038 return -ENOMEM;
1039 list_add(&key->list, &hdev->link_keys);
1042 BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1044 bacpy(&key->bdaddr, bdaddr);
1045 memcpy(key->val, val, 16);
1046 key->type = type;
1047 key->pin_len = pin_len;
1049 if (new_key)
1050 mgmt_new_key(hdev->id, key, old_key_type);
1052 if (type == 0x06)
1053 key->type = old_key_type;
1055 return 0;
1058 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1060 struct link_key *key;
1062 key = hci_find_link_key(hdev, bdaddr);
1063 if (!key)
1064 return -ENOENT;
1066 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1068 list_del(&key->list);
1069 kfree(key);
1071 return 0;
1074 /* HCI command timer function */
1075 static void hci_cmd_timer(unsigned long arg)
1077 struct hci_dev *hdev = (void *) arg;
1079 BT_ERR("%s command tx timeout", hdev->name);
1080 atomic_set(&hdev->cmd_cnt, 1);
1081 clear_bit(HCI_RESET, &hdev->flags);
1082 tasklet_schedule(&hdev->cmd_task);
1085 /* Register HCI device */
1086 int hci_register_dev(struct hci_dev *hdev)
1088 struct list_head *head = &hci_dev_list, *p;
1089 int i, id = 0;
1091 BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
1092 hdev->bus, hdev->owner);
1094 if (!hdev->open || !hdev->close || !hdev->destruct)
1095 return -EINVAL;
1097 write_lock_bh(&hci_dev_list_lock);
1099 /* Find first available device id */
1100 list_for_each(p, &hci_dev_list) {
1101 if (list_entry(p, struct hci_dev, list)->id != id)
1102 break;
1103 head = p; id++;
1106 sprintf(hdev->name, "hci%d", id);
1107 hdev->id = id;
1108 list_add(&hdev->list, head);
1110 atomic_set(&hdev->refcnt, 1);
1111 spin_lock_init(&hdev->lock);
1113 hdev->flags = 0;
1114 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1115 hdev->esco_type = (ESCO_HV1);
1116 hdev->link_mode = (HCI_LM_ACCEPT);
1117 hdev->io_capability = 0x03; /* No Input No Output */
1119 hdev->idle_timeout = 0;
1120 hdev->sniff_max_interval = 800;
1121 hdev->sniff_min_interval = 80;
1123 tasklet_init(&hdev->cmd_task, hci_cmd_task, (unsigned long) hdev);
1124 tasklet_init(&hdev->rx_task, hci_rx_task, (unsigned long) hdev);
1125 tasklet_init(&hdev->tx_task, hci_tx_task, (unsigned long) hdev);
1127 skb_queue_head_init(&hdev->rx_q);
1128 skb_queue_head_init(&hdev->cmd_q);
1129 skb_queue_head_init(&hdev->raw_q);
1131 setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1133 for (i = 0; i < NUM_REASSEMBLY; i++)
1134 hdev->reassembly[i] = NULL;
1136 init_waitqueue_head(&hdev->req_wait_q);
1137 mutex_init(&hdev->req_lock);
1139 inquiry_cache_init(hdev);
1141 hci_conn_hash_init(hdev);
1143 INIT_LIST_HEAD(&hdev->blacklist);
1145 INIT_LIST_HEAD(&hdev->uuids);
1147 INIT_LIST_HEAD(&hdev->link_keys);
1149 INIT_WORK(&hdev->power_on, hci_power_on);
1150 INIT_WORK(&hdev->power_off, hci_power_off);
1151 setup_timer(&hdev->off_timer, hci_auto_off, (unsigned long) hdev);
1153 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1155 atomic_set(&hdev->promisc, 0);
1157 write_unlock_bh(&hci_dev_list_lock);
1159 hdev->workqueue = create_singlethread_workqueue(hdev->name);
1160 if (!hdev->workqueue)
1161 goto nomem;
1163 hci_register_sysfs(hdev);
1165 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1166 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
1167 if (hdev->rfkill) {
1168 if (rfkill_register(hdev->rfkill) < 0) {
1169 rfkill_destroy(hdev->rfkill);
1170 hdev->rfkill = NULL;
1174 set_bit(HCI_AUTO_OFF, &hdev->flags);
1175 set_bit(HCI_SETUP, &hdev->flags);
1176 queue_work(hdev->workqueue, &hdev->power_on);
1178 hci_notify(hdev, HCI_DEV_REG);
1180 return id;
1182 nomem:
1183 write_lock_bh(&hci_dev_list_lock);
1184 list_del(&hdev->list);
1185 write_unlock_bh(&hci_dev_list_lock);
1187 return -ENOMEM;
1189 EXPORT_SYMBOL(hci_register_dev);
1191 /* Unregister HCI device */
1192 int hci_unregister_dev(struct hci_dev *hdev)
1194 int i;
1196 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1198 write_lock_bh(&hci_dev_list_lock);
1199 list_del(&hdev->list);
1200 write_unlock_bh(&hci_dev_list_lock);
1202 hci_dev_do_close(hdev);
1204 for (i = 0; i < NUM_REASSEMBLY; i++)
1205 kfree_skb(hdev->reassembly[i]);
1207 if (!test_bit(HCI_INIT, &hdev->flags) &&
1208 !test_bit(HCI_SETUP, &hdev->flags))
1209 mgmt_index_removed(hdev->id);
1211 hci_notify(hdev, HCI_DEV_UNREG);
1213 if (hdev->rfkill) {
1214 rfkill_unregister(hdev->rfkill);
1215 rfkill_destroy(hdev->rfkill);
1218 hci_unregister_sysfs(hdev);
1220 hci_del_off_timer(hdev);
1222 destroy_workqueue(hdev->workqueue);
1224 hci_dev_lock_bh(hdev);
1225 hci_blacklist_clear(hdev);
1226 hci_uuids_clear(hdev);
1227 hci_link_keys_clear(hdev);
1228 hci_dev_unlock_bh(hdev);
1230 __hci_dev_put(hdev);
1232 return 0;
1234 EXPORT_SYMBOL(hci_unregister_dev);
1236 /* Suspend HCI device */
1237 int hci_suspend_dev(struct hci_dev *hdev)
1239 hci_notify(hdev, HCI_DEV_SUSPEND);
1240 return 0;
1242 EXPORT_SYMBOL(hci_suspend_dev);
1244 /* Resume HCI device */
1245 int hci_resume_dev(struct hci_dev *hdev)
1247 hci_notify(hdev, HCI_DEV_RESUME);
1248 return 0;
1250 EXPORT_SYMBOL(hci_resume_dev);
1252 /* Receive frame from HCI drivers */
1253 int hci_recv_frame(struct sk_buff *skb)
1255 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1256 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1257 && !test_bit(HCI_INIT, &hdev->flags))) {
1258 kfree_skb(skb);
1259 return -ENXIO;
1262 /* Incomming skb */
1263 bt_cb(skb)->incoming = 1;
1265 /* Time stamp */
1266 __net_timestamp(skb);
1268 /* Queue frame for rx task */
1269 skb_queue_tail(&hdev->rx_q, skb);
1270 tasklet_schedule(&hdev->rx_task);
1272 return 0;
1274 EXPORT_SYMBOL(hci_recv_frame);
1276 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1277 int count, __u8 index, gfp_t gfp_mask)
1279 int len = 0;
1280 int hlen = 0;
1281 int remain = count;
1282 struct sk_buff *skb;
1283 struct bt_skb_cb *scb;
1285 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1286 index >= NUM_REASSEMBLY)
1287 return -EILSEQ;
1289 skb = hdev->reassembly[index];
1291 if (!skb) {
1292 switch (type) {
1293 case HCI_ACLDATA_PKT:
1294 len = HCI_MAX_FRAME_SIZE;
1295 hlen = HCI_ACL_HDR_SIZE;
1296 break;
1297 case HCI_EVENT_PKT:
1298 len = HCI_MAX_EVENT_SIZE;
1299 hlen = HCI_EVENT_HDR_SIZE;
1300 break;
1301 case HCI_SCODATA_PKT:
1302 len = HCI_MAX_SCO_SIZE;
1303 hlen = HCI_SCO_HDR_SIZE;
1304 break;
1307 skb = bt_skb_alloc(len, gfp_mask);
1308 if (!skb)
1309 return -ENOMEM;
1311 scb = (void *) skb->cb;
1312 scb->expect = hlen;
1313 scb->pkt_type = type;
1315 skb->dev = (void *) hdev;
1316 hdev->reassembly[index] = skb;
1319 while (count) {
1320 scb = (void *) skb->cb;
1321 len = min(scb->expect, (__u16)count);
1323 memcpy(skb_put(skb, len), data, len);
1325 count -= len;
1326 data += len;
1327 scb->expect -= len;
1328 remain = count;
1330 switch (type) {
1331 case HCI_EVENT_PKT:
1332 if (skb->len == HCI_EVENT_HDR_SIZE) {
1333 struct hci_event_hdr *h = hci_event_hdr(skb);
1334 scb->expect = h->plen;
1336 if (skb_tailroom(skb) < scb->expect) {
1337 kfree_skb(skb);
1338 hdev->reassembly[index] = NULL;
1339 return -ENOMEM;
1342 break;
1344 case HCI_ACLDATA_PKT:
1345 if (skb->len == HCI_ACL_HDR_SIZE) {
1346 struct hci_acl_hdr *h = hci_acl_hdr(skb);
1347 scb->expect = __le16_to_cpu(h->dlen);
1349 if (skb_tailroom(skb) < scb->expect) {
1350 kfree_skb(skb);
1351 hdev->reassembly[index] = NULL;
1352 return -ENOMEM;
1355 break;
1357 case HCI_SCODATA_PKT:
1358 if (skb->len == HCI_SCO_HDR_SIZE) {
1359 struct hci_sco_hdr *h = hci_sco_hdr(skb);
1360 scb->expect = h->dlen;
1362 if (skb_tailroom(skb) < scb->expect) {
1363 kfree_skb(skb);
1364 hdev->reassembly[index] = NULL;
1365 return -ENOMEM;
1368 break;
1371 if (scb->expect == 0) {
1372 /* Complete frame */
1374 bt_cb(skb)->pkt_type = type;
1375 hci_recv_frame(skb);
1377 hdev->reassembly[index] = NULL;
1378 return remain;
1382 return remain;
1385 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1387 int rem = 0;
1389 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1390 return -EILSEQ;
1392 while (count) {
1393 rem = hci_reassembly(hdev, type, data, count,
1394 type - 1, GFP_ATOMIC);
1395 if (rem < 0)
1396 return rem;
1398 data += (count - rem);
1399 count = rem;
1402 return rem;
1404 EXPORT_SYMBOL(hci_recv_fragment);
1406 #define STREAM_REASSEMBLY 0
1408 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1410 int type;
1411 int rem = 0;
1413 while (count) {
1414 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
1416 if (!skb) {
1417 struct { char type; } *pkt;
1419 /* Start of the frame */
1420 pkt = data;
1421 type = pkt->type;
1423 data++;
1424 count--;
1425 } else
1426 type = bt_cb(skb)->pkt_type;
1428 rem = hci_reassembly(hdev, type, data,
1429 count, STREAM_REASSEMBLY, GFP_ATOMIC);
1430 if (rem < 0)
1431 return rem;
1433 data += (count - rem);
1434 count = rem;
1437 return rem;
1439 EXPORT_SYMBOL(hci_recv_stream_fragment);
1441 /* ---- Interface to upper protocols ---- */
1443 /* Register/Unregister protocols.
1444 * hci_task_lock is used to ensure that no tasks are running. */
1445 int hci_register_proto(struct hci_proto *hp)
1447 int err = 0;
1449 BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1451 if (hp->id >= HCI_MAX_PROTO)
1452 return -EINVAL;
1454 write_lock_bh(&hci_task_lock);
1456 if (!hci_proto[hp->id])
1457 hci_proto[hp->id] = hp;
1458 else
1459 err = -EEXIST;
1461 write_unlock_bh(&hci_task_lock);
1463 return err;
1465 EXPORT_SYMBOL(hci_register_proto);
1467 int hci_unregister_proto(struct hci_proto *hp)
1469 int err = 0;
1471 BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1473 if (hp->id >= HCI_MAX_PROTO)
1474 return -EINVAL;
1476 write_lock_bh(&hci_task_lock);
1478 if (hci_proto[hp->id])
1479 hci_proto[hp->id] = NULL;
1480 else
1481 err = -ENOENT;
1483 write_unlock_bh(&hci_task_lock);
1485 return err;
1487 EXPORT_SYMBOL(hci_unregister_proto);
1489 int hci_register_cb(struct hci_cb *cb)
1491 BT_DBG("%p name %s", cb, cb->name);
1493 write_lock_bh(&hci_cb_list_lock);
1494 list_add(&cb->list, &hci_cb_list);
1495 write_unlock_bh(&hci_cb_list_lock);
1497 return 0;
1499 EXPORT_SYMBOL(hci_register_cb);
1501 int hci_unregister_cb(struct hci_cb *cb)
1503 BT_DBG("%p name %s", cb, cb->name);
1505 write_lock_bh(&hci_cb_list_lock);
1506 list_del(&cb->list);
1507 write_unlock_bh(&hci_cb_list_lock);
1509 return 0;
1511 EXPORT_SYMBOL(hci_unregister_cb);
1513 static int hci_send_frame(struct sk_buff *skb)
1515 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1517 if (!hdev) {
1518 kfree_skb(skb);
1519 return -ENODEV;
1522 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
1524 if (atomic_read(&hdev->promisc)) {
1525 /* Time stamp */
1526 __net_timestamp(skb);
1528 hci_send_to_sock(hdev, skb, NULL);
1531 /* Get rid of skb owner, prior to sending to the driver. */
1532 skb_orphan(skb);
1534 return hdev->send(skb);
1537 /* Send HCI command */
1538 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
1540 int len = HCI_COMMAND_HDR_SIZE + plen;
1541 struct hci_command_hdr *hdr;
1542 struct sk_buff *skb;
1544 BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
1546 skb = bt_skb_alloc(len, GFP_ATOMIC);
1547 if (!skb) {
1548 BT_ERR("%s no memory for command", hdev->name);
1549 return -ENOMEM;
1552 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
1553 hdr->opcode = cpu_to_le16(opcode);
1554 hdr->plen = plen;
1556 if (plen)
1557 memcpy(skb_put(skb, plen), param, plen);
1559 BT_DBG("skb len %d", skb->len);
1561 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
1562 skb->dev = (void *) hdev;
1564 if (test_bit(HCI_INIT, &hdev->flags))
1565 hdev->init_last_cmd = opcode;
1567 skb_queue_tail(&hdev->cmd_q, skb);
1568 tasklet_schedule(&hdev->cmd_task);
1570 return 0;
1573 /* Get data from the previously sent command */
1574 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
1576 struct hci_command_hdr *hdr;
1578 if (!hdev->sent_cmd)
1579 return NULL;
1581 hdr = (void *) hdev->sent_cmd->data;
1583 if (hdr->opcode != cpu_to_le16(opcode))
1584 return NULL;
1586 BT_DBG("%s opcode 0x%x", hdev->name, opcode);
1588 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
1591 /* Send ACL data */
1592 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
1594 struct hci_acl_hdr *hdr;
1595 int len = skb->len;
1597 skb_push(skb, HCI_ACL_HDR_SIZE);
1598 skb_reset_transport_header(skb);
1599 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
1600 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
1601 hdr->dlen = cpu_to_le16(len);
1604 void hci_send_acl(struct hci_conn *conn, struct sk_buff *skb, __u16 flags)
1606 struct hci_dev *hdev = conn->hdev;
1607 struct sk_buff *list;
1609 BT_DBG("%s conn %p flags 0x%x", hdev->name, conn, flags);
1611 skb->dev = (void *) hdev;
1612 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1613 hci_add_acl_hdr(skb, conn->handle, flags);
1615 list = skb_shinfo(skb)->frag_list;
1616 if (!list) {
1617 /* Non fragmented */
1618 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
1620 skb_queue_tail(&conn->data_q, skb);
1621 } else {
1622 /* Fragmented */
1623 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1625 skb_shinfo(skb)->frag_list = NULL;
1627 /* Queue all fragments atomically */
1628 spin_lock_bh(&conn->data_q.lock);
1630 __skb_queue_tail(&conn->data_q, skb);
1632 flags &= ~ACL_START;
1633 flags |= ACL_CONT;
1634 do {
1635 skb = list; list = list->next;
1637 skb->dev = (void *) hdev;
1638 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1639 hci_add_acl_hdr(skb, conn->handle, flags);
1641 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1643 __skb_queue_tail(&conn->data_q, skb);
1644 } while (list);
1646 spin_unlock_bh(&conn->data_q.lock);
1649 tasklet_schedule(&hdev->tx_task);
1651 EXPORT_SYMBOL(hci_send_acl);
1653 /* Send SCO data */
1654 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
1656 struct hci_dev *hdev = conn->hdev;
1657 struct hci_sco_hdr hdr;
1659 BT_DBG("%s len %d", hdev->name, skb->len);
1661 hdr.handle = cpu_to_le16(conn->handle);
1662 hdr.dlen = skb->len;
1664 skb_push(skb, HCI_SCO_HDR_SIZE);
1665 skb_reset_transport_header(skb);
1666 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
1668 skb->dev = (void *) hdev;
1669 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
1671 skb_queue_tail(&conn->data_q, skb);
1672 tasklet_schedule(&hdev->tx_task);
1674 EXPORT_SYMBOL(hci_send_sco);
1676 /* ---- HCI TX task (outgoing data) ---- */
1678 /* HCI Connection scheduler */
1679 static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
1681 struct hci_conn_hash *h = &hdev->conn_hash;
1682 struct hci_conn *conn = NULL;
1683 int num = 0, min = ~0;
1684 struct list_head *p;
1686 /* We don't have to lock device here. Connections are always
1687 * added and removed with TX task disabled. */
1688 list_for_each(p, &h->list) {
1689 struct hci_conn *c;
1690 c = list_entry(p, struct hci_conn, list);
1692 if (c->type != type || skb_queue_empty(&c->data_q))
1693 continue;
1695 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
1696 continue;
1698 num++;
1700 if (c->sent < min) {
1701 min = c->sent;
1702 conn = c;
1706 if (conn) {
1707 int cnt, q;
1709 switch (conn->type) {
1710 case ACL_LINK:
1711 cnt = hdev->acl_cnt;
1712 break;
1713 case SCO_LINK:
1714 case ESCO_LINK:
1715 cnt = hdev->sco_cnt;
1716 break;
1717 case LE_LINK:
1718 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
1719 break;
1720 default:
1721 cnt = 0;
1722 BT_ERR("Unknown link type");
1725 q = cnt / num;
1726 *quote = q ? q : 1;
1727 } else
1728 *quote = 0;
1730 BT_DBG("conn %p quote %d", conn, *quote);
1731 return conn;
1734 static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
1736 struct hci_conn_hash *h = &hdev->conn_hash;
1737 struct list_head *p;
1738 struct hci_conn *c;
1740 BT_ERR("%s link tx timeout", hdev->name);
1742 /* Kill stalled connections */
1743 list_for_each(p, &h->list) {
1744 c = list_entry(p, struct hci_conn, list);
1745 if (c->type == type && c->sent) {
1746 BT_ERR("%s killing stalled connection %s",
1747 hdev->name, batostr(&c->dst));
1748 hci_acl_disconn(c, 0x13);
1753 static inline void hci_sched_acl(struct hci_dev *hdev)
1755 struct hci_conn *conn;
1756 struct sk_buff *skb;
1757 int quote;
1759 BT_DBG("%s", hdev->name);
1761 if (!test_bit(HCI_RAW, &hdev->flags)) {
1762 /* ACL tx timeout must be longer than maximum
1763 * link supervision timeout (40.9 seconds) */
1764 if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx + HZ * 45))
1765 hci_link_tx_to(hdev, ACL_LINK);
1768 while (hdev->acl_cnt && (conn = hci_low_sent(hdev, ACL_LINK, &quote))) {
1769 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
1770 BT_DBG("skb %p len %d", skb, skb->len);
1772 hci_conn_enter_active_mode(conn);
1774 hci_send_frame(skb);
1775 hdev->acl_last_tx = jiffies;
1777 hdev->acl_cnt--;
1778 conn->sent++;
1783 /* Schedule SCO */
1784 static inline void hci_sched_sco(struct hci_dev *hdev)
1786 struct hci_conn *conn;
1787 struct sk_buff *skb;
1788 int quote;
1790 BT_DBG("%s", hdev->name);
1792 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
1793 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
1794 BT_DBG("skb %p len %d", skb, skb->len);
1795 hci_send_frame(skb);
1797 conn->sent++;
1798 if (conn->sent == ~0)
1799 conn->sent = 0;
1804 static inline void hci_sched_esco(struct hci_dev *hdev)
1806 struct hci_conn *conn;
1807 struct sk_buff *skb;
1808 int quote;
1810 BT_DBG("%s", hdev->name);
1812 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
1813 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
1814 BT_DBG("skb %p len %d", skb, skb->len);
1815 hci_send_frame(skb);
1817 conn->sent++;
1818 if (conn->sent == ~0)
1819 conn->sent = 0;
1824 static inline void hci_sched_le(struct hci_dev *hdev)
1826 struct hci_conn *conn;
1827 struct sk_buff *skb;
1828 int quote, cnt;
1830 BT_DBG("%s", hdev->name);
1832 if (!test_bit(HCI_RAW, &hdev->flags)) {
1833 /* LE tx timeout must be longer than maximum
1834 * link supervision timeout (40.9 seconds) */
1835 if (!hdev->le_cnt && hdev->le_pkts &&
1836 time_after(jiffies, hdev->le_last_tx + HZ * 45))
1837 hci_link_tx_to(hdev, LE_LINK);
1840 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
1841 while (cnt && (conn = hci_low_sent(hdev, LE_LINK, &quote))) {
1842 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
1843 BT_DBG("skb %p len %d", skb, skb->len);
1845 hci_send_frame(skb);
1846 hdev->le_last_tx = jiffies;
1848 cnt--;
1849 conn->sent++;
1852 if (hdev->le_pkts)
1853 hdev->le_cnt = cnt;
1854 else
1855 hdev->acl_cnt = cnt;
1858 static void hci_tx_task(unsigned long arg)
1860 struct hci_dev *hdev = (struct hci_dev *) arg;
1861 struct sk_buff *skb;
1863 read_lock(&hci_task_lock);
1865 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
1866 hdev->sco_cnt, hdev->le_cnt);
1868 /* Schedule queues and send stuff to HCI driver */
1870 hci_sched_acl(hdev);
1872 hci_sched_sco(hdev);
1874 hci_sched_esco(hdev);
1876 hci_sched_le(hdev);
1878 /* Send next queued raw (unknown type) packet */
1879 while ((skb = skb_dequeue(&hdev->raw_q)))
1880 hci_send_frame(skb);
1882 read_unlock(&hci_task_lock);
1885 /* ----- HCI RX task (incoming data processing) ----- */
1887 /* ACL data packet */
1888 static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
1890 struct hci_acl_hdr *hdr = (void *) skb->data;
1891 struct hci_conn *conn;
1892 __u16 handle, flags;
1894 skb_pull(skb, HCI_ACL_HDR_SIZE);
1896 handle = __le16_to_cpu(hdr->handle);
1897 flags = hci_flags(handle);
1898 handle = hci_handle(handle);
1900 BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
1902 hdev->stat.acl_rx++;
1904 hci_dev_lock(hdev);
1905 conn = hci_conn_hash_lookup_handle(hdev, handle);
1906 hci_dev_unlock(hdev);
1908 if (conn) {
1909 register struct hci_proto *hp;
1911 hci_conn_enter_active_mode(conn);
1913 /* Send to upper protocol */
1914 hp = hci_proto[HCI_PROTO_L2CAP];
1915 if (hp && hp->recv_acldata) {
1916 hp->recv_acldata(conn, skb, flags);
1917 return;
1919 } else {
1920 BT_ERR("%s ACL packet for unknown connection handle %d",
1921 hdev->name, handle);
1924 kfree_skb(skb);
1927 /* SCO data packet */
1928 static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
1930 struct hci_sco_hdr *hdr = (void *) skb->data;
1931 struct hci_conn *conn;
1932 __u16 handle;
1934 skb_pull(skb, HCI_SCO_HDR_SIZE);
1936 handle = __le16_to_cpu(hdr->handle);
1938 BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
1940 hdev->stat.sco_rx++;
1942 hci_dev_lock(hdev);
1943 conn = hci_conn_hash_lookup_handle(hdev, handle);
1944 hci_dev_unlock(hdev);
1946 if (conn) {
1947 register struct hci_proto *hp;
1949 /* Send to upper protocol */
1950 hp = hci_proto[HCI_PROTO_SCO];
1951 if (hp && hp->recv_scodata) {
1952 hp->recv_scodata(conn, skb);
1953 return;
1955 } else {
1956 BT_ERR("%s SCO packet for unknown connection handle %d",
1957 hdev->name, handle);
1960 kfree_skb(skb);
1963 static void hci_rx_task(unsigned long arg)
1965 struct hci_dev *hdev = (struct hci_dev *) arg;
1966 struct sk_buff *skb;
1968 BT_DBG("%s", hdev->name);
1970 read_lock(&hci_task_lock);
1972 while ((skb = skb_dequeue(&hdev->rx_q))) {
1973 if (atomic_read(&hdev->promisc)) {
1974 /* Send copy to the sockets */
1975 hci_send_to_sock(hdev, skb, NULL);
1978 if (test_bit(HCI_RAW, &hdev->flags)) {
1979 kfree_skb(skb);
1980 continue;
1983 if (test_bit(HCI_INIT, &hdev->flags)) {
1984 /* Don't process data packets in this states. */
1985 switch (bt_cb(skb)->pkt_type) {
1986 case HCI_ACLDATA_PKT:
1987 case HCI_SCODATA_PKT:
1988 kfree_skb(skb);
1989 continue;
1993 /* Process frame */
1994 switch (bt_cb(skb)->pkt_type) {
1995 case HCI_EVENT_PKT:
1996 hci_event_packet(hdev, skb);
1997 break;
1999 case HCI_ACLDATA_PKT:
2000 BT_DBG("%s ACL data packet", hdev->name);
2001 hci_acldata_packet(hdev, skb);
2002 break;
2004 case HCI_SCODATA_PKT:
2005 BT_DBG("%s SCO data packet", hdev->name);
2006 hci_scodata_packet(hdev, skb);
2007 break;
2009 default:
2010 kfree_skb(skb);
2011 break;
2015 read_unlock(&hci_task_lock);
2018 static void hci_cmd_task(unsigned long arg)
2020 struct hci_dev *hdev = (struct hci_dev *) arg;
2021 struct sk_buff *skb;
2023 BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
2025 /* Send queued commands */
2026 if (atomic_read(&hdev->cmd_cnt)) {
2027 skb = skb_dequeue(&hdev->cmd_q);
2028 if (!skb)
2029 return;
2031 kfree_skb(hdev->sent_cmd);
2033 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2034 if (hdev->sent_cmd) {
2035 atomic_dec(&hdev->cmd_cnt);
2036 hci_send_frame(skb);
2037 mod_timer(&hdev->cmd_timer,
2038 jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2039 } else {
2040 skb_queue_head(&hdev->cmd_q, skb);
2041 tasklet_schedule(&hdev->cmd_task);