vmscan: page_check_references(): check low order lumpy reclaim properly
[linux-2.6.git] / mm / vmscan.c
blobcd4a5edf5be2a7728ee1adee2ff539ca1dd20a1a
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
49 #include "internal.h"
51 struct scan_control {
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
58 /* How many pages shrink_list() should reclaim */
59 unsigned long nr_to_reclaim;
61 unsigned long hibernation_mode;
63 /* This context's GFP mask */
64 gfp_t gfp_mask;
66 int may_writepage;
68 /* Can mapped pages be reclaimed? */
69 int may_unmap;
71 /* Can pages be swapped as part of reclaim? */
72 int may_swap;
74 int swappiness;
76 int all_unreclaimable;
78 int order;
81 * Intend to reclaim enough contenious memory rather than to reclaim
82 * enough amount memory. I.e, it's the mode for high order allocation.
84 bool lumpy_reclaim_mode;
86 /* Which cgroup do we reclaim from */
87 struct mem_cgroup *mem_cgroup;
90 * Nodemask of nodes allowed by the caller. If NULL, all nodes
91 * are scanned.
93 nodemask_t *nodemask;
95 /* Pluggable isolate pages callback */
96 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
97 unsigned long *scanned, int order, int mode,
98 struct zone *z, struct mem_cgroup *mem_cont,
99 int active, int file);
102 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
104 #ifdef ARCH_HAS_PREFETCH
105 #define prefetch_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetch(&prev->_field); \
113 } while (0)
114 #else
115 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
118 #ifdef ARCH_HAS_PREFETCHW
119 #define prefetchw_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetchw(&prev->_field); \
127 } while (0)
128 #else
129 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
133 * From 0 .. 100. Higher means more swappy.
135 int vm_swappiness = 60;
136 long vm_total_pages; /* The total number of pages which the VM controls */
138 static LIST_HEAD(shrinker_list);
139 static DECLARE_RWSEM(shrinker_rwsem);
141 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
142 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
143 #else
144 #define scanning_global_lru(sc) (1)
145 #endif
147 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
148 struct scan_control *sc)
150 if (!scanning_global_lru(sc))
151 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
153 return &zone->reclaim_stat;
156 static unsigned long zone_nr_lru_pages(struct zone *zone,
157 struct scan_control *sc, enum lru_list lru)
159 if (!scanning_global_lru(sc))
160 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
162 return zone_page_state(zone, NR_LRU_BASE + lru);
167 * Add a shrinker callback to be called from the vm
169 void register_shrinker(struct shrinker *shrinker)
171 shrinker->nr = 0;
172 down_write(&shrinker_rwsem);
173 list_add_tail(&shrinker->list, &shrinker_list);
174 up_write(&shrinker_rwsem);
176 EXPORT_SYMBOL(register_shrinker);
179 * Remove one
181 void unregister_shrinker(struct shrinker *shrinker)
183 down_write(&shrinker_rwsem);
184 list_del(&shrinker->list);
185 up_write(&shrinker_rwsem);
187 EXPORT_SYMBOL(unregister_shrinker);
189 #define SHRINK_BATCH 128
191 * Call the shrink functions to age shrinkable caches
193 * Here we assume it costs one seek to replace a lru page and that it also
194 * takes a seek to recreate a cache object. With this in mind we age equal
195 * percentages of the lru and ageable caches. This should balance the seeks
196 * generated by these structures.
198 * If the vm encountered mapped pages on the LRU it increase the pressure on
199 * slab to avoid swapping.
201 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
203 * `lru_pages' represents the number of on-LRU pages in all the zones which
204 * are eligible for the caller's allocation attempt. It is used for balancing
205 * slab reclaim versus page reclaim.
207 * Returns the number of slab objects which we shrunk.
209 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
210 unsigned long lru_pages)
212 struct shrinker *shrinker;
213 unsigned long ret = 0;
215 if (scanned == 0)
216 scanned = SWAP_CLUSTER_MAX;
218 if (!down_read_trylock(&shrinker_rwsem))
219 return 1; /* Assume we'll be able to shrink next time */
221 list_for_each_entry(shrinker, &shrinker_list, list) {
222 unsigned long long delta;
223 unsigned long total_scan;
224 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
226 delta = (4 * scanned) / shrinker->seeks;
227 delta *= max_pass;
228 do_div(delta, lru_pages + 1);
229 shrinker->nr += delta;
230 if (shrinker->nr < 0) {
231 printk(KERN_ERR "shrink_slab: %pF negative objects to "
232 "delete nr=%ld\n",
233 shrinker->shrink, shrinker->nr);
234 shrinker->nr = max_pass;
238 * Avoid risking looping forever due to too large nr value:
239 * never try to free more than twice the estimate number of
240 * freeable entries.
242 if (shrinker->nr > max_pass * 2)
243 shrinker->nr = max_pass * 2;
245 total_scan = shrinker->nr;
246 shrinker->nr = 0;
248 while (total_scan >= SHRINK_BATCH) {
249 long this_scan = SHRINK_BATCH;
250 int shrink_ret;
251 int nr_before;
253 nr_before = (*shrinker->shrink)(0, gfp_mask);
254 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
255 if (shrink_ret == -1)
256 break;
257 if (shrink_ret < nr_before)
258 ret += nr_before - shrink_ret;
259 count_vm_events(SLABS_SCANNED, this_scan);
260 total_scan -= this_scan;
262 cond_resched();
265 shrinker->nr += total_scan;
267 up_read(&shrinker_rwsem);
268 return ret;
271 static inline int is_page_cache_freeable(struct page *page)
274 * A freeable page cache page is referenced only by the caller
275 * that isolated the page, the page cache radix tree and
276 * optional buffer heads at page->private.
278 return page_count(page) - page_has_private(page) == 2;
281 static int may_write_to_queue(struct backing_dev_info *bdi)
283 if (current->flags & PF_SWAPWRITE)
284 return 1;
285 if (!bdi_write_congested(bdi))
286 return 1;
287 if (bdi == current->backing_dev_info)
288 return 1;
289 return 0;
293 * We detected a synchronous write error writing a page out. Probably
294 * -ENOSPC. We need to propagate that into the address_space for a subsequent
295 * fsync(), msync() or close().
297 * The tricky part is that after writepage we cannot touch the mapping: nothing
298 * prevents it from being freed up. But we have a ref on the page and once
299 * that page is locked, the mapping is pinned.
301 * We're allowed to run sleeping lock_page() here because we know the caller has
302 * __GFP_FS.
304 static void handle_write_error(struct address_space *mapping,
305 struct page *page, int error)
307 lock_page(page);
308 if (page_mapping(page) == mapping)
309 mapping_set_error(mapping, error);
310 unlock_page(page);
313 /* Request for sync pageout. */
314 enum pageout_io {
315 PAGEOUT_IO_ASYNC,
316 PAGEOUT_IO_SYNC,
319 /* possible outcome of pageout() */
320 typedef enum {
321 /* failed to write page out, page is locked */
322 PAGE_KEEP,
323 /* move page to the active list, page is locked */
324 PAGE_ACTIVATE,
325 /* page has been sent to the disk successfully, page is unlocked */
326 PAGE_SUCCESS,
327 /* page is clean and locked */
328 PAGE_CLEAN,
329 } pageout_t;
332 * pageout is called by shrink_page_list() for each dirty page.
333 * Calls ->writepage().
335 static pageout_t pageout(struct page *page, struct address_space *mapping,
336 enum pageout_io sync_writeback)
339 * If the page is dirty, only perform writeback if that write
340 * will be non-blocking. To prevent this allocation from being
341 * stalled by pagecache activity. But note that there may be
342 * stalls if we need to run get_block(). We could test
343 * PagePrivate for that.
345 * If this process is currently in __generic_file_aio_write() against
346 * this page's queue, we can perform writeback even if that
347 * will block.
349 * If the page is swapcache, write it back even if that would
350 * block, for some throttling. This happens by accident, because
351 * swap_backing_dev_info is bust: it doesn't reflect the
352 * congestion state of the swapdevs. Easy to fix, if needed.
354 if (!is_page_cache_freeable(page))
355 return PAGE_KEEP;
356 if (!mapping) {
358 * Some data journaling orphaned pages can have
359 * page->mapping == NULL while being dirty with clean buffers.
361 if (page_has_private(page)) {
362 if (try_to_free_buffers(page)) {
363 ClearPageDirty(page);
364 printk("%s: orphaned page\n", __func__);
365 return PAGE_CLEAN;
368 return PAGE_KEEP;
370 if (mapping->a_ops->writepage == NULL)
371 return PAGE_ACTIVATE;
372 if (!may_write_to_queue(mapping->backing_dev_info))
373 return PAGE_KEEP;
375 if (clear_page_dirty_for_io(page)) {
376 int res;
377 struct writeback_control wbc = {
378 .sync_mode = WB_SYNC_NONE,
379 .nr_to_write = SWAP_CLUSTER_MAX,
380 .range_start = 0,
381 .range_end = LLONG_MAX,
382 .nonblocking = 1,
383 .for_reclaim = 1,
386 SetPageReclaim(page);
387 res = mapping->a_ops->writepage(page, &wbc);
388 if (res < 0)
389 handle_write_error(mapping, page, res);
390 if (res == AOP_WRITEPAGE_ACTIVATE) {
391 ClearPageReclaim(page);
392 return PAGE_ACTIVATE;
396 * Wait on writeback if requested to. This happens when
397 * direct reclaiming a large contiguous area and the
398 * first attempt to free a range of pages fails.
400 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
401 wait_on_page_writeback(page);
403 if (!PageWriteback(page)) {
404 /* synchronous write or broken a_ops? */
405 ClearPageReclaim(page);
407 inc_zone_page_state(page, NR_VMSCAN_WRITE);
408 return PAGE_SUCCESS;
411 return PAGE_CLEAN;
415 * Same as remove_mapping, but if the page is removed from the mapping, it
416 * gets returned with a refcount of 0.
418 static int __remove_mapping(struct address_space *mapping, struct page *page)
420 BUG_ON(!PageLocked(page));
421 BUG_ON(mapping != page_mapping(page));
423 spin_lock_irq(&mapping->tree_lock);
425 * The non racy check for a busy page.
427 * Must be careful with the order of the tests. When someone has
428 * a ref to the page, it may be possible that they dirty it then
429 * drop the reference. So if PageDirty is tested before page_count
430 * here, then the following race may occur:
432 * get_user_pages(&page);
433 * [user mapping goes away]
434 * write_to(page);
435 * !PageDirty(page) [good]
436 * SetPageDirty(page);
437 * put_page(page);
438 * !page_count(page) [good, discard it]
440 * [oops, our write_to data is lost]
442 * Reversing the order of the tests ensures such a situation cannot
443 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
444 * load is not satisfied before that of page->_count.
446 * Note that if SetPageDirty is always performed via set_page_dirty,
447 * and thus under tree_lock, then this ordering is not required.
449 if (!page_freeze_refs(page, 2))
450 goto cannot_free;
451 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
452 if (unlikely(PageDirty(page))) {
453 page_unfreeze_refs(page, 2);
454 goto cannot_free;
457 if (PageSwapCache(page)) {
458 swp_entry_t swap = { .val = page_private(page) };
459 __delete_from_swap_cache(page);
460 spin_unlock_irq(&mapping->tree_lock);
461 swapcache_free(swap, page);
462 } else {
463 __remove_from_page_cache(page);
464 spin_unlock_irq(&mapping->tree_lock);
465 mem_cgroup_uncharge_cache_page(page);
468 return 1;
470 cannot_free:
471 spin_unlock_irq(&mapping->tree_lock);
472 return 0;
476 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
477 * someone else has a ref on the page, abort and return 0. If it was
478 * successfully detached, return 1. Assumes the caller has a single ref on
479 * this page.
481 int remove_mapping(struct address_space *mapping, struct page *page)
483 if (__remove_mapping(mapping, page)) {
485 * Unfreezing the refcount with 1 rather than 2 effectively
486 * drops the pagecache ref for us without requiring another
487 * atomic operation.
489 page_unfreeze_refs(page, 1);
490 return 1;
492 return 0;
496 * putback_lru_page - put previously isolated page onto appropriate LRU list
497 * @page: page to be put back to appropriate lru list
499 * Add previously isolated @page to appropriate LRU list.
500 * Page may still be unevictable for other reasons.
502 * lru_lock must not be held, interrupts must be enabled.
504 void putback_lru_page(struct page *page)
506 int lru;
507 int active = !!TestClearPageActive(page);
508 int was_unevictable = PageUnevictable(page);
510 VM_BUG_ON(PageLRU(page));
512 redo:
513 ClearPageUnevictable(page);
515 if (page_evictable(page, NULL)) {
517 * For evictable pages, we can use the cache.
518 * In event of a race, worst case is we end up with an
519 * unevictable page on [in]active list.
520 * We know how to handle that.
522 lru = active + page_lru_base_type(page);
523 lru_cache_add_lru(page, lru);
524 } else {
526 * Put unevictable pages directly on zone's unevictable
527 * list.
529 lru = LRU_UNEVICTABLE;
530 add_page_to_unevictable_list(page);
532 * When racing with an mlock clearing (page is
533 * unlocked), make sure that if the other thread does
534 * not observe our setting of PG_lru and fails
535 * isolation, we see PG_mlocked cleared below and move
536 * the page back to the evictable list.
538 * The other side is TestClearPageMlocked().
540 smp_mb();
544 * page's status can change while we move it among lru. If an evictable
545 * page is on unevictable list, it never be freed. To avoid that,
546 * check after we added it to the list, again.
548 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
549 if (!isolate_lru_page(page)) {
550 put_page(page);
551 goto redo;
553 /* This means someone else dropped this page from LRU
554 * So, it will be freed or putback to LRU again. There is
555 * nothing to do here.
559 if (was_unevictable && lru != LRU_UNEVICTABLE)
560 count_vm_event(UNEVICTABLE_PGRESCUED);
561 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
562 count_vm_event(UNEVICTABLE_PGCULLED);
564 put_page(page); /* drop ref from isolate */
567 enum page_references {
568 PAGEREF_RECLAIM,
569 PAGEREF_RECLAIM_CLEAN,
570 PAGEREF_KEEP,
571 PAGEREF_ACTIVATE,
574 static enum page_references page_check_references(struct page *page,
575 struct scan_control *sc)
577 int referenced_ptes, referenced_page;
578 unsigned long vm_flags;
580 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
581 referenced_page = TestClearPageReferenced(page);
583 /* Lumpy reclaim - ignore references */
584 if (sc->lumpy_reclaim_mode)
585 return PAGEREF_RECLAIM;
588 * Mlock lost the isolation race with us. Let try_to_unmap()
589 * move the page to the unevictable list.
591 if (vm_flags & VM_LOCKED)
592 return PAGEREF_RECLAIM;
594 if (referenced_ptes) {
595 if (PageAnon(page))
596 return PAGEREF_ACTIVATE;
598 * All mapped pages start out with page table
599 * references from the instantiating fault, so we need
600 * to look twice if a mapped file page is used more
601 * than once.
603 * Mark it and spare it for another trip around the
604 * inactive list. Another page table reference will
605 * lead to its activation.
607 * Note: the mark is set for activated pages as well
608 * so that recently deactivated but used pages are
609 * quickly recovered.
611 SetPageReferenced(page);
613 if (referenced_page)
614 return PAGEREF_ACTIVATE;
616 return PAGEREF_KEEP;
619 /* Reclaim if clean, defer dirty pages to writeback */
620 if (referenced_page)
621 return PAGEREF_RECLAIM_CLEAN;
623 return PAGEREF_RECLAIM;
627 * shrink_page_list() returns the number of reclaimed pages
629 static unsigned long shrink_page_list(struct list_head *page_list,
630 struct scan_control *sc,
631 enum pageout_io sync_writeback)
633 LIST_HEAD(ret_pages);
634 struct pagevec freed_pvec;
635 int pgactivate = 0;
636 unsigned long nr_reclaimed = 0;
638 cond_resched();
640 pagevec_init(&freed_pvec, 1);
641 while (!list_empty(page_list)) {
642 enum page_references references;
643 struct address_space *mapping;
644 struct page *page;
645 int may_enter_fs;
647 cond_resched();
649 page = lru_to_page(page_list);
650 list_del(&page->lru);
652 if (!trylock_page(page))
653 goto keep;
655 VM_BUG_ON(PageActive(page));
657 sc->nr_scanned++;
659 if (unlikely(!page_evictable(page, NULL)))
660 goto cull_mlocked;
662 if (!sc->may_unmap && page_mapped(page))
663 goto keep_locked;
665 /* Double the slab pressure for mapped and swapcache pages */
666 if (page_mapped(page) || PageSwapCache(page))
667 sc->nr_scanned++;
669 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
670 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
672 if (PageWriteback(page)) {
674 * Synchronous reclaim is performed in two passes,
675 * first an asynchronous pass over the list to
676 * start parallel writeback, and a second synchronous
677 * pass to wait for the IO to complete. Wait here
678 * for any page for which writeback has already
679 * started.
681 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
682 wait_on_page_writeback(page);
683 else
684 goto keep_locked;
687 references = page_check_references(page, sc);
688 switch (references) {
689 case PAGEREF_ACTIVATE:
690 goto activate_locked;
691 case PAGEREF_KEEP:
692 goto keep_locked;
693 case PAGEREF_RECLAIM:
694 case PAGEREF_RECLAIM_CLEAN:
695 ; /* try to reclaim the page below */
699 * Anonymous process memory has backing store?
700 * Try to allocate it some swap space here.
702 if (PageAnon(page) && !PageSwapCache(page)) {
703 if (!(sc->gfp_mask & __GFP_IO))
704 goto keep_locked;
705 if (!add_to_swap(page))
706 goto activate_locked;
707 may_enter_fs = 1;
710 mapping = page_mapping(page);
713 * The page is mapped into the page tables of one or more
714 * processes. Try to unmap it here.
716 if (page_mapped(page) && mapping) {
717 switch (try_to_unmap(page, TTU_UNMAP)) {
718 case SWAP_FAIL:
719 goto activate_locked;
720 case SWAP_AGAIN:
721 goto keep_locked;
722 case SWAP_MLOCK:
723 goto cull_mlocked;
724 case SWAP_SUCCESS:
725 ; /* try to free the page below */
729 if (PageDirty(page)) {
730 if (references == PAGEREF_RECLAIM_CLEAN)
731 goto keep_locked;
732 if (!may_enter_fs)
733 goto keep_locked;
734 if (!sc->may_writepage)
735 goto keep_locked;
737 /* Page is dirty, try to write it out here */
738 switch (pageout(page, mapping, sync_writeback)) {
739 case PAGE_KEEP:
740 goto keep_locked;
741 case PAGE_ACTIVATE:
742 goto activate_locked;
743 case PAGE_SUCCESS:
744 if (PageWriteback(page) || PageDirty(page))
745 goto keep;
747 * A synchronous write - probably a ramdisk. Go
748 * ahead and try to reclaim the page.
750 if (!trylock_page(page))
751 goto keep;
752 if (PageDirty(page) || PageWriteback(page))
753 goto keep_locked;
754 mapping = page_mapping(page);
755 case PAGE_CLEAN:
756 ; /* try to free the page below */
761 * If the page has buffers, try to free the buffer mappings
762 * associated with this page. If we succeed we try to free
763 * the page as well.
765 * We do this even if the page is PageDirty().
766 * try_to_release_page() does not perform I/O, but it is
767 * possible for a page to have PageDirty set, but it is actually
768 * clean (all its buffers are clean). This happens if the
769 * buffers were written out directly, with submit_bh(). ext3
770 * will do this, as well as the blockdev mapping.
771 * try_to_release_page() will discover that cleanness and will
772 * drop the buffers and mark the page clean - it can be freed.
774 * Rarely, pages can have buffers and no ->mapping. These are
775 * the pages which were not successfully invalidated in
776 * truncate_complete_page(). We try to drop those buffers here
777 * and if that worked, and the page is no longer mapped into
778 * process address space (page_count == 1) it can be freed.
779 * Otherwise, leave the page on the LRU so it is swappable.
781 if (page_has_private(page)) {
782 if (!try_to_release_page(page, sc->gfp_mask))
783 goto activate_locked;
784 if (!mapping && page_count(page) == 1) {
785 unlock_page(page);
786 if (put_page_testzero(page))
787 goto free_it;
788 else {
790 * rare race with speculative reference.
791 * the speculative reference will free
792 * this page shortly, so we may
793 * increment nr_reclaimed here (and
794 * leave it off the LRU).
796 nr_reclaimed++;
797 continue;
802 if (!mapping || !__remove_mapping(mapping, page))
803 goto keep_locked;
806 * At this point, we have no other references and there is
807 * no way to pick any more up (removed from LRU, removed
808 * from pagecache). Can use non-atomic bitops now (and
809 * we obviously don't have to worry about waking up a process
810 * waiting on the page lock, because there are no references.
812 __clear_page_locked(page);
813 free_it:
814 nr_reclaimed++;
815 if (!pagevec_add(&freed_pvec, page)) {
816 __pagevec_free(&freed_pvec);
817 pagevec_reinit(&freed_pvec);
819 continue;
821 cull_mlocked:
822 if (PageSwapCache(page))
823 try_to_free_swap(page);
824 unlock_page(page);
825 putback_lru_page(page);
826 continue;
828 activate_locked:
829 /* Not a candidate for swapping, so reclaim swap space. */
830 if (PageSwapCache(page) && vm_swap_full())
831 try_to_free_swap(page);
832 VM_BUG_ON(PageActive(page));
833 SetPageActive(page);
834 pgactivate++;
835 keep_locked:
836 unlock_page(page);
837 keep:
838 list_add(&page->lru, &ret_pages);
839 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
841 list_splice(&ret_pages, page_list);
842 if (pagevec_count(&freed_pvec))
843 __pagevec_free(&freed_pvec);
844 count_vm_events(PGACTIVATE, pgactivate);
845 return nr_reclaimed;
849 * Attempt to remove the specified page from its LRU. Only take this page
850 * if it is of the appropriate PageActive status. Pages which are being
851 * freed elsewhere are also ignored.
853 * page: page to consider
854 * mode: one of the LRU isolation modes defined above
856 * returns 0 on success, -ve errno on failure.
858 int __isolate_lru_page(struct page *page, int mode, int file)
860 int ret = -EINVAL;
862 /* Only take pages on the LRU. */
863 if (!PageLRU(page))
864 return ret;
867 * When checking the active state, we need to be sure we are
868 * dealing with comparible boolean values. Take the logical not
869 * of each.
871 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
872 return ret;
874 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
875 return ret;
878 * When this function is being called for lumpy reclaim, we
879 * initially look into all LRU pages, active, inactive and
880 * unevictable; only give shrink_page_list evictable pages.
882 if (PageUnevictable(page))
883 return ret;
885 ret = -EBUSY;
887 if (likely(get_page_unless_zero(page))) {
889 * Be careful not to clear PageLRU until after we're
890 * sure the page is not being freed elsewhere -- the
891 * page release code relies on it.
893 ClearPageLRU(page);
894 ret = 0;
897 return ret;
901 * zone->lru_lock is heavily contended. Some of the functions that
902 * shrink the lists perform better by taking out a batch of pages
903 * and working on them outside the LRU lock.
905 * For pagecache intensive workloads, this function is the hottest
906 * spot in the kernel (apart from copy_*_user functions).
908 * Appropriate locks must be held before calling this function.
910 * @nr_to_scan: The number of pages to look through on the list.
911 * @src: The LRU list to pull pages off.
912 * @dst: The temp list to put pages on to.
913 * @scanned: The number of pages that were scanned.
914 * @order: The caller's attempted allocation order
915 * @mode: One of the LRU isolation modes
916 * @file: True [1] if isolating file [!anon] pages
918 * returns how many pages were moved onto *@dst.
920 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
921 struct list_head *src, struct list_head *dst,
922 unsigned long *scanned, int order, int mode, int file)
924 unsigned long nr_taken = 0;
925 unsigned long scan;
927 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
928 struct page *page;
929 unsigned long pfn;
930 unsigned long end_pfn;
931 unsigned long page_pfn;
932 int zone_id;
934 page = lru_to_page(src);
935 prefetchw_prev_lru_page(page, src, flags);
937 VM_BUG_ON(!PageLRU(page));
939 switch (__isolate_lru_page(page, mode, file)) {
940 case 0:
941 list_move(&page->lru, dst);
942 mem_cgroup_del_lru(page);
943 nr_taken++;
944 break;
946 case -EBUSY:
947 /* else it is being freed elsewhere */
948 list_move(&page->lru, src);
949 mem_cgroup_rotate_lru_list(page, page_lru(page));
950 continue;
952 default:
953 BUG();
956 if (!order)
957 continue;
960 * Attempt to take all pages in the order aligned region
961 * surrounding the tag page. Only take those pages of
962 * the same active state as that tag page. We may safely
963 * round the target page pfn down to the requested order
964 * as the mem_map is guarenteed valid out to MAX_ORDER,
965 * where that page is in a different zone we will detect
966 * it from its zone id and abort this block scan.
968 zone_id = page_zone_id(page);
969 page_pfn = page_to_pfn(page);
970 pfn = page_pfn & ~((1 << order) - 1);
971 end_pfn = pfn + (1 << order);
972 for (; pfn < end_pfn; pfn++) {
973 struct page *cursor_page;
975 /* The target page is in the block, ignore it. */
976 if (unlikely(pfn == page_pfn))
977 continue;
979 /* Avoid holes within the zone. */
980 if (unlikely(!pfn_valid_within(pfn)))
981 break;
983 cursor_page = pfn_to_page(pfn);
985 /* Check that we have not crossed a zone boundary. */
986 if (unlikely(page_zone_id(cursor_page) != zone_id))
987 continue;
990 * If we don't have enough swap space, reclaiming of
991 * anon page which don't already have a swap slot is
992 * pointless.
994 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
995 !PageSwapCache(cursor_page))
996 continue;
998 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
999 list_move(&cursor_page->lru, dst);
1000 mem_cgroup_del_lru(cursor_page);
1001 nr_taken++;
1002 scan++;
1007 *scanned = scan;
1008 return nr_taken;
1011 static unsigned long isolate_pages_global(unsigned long nr,
1012 struct list_head *dst,
1013 unsigned long *scanned, int order,
1014 int mode, struct zone *z,
1015 struct mem_cgroup *mem_cont,
1016 int active, int file)
1018 int lru = LRU_BASE;
1019 if (active)
1020 lru += LRU_ACTIVE;
1021 if (file)
1022 lru += LRU_FILE;
1023 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1024 mode, file);
1028 * clear_active_flags() is a helper for shrink_active_list(), clearing
1029 * any active bits from the pages in the list.
1031 static unsigned long clear_active_flags(struct list_head *page_list,
1032 unsigned int *count)
1034 int nr_active = 0;
1035 int lru;
1036 struct page *page;
1038 list_for_each_entry(page, page_list, lru) {
1039 lru = page_lru_base_type(page);
1040 if (PageActive(page)) {
1041 lru += LRU_ACTIVE;
1042 ClearPageActive(page);
1043 nr_active++;
1045 count[lru]++;
1048 return nr_active;
1052 * isolate_lru_page - tries to isolate a page from its LRU list
1053 * @page: page to isolate from its LRU list
1055 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1056 * vmstat statistic corresponding to whatever LRU list the page was on.
1058 * Returns 0 if the page was removed from an LRU list.
1059 * Returns -EBUSY if the page was not on an LRU list.
1061 * The returned page will have PageLRU() cleared. If it was found on
1062 * the active list, it will have PageActive set. If it was found on
1063 * the unevictable list, it will have the PageUnevictable bit set. That flag
1064 * may need to be cleared by the caller before letting the page go.
1066 * The vmstat statistic corresponding to the list on which the page was
1067 * found will be decremented.
1069 * Restrictions:
1070 * (1) Must be called with an elevated refcount on the page. This is a
1071 * fundamentnal difference from isolate_lru_pages (which is called
1072 * without a stable reference).
1073 * (2) the lru_lock must not be held.
1074 * (3) interrupts must be enabled.
1076 int isolate_lru_page(struct page *page)
1078 int ret = -EBUSY;
1080 if (PageLRU(page)) {
1081 struct zone *zone = page_zone(page);
1083 spin_lock_irq(&zone->lru_lock);
1084 if (PageLRU(page) && get_page_unless_zero(page)) {
1085 int lru = page_lru(page);
1086 ret = 0;
1087 ClearPageLRU(page);
1089 del_page_from_lru_list(zone, page, lru);
1091 spin_unlock_irq(&zone->lru_lock);
1093 return ret;
1097 * Are there way too many processes in the direct reclaim path already?
1099 static int too_many_isolated(struct zone *zone, int file,
1100 struct scan_control *sc)
1102 unsigned long inactive, isolated;
1104 if (current_is_kswapd())
1105 return 0;
1107 if (!scanning_global_lru(sc))
1108 return 0;
1110 if (file) {
1111 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1112 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1113 } else {
1114 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1115 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1118 return isolated > inactive;
1122 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1123 * of reclaimed pages
1125 static unsigned long shrink_inactive_list(unsigned long max_scan,
1126 struct zone *zone, struct scan_control *sc,
1127 int priority, int file)
1129 LIST_HEAD(page_list);
1130 struct pagevec pvec;
1131 unsigned long nr_scanned = 0;
1132 unsigned long nr_reclaimed = 0;
1133 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1135 while (unlikely(too_many_isolated(zone, file, sc))) {
1136 congestion_wait(BLK_RW_ASYNC, HZ/10);
1138 /* We are about to die and free our memory. Return now. */
1139 if (fatal_signal_pending(current))
1140 return SWAP_CLUSTER_MAX;
1144 pagevec_init(&pvec, 1);
1146 lru_add_drain();
1147 spin_lock_irq(&zone->lru_lock);
1148 do {
1149 struct page *page;
1150 unsigned long nr_taken;
1151 unsigned long nr_scan;
1152 unsigned long nr_freed;
1153 unsigned long nr_active;
1154 unsigned int count[NR_LRU_LISTS] = { 0, };
1155 int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1156 unsigned long nr_anon;
1157 unsigned long nr_file;
1159 nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
1160 &page_list, &nr_scan, sc->order, mode,
1161 zone, sc->mem_cgroup, 0, file);
1163 if (scanning_global_lru(sc)) {
1164 zone->pages_scanned += nr_scan;
1165 if (current_is_kswapd())
1166 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1167 nr_scan);
1168 else
1169 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1170 nr_scan);
1173 if (nr_taken == 0)
1174 goto done;
1176 nr_active = clear_active_flags(&page_list, count);
1177 __count_vm_events(PGDEACTIVATE, nr_active);
1179 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1180 -count[LRU_ACTIVE_FILE]);
1181 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1182 -count[LRU_INACTIVE_FILE]);
1183 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1184 -count[LRU_ACTIVE_ANON]);
1185 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1186 -count[LRU_INACTIVE_ANON]);
1188 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1189 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1190 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1191 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1193 reclaim_stat->recent_scanned[0] += nr_anon;
1194 reclaim_stat->recent_scanned[1] += nr_file;
1196 spin_unlock_irq(&zone->lru_lock);
1198 nr_scanned += nr_scan;
1199 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1202 * If we are direct reclaiming for contiguous pages and we do
1203 * not reclaim everything in the list, try again and wait
1204 * for IO to complete. This will stall high-order allocations
1205 * but that should be acceptable to the caller
1207 if (nr_freed < nr_taken && !current_is_kswapd() &&
1208 sc->lumpy_reclaim_mode) {
1209 congestion_wait(BLK_RW_ASYNC, HZ/10);
1212 * The attempt at page out may have made some
1213 * of the pages active, mark them inactive again.
1215 nr_active = clear_active_flags(&page_list, count);
1216 count_vm_events(PGDEACTIVATE, nr_active);
1218 nr_freed += shrink_page_list(&page_list, sc,
1219 PAGEOUT_IO_SYNC);
1222 nr_reclaimed += nr_freed;
1224 local_irq_disable();
1225 if (current_is_kswapd())
1226 __count_vm_events(KSWAPD_STEAL, nr_freed);
1227 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1229 spin_lock(&zone->lru_lock);
1231 * Put back any unfreeable pages.
1233 while (!list_empty(&page_list)) {
1234 int lru;
1235 page = lru_to_page(&page_list);
1236 VM_BUG_ON(PageLRU(page));
1237 list_del(&page->lru);
1238 if (unlikely(!page_evictable(page, NULL))) {
1239 spin_unlock_irq(&zone->lru_lock);
1240 putback_lru_page(page);
1241 spin_lock_irq(&zone->lru_lock);
1242 continue;
1244 SetPageLRU(page);
1245 lru = page_lru(page);
1246 add_page_to_lru_list(zone, page, lru);
1247 if (is_active_lru(lru)) {
1248 int file = is_file_lru(lru);
1249 reclaim_stat->recent_rotated[file]++;
1251 if (!pagevec_add(&pvec, page)) {
1252 spin_unlock_irq(&zone->lru_lock);
1253 __pagevec_release(&pvec);
1254 spin_lock_irq(&zone->lru_lock);
1257 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1258 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1260 } while (nr_scanned < max_scan);
1262 done:
1263 spin_unlock_irq(&zone->lru_lock);
1264 pagevec_release(&pvec);
1265 return nr_reclaimed;
1269 * We are about to scan this zone at a certain priority level. If that priority
1270 * level is smaller (ie: more urgent) than the previous priority, then note
1271 * that priority level within the zone. This is done so that when the next
1272 * process comes in to scan this zone, it will immediately start out at this
1273 * priority level rather than having to build up its own scanning priority.
1274 * Here, this priority affects only the reclaim-mapped threshold.
1276 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1278 if (priority < zone->prev_priority)
1279 zone->prev_priority = priority;
1283 * This moves pages from the active list to the inactive list.
1285 * We move them the other way if the page is referenced by one or more
1286 * processes, from rmap.
1288 * If the pages are mostly unmapped, the processing is fast and it is
1289 * appropriate to hold zone->lru_lock across the whole operation. But if
1290 * the pages are mapped, the processing is slow (page_referenced()) so we
1291 * should drop zone->lru_lock around each page. It's impossible to balance
1292 * this, so instead we remove the pages from the LRU while processing them.
1293 * It is safe to rely on PG_active against the non-LRU pages in here because
1294 * nobody will play with that bit on a non-LRU page.
1296 * The downside is that we have to touch page->_count against each page.
1297 * But we had to alter page->flags anyway.
1300 static void move_active_pages_to_lru(struct zone *zone,
1301 struct list_head *list,
1302 enum lru_list lru)
1304 unsigned long pgmoved = 0;
1305 struct pagevec pvec;
1306 struct page *page;
1308 pagevec_init(&pvec, 1);
1310 while (!list_empty(list)) {
1311 page = lru_to_page(list);
1313 VM_BUG_ON(PageLRU(page));
1314 SetPageLRU(page);
1316 list_move(&page->lru, &zone->lru[lru].list);
1317 mem_cgroup_add_lru_list(page, lru);
1318 pgmoved++;
1320 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1321 spin_unlock_irq(&zone->lru_lock);
1322 if (buffer_heads_over_limit)
1323 pagevec_strip(&pvec);
1324 __pagevec_release(&pvec);
1325 spin_lock_irq(&zone->lru_lock);
1328 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1329 if (!is_active_lru(lru))
1330 __count_vm_events(PGDEACTIVATE, pgmoved);
1333 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1334 struct scan_control *sc, int priority, int file)
1336 unsigned long nr_taken;
1337 unsigned long pgscanned;
1338 unsigned long vm_flags;
1339 LIST_HEAD(l_hold); /* The pages which were snipped off */
1340 LIST_HEAD(l_active);
1341 LIST_HEAD(l_inactive);
1342 struct page *page;
1343 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1344 unsigned long nr_rotated = 0;
1346 lru_add_drain();
1347 spin_lock_irq(&zone->lru_lock);
1348 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1349 ISOLATE_ACTIVE, zone,
1350 sc->mem_cgroup, 1, file);
1352 * zone->pages_scanned is used for detect zone's oom
1353 * mem_cgroup remembers nr_scan by itself.
1355 if (scanning_global_lru(sc)) {
1356 zone->pages_scanned += pgscanned;
1358 reclaim_stat->recent_scanned[file] += nr_taken;
1360 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1361 if (file)
1362 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1363 else
1364 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1365 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1366 spin_unlock_irq(&zone->lru_lock);
1368 while (!list_empty(&l_hold)) {
1369 cond_resched();
1370 page = lru_to_page(&l_hold);
1371 list_del(&page->lru);
1373 if (unlikely(!page_evictable(page, NULL))) {
1374 putback_lru_page(page);
1375 continue;
1378 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1379 nr_rotated++;
1381 * Identify referenced, file-backed active pages and
1382 * give them one more trip around the active list. So
1383 * that executable code get better chances to stay in
1384 * memory under moderate memory pressure. Anon pages
1385 * are not likely to be evicted by use-once streaming
1386 * IO, plus JVM can create lots of anon VM_EXEC pages,
1387 * so we ignore them here.
1389 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1390 list_add(&page->lru, &l_active);
1391 continue;
1395 ClearPageActive(page); /* we are de-activating */
1396 list_add(&page->lru, &l_inactive);
1400 * Move pages back to the lru list.
1402 spin_lock_irq(&zone->lru_lock);
1404 * Count referenced pages from currently used mappings as rotated,
1405 * even though only some of them are actually re-activated. This
1406 * helps balance scan pressure between file and anonymous pages in
1407 * get_scan_ratio.
1409 reclaim_stat->recent_rotated[file] += nr_rotated;
1411 move_active_pages_to_lru(zone, &l_active,
1412 LRU_ACTIVE + file * LRU_FILE);
1413 move_active_pages_to_lru(zone, &l_inactive,
1414 LRU_BASE + file * LRU_FILE);
1415 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1416 spin_unlock_irq(&zone->lru_lock);
1419 static int inactive_anon_is_low_global(struct zone *zone)
1421 unsigned long active, inactive;
1423 active = zone_page_state(zone, NR_ACTIVE_ANON);
1424 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1426 if (inactive * zone->inactive_ratio < active)
1427 return 1;
1429 return 0;
1433 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1434 * @zone: zone to check
1435 * @sc: scan control of this context
1437 * Returns true if the zone does not have enough inactive anon pages,
1438 * meaning some active anon pages need to be deactivated.
1440 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1442 int low;
1444 if (scanning_global_lru(sc))
1445 low = inactive_anon_is_low_global(zone);
1446 else
1447 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1448 return low;
1451 static int inactive_file_is_low_global(struct zone *zone)
1453 unsigned long active, inactive;
1455 active = zone_page_state(zone, NR_ACTIVE_FILE);
1456 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1458 return (active > inactive);
1462 * inactive_file_is_low - check if file pages need to be deactivated
1463 * @zone: zone to check
1464 * @sc: scan control of this context
1466 * When the system is doing streaming IO, memory pressure here
1467 * ensures that active file pages get deactivated, until more
1468 * than half of the file pages are on the inactive list.
1470 * Once we get to that situation, protect the system's working
1471 * set from being evicted by disabling active file page aging.
1473 * This uses a different ratio than the anonymous pages, because
1474 * the page cache uses a use-once replacement algorithm.
1476 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1478 int low;
1480 if (scanning_global_lru(sc))
1481 low = inactive_file_is_low_global(zone);
1482 else
1483 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1484 return low;
1487 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1488 int file)
1490 if (file)
1491 return inactive_file_is_low(zone, sc);
1492 else
1493 return inactive_anon_is_low(zone, sc);
1496 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1497 struct zone *zone, struct scan_control *sc, int priority)
1499 int file = is_file_lru(lru);
1501 if (is_active_lru(lru)) {
1502 if (inactive_list_is_low(zone, sc, file))
1503 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1504 return 0;
1507 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1511 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1512 * until we collected @swap_cluster_max pages to scan.
1514 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1515 unsigned long *nr_saved_scan)
1517 unsigned long nr;
1519 *nr_saved_scan += nr_to_scan;
1520 nr = *nr_saved_scan;
1522 if (nr >= SWAP_CLUSTER_MAX)
1523 *nr_saved_scan = 0;
1524 else
1525 nr = 0;
1527 return nr;
1531 * Determine how aggressively the anon and file LRU lists should be
1532 * scanned. The relative value of each set of LRU lists is determined
1533 * by looking at the fraction of the pages scanned we did rotate back
1534 * onto the active list instead of evict.
1536 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1538 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1539 unsigned long *nr, int priority)
1541 unsigned long anon, file, free;
1542 unsigned long anon_prio, file_prio;
1543 unsigned long ap, fp;
1544 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1545 u64 fraction[2], denominator;
1546 enum lru_list l;
1547 int noswap = 0;
1549 /* If we have no swap space, do not bother scanning anon pages. */
1550 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1551 noswap = 1;
1552 fraction[0] = 0;
1553 fraction[1] = 1;
1554 denominator = 1;
1555 goto out;
1558 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1559 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1560 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1561 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1563 if (scanning_global_lru(sc)) {
1564 free = zone_page_state(zone, NR_FREE_PAGES);
1565 /* If we have very few page cache pages,
1566 force-scan anon pages. */
1567 if (unlikely(file + free <= high_wmark_pages(zone))) {
1568 fraction[0] = 1;
1569 fraction[1] = 0;
1570 denominator = 1;
1571 goto out;
1576 * OK, so we have swap space and a fair amount of page cache
1577 * pages. We use the recently rotated / recently scanned
1578 * ratios to determine how valuable each cache is.
1580 * Because workloads change over time (and to avoid overflow)
1581 * we keep these statistics as a floating average, which ends
1582 * up weighing recent references more than old ones.
1584 * anon in [0], file in [1]
1586 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1587 spin_lock_irq(&zone->lru_lock);
1588 reclaim_stat->recent_scanned[0] /= 2;
1589 reclaim_stat->recent_rotated[0] /= 2;
1590 spin_unlock_irq(&zone->lru_lock);
1593 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1594 spin_lock_irq(&zone->lru_lock);
1595 reclaim_stat->recent_scanned[1] /= 2;
1596 reclaim_stat->recent_rotated[1] /= 2;
1597 spin_unlock_irq(&zone->lru_lock);
1601 * With swappiness at 100, anonymous and file have the same priority.
1602 * This scanning priority is essentially the inverse of IO cost.
1604 anon_prio = sc->swappiness;
1605 file_prio = 200 - sc->swappiness;
1608 * The amount of pressure on anon vs file pages is inversely
1609 * proportional to the fraction of recently scanned pages on
1610 * each list that were recently referenced and in active use.
1612 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1613 ap /= reclaim_stat->recent_rotated[0] + 1;
1615 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1616 fp /= reclaim_stat->recent_rotated[1] + 1;
1618 fraction[0] = ap;
1619 fraction[1] = fp;
1620 denominator = ap + fp + 1;
1621 out:
1622 for_each_evictable_lru(l) {
1623 int file = is_file_lru(l);
1624 unsigned long scan;
1626 scan = zone_nr_lru_pages(zone, sc, l);
1627 if (priority || noswap) {
1628 scan >>= priority;
1629 scan = div64_u64(scan * fraction[file], denominator);
1631 nr[l] = nr_scan_try_batch(scan,
1632 &reclaim_stat->nr_saved_scan[l]);
1636 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1639 * If we need a large contiguous chunk of memory, or have
1640 * trouble getting a small set of contiguous pages, we
1641 * will reclaim both active and inactive pages.
1643 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1644 sc->lumpy_reclaim_mode = 1;
1645 else if (sc->order && priority < DEF_PRIORITY - 2)
1646 sc->lumpy_reclaim_mode = 1;
1647 else
1648 sc->lumpy_reclaim_mode = 0;
1652 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1654 static void shrink_zone(int priority, struct zone *zone,
1655 struct scan_control *sc)
1657 unsigned long nr[NR_LRU_LISTS];
1658 unsigned long nr_to_scan;
1659 enum lru_list l;
1660 unsigned long nr_reclaimed = sc->nr_reclaimed;
1661 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1663 get_scan_count(zone, sc, nr, priority);
1665 set_lumpy_reclaim_mode(priority, sc);
1667 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1668 nr[LRU_INACTIVE_FILE]) {
1669 for_each_evictable_lru(l) {
1670 if (nr[l]) {
1671 nr_to_scan = min_t(unsigned long,
1672 nr[l], SWAP_CLUSTER_MAX);
1673 nr[l] -= nr_to_scan;
1675 nr_reclaimed += shrink_list(l, nr_to_scan,
1676 zone, sc, priority);
1680 * On large memory systems, scan >> priority can become
1681 * really large. This is fine for the starting priority;
1682 * we want to put equal scanning pressure on each zone.
1683 * However, if the VM has a harder time of freeing pages,
1684 * with multiple processes reclaiming pages, the total
1685 * freeing target can get unreasonably large.
1687 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1688 break;
1691 sc->nr_reclaimed = nr_reclaimed;
1694 * Even if we did not try to evict anon pages at all, we want to
1695 * rebalance the anon lru active/inactive ratio.
1697 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1698 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1700 throttle_vm_writeout(sc->gfp_mask);
1704 * This is the direct reclaim path, for page-allocating processes. We only
1705 * try to reclaim pages from zones which will satisfy the caller's allocation
1706 * request.
1708 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1709 * Because:
1710 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1711 * allocation or
1712 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1713 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1714 * zone defense algorithm.
1716 * If a zone is deemed to be full of pinned pages then just give it a light
1717 * scan then give up on it.
1719 static void shrink_zones(int priority, struct zonelist *zonelist,
1720 struct scan_control *sc)
1722 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1723 struct zoneref *z;
1724 struct zone *zone;
1726 sc->all_unreclaimable = 1;
1727 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1728 sc->nodemask) {
1729 if (!populated_zone(zone))
1730 continue;
1732 * Take care memory controller reclaiming has small influence
1733 * to global LRU.
1735 if (scanning_global_lru(sc)) {
1736 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1737 continue;
1738 note_zone_scanning_priority(zone, priority);
1740 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1741 continue; /* Let kswapd poll it */
1742 sc->all_unreclaimable = 0;
1743 } else {
1745 * Ignore cpuset limitation here. We just want to reduce
1746 * # of used pages by us regardless of memory shortage.
1748 sc->all_unreclaimable = 0;
1749 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1750 priority);
1753 shrink_zone(priority, zone, sc);
1758 * This is the main entry point to direct page reclaim.
1760 * If a full scan of the inactive list fails to free enough memory then we
1761 * are "out of memory" and something needs to be killed.
1763 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1764 * high - the zone may be full of dirty or under-writeback pages, which this
1765 * caller can't do much about. We kick the writeback threads and take explicit
1766 * naps in the hope that some of these pages can be written. But if the
1767 * allocating task holds filesystem locks which prevent writeout this might not
1768 * work, and the allocation attempt will fail.
1770 * returns: 0, if no pages reclaimed
1771 * else, the number of pages reclaimed
1773 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1774 struct scan_control *sc)
1776 int priority;
1777 unsigned long ret = 0;
1778 unsigned long total_scanned = 0;
1779 struct reclaim_state *reclaim_state = current->reclaim_state;
1780 unsigned long lru_pages = 0;
1781 struct zoneref *z;
1782 struct zone *zone;
1783 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1784 unsigned long writeback_threshold;
1786 get_mems_allowed();
1787 delayacct_freepages_start();
1789 if (scanning_global_lru(sc))
1790 count_vm_event(ALLOCSTALL);
1792 * mem_cgroup will not do shrink_slab.
1794 if (scanning_global_lru(sc)) {
1795 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1797 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1798 continue;
1800 lru_pages += zone_reclaimable_pages(zone);
1804 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1805 sc->nr_scanned = 0;
1806 if (!priority)
1807 disable_swap_token();
1808 shrink_zones(priority, zonelist, sc);
1810 * Don't shrink slabs when reclaiming memory from
1811 * over limit cgroups
1813 if (scanning_global_lru(sc)) {
1814 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1815 if (reclaim_state) {
1816 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1817 reclaim_state->reclaimed_slab = 0;
1820 total_scanned += sc->nr_scanned;
1821 if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
1822 ret = sc->nr_reclaimed;
1823 goto out;
1827 * Try to write back as many pages as we just scanned. This
1828 * tends to cause slow streaming writers to write data to the
1829 * disk smoothly, at the dirtying rate, which is nice. But
1830 * that's undesirable in laptop mode, where we *want* lumpy
1831 * writeout. So in laptop mode, write out the whole world.
1833 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1834 if (total_scanned > writeback_threshold) {
1835 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1836 sc->may_writepage = 1;
1839 /* Take a nap, wait for some writeback to complete */
1840 if (!sc->hibernation_mode && sc->nr_scanned &&
1841 priority < DEF_PRIORITY - 2)
1842 congestion_wait(BLK_RW_ASYNC, HZ/10);
1844 /* top priority shrink_zones still had more to do? don't OOM, then */
1845 if (!sc->all_unreclaimable && scanning_global_lru(sc))
1846 ret = sc->nr_reclaimed;
1847 out:
1849 * Now that we've scanned all the zones at this priority level, note
1850 * that level within the zone so that the next thread which performs
1851 * scanning of this zone will immediately start out at this priority
1852 * level. This affects only the decision whether or not to bring
1853 * mapped pages onto the inactive list.
1855 if (priority < 0)
1856 priority = 0;
1858 if (scanning_global_lru(sc)) {
1859 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1861 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1862 continue;
1864 zone->prev_priority = priority;
1866 } else
1867 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1869 delayacct_freepages_end();
1870 put_mems_allowed();
1872 return ret;
1875 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1876 gfp_t gfp_mask, nodemask_t *nodemask)
1878 struct scan_control sc = {
1879 .gfp_mask = gfp_mask,
1880 .may_writepage = !laptop_mode,
1881 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1882 .may_unmap = 1,
1883 .may_swap = 1,
1884 .swappiness = vm_swappiness,
1885 .order = order,
1886 .mem_cgroup = NULL,
1887 .isolate_pages = isolate_pages_global,
1888 .nodemask = nodemask,
1891 return do_try_to_free_pages(zonelist, &sc);
1894 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1896 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1897 gfp_t gfp_mask, bool noswap,
1898 unsigned int swappiness,
1899 struct zone *zone, int nid)
1901 struct scan_control sc = {
1902 .may_writepage = !laptop_mode,
1903 .may_unmap = 1,
1904 .may_swap = !noswap,
1905 .swappiness = swappiness,
1906 .order = 0,
1907 .mem_cgroup = mem,
1908 .isolate_pages = mem_cgroup_isolate_pages,
1910 nodemask_t nm = nodemask_of_node(nid);
1912 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1913 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1914 sc.nodemask = &nm;
1915 sc.nr_reclaimed = 0;
1916 sc.nr_scanned = 0;
1918 * NOTE: Although we can get the priority field, using it
1919 * here is not a good idea, since it limits the pages we can scan.
1920 * if we don't reclaim here, the shrink_zone from balance_pgdat
1921 * will pick up pages from other mem cgroup's as well. We hack
1922 * the priority and make it zero.
1924 shrink_zone(0, zone, &sc);
1925 return sc.nr_reclaimed;
1928 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1929 gfp_t gfp_mask,
1930 bool noswap,
1931 unsigned int swappiness)
1933 struct zonelist *zonelist;
1934 struct scan_control sc = {
1935 .may_writepage = !laptop_mode,
1936 .may_unmap = 1,
1937 .may_swap = !noswap,
1938 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1939 .swappiness = swappiness,
1940 .order = 0,
1941 .mem_cgroup = mem_cont,
1942 .isolate_pages = mem_cgroup_isolate_pages,
1943 .nodemask = NULL, /* we don't care the placement */
1946 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1947 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1948 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1949 return do_try_to_free_pages(zonelist, &sc);
1951 #endif
1953 /* is kswapd sleeping prematurely? */
1954 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1956 int i;
1958 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1959 if (remaining)
1960 return 1;
1962 /* If after HZ/10, a zone is below the high mark, it's premature */
1963 for (i = 0; i < pgdat->nr_zones; i++) {
1964 struct zone *zone = pgdat->node_zones + i;
1966 if (!populated_zone(zone))
1967 continue;
1969 if (zone->all_unreclaimable)
1970 continue;
1972 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1973 0, 0))
1974 return 1;
1977 return 0;
1981 * For kswapd, balance_pgdat() will work across all this node's zones until
1982 * they are all at high_wmark_pages(zone).
1984 * Returns the number of pages which were actually freed.
1986 * There is special handling here for zones which are full of pinned pages.
1987 * This can happen if the pages are all mlocked, or if they are all used by
1988 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1989 * What we do is to detect the case where all pages in the zone have been
1990 * scanned twice and there has been zero successful reclaim. Mark the zone as
1991 * dead and from now on, only perform a short scan. Basically we're polling
1992 * the zone for when the problem goes away.
1994 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1995 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1996 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1997 * lower zones regardless of the number of free pages in the lower zones. This
1998 * interoperates with the page allocator fallback scheme to ensure that aging
1999 * of pages is balanced across the zones.
2001 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2003 int all_zones_ok;
2004 int priority;
2005 int i;
2006 unsigned long total_scanned;
2007 struct reclaim_state *reclaim_state = current->reclaim_state;
2008 struct scan_control sc = {
2009 .gfp_mask = GFP_KERNEL,
2010 .may_unmap = 1,
2011 .may_swap = 1,
2013 * kswapd doesn't want to be bailed out while reclaim. because
2014 * we want to put equal scanning pressure on each zone.
2016 .nr_to_reclaim = ULONG_MAX,
2017 .swappiness = vm_swappiness,
2018 .order = order,
2019 .mem_cgroup = NULL,
2020 .isolate_pages = isolate_pages_global,
2023 * temp_priority is used to remember the scanning priority at which
2024 * this zone was successfully refilled to
2025 * free_pages == high_wmark_pages(zone).
2027 int temp_priority[MAX_NR_ZONES];
2029 loop_again:
2030 total_scanned = 0;
2031 sc.nr_reclaimed = 0;
2032 sc.may_writepage = !laptop_mode;
2033 count_vm_event(PAGEOUTRUN);
2035 for (i = 0; i < pgdat->nr_zones; i++)
2036 temp_priority[i] = DEF_PRIORITY;
2038 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2039 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2040 unsigned long lru_pages = 0;
2041 int has_under_min_watermark_zone = 0;
2043 /* The swap token gets in the way of swapout... */
2044 if (!priority)
2045 disable_swap_token();
2047 all_zones_ok = 1;
2050 * Scan in the highmem->dma direction for the highest
2051 * zone which needs scanning
2053 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2054 struct zone *zone = pgdat->node_zones + i;
2056 if (!populated_zone(zone))
2057 continue;
2059 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2060 continue;
2063 * Do some background aging of the anon list, to give
2064 * pages a chance to be referenced before reclaiming.
2066 if (inactive_anon_is_low(zone, &sc))
2067 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2068 &sc, priority, 0);
2070 if (!zone_watermark_ok(zone, order,
2071 high_wmark_pages(zone), 0, 0)) {
2072 end_zone = i;
2073 break;
2076 if (i < 0)
2077 goto out;
2079 for (i = 0; i <= end_zone; i++) {
2080 struct zone *zone = pgdat->node_zones + i;
2082 lru_pages += zone_reclaimable_pages(zone);
2086 * Now scan the zone in the dma->highmem direction, stopping
2087 * at the last zone which needs scanning.
2089 * We do this because the page allocator works in the opposite
2090 * direction. This prevents the page allocator from allocating
2091 * pages behind kswapd's direction of progress, which would
2092 * cause too much scanning of the lower zones.
2094 for (i = 0; i <= end_zone; i++) {
2095 struct zone *zone = pgdat->node_zones + i;
2096 int nr_slab;
2097 int nid, zid;
2099 if (!populated_zone(zone))
2100 continue;
2102 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2103 continue;
2105 temp_priority[i] = priority;
2106 sc.nr_scanned = 0;
2107 note_zone_scanning_priority(zone, priority);
2109 nid = pgdat->node_id;
2110 zid = zone_idx(zone);
2112 * Call soft limit reclaim before calling shrink_zone.
2113 * For now we ignore the return value
2115 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2116 nid, zid);
2118 * We put equal pressure on every zone, unless one
2119 * zone has way too many pages free already.
2121 if (!zone_watermark_ok(zone, order,
2122 8*high_wmark_pages(zone), end_zone, 0))
2123 shrink_zone(priority, zone, &sc);
2124 reclaim_state->reclaimed_slab = 0;
2125 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2126 lru_pages);
2127 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2128 total_scanned += sc.nr_scanned;
2129 if (zone->all_unreclaimable)
2130 continue;
2131 if (nr_slab == 0 &&
2132 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2133 zone->all_unreclaimable = 1;
2135 * If we've done a decent amount of scanning and
2136 * the reclaim ratio is low, start doing writepage
2137 * even in laptop mode
2139 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2140 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2141 sc.may_writepage = 1;
2143 if (!zone_watermark_ok(zone, order,
2144 high_wmark_pages(zone), end_zone, 0)) {
2145 all_zones_ok = 0;
2147 * We are still under min water mark. This
2148 * means that we have a GFP_ATOMIC allocation
2149 * failure risk. Hurry up!
2151 if (!zone_watermark_ok(zone, order,
2152 min_wmark_pages(zone), end_zone, 0))
2153 has_under_min_watermark_zone = 1;
2157 if (all_zones_ok)
2158 break; /* kswapd: all done */
2160 * OK, kswapd is getting into trouble. Take a nap, then take
2161 * another pass across the zones.
2163 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2164 if (has_under_min_watermark_zone)
2165 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2166 else
2167 congestion_wait(BLK_RW_ASYNC, HZ/10);
2171 * We do this so kswapd doesn't build up large priorities for
2172 * example when it is freeing in parallel with allocators. It
2173 * matches the direct reclaim path behaviour in terms of impact
2174 * on zone->*_priority.
2176 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2177 break;
2179 out:
2181 * Note within each zone the priority level at which this zone was
2182 * brought into a happy state. So that the next thread which scans this
2183 * zone will start out at that priority level.
2185 for (i = 0; i < pgdat->nr_zones; i++) {
2186 struct zone *zone = pgdat->node_zones + i;
2188 zone->prev_priority = temp_priority[i];
2190 if (!all_zones_ok) {
2191 cond_resched();
2193 try_to_freeze();
2196 * Fragmentation may mean that the system cannot be
2197 * rebalanced for high-order allocations in all zones.
2198 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2199 * it means the zones have been fully scanned and are still
2200 * not balanced. For high-order allocations, there is
2201 * little point trying all over again as kswapd may
2202 * infinite loop.
2204 * Instead, recheck all watermarks at order-0 as they
2205 * are the most important. If watermarks are ok, kswapd will go
2206 * back to sleep. High-order users can still perform direct
2207 * reclaim if they wish.
2209 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2210 order = sc.order = 0;
2212 goto loop_again;
2215 return sc.nr_reclaimed;
2219 * The background pageout daemon, started as a kernel thread
2220 * from the init process.
2222 * This basically trickles out pages so that we have _some_
2223 * free memory available even if there is no other activity
2224 * that frees anything up. This is needed for things like routing
2225 * etc, where we otherwise might have all activity going on in
2226 * asynchronous contexts that cannot page things out.
2228 * If there are applications that are active memory-allocators
2229 * (most normal use), this basically shouldn't matter.
2231 static int kswapd(void *p)
2233 unsigned long order;
2234 pg_data_t *pgdat = (pg_data_t*)p;
2235 struct task_struct *tsk = current;
2236 DEFINE_WAIT(wait);
2237 struct reclaim_state reclaim_state = {
2238 .reclaimed_slab = 0,
2240 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2242 lockdep_set_current_reclaim_state(GFP_KERNEL);
2244 if (!cpumask_empty(cpumask))
2245 set_cpus_allowed_ptr(tsk, cpumask);
2246 current->reclaim_state = &reclaim_state;
2249 * Tell the memory management that we're a "memory allocator",
2250 * and that if we need more memory we should get access to it
2251 * regardless (see "__alloc_pages()"). "kswapd" should
2252 * never get caught in the normal page freeing logic.
2254 * (Kswapd normally doesn't need memory anyway, but sometimes
2255 * you need a small amount of memory in order to be able to
2256 * page out something else, and this flag essentially protects
2257 * us from recursively trying to free more memory as we're
2258 * trying to free the first piece of memory in the first place).
2260 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2261 set_freezable();
2263 order = 0;
2264 for ( ; ; ) {
2265 unsigned long new_order;
2266 int ret;
2268 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2269 new_order = pgdat->kswapd_max_order;
2270 pgdat->kswapd_max_order = 0;
2271 if (order < new_order) {
2273 * Don't sleep if someone wants a larger 'order'
2274 * allocation
2276 order = new_order;
2277 } else {
2278 if (!freezing(current) && !kthread_should_stop()) {
2279 long remaining = 0;
2281 /* Try to sleep for a short interval */
2282 if (!sleeping_prematurely(pgdat, order, remaining)) {
2283 remaining = schedule_timeout(HZ/10);
2284 finish_wait(&pgdat->kswapd_wait, &wait);
2285 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2289 * After a short sleep, check if it was a
2290 * premature sleep. If not, then go fully
2291 * to sleep until explicitly woken up
2293 if (!sleeping_prematurely(pgdat, order, remaining))
2294 schedule();
2295 else {
2296 if (remaining)
2297 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2298 else
2299 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2303 order = pgdat->kswapd_max_order;
2305 finish_wait(&pgdat->kswapd_wait, &wait);
2307 ret = try_to_freeze();
2308 if (kthread_should_stop())
2309 break;
2312 * We can speed up thawing tasks if we don't call balance_pgdat
2313 * after returning from the refrigerator
2315 if (!ret)
2316 balance_pgdat(pgdat, order);
2318 return 0;
2322 * A zone is low on free memory, so wake its kswapd task to service it.
2324 void wakeup_kswapd(struct zone *zone, int order)
2326 pg_data_t *pgdat;
2328 if (!populated_zone(zone))
2329 return;
2331 pgdat = zone->zone_pgdat;
2332 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2333 return;
2334 if (pgdat->kswapd_max_order < order)
2335 pgdat->kswapd_max_order = order;
2336 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2337 return;
2338 if (!waitqueue_active(&pgdat->kswapd_wait))
2339 return;
2340 wake_up_interruptible(&pgdat->kswapd_wait);
2344 * The reclaimable count would be mostly accurate.
2345 * The less reclaimable pages may be
2346 * - mlocked pages, which will be moved to unevictable list when encountered
2347 * - mapped pages, which may require several travels to be reclaimed
2348 * - dirty pages, which is not "instantly" reclaimable
2350 unsigned long global_reclaimable_pages(void)
2352 int nr;
2354 nr = global_page_state(NR_ACTIVE_FILE) +
2355 global_page_state(NR_INACTIVE_FILE);
2357 if (nr_swap_pages > 0)
2358 nr += global_page_state(NR_ACTIVE_ANON) +
2359 global_page_state(NR_INACTIVE_ANON);
2361 return nr;
2364 unsigned long zone_reclaimable_pages(struct zone *zone)
2366 int nr;
2368 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2369 zone_page_state(zone, NR_INACTIVE_FILE);
2371 if (nr_swap_pages > 0)
2372 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2373 zone_page_state(zone, NR_INACTIVE_ANON);
2375 return nr;
2378 #ifdef CONFIG_HIBERNATION
2380 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2381 * freed pages.
2383 * Rather than trying to age LRUs the aim is to preserve the overall
2384 * LRU order by reclaiming preferentially
2385 * inactive > active > active referenced > active mapped
2387 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2389 struct reclaim_state reclaim_state;
2390 struct scan_control sc = {
2391 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2392 .may_swap = 1,
2393 .may_unmap = 1,
2394 .may_writepage = 1,
2395 .nr_to_reclaim = nr_to_reclaim,
2396 .hibernation_mode = 1,
2397 .swappiness = vm_swappiness,
2398 .order = 0,
2399 .isolate_pages = isolate_pages_global,
2401 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2402 struct task_struct *p = current;
2403 unsigned long nr_reclaimed;
2405 p->flags |= PF_MEMALLOC;
2406 lockdep_set_current_reclaim_state(sc.gfp_mask);
2407 reclaim_state.reclaimed_slab = 0;
2408 p->reclaim_state = &reclaim_state;
2410 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2412 p->reclaim_state = NULL;
2413 lockdep_clear_current_reclaim_state();
2414 p->flags &= ~PF_MEMALLOC;
2416 return nr_reclaimed;
2418 #endif /* CONFIG_HIBERNATION */
2420 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2421 not required for correctness. So if the last cpu in a node goes
2422 away, we get changed to run anywhere: as the first one comes back,
2423 restore their cpu bindings. */
2424 static int __devinit cpu_callback(struct notifier_block *nfb,
2425 unsigned long action, void *hcpu)
2427 int nid;
2429 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2430 for_each_node_state(nid, N_HIGH_MEMORY) {
2431 pg_data_t *pgdat = NODE_DATA(nid);
2432 const struct cpumask *mask;
2434 mask = cpumask_of_node(pgdat->node_id);
2436 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2437 /* One of our CPUs online: restore mask */
2438 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2441 return NOTIFY_OK;
2445 * This kswapd start function will be called by init and node-hot-add.
2446 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2448 int kswapd_run(int nid)
2450 pg_data_t *pgdat = NODE_DATA(nid);
2451 int ret = 0;
2453 if (pgdat->kswapd)
2454 return 0;
2456 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2457 if (IS_ERR(pgdat->kswapd)) {
2458 /* failure at boot is fatal */
2459 BUG_ON(system_state == SYSTEM_BOOTING);
2460 printk("Failed to start kswapd on node %d\n",nid);
2461 ret = -1;
2463 return ret;
2467 * Called by memory hotplug when all memory in a node is offlined.
2469 void kswapd_stop(int nid)
2471 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2473 if (kswapd)
2474 kthread_stop(kswapd);
2477 static int __init kswapd_init(void)
2479 int nid;
2481 swap_setup();
2482 for_each_node_state(nid, N_HIGH_MEMORY)
2483 kswapd_run(nid);
2484 hotcpu_notifier(cpu_callback, 0);
2485 return 0;
2488 module_init(kswapd_init)
2490 #ifdef CONFIG_NUMA
2492 * Zone reclaim mode
2494 * If non-zero call zone_reclaim when the number of free pages falls below
2495 * the watermarks.
2497 int zone_reclaim_mode __read_mostly;
2499 #define RECLAIM_OFF 0
2500 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2501 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2502 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2505 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2506 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2507 * a zone.
2509 #define ZONE_RECLAIM_PRIORITY 4
2512 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2513 * occur.
2515 int sysctl_min_unmapped_ratio = 1;
2518 * If the number of slab pages in a zone grows beyond this percentage then
2519 * slab reclaim needs to occur.
2521 int sysctl_min_slab_ratio = 5;
2523 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2525 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2526 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2527 zone_page_state(zone, NR_ACTIVE_FILE);
2530 * It's possible for there to be more file mapped pages than
2531 * accounted for by the pages on the file LRU lists because
2532 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2534 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2537 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2538 static long zone_pagecache_reclaimable(struct zone *zone)
2540 long nr_pagecache_reclaimable;
2541 long delta = 0;
2544 * If RECLAIM_SWAP is set, then all file pages are considered
2545 * potentially reclaimable. Otherwise, we have to worry about
2546 * pages like swapcache and zone_unmapped_file_pages() provides
2547 * a better estimate
2549 if (zone_reclaim_mode & RECLAIM_SWAP)
2550 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2551 else
2552 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2554 /* If we can't clean pages, remove dirty pages from consideration */
2555 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2556 delta += zone_page_state(zone, NR_FILE_DIRTY);
2558 /* Watch for any possible underflows due to delta */
2559 if (unlikely(delta > nr_pagecache_reclaimable))
2560 delta = nr_pagecache_reclaimable;
2562 return nr_pagecache_reclaimable - delta;
2566 * Try to free up some pages from this zone through reclaim.
2568 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2570 /* Minimum pages needed in order to stay on node */
2571 const unsigned long nr_pages = 1 << order;
2572 struct task_struct *p = current;
2573 struct reclaim_state reclaim_state;
2574 int priority;
2575 struct scan_control sc = {
2576 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2577 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2578 .may_swap = 1,
2579 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2580 SWAP_CLUSTER_MAX),
2581 .gfp_mask = gfp_mask,
2582 .swappiness = vm_swappiness,
2583 .order = order,
2584 .isolate_pages = isolate_pages_global,
2586 unsigned long slab_reclaimable;
2588 disable_swap_token();
2589 cond_resched();
2591 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2592 * and we also need to be able to write out pages for RECLAIM_WRITE
2593 * and RECLAIM_SWAP.
2595 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2596 lockdep_set_current_reclaim_state(gfp_mask);
2597 reclaim_state.reclaimed_slab = 0;
2598 p->reclaim_state = &reclaim_state;
2600 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2602 * Free memory by calling shrink zone with increasing
2603 * priorities until we have enough memory freed.
2605 priority = ZONE_RECLAIM_PRIORITY;
2606 do {
2607 note_zone_scanning_priority(zone, priority);
2608 shrink_zone(priority, zone, &sc);
2609 priority--;
2610 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2613 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2614 if (slab_reclaimable > zone->min_slab_pages) {
2616 * shrink_slab() does not currently allow us to determine how
2617 * many pages were freed in this zone. So we take the current
2618 * number of slab pages and shake the slab until it is reduced
2619 * by the same nr_pages that we used for reclaiming unmapped
2620 * pages.
2622 * Note that shrink_slab will free memory on all zones and may
2623 * take a long time.
2625 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2626 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2627 slab_reclaimable - nr_pages)
2631 * Update nr_reclaimed by the number of slab pages we
2632 * reclaimed from this zone.
2634 sc.nr_reclaimed += slab_reclaimable -
2635 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2638 p->reclaim_state = NULL;
2639 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2640 lockdep_clear_current_reclaim_state();
2641 return sc.nr_reclaimed >= nr_pages;
2644 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2646 int node_id;
2647 int ret;
2650 * Zone reclaim reclaims unmapped file backed pages and
2651 * slab pages if we are over the defined limits.
2653 * A small portion of unmapped file backed pages is needed for
2654 * file I/O otherwise pages read by file I/O will be immediately
2655 * thrown out if the zone is overallocated. So we do not reclaim
2656 * if less than a specified percentage of the zone is used by
2657 * unmapped file backed pages.
2659 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2660 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2661 return ZONE_RECLAIM_FULL;
2663 if (zone->all_unreclaimable)
2664 return ZONE_RECLAIM_FULL;
2667 * Do not scan if the allocation should not be delayed.
2669 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2670 return ZONE_RECLAIM_NOSCAN;
2673 * Only run zone reclaim on the local zone or on zones that do not
2674 * have associated processors. This will favor the local processor
2675 * over remote processors and spread off node memory allocations
2676 * as wide as possible.
2678 node_id = zone_to_nid(zone);
2679 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2680 return ZONE_RECLAIM_NOSCAN;
2682 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2683 return ZONE_RECLAIM_NOSCAN;
2685 ret = __zone_reclaim(zone, gfp_mask, order);
2686 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2688 if (!ret)
2689 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2691 return ret;
2693 #endif
2696 * page_evictable - test whether a page is evictable
2697 * @page: the page to test
2698 * @vma: the VMA in which the page is or will be mapped, may be NULL
2700 * Test whether page is evictable--i.e., should be placed on active/inactive
2701 * lists vs unevictable list. The vma argument is !NULL when called from the
2702 * fault path to determine how to instantate a new page.
2704 * Reasons page might not be evictable:
2705 * (1) page's mapping marked unevictable
2706 * (2) page is part of an mlocked VMA
2709 int page_evictable(struct page *page, struct vm_area_struct *vma)
2712 if (mapping_unevictable(page_mapping(page)))
2713 return 0;
2715 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2716 return 0;
2718 return 1;
2722 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2723 * @page: page to check evictability and move to appropriate lru list
2724 * @zone: zone page is in
2726 * Checks a page for evictability and moves the page to the appropriate
2727 * zone lru list.
2729 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2730 * have PageUnevictable set.
2732 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2734 VM_BUG_ON(PageActive(page));
2736 retry:
2737 ClearPageUnevictable(page);
2738 if (page_evictable(page, NULL)) {
2739 enum lru_list l = page_lru_base_type(page);
2741 __dec_zone_state(zone, NR_UNEVICTABLE);
2742 list_move(&page->lru, &zone->lru[l].list);
2743 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2744 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2745 __count_vm_event(UNEVICTABLE_PGRESCUED);
2746 } else {
2748 * rotate unevictable list
2750 SetPageUnevictable(page);
2751 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2752 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2753 if (page_evictable(page, NULL))
2754 goto retry;
2759 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2760 * @mapping: struct address_space to scan for evictable pages
2762 * Scan all pages in mapping. Check unevictable pages for
2763 * evictability and move them to the appropriate zone lru list.
2765 void scan_mapping_unevictable_pages(struct address_space *mapping)
2767 pgoff_t next = 0;
2768 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2769 PAGE_CACHE_SHIFT;
2770 struct zone *zone;
2771 struct pagevec pvec;
2773 if (mapping->nrpages == 0)
2774 return;
2776 pagevec_init(&pvec, 0);
2777 while (next < end &&
2778 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2779 int i;
2780 int pg_scanned = 0;
2782 zone = NULL;
2784 for (i = 0; i < pagevec_count(&pvec); i++) {
2785 struct page *page = pvec.pages[i];
2786 pgoff_t page_index = page->index;
2787 struct zone *pagezone = page_zone(page);
2789 pg_scanned++;
2790 if (page_index > next)
2791 next = page_index;
2792 next++;
2794 if (pagezone != zone) {
2795 if (zone)
2796 spin_unlock_irq(&zone->lru_lock);
2797 zone = pagezone;
2798 spin_lock_irq(&zone->lru_lock);
2801 if (PageLRU(page) && PageUnevictable(page))
2802 check_move_unevictable_page(page, zone);
2804 if (zone)
2805 spin_unlock_irq(&zone->lru_lock);
2806 pagevec_release(&pvec);
2808 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2814 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2815 * @zone - zone of which to scan the unevictable list
2817 * Scan @zone's unevictable LRU lists to check for pages that have become
2818 * evictable. Move those that have to @zone's inactive list where they
2819 * become candidates for reclaim, unless shrink_inactive_zone() decides
2820 * to reactivate them. Pages that are still unevictable are rotated
2821 * back onto @zone's unevictable list.
2823 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2824 static void scan_zone_unevictable_pages(struct zone *zone)
2826 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2827 unsigned long scan;
2828 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2830 while (nr_to_scan > 0) {
2831 unsigned long batch_size = min(nr_to_scan,
2832 SCAN_UNEVICTABLE_BATCH_SIZE);
2834 spin_lock_irq(&zone->lru_lock);
2835 for (scan = 0; scan < batch_size; scan++) {
2836 struct page *page = lru_to_page(l_unevictable);
2838 if (!trylock_page(page))
2839 continue;
2841 prefetchw_prev_lru_page(page, l_unevictable, flags);
2843 if (likely(PageLRU(page) && PageUnevictable(page)))
2844 check_move_unevictable_page(page, zone);
2846 unlock_page(page);
2848 spin_unlock_irq(&zone->lru_lock);
2850 nr_to_scan -= batch_size;
2856 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2858 * A really big hammer: scan all zones' unevictable LRU lists to check for
2859 * pages that have become evictable. Move those back to the zones'
2860 * inactive list where they become candidates for reclaim.
2861 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2862 * and we add swap to the system. As such, it runs in the context of a task
2863 * that has possibly/probably made some previously unevictable pages
2864 * evictable.
2866 static void scan_all_zones_unevictable_pages(void)
2868 struct zone *zone;
2870 for_each_zone(zone) {
2871 scan_zone_unevictable_pages(zone);
2876 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2877 * all nodes' unevictable lists for evictable pages
2879 unsigned long scan_unevictable_pages;
2881 int scan_unevictable_handler(struct ctl_table *table, int write,
2882 void __user *buffer,
2883 size_t *length, loff_t *ppos)
2885 proc_doulongvec_minmax(table, write, buffer, length, ppos);
2887 if (write && *(unsigned long *)table->data)
2888 scan_all_zones_unevictable_pages();
2890 scan_unevictable_pages = 0;
2891 return 0;
2895 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2896 * a specified node's per zone unevictable lists for evictable pages.
2899 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2900 struct sysdev_attribute *attr,
2901 char *buf)
2903 return sprintf(buf, "0\n"); /* always zero; should fit... */
2906 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2907 struct sysdev_attribute *attr,
2908 const char *buf, size_t count)
2910 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2911 struct zone *zone;
2912 unsigned long res;
2913 unsigned long req = strict_strtoul(buf, 10, &res);
2915 if (!req)
2916 return 1; /* zero is no-op */
2918 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2919 if (!populated_zone(zone))
2920 continue;
2921 scan_zone_unevictable_pages(zone);
2923 return 1;
2927 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2928 read_scan_unevictable_node,
2929 write_scan_unevictable_node);
2931 int scan_unevictable_register_node(struct node *node)
2933 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2936 void scan_unevictable_unregister_node(struct node *node)
2938 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);