2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/highuid.h>
26 #include <linux/quotaops.h>
27 #include <linux/writeback.h>
28 #include <linux/mpage.h>
29 #include <linux/namei.h>
30 #include <linux/aio.h>
35 static int ext3_writepage_trans_blocks(struct inode
*inode
);
36 static int ext3_block_truncate_page(struct inode
*inode
, loff_t from
);
39 * Test whether an inode is a fast symlink.
41 static int ext3_inode_is_fast_symlink(struct inode
*inode
)
43 int ea_blocks
= EXT3_I(inode
)->i_file_acl
?
44 (inode
->i_sb
->s_blocksize
>> 9) : 0;
46 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
50 * The ext3 forget function must perform a revoke if we are freeing data
51 * which has been journaled. Metadata (eg. indirect blocks) must be
52 * revoked in all cases.
54 * "bh" may be NULL: a metadata block may have been freed from memory
55 * but there may still be a record of it in the journal, and that record
56 * still needs to be revoked.
58 int ext3_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
59 struct buffer_head
*bh
, ext3_fsblk_t blocknr
)
65 trace_ext3_forget(inode
, is_metadata
, blocknr
);
66 BUFFER_TRACE(bh
, "enter");
68 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
70 bh
, is_metadata
, inode
->i_mode
,
71 test_opt(inode
->i_sb
, DATA_FLAGS
));
73 /* Never use the revoke function if we are doing full data
74 * journaling: there is no need to, and a V1 superblock won't
75 * support it. Otherwise, only skip the revoke on un-journaled
78 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT3_MOUNT_JOURNAL_DATA
||
79 (!is_metadata
&& !ext3_should_journal_data(inode
))) {
81 BUFFER_TRACE(bh
, "call journal_forget");
82 return ext3_journal_forget(handle
, bh
);
88 * data!=journal && (is_metadata || should_journal_data(inode))
90 BUFFER_TRACE(bh
, "call ext3_journal_revoke");
91 err
= ext3_journal_revoke(handle
, blocknr
, bh
);
93 ext3_abort(inode
->i_sb
, __func__
,
94 "error %d when attempting revoke", err
);
95 BUFFER_TRACE(bh
, "exit");
100 * Work out how many blocks we need to proceed with the next chunk of a
101 * truncate transaction.
103 static unsigned long blocks_for_truncate(struct inode
*inode
)
105 unsigned long needed
;
107 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
109 /* Give ourselves just enough room to cope with inodes in which
110 * i_blocks is corrupt: we've seen disk corruptions in the past
111 * which resulted in random data in an inode which looked enough
112 * like a regular file for ext3 to try to delete it. Things
113 * will go a bit crazy if that happens, but at least we should
114 * try not to panic the whole kernel. */
118 /* But we need to bound the transaction so we don't overflow the
120 if (needed
> EXT3_MAX_TRANS_DATA
)
121 needed
= EXT3_MAX_TRANS_DATA
;
123 return EXT3_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
127 * Truncate transactions can be complex and absolutely huge. So we need to
128 * be able to restart the transaction at a conventient checkpoint to make
129 * sure we don't overflow the journal.
131 * start_transaction gets us a new handle for a truncate transaction,
132 * and extend_transaction tries to extend the existing one a bit. If
133 * extend fails, we need to propagate the failure up and restart the
134 * transaction in the top-level truncate loop. --sct
136 static handle_t
*start_transaction(struct inode
*inode
)
140 result
= ext3_journal_start(inode
, blocks_for_truncate(inode
));
144 ext3_std_error(inode
->i_sb
, PTR_ERR(result
));
149 * Try to extend this transaction for the purposes of truncation.
151 * Returns 0 if we managed to create more room. If we can't create more
152 * room, and the transaction must be restarted we return 1.
154 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
156 if (handle
->h_buffer_credits
> EXT3_RESERVE_TRANS_BLOCKS
)
158 if (!ext3_journal_extend(handle
, blocks_for_truncate(inode
)))
164 * Restart the transaction associated with *handle. This does a commit,
165 * so before we call here everything must be consistently dirtied against
168 static int truncate_restart_transaction(handle_t
*handle
, struct inode
*inode
)
172 jbd_debug(2, "restarting handle %p\n", handle
);
174 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
175 * At this moment, get_block can be called only for blocks inside
176 * i_size since page cache has been already dropped and writes are
177 * blocked by i_mutex. So we can safely drop the truncate_mutex.
179 mutex_unlock(&EXT3_I(inode
)->truncate_mutex
);
180 ret
= ext3_journal_restart(handle
, blocks_for_truncate(inode
));
181 mutex_lock(&EXT3_I(inode
)->truncate_mutex
);
186 * Called at inode eviction from icache
188 void ext3_evict_inode (struct inode
*inode
)
190 struct ext3_inode_info
*ei
= EXT3_I(inode
);
191 struct ext3_block_alloc_info
*rsv
;
195 trace_ext3_evict_inode(inode
);
196 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
197 dquot_initialize(inode
);
202 * When journalling data dirty buffers are tracked only in the journal.
203 * So although mm thinks everything is clean and ready for reaping the
204 * inode might still have some pages to write in the running
205 * transaction or waiting to be checkpointed. Thus calling
206 * journal_invalidatepage() (via truncate_inode_pages()) to discard
207 * these buffers can cause data loss. Also even if we did not discard
208 * these buffers, we would have no way to find them after the inode
209 * is reaped and thus user could see stale data if he tries to read
210 * them before the transaction is checkpointed. So be careful and
211 * force everything to disk here... We use ei->i_datasync_tid to
212 * store the newest transaction containing inode's data.
214 * Note that directories do not have this problem because they don't
217 * The s_journal check handles the case when ext3_get_journal() fails
218 * and puts the journal inode.
220 if (inode
->i_nlink
&& ext3_should_journal_data(inode
) &&
221 EXT3_SB(inode
->i_sb
)->s_journal
&&
222 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
)) &&
223 inode
->i_ino
!= EXT3_JOURNAL_INO
) {
224 tid_t commit_tid
= atomic_read(&ei
->i_datasync_tid
);
225 journal_t
*journal
= EXT3_SB(inode
->i_sb
)->s_journal
;
227 log_start_commit(journal
, commit_tid
);
228 log_wait_commit(journal
, commit_tid
);
229 filemap_write_and_wait(&inode
->i_data
);
231 truncate_inode_pages(&inode
->i_data
, 0);
233 ext3_discard_reservation(inode
);
234 rsv
= ei
->i_block_alloc_info
;
235 ei
->i_block_alloc_info
= NULL
;
242 handle
= start_transaction(inode
);
243 if (IS_ERR(handle
)) {
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
249 ext3_orphan_del(NULL
, inode
);
257 ext3_truncate(inode
);
259 * Kill off the orphan record created when the inode lost the last
260 * link. Note that ext3_orphan_del() has to be able to cope with the
261 * deletion of a non-existent orphan - ext3_truncate() could
262 * have removed the record.
264 ext3_orphan_del(handle
, inode
);
265 ei
->i_dtime
= get_seconds();
268 * One subtle ordering requirement: if anything has gone wrong
269 * (transaction abort, IO errors, whatever), then we can still
270 * do these next steps (the fs will already have been marked as
271 * having errors), but we can't free the inode if the mark_dirty
274 if (ext3_mark_inode_dirty(handle
, inode
)) {
275 /* If that failed, just dquot_drop() and be done with that */
279 ext3_xattr_delete_inode(handle
, inode
);
280 dquot_free_inode(inode
);
283 ext3_free_inode(handle
, inode
);
285 ext3_journal_stop(handle
);
295 struct buffer_head
*bh
;
298 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
300 p
->key
= *(p
->p
= v
);
304 static int verify_chain(Indirect
*from
, Indirect
*to
)
306 while (from
<= to
&& from
->key
== *from
->p
)
312 * ext3_block_to_path - parse the block number into array of offsets
313 * @inode: inode in question (we are only interested in its superblock)
314 * @i_block: block number to be parsed
315 * @offsets: array to store the offsets in
316 * @boundary: set this non-zero if the referred-to block is likely to be
317 * followed (on disk) by an indirect block.
319 * To store the locations of file's data ext3 uses a data structure common
320 * for UNIX filesystems - tree of pointers anchored in the inode, with
321 * data blocks at leaves and indirect blocks in intermediate nodes.
322 * This function translates the block number into path in that tree -
323 * return value is the path length and @offsets[n] is the offset of
324 * pointer to (n+1)th node in the nth one. If @block is out of range
325 * (negative or too large) warning is printed and zero returned.
327 * Note: function doesn't find node addresses, so no IO is needed. All
328 * we need to know is the capacity of indirect blocks (taken from the
333 * Portability note: the last comparison (check that we fit into triple
334 * indirect block) is spelled differently, because otherwise on an
335 * architecture with 32-bit longs and 8Kb pages we might get into trouble
336 * if our filesystem had 8Kb blocks. We might use long long, but that would
337 * kill us on x86. Oh, well, at least the sign propagation does not matter -
338 * i_block would have to be negative in the very beginning, so we would not
342 static int ext3_block_to_path(struct inode
*inode
,
343 long i_block
, int offsets
[4], int *boundary
)
345 int ptrs
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
346 int ptrs_bits
= EXT3_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
347 const long direct_blocks
= EXT3_NDIR_BLOCKS
,
348 indirect_blocks
= ptrs
,
349 double_blocks
= (1 << (ptrs_bits
* 2));
354 ext3_warning (inode
->i_sb
, "ext3_block_to_path", "block < 0");
355 } else if (i_block
< direct_blocks
) {
356 offsets
[n
++] = i_block
;
357 final
= direct_blocks
;
358 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
359 offsets
[n
++] = EXT3_IND_BLOCK
;
360 offsets
[n
++] = i_block
;
362 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
363 offsets
[n
++] = EXT3_DIND_BLOCK
;
364 offsets
[n
++] = i_block
>> ptrs_bits
;
365 offsets
[n
++] = i_block
& (ptrs
- 1);
367 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
368 offsets
[n
++] = EXT3_TIND_BLOCK
;
369 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
370 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
371 offsets
[n
++] = i_block
& (ptrs
- 1);
374 ext3_warning(inode
->i_sb
, "ext3_block_to_path", "block > big");
377 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
382 * ext3_get_branch - read the chain of indirect blocks leading to data
383 * @inode: inode in question
384 * @depth: depth of the chain (1 - direct pointer, etc.)
385 * @offsets: offsets of pointers in inode/indirect blocks
386 * @chain: place to store the result
387 * @err: here we store the error value
389 * Function fills the array of triples <key, p, bh> and returns %NULL
390 * if everything went OK or the pointer to the last filled triple
391 * (incomplete one) otherwise. Upon the return chain[i].key contains
392 * the number of (i+1)-th block in the chain (as it is stored in memory,
393 * i.e. little-endian 32-bit), chain[i].p contains the address of that
394 * number (it points into struct inode for i==0 and into the bh->b_data
395 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
396 * block for i>0 and NULL for i==0. In other words, it holds the block
397 * numbers of the chain, addresses they were taken from (and where we can
398 * verify that chain did not change) and buffer_heads hosting these
401 * Function stops when it stumbles upon zero pointer (absent block)
402 * (pointer to last triple returned, *@err == 0)
403 * or when it gets an IO error reading an indirect block
404 * (ditto, *@err == -EIO)
405 * or when it notices that chain had been changed while it was reading
406 * (ditto, *@err == -EAGAIN)
407 * or when it reads all @depth-1 indirect blocks successfully and finds
408 * the whole chain, all way to the data (returns %NULL, *err == 0).
410 static Indirect
*ext3_get_branch(struct inode
*inode
, int depth
, int *offsets
,
411 Indirect chain
[4], int *err
)
413 struct super_block
*sb
= inode
->i_sb
;
415 struct buffer_head
*bh
;
418 /* i_data is not going away, no lock needed */
419 add_chain (chain
, NULL
, EXT3_I(inode
)->i_data
+ *offsets
);
423 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
426 /* Reader: pointers */
427 if (!verify_chain(chain
, p
))
429 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
447 * ext3_find_near - find a place for allocation with sufficient locality
449 * @ind: descriptor of indirect block.
451 * This function returns the preferred place for block allocation.
452 * It is used when heuristic for sequential allocation fails.
454 * + if there is a block to the left of our position - allocate near it.
455 * + if pointer will live in indirect block - allocate near that block.
456 * + if pointer will live in inode - allocate in the same
459 * In the latter case we colour the starting block by the callers PID to
460 * prevent it from clashing with concurrent allocations for a different inode
461 * in the same block group. The PID is used here so that functionally related
462 * files will be close-by on-disk.
464 * Caller must make sure that @ind is valid and will stay that way.
466 static ext3_fsblk_t
ext3_find_near(struct inode
*inode
, Indirect
*ind
)
468 struct ext3_inode_info
*ei
= EXT3_I(inode
);
469 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
471 ext3_fsblk_t bg_start
;
472 ext3_grpblk_t colour
;
474 /* Try to find previous block */
475 for (p
= ind
->p
- 1; p
>= start
; p
--) {
477 return le32_to_cpu(*p
);
480 /* No such thing, so let's try location of indirect block */
482 return ind
->bh
->b_blocknr
;
485 * It is going to be referred to from the inode itself? OK, just put it
486 * into the same cylinder group then.
488 bg_start
= ext3_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
489 colour
= (current
->pid
% 16) *
490 (EXT3_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
491 return bg_start
+ colour
;
495 * ext3_find_goal - find a preferred place for allocation.
497 * @block: block we want
498 * @partial: pointer to the last triple within a chain
500 * Normally this function find the preferred place for block allocation,
504 static ext3_fsblk_t
ext3_find_goal(struct inode
*inode
, long block
,
507 struct ext3_block_alloc_info
*block_i
;
509 block_i
= EXT3_I(inode
)->i_block_alloc_info
;
512 * try the heuristic for sequential allocation,
513 * failing that at least try to get decent locality.
515 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
516 && (block_i
->last_alloc_physical_block
!= 0)) {
517 return block_i
->last_alloc_physical_block
+ 1;
520 return ext3_find_near(inode
, partial
);
524 * ext3_blks_to_allocate - Look up the block map and count the number
525 * of direct blocks need to be allocated for the given branch.
527 * @branch: chain of indirect blocks
528 * @k: number of blocks need for indirect blocks
529 * @blks: number of data blocks to be mapped.
530 * @blocks_to_boundary: the offset in the indirect block
532 * return the total number of blocks to be allocate, including the
533 * direct and indirect blocks.
535 static int ext3_blks_to_allocate(Indirect
*branch
, int k
, unsigned long blks
,
536 int blocks_to_boundary
)
538 unsigned long count
= 0;
541 * Simple case, [t,d]Indirect block(s) has not allocated yet
542 * then it's clear blocks on that path have not allocated
545 /* right now we don't handle cross boundary allocation */
546 if (blks
< blocks_to_boundary
+ 1)
549 count
+= blocks_to_boundary
+ 1;
554 while (count
< blks
&& count
<= blocks_to_boundary
&&
555 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
562 * ext3_alloc_blocks - multiple allocate blocks needed for a branch
563 * @handle: handle for this transaction
565 * @goal: preferred place for allocation
566 * @indirect_blks: the number of blocks need to allocate for indirect
568 * @blks: number of blocks need to allocated for direct blocks
569 * @new_blocks: on return it will store the new block numbers for
570 * the indirect blocks(if needed) and the first direct block,
571 * @err: here we store the error value
573 * return the number of direct blocks allocated
575 static int ext3_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
576 ext3_fsblk_t goal
, int indirect_blks
, int blks
,
577 ext3_fsblk_t new_blocks
[4], int *err
)
580 unsigned long count
= 0;
582 ext3_fsblk_t current_block
= 0;
586 * Here we try to allocate the requested multiple blocks at once,
587 * on a best-effort basis.
588 * To build a branch, we should allocate blocks for
589 * the indirect blocks(if not allocated yet), and at least
590 * the first direct block of this branch. That's the
591 * minimum number of blocks need to allocate(required)
593 target
= blks
+ indirect_blks
;
597 /* allocating blocks for indirect blocks and direct blocks */
598 current_block
= ext3_new_blocks(handle
,inode
,goal
,&count
,err
);
603 /* allocate blocks for indirect blocks */
604 while (index
< indirect_blks
&& count
) {
605 new_blocks
[index
++] = current_block
++;
613 /* save the new block number for the first direct block */
614 new_blocks
[index
] = current_block
;
616 /* total number of blocks allocated for direct blocks */
621 for (i
= 0; i
<index
; i
++)
622 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
627 * ext3_alloc_branch - allocate and set up a chain of blocks.
628 * @handle: handle for this transaction
630 * @indirect_blks: number of allocated indirect blocks
631 * @blks: number of allocated direct blocks
632 * @goal: preferred place for allocation
633 * @offsets: offsets (in the blocks) to store the pointers to next.
634 * @branch: place to store the chain in.
636 * This function allocates blocks, zeroes out all but the last one,
637 * links them into chain and (if we are synchronous) writes them to disk.
638 * In other words, it prepares a branch that can be spliced onto the
639 * inode. It stores the information about that chain in the branch[], in
640 * the same format as ext3_get_branch() would do. We are calling it after
641 * we had read the existing part of chain and partial points to the last
642 * triple of that (one with zero ->key). Upon the exit we have the same
643 * picture as after the successful ext3_get_block(), except that in one
644 * place chain is disconnected - *branch->p is still zero (we did not
645 * set the last link), but branch->key contains the number that should
646 * be placed into *branch->p to fill that gap.
648 * If allocation fails we free all blocks we've allocated (and forget
649 * their buffer_heads) and return the error value the from failed
650 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
651 * as described above and return 0.
653 static int ext3_alloc_branch(handle_t
*handle
, struct inode
*inode
,
654 int indirect_blks
, int *blks
, ext3_fsblk_t goal
,
655 int *offsets
, Indirect
*branch
)
657 int blocksize
= inode
->i_sb
->s_blocksize
;
660 struct buffer_head
*bh
;
662 ext3_fsblk_t new_blocks
[4];
663 ext3_fsblk_t current_block
;
665 num
= ext3_alloc_blocks(handle
, inode
, goal
, indirect_blks
,
666 *blks
, new_blocks
, &err
);
670 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
672 * metadata blocks and data blocks are allocated.
674 for (n
= 1; n
<= indirect_blks
; n
++) {
676 * Get buffer_head for parent block, zero it out
677 * and set the pointer to new one, then send
680 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
687 BUFFER_TRACE(bh
, "call get_create_access");
688 err
= ext3_journal_get_create_access(handle
, bh
);
695 memset(bh
->b_data
, 0, blocksize
);
696 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
697 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
698 *branch
[n
].p
= branch
[n
].key
;
699 if ( n
== indirect_blks
) {
700 current_block
= new_blocks
[n
];
702 * End of chain, update the last new metablock of
703 * the chain to point to the new allocated
704 * data blocks numbers
706 for (i
=1; i
< num
; i
++)
707 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
709 BUFFER_TRACE(bh
, "marking uptodate");
710 set_buffer_uptodate(bh
);
713 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
714 err
= ext3_journal_dirty_metadata(handle
, bh
);
721 /* Allocation failed, free what we already allocated */
722 for (i
= 1; i
<= n
; i
++) {
723 BUFFER_TRACE(branch
[i
].bh
, "call journal_forget");
724 ext3_journal_forget(handle
, branch
[i
].bh
);
726 for (i
= 0; i
< indirect_blks
; i
++)
727 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
729 ext3_free_blocks(handle
, inode
, new_blocks
[i
], num
);
735 * ext3_splice_branch - splice the allocated branch onto inode.
736 * @handle: handle for this transaction
738 * @block: (logical) number of block we are adding
739 * @where: location of missing link
740 * @num: number of indirect blocks we are adding
741 * @blks: number of direct blocks we are adding
743 * This function fills the missing link and does all housekeeping needed in
744 * inode (->i_blocks, etc.). In case of success we end up with the full
745 * chain to new block and return 0.
747 static int ext3_splice_branch(handle_t
*handle
, struct inode
*inode
,
748 long block
, Indirect
*where
, int num
, int blks
)
752 struct ext3_block_alloc_info
*block_i
;
753 ext3_fsblk_t current_block
;
754 struct ext3_inode_info
*ei
= EXT3_I(inode
);
757 block_i
= ei
->i_block_alloc_info
;
759 * If we're splicing into a [td]indirect block (as opposed to the
760 * inode) then we need to get write access to the [td]indirect block
764 BUFFER_TRACE(where
->bh
, "get_write_access");
765 err
= ext3_journal_get_write_access(handle
, where
->bh
);
771 *where
->p
= where
->key
;
774 * Update the host buffer_head or inode to point to more just allocated
775 * direct blocks blocks
777 if (num
== 0 && blks
> 1) {
778 current_block
= le32_to_cpu(where
->key
) + 1;
779 for (i
= 1; i
< blks
; i
++)
780 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
784 * update the most recently allocated logical & physical block
785 * in i_block_alloc_info, to assist find the proper goal block for next
789 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
790 block_i
->last_alloc_physical_block
=
791 le32_to_cpu(where
[num
].key
) + blks
- 1;
794 /* We are done with atomic stuff, now do the rest of housekeeping */
795 now
= CURRENT_TIME_SEC
;
796 if (!timespec_equal(&inode
->i_ctime
, &now
) || !where
->bh
) {
797 inode
->i_ctime
= now
;
798 ext3_mark_inode_dirty(handle
, inode
);
800 /* ext3_mark_inode_dirty already updated i_sync_tid */
801 atomic_set(&ei
->i_datasync_tid
, handle
->h_transaction
->t_tid
);
803 /* had we spliced it onto indirect block? */
806 * If we spliced it onto an indirect block, we haven't
807 * altered the inode. Note however that if it is being spliced
808 * onto an indirect block at the very end of the file (the
809 * file is growing) then we *will* alter the inode to reflect
810 * the new i_size. But that is not done here - it is done in
811 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
813 jbd_debug(5, "splicing indirect only\n");
814 BUFFER_TRACE(where
->bh
, "call ext3_journal_dirty_metadata");
815 err
= ext3_journal_dirty_metadata(handle
, where
->bh
);
820 * OK, we spliced it into the inode itself on a direct block.
821 * Inode was dirtied above.
823 jbd_debug(5, "splicing direct\n");
828 for (i
= 1; i
<= num
; i
++) {
829 BUFFER_TRACE(where
[i
].bh
, "call journal_forget");
830 ext3_journal_forget(handle
, where
[i
].bh
);
831 ext3_free_blocks(handle
,inode
,le32_to_cpu(where
[i
-1].key
),1);
833 ext3_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
);
839 * Allocation strategy is simple: if we have to allocate something, we will
840 * have to go the whole way to leaf. So let's do it before attaching anything
841 * to tree, set linkage between the newborn blocks, write them if sync is
842 * required, recheck the path, free and repeat if check fails, otherwise
843 * set the last missing link (that will protect us from any truncate-generated
844 * removals - all blocks on the path are immune now) and possibly force the
845 * write on the parent block.
846 * That has a nice additional property: no special recovery from the failed
847 * allocations is needed - we simply release blocks and do not touch anything
848 * reachable from inode.
850 * `handle' can be NULL if create == 0.
852 * The BKL may not be held on entry here. Be sure to take it early.
853 * return > 0, # of blocks mapped or allocated.
854 * return = 0, if plain lookup failed.
855 * return < 0, error case.
857 int ext3_get_blocks_handle(handle_t
*handle
, struct inode
*inode
,
858 sector_t iblock
, unsigned long maxblocks
,
859 struct buffer_head
*bh_result
,
868 int blocks_to_boundary
= 0;
870 struct ext3_inode_info
*ei
= EXT3_I(inode
);
872 ext3_fsblk_t first_block
= 0;
875 trace_ext3_get_blocks_enter(inode
, iblock
, maxblocks
, create
);
876 J_ASSERT(handle
!= NULL
|| create
== 0);
877 depth
= ext3_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
882 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
884 /* Simplest case - block found, no allocation needed */
886 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
887 clear_buffer_new(bh_result
);
890 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
893 if (!verify_chain(chain
, chain
+ depth
- 1)) {
895 * Indirect block might be removed by
896 * truncate while we were reading it.
897 * Handling of that case: forget what we've
898 * got now. Flag the err as EAGAIN, so it
905 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
907 if (blk
== first_block
+ count
)
916 /* Next simple case - plain lookup or failed read of indirect block */
917 if (!create
|| err
== -EIO
)
921 * Block out ext3_truncate while we alter the tree
923 mutex_lock(&ei
->truncate_mutex
);
926 * If the indirect block is missing while we are reading
927 * the chain(ext3_get_branch() returns -EAGAIN err), or
928 * if the chain has been changed after we grab the semaphore,
929 * (either because another process truncated this branch, or
930 * another get_block allocated this branch) re-grab the chain to see if
931 * the request block has been allocated or not.
933 * Since we already block the truncate/other get_block
934 * at this point, we will have the current copy of the chain when we
935 * splice the branch into the tree.
937 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
938 while (partial
> chain
) {
942 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
945 mutex_unlock(&ei
->truncate_mutex
);
948 clear_buffer_new(bh_result
);
954 * Okay, we need to do block allocation. Lazily initialize the block
955 * allocation info here if necessary
957 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
958 ext3_init_block_alloc_info(inode
);
960 goal
= ext3_find_goal(inode
, iblock
, partial
);
962 /* the number of blocks need to allocate for [d,t]indirect blocks */
963 indirect_blks
= (chain
+ depth
) - partial
- 1;
966 * Next look up the indirect map to count the totoal number of
967 * direct blocks to allocate for this branch.
969 count
= ext3_blks_to_allocate(partial
, indirect_blks
,
970 maxblocks
, blocks_to_boundary
);
971 err
= ext3_alloc_branch(handle
, inode
, indirect_blks
, &count
, goal
,
972 offsets
+ (partial
- chain
), partial
);
975 * The ext3_splice_branch call will free and forget any buffers
976 * on the new chain if there is a failure, but that risks using
977 * up transaction credits, especially for bitmaps where the
978 * credits cannot be returned. Can we handle this somehow? We
979 * may need to return -EAGAIN upwards in the worst case. --sct
982 err
= ext3_splice_branch(handle
, inode
, iblock
,
983 partial
, indirect_blks
, count
);
984 mutex_unlock(&ei
->truncate_mutex
);
988 set_buffer_new(bh_result
);
990 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
991 if (count
> blocks_to_boundary
)
992 set_buffer_boundary(bh_result
);
994 /* Clean up and exit */
995 partial
= chain
+ depth
- 1; /* the whole chain */
997 while (partial
> chain
) {
998 BUFFER_TRACE(partial
->bh
, "call brelse");
1002 BUFFER_TRACE(bh_result
, "returned");
1004 trace_ext3_get_blocks_exit(inode
, iblock
,
1005 depth
? le32_to_cpu(chain
[depth
-1].key
) : 0,
1010 /* Maximum number of blocks we map for direct IO at once. */
1011 #define DIO_MAX_BLOCKS 4096
1013 * Number of credits we need for writing DIO_MAX_BLOCKS:
1014 * We need sb + group descriptor + bitmap + inode -> 4
1015 * For B blocks with A block pointers per block we need:
1016 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1017 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1019 #define DIO_CREDITS 25
1021 static int ext3_get_block(struct inode
*inode
, sector_t iblock
,
1022 struct buffer_head
*bh_result
, int create
)
1024 handle_t
*handle
= ext3_journal_current_handle();
1025 int ret
= 0, started
= 0;
1026 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1028 if (create
&& !handle
) { /* Direct IO write... */
1029 if (max_blocks
> DIO_MAX_BLOCKS
)
1030 max_blocks
= DIO_MAX_BLOCKS
;
1031 handle
= ext3_journal_start(inode
, DIO_CREDITS
+
1032 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
));
1033 if (IS_ERR(handle
)) {
1034 ret
= PTR_ERR(handle
);
1040 ret
= ext3_get_blocks_handle(handle
, inode
, iblock
,
1041 max_blocks
, bh_result
, create
);
1043 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1047 ext3_journal_stop(handle
);
1052 int ext3_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
1055 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
1060 * `handle' can be NULL if create is zero
1062 struct buffer_head
*ext3_getblk(handle_t
*handle
, struct inode
*inode
,
1063 long block
, int create
, int *errp
)
1065 struct buffer_head dummy
;
1068 J_ASSERT(handle
!= NULL
|| create
== 0);
1071 dummy
.b_blocknr
= -1000;
1072 buffer_trace_init(&dummy
.b_history
);
1073 err
= ext3_get_blocks_handle(handle
, inode
, block
, 1,
1076 * ext3_get_blocks_handle() returns number of blocks
1077 * mapped. 0 in case of a HOLE.
1084 if (!err
&& buffer_mapped(&dummy
)) {
1085 struct buffer_head
*bh
;
1086 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1087 if (unlikely(!bh
)) {
1091 if (buffer_new(&dummy
)) {
1092 J_ASSERT(create
!= 0);
1093 J_ASSERT(handle
!= NULL
);
1096 * Now that we do not always journal data, we should
1097 * keep in mind whether this should always journal the
1098 * new buffer as metadata. For now, regular file
1099 * writes use ext3_get_block instead, so it's not a
1103 BUFFER_TRACE(bh
, "call get_create_access");
1104 fatal
= ext3_journal_get_create_access(handle
, bh
);
1105 if (!fatal
&& !buffer_uptodate(bh
)) {
1106 memset(bh
->b_data
,0,inode
->i_sb
->s_blocksize
);
1107 set_buffer_uptodate(bh
);
1110 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
1111 err
= ext3_journal_dirty_metadata(handle
, bh
);
1115 BUFFER_TRACE(bh
, "not a new buffer");
1128 struct buffer_head
*ext3_bread(handle_t
*handle
, struct inode
*inode
,
1129 int block
, int create
, int *err
)
1131 struct buffer_head
* bh
;
1133 bh
= ext3_getblk(handle
, inode
, block
, create
, err
);
1136 if (bh_uptodate_or_lock(bh
))
1139 bh
->b_end_io
= end_buffer_read_sync
;
1140 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
1142 if (buffer_uptodate(bh
))
1149 static int walk_page_buffers( handle_t
*handle
,
1150 struct buffer_head
*head
,
1154 int (*fn
)( handle_t
*handle
,
1155 struct buffer_head
*bh
))
1157 struct buffer_head
*bh
;
1158 unsigned block_start
, block_end
;
1159 unsigned blocksize
= head
->b_size
;
1161 struct buffer_head
*next
;
1163 for ( bh
= head
, block_start
= 0;
1164 ret
== 0 && (bh
!= head
|| !block_start
);
1165 block_start
= block_end
, bh
= next
)
1167 next
= bh
->b_this_page
;
1168 block_end
= block_start
+ blocksize
;
1169 if (block_end
<= from
|| block_start
>= to
) {
1170 if (partial
&& !buffer_uptodate(bh
))
1174 err
= (*fn
)(handle
, bh
);
1182 * To preserve ordering, it is essential that the hole instantiation and
1183 * the data write be encapsulated in a single transaction. We cannot
1184 * close off a transaction and start a new one between the ext3_get_block()
1185 * and the commit_write(). So doing the journal_start at the start of
1186 * prepare_write() is the right place.
1188 * Also, this function can nest inside ext3_writepage() ->
1189 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1190 * has generated enough buffer credits to do the whole page. So we won't
1191 * block on the journal in that case, which is good, because the caller may
1194 * By accident, ext3 can be reentered when a transaction is open via
1195 * quota file writes. If we were to commit the transaction while thus
1196 * reentered, there can be a deadlock - we would be holding a quota
1197 * lock, and the commit would never complete if another thread had a
1198 * transaction open and was blocking on the quota lock - a ranking
1201 * So what we do is to rely on the fact that journal_stop/journal_start
1202 * will _not_ run commit under these circumstances because handle->h_ref
1203 * is elevated. We'll still have enough credits for the tiny quotafile
1206 static int do_journal_get_write_access(handle_t
*handle
,
1207 struct buffer_head
*bh
)
1209 int dirty
= buffer_dirty(bh
);
1212 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1215 * __block_prepare_write() could have dirtied some buffers. Clean
1216 * the dirty bit as jbd2_journal_get_write_access() could complain
1217 * otherwise about fs integrity issues. Setting of the dirty bit
1218 * by __block_prepare_write() isn't a real problem here as we clear
1219 * the bit before releasing a page lock and thus writeback cannot
1220 * ever write the buffer.
1223 clear_buffer_dirty(bh
);
1224 ret
= ext3_journal_get_write_access(handle
, bh
);
1226 ret
= ext3_journal_dirty_metadata(handle
, bh
);
1231 * Truncate blocks that were not used by write. We have to truncate the
1232 * pagecache as well so that corresponding buffers get properly unmapped.
1234 static void ext3_truncate_failed_write(struct inode
*inode
)
1236 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1237 ext3_truncate(inode
);
1241 * Truncate blocks that were not used by direct IO write. We have to zero out
1242 * the last file block as well because direct IO might have written to it.
1244 static void ext3_truncate_failed_direct_write(struct inode
*inode
)
1246 ext3_block_truncate_page(inode
, inode
->i_size
);
1247 ext3_truncate(inode
);
1250 static int ext3_write_begin(struct file
*file
, struct address_space
*mapping
,
1251 loff_t pos
, unsigned len
, unsigned flags
,
1252 struct page
**pagep
, void **fsdata
)
1254 struct inode
*inode
= mapping
->host
;
1261 /* Reserve one block more for addition to orphan list in case
1262 * we allocate blocks but write fails for some reason */
1263 int needed_blocks
= ext3_writepage_trans_blocks(inode
) + 1;
1265 trace_ext3_write_begin(inode
, pos
, len
, flags
);
1267 index
= pos
>> PAGE_CACHE_SHIFT
;
1268 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1272 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1277 handle
= ext3_journal_start(inode
, needed_blocks
);
1278 if (IS_ERR(handle
)) {
1280 page_cache_release(page
);
1281 ret
= PTR_ERR(handle
);
1284 ret
= __block_write_begin(page
, pos
, len
, ext3_get_block
);
1286 goto write_begin_failed
;
1288 if (ext3_should_journal_data(inode
)) {
1289 ret
= walk_page_buffers(handle
, page_buffers(page
),
1290 from
, to
, NULL
, do_journal_get_write_access
);
1295 * block_write_begin may have instantiated a few blocks
1296 * outside i_size. Trim these off again. Don't need
1297 * i_size_read because we hold i_mutex.
1299 * Add inode to orphan list in case we crash before truncate
1300 * finishes. Do this only if ext3_can_truncate() agrees so
1301 * that orphan processing code is happy.
1303 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1304 ext3_orphan_add(handle
, inode
);
1305 ext3_journal_stop(handle
);
1307 page_cache_release(page
);
1308 if (pos
+ len
> inode
->i_size
)
1309 ext3_truncate_failed_write(inode
);
1311 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1318 int ext3_journal_dirty_data(handle_t
*handle
, struct buffer_head
*bh
)
1320 int err
= journal_dirty_data(handle
, bh
);
1322 ext3_journal_abort_handle(__func__
, __func__
,
1327 /* For ordered writepage and write_end functions */
1328 static int journal_dirty_data_fn(handle_t
*handle
, struct buffer_head
*bh
)
1331 * Write could have mapped the buffer but it didn't copy the data in
1332 * yet. So avoid filing such buffer into a transaction.
1334 if (buffer_mapped(bh
) && buffer_uptodate(bh
))
1335 return ext3_journal_dirty_data(handle
, bh
);
1339 /* For write_end() in data=journal mode */
1340 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1342 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1344 set_buffer_uptodate(bh
);
1345 return ext3_journal_dirty_metadata(handle
, bh
);
1349 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1350 * for the whole page but later we failed to copy the data in. Update inode
1351 * size according to what we managed to copy. The rest is going to be
1352 * truncated in write_end function.
1354 static void update_file_sizes(struct inode
*inode
, loff_t pos
, unsigned copied
)
1356 /* What matters to us is i_disksize. We don't write i_size anywhere */
1357 if (pos
+ copied
> inode
->i_size
)
1358 i_size_write(inode
, pos
+ copied
);
1359 if (pos
+ copied
> EXT3_I(inode
)->i_disksize
) {
1360 EXT3_I(inode
)->i_disksize
= pos
+ copied
;
1361 mark_inode_dirty(inode
);
1366 * We need to pick up the new inode size which generic_commit_write gave us
1367 * `file' can be NULL - eg, when called from page_symlink().
1369 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1370 * buffers are managed internally.
1372 static int ext3_ordered_write_end(struct file
*file
,
1373 struct address_space
*mapping
,
1374 loff_t pos
, unsigned len
, unsigned copied
,
1375 struct page
*page
, void *fsdata
)
1377 handle_t
*handle
= ext3_journal_current_handle();
1378 struct inode
*inode
= file
->f_mapping
->host
;
1382 trace_ext3_ordered_write_end(inode
, pos
, len
, copied
);
1383 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1385 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1387 ret
= walk_page_buffers(handle
, page_buffers(page
),
1388 from
, to
, NULL
, journal_dirty_data_fn
);
1391 update_file_sizes(inode
, pos
, copied
);
1393 * There may be allocated blocks outside of i_size because
1394 * we failed to copy some data. Prepare for truncate.
1396 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1397 ext3_orphan_add(handle
, inode
);
1398 ret2
= ext3_journal_stop(handle
);
1402 page_cache_release(page
);
1404 if (pos
+ len
> inode
->i_size
)
1405 ext3_truncate_failed_write(inode
);
1406 return ret
? ret
: copied
;
1409 static int ext3_writeback_write_end(struct file
*file
,
1410 struct address_space
*mapping
,
1411 loff_t pos
, unsigned len
, unsigned copied
,
1412 struct page
*page
, void *fsdata
)
1414 handle_t
*handle
= ext3_journal_current_handle();
1415 struct inode
*inode
= file
->f_mapping
->host
;
1418 trace_ext3_writeback_write_end(inode
, pos
, len
, copied
);
1419 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1420 update_file_sizes(inode
, pos
, copied
);
1422 * There may be allocated blocks outside of i_size because
1423 * we failed to copy some data. Prepare for truncate.
1425 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1426 ext3_orphan_add(handle
, inode
);
1427 ret
= ext3_journal_stop(handle
);
1429 page_cache_release(page
);
1431 if (pos
+ len
> inode
->i_size
)
1432 ext3_truncate_failed_write(inode
);
1433 return ret
? ret
: copied
;
1436 static int ext3_journalled_write_end(struct file
*file
,
1437 struct address_space
*mapping
,
1438 loff_t pos
, unsigned len
, unsigned copied
,
1439 struct page
*page
, void *fsdata
)
1441 handle_t
*handle
= ext3_journal_current_handle();
1442 struct inode
*inode
= mapping
->host
;
1443 struct ext3_inode_info
*ei
= EXT3_I(inode
);
1448 trace_ext3_journalled_write_end(inode
, pos
, len
, copied
);
1449 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1453 if (!PageUptodate(page
))
1455 page_zero_new_buffers(page
, from
+ copied
, to
);
1459 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1460 to
, &partial
, write_end_fn
);
1462 SetPageUptodate(page
);
1464 if (pos
+ copied
> inode
->i_size
)
1465 i_size_write(inode
, pos
+ copied
);
1467 * There may be allocated blocks outside of i_size because
1468 * we failed to copy some data. Prepare for truncate.
1470 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1471 ext3_orphan_add(handle
, inode
);
1472 ext3_set_inode_state(inode
, EXT3_STATE_JDATA
);
1473 atomic_set(&ei
->i_datasync_tid
, handle
->h_transaction
->t_tid
);
1474 if (inode
->i_size
> ei
->i_disksize
) {
1475 ei
->i_disksize
= inode
->i_size
;
1476 ret2
= ext3_mark_inode_dirty(handle
, inode
);
1481 ret2
= ext3_journal_stop(handle
);
1485 page_cache_release(page
);
1487 if (pos
+ len
> inode
->i_size
)
1488 ext3_truncate_failed_write(inode
);
1489 return ret
? ret
: copied
;
1493 * bmap() is special. It gets used by applications such as lilo and by
1494 * the swapper to find the on-disk block of a specific piece of data.
1496 * Naturally, this is dangerous if the block concerned is still in the
1497 * journal. If somebody makes a swapfile on an ext3 data-journaling
1498 * filesystem and enables swap, then they may get a nasty shock when the
1499 * data getting swapped to that swapfile suddenly gets overwritten by
1500 * the original zero's written out previously to the journal and
1501 * awaiting writeback in the kernel's buffer cache.
1503 * So, if we see any bmap calls here on a modified, data-journaled file,
1504 * take extra steps to flush any blocks which might be in the cache.
1506 static sector_t
ext3_bmap(struct address_space
*mapping
, sector_t block
)
1508 struct inode
*inode
= mapping
->host
;
1512 if (ext3_test_inode_state(inode
, EXT3_STATE_JDATA
)) {
1514 * This is a REALLY heavyweight approach, but the use of
1515 * bmap on dirty files is expected to be extremely rare:
1516 * only if we run lilo or swapon on a freshly made file
1517 * do we expect this to happen.
1519 * (bmap requires CAP_SYS_RAWIO so this does not
1520 * represent an unprivileged user DOS attack --- we'd be
1521 * in trouble if mortal users could trigger this path at
1524 * NB. EXT3_STATE_JDATA is not set on files other than
1525 * regular files. If somebody wants to bmap a directory
1526 * or symlink and gets confused because the buffer
1527 * hasn't yet been flushed to disk, they deserve
1528 * everything they get.
1531 ext3_clear_inode_state(inode
, EXT3_STATE_JDATA
);
1532 journal
= EXT3_JOURNAL(inode
);
1533 journal_lock_updates(journal
);
1534 err
= journal_flush(journal
);
1535 journal_unlock_updates(journal
);
1541 return generic_block_bmap(mapping
,block
,ext3_get_block
);
1544 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1550 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1556 static int buffer_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
1558 return !buffer_mapped(bh
);
1562 * Note that we always start a transaction even if we're not journalling
1563 * data. This is to preserve ordering: any hole instantiation within
1564 * __block_write_full_page -> ext3_get_block() should be journalled
1565 * along with the data so we don't crash and then get metadata which
1566 * refers to old data.
1568 * In all journalling modes block_write_full_page() will start the I/O.
1572 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1577 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1579 * Same applies to ext3_get_block(). We will deadlock on various things like
1580 * lock_journal and i_truncate_mutex.
1582 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1585 * 16May01: If we're reentered then journal_current_handle() will be
1586 * non-zero. We simply *return*.
1588 * 1 July 2001: @@@ FIXME:
1589 * In journalled data mode, a data buffer may be metadata against the
1590 * current transaction. But the same file is part of a shared mapping
1591 * and someone does a writepage() on it.
1593 * We will move the buffer onto the async_data list, but *after* it has
1594 * been dirtied. So there's a small window where we have dirty data on
1597 * Note that this only applies to the last partial page in the file. The
1598 * bit which block_write_full_page() uses prepare/commit for. (That's
1599 * broken code anyway: it's wrong for msync()).
1601 * It's a rare case: affects the final partial page, for journalled data
1602 * where the file is subject to bith write() and writepage() in the same
1603 * transction. To fix it we'll need a custom block_write_full_page().
1604 * We'll probably need that anyway for journalling writepage() output.
1606 * We don't honour synchronous mounts for writepage(). That would be
1607 * disastrous. Any write() or metadata operation will sync the fs for
1610 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1611 * we don't need to open a transaction here.
1613 static int ext3_ordered_writepage(struct page
*page
,
1614 struct writeback_control
*wbc
)
1616 struct inode
*inode
= page
->mapping
->host
;
1617 struct buffer_head
*page_bufs
;
1618 handle_t
*handle
= NULL
;
1622 J_ASSERT(PageLocked(page
));
1624 * We don't want to warn for emergency remount. The condition is
1625 * ordered to avoid dereferencing inode->i_sb in non-error case to
1628 WARN_ON_ONCE(IS_RDONLY(inode
) &&
1629 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ERROR_FS
));
1632 * We give up here if we're reentered, because it might be for a
1633 * different filesystem.
1635 if (ext3_journal_current_handle())
1638 trace_ext3_ordered_writepage(page
);
1639 if (!page_has_buffers(page
)) {
1640 create_empty_buffers(page
, inode
->i_sb
->s_blocksize
,
1641 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1642 page_bufs
= page_buffers(page
);
1644 page_bufs
= page_buffers(page
);
1645 if (!walk_page_buffers(NULL
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1646 NULL
, buffer_unmapped
)) {
1647 /* Provide NULL get_block() to catch bugs if buffers
1648 * weren't really mapped */
1649 return block_write_full_page(page
, NULL
, wbc
);
1652 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1654 if (IS_ERR(handle
)) {
1655 ret
= PTR_ERR(handle
);
1659 walk_page_buffers(handle
, page_bufs
, 0,
1660 PAGE_CACHE_SIZE
, NULL
, bget_one
);
1662 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1665 * The page can become unlocked at any point now, and
1666 * truncate can then come in and change things. So we
1667 * can't touch *page from now on. But *page_bufs is
1668 * safe due to elevated refcount.
1672 * And attach them to the current transaction. But only if
1673 * block_write_full_page() succeeded. Otherwise they are unmapped,
1674 * and generally junk.
1677 err
= walk_page_buffers(handle
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1678 NULL
, journal_dirty_data_fn
);
1682 walk_page_buffers(handle
, page_bufs
, 0,
1683 PAGE_CACHE_SIZE
, NULL
, bput_one
);
1684 err
= ext3_journal_stop(handle
);
1690 redirty_page_for_writepage(wbc
, page
);
1695 static int ext3_writeback_writepage(struct page
*page
,
1696 struct writeback_control
*wbc
)
1698 struct inode
*inode
= page
->mapping
->host
;
1699 handle_t
*handle
= NULL
;
1703 J_ASSERT(PageLocked(page
));
1705 * We don't want to warn for emergency remount. The condition is
1706 * ordered to avoid dereferencing inode->i_sb in non-error case to
1709 WARN_ON_ONCE(IS_RDONLY(inode
) &&
1710 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ERROR_FS
));
1712 if (ext3_journal_current_handle())
1715 trace_ext3_writeback_writepage(page
);
1716 if (page_has_buffers(page
)) {
1717 if (!walk_page_buffers(NULL
, page_buffers(page
), 0,
1718 PAGE_CACHE_SIZE
, NULL
, buffer_unmapped
)) {
1719 /* Provide NULL get_block() to catch bugs if buffers
1720 * weren't really mapped */
1721 return block_write_full_page(page
, NULL
, wbc
);
1725 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1726 if (IS_ERR(handle
)) {
1727 ret
= PTR_ERR(handle
);
1731 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1733 err
= ext3_journal_stop(handle
);
1739 redirty_page_for_writepage(wbc
, page
);
1744 static int ext3_journalled_writepage(struct page
*page
,
1745 struct writeback_control
*wbc
)
1747 struct inode
*inode
= page
->mapping
->host
;
1748 handle_t
*handle
= NULL
;
1752 J_ASSERT(PageLocked(page
));
1754 * We don't want to warn for emergency remount. The condition is
1755 * ordered to avoid dereferencing inode->i_sb in non-error case to
1758 WARN_ON_ONCE(IS_RDONLY(inode
) &&
1759 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ERROR_FS
));
1761 if (ext3_journal_current_handle())
1764 trace_ext3_journalled_writepage(page
);
1765 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1766 if (IS_ERR(handle
)) {
1767 ret
= PTR_ERR(handle
);
1771 if (!page_has_buffers(page
) || PageChecked(page
)) {
1773 * It's mmapped pagecache. Add buffers and journal it. There
1774 * doesn't seem much point in redirtying the page here.
1776 ClearPageChecked(page
);
1777 ret
= __block_write_begin(page
, 0, PAGE_CACHE_SIZE
,
1780 ext3_journal_stop(handle
);
1783 ret
= walk_page_buffers(handle
, page_buffers(page
), 0,
1784 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
);
1786 err
= walk_page_buffers(handle
, page_buffers(page
), 0,
1787 PAGE_CACHE_SIZE
, NULL
, write_end_fn
);
1790 ext3_set_inode_state(inode
, EXT3_STATE_JDATA
);
1791 atomic_set(&EXT3_I(inode
)->i_datasync_tid
,
1792 handle
->h_transaction
->t_tid
);
1796 * It may be a page full of checkpoint-mode buffers. We don't
1797 * really know unless we go poke around in the buffer_heads.
1798 * But block_write_full_page will do the right thing.
1800 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1802 err
= ext3_journal_stop(handle
);
1809 redirty_page_for_writepage(wbc
, page
);
1815 static int ext3_readpage(struct file
*file
, struct page
*page
)
1817 trace_ext3_readpage(page
);
1818 return mpage_readpage(page
, ext3_get_block
);
1822 ext3_readpages(struct file
*file
, struct address_space
*mapping
,
1823 struct list_head
*pages
, unsigned nr_pages
)
1825 return mpage_readpages(mapping
, pages
, nr_pages
, ext3_get_block
);
1828 static void ext3_invalidatepage(struct page
*page
, unsigned int offset
,
1829 unsigned int length
)
1831 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1833 trace_ext3_invalidatepage(page
, offset
, length
);
1836 * If it's a full truncate we just forget about the pending dirtying
1838 if (offset
== 0 && length
== PAGE_CACHE_SIZE
)
1839 ClearPageChecked(page
);
1841 journal_invalidatepage(journal
, page
, offset
, length
);
1844 static int ext3_releasepage(struct page
*page
, gfp_t wait
)
1846 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1848 trace_ext3_releasepage(page
);
1849 WARN_ON(PageChecked(page
));
1850 if (!page_has_buffers(page
))
1852 return journal_try_to_free_buffers(journal
, page
, wait
);
1856 * If the O_DIRECT write will extend the file then add this inode to the
1857 * orphan list. So recovery will truncate it back to the original size
1858 * if the machine crashes during the write.
1860 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1861 * crashes then stale disk data _may_ be exposed inside the file. But current
1862 * VFS code falls back into buffered path in that case so we are safe.
1864 static ssize_t
ext3_direct_IO(int rw
, struct kiocb
*iocb
,
1865 const struct iovec
*iov
, loff_t offset
,
1866 unsigned long nr_segs
)
1868 struct file
*file
= iocb
->ki_filp
;
1869 struct inode
*inode
= file
->f_mapping
->host
;
1870 struct ext3_inode_info
*ei
= EXT3_I(inode
);
1874 size_t count
= iov_length(iov
, nr_segs
);
1877 trace_ext3_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
1880 loff_t final_size
= offset
+ count
;
1882 if (final_size
> inode
->i_size
) {
1883 /* Credits for sb + inode write */
1884 handle
= ext3_journal_start(inode
, 2);
1885 if (IS_ERR(handle
)) {
1886 ret
= PTR_ERR(handle
);
1889 ret
= ext3_orphan_add(handle
, inode
);
1891 ext3_journal_stop(handle
);
1895 ei
->i_disksize
= inode
->i_size
;
1896 ext3_journal_stop(handle
);
1901 ret
= blockdev_direct_IO(rw
, iocb
, inode
, iov
, offset
, nr_segs
,
1904 * In case of error extending write may have instantiated a few
1905 * blocks outside i_size. Trim these off again.
1907 if (unlikely((rw
& WRITE
) && ret
< 0)) {
1908 loff_t isize
= i_size_read(inode
);
1909 loff_t end
= offset
+ iov_length(iov
, nr_segs
);
1912 ext3_truncate_failed_direct_write(inode
);
1914 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1920 /* Credits for sb + inode write */
1921 handle
= ext3_journal_start(inode
, 2);
1922 if (IS_ERR(handle
)) {
1923 /* This is really bad luck. We've written the data
1924 * but cannot extend i_size. Truncate allocated blocks
1925 * and pretend the write failed... */
1926 ext3_truncate_failed_direct_write(inode
);
1927 ret
= PTR_ERR(handle
);
1931 ext3_orphan_del(handle
, inode
);
1933 loff_t end
= offset
+ ret
;
1934 if (end
> inode
->i_size
) {
1935 ei
->i_disksize
= end
;
1936 i_size_write(inode
, end
);
1938 * We're going to return a positive `ret'
1939 * here due to non-zero-length I/O, so there's
1940 * no way of reporting error returns from
1941 * ext3_mark_inode_dirty() to userspace. So
1944 ext3_mark_inode_dirty(handle
, inode
);
1947 err
= ext3_journal_stop(handle
);
1952 trace_ext3_direct_IO_exit(inode
, offset
,
1953 iov_length(iov
, nr_segs
), rw
, ret
);
1958 * Pages can be marked dirty completely asynchronously from ext3's journalling
1959 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1960 * much here because ->set_page_dirty is called under VFS locks. The page is
1961 * not necessarily locked.
1963 * We cannot just dirty the page and leave attached buffers clean, because the
1964 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1965 * or jbddirty because all the journalling code will explode.
1967 * So what we do is to mark the page "pending dirty" and next time writepage
1968 * is called, propagate that into the buffers appropriately.
1970 static int ext3_journalled_set_page_dirty(struct page
*page
)
1972 SetPageChecked(page
);
1973 return __set_page_dirty_nobuffers(page
);
1976 static const struct address_space_operations ext3_ordered_aops
= {
1977 .readpage
= ext3_readpage
,
1978 .readpages
= ext3_readpages
,
1979 .writepage
= ext3_ordered_writepage
,
1980 .write_begin
= ext3_write_begin
,
1981 .write_end
= ext3_ordered_write_end
,
1983 .invalidatepage
= ext3_invalidatepage
,
1984 .releasepage
= ext3_releasepage
,
1985 .direct_IO
= ext3_direct_IO
,
1986 .migratepage
= buffer_migrate_page
,
1987 .is_partially_uptodate
= block_is_partially_uptodate
,
1988 .is_dirty_writeback
= buffer_check_dirty_writeback
,
1989 .error_remove_page
= generic_error_remove_page
,
1992 static const struct address_space_operations ext3_writeback_aops
= {
1993 .readpage
= ext3_readpage
,
1994 .readpages
= ext3_readpages
,
1995 .writepage
= ext3_writeback_writepage
,
1996 .write_begin
= ext3_write_begin
,
1997 .write_end
= ext3_writeback_write_end
,
1999 .invalidatepage
= ext3_invalidatepage
,
2000 .releasepage
= ext3_releasepage
,
2001 .direct_IO
= ext3_direct_IO
,
2002 .migratepage
= buffer_migrate_page
,
2003 .is_partially_uptodate
= block_is_partially_uptodate
,
2004 .error_remove_page
= generic_error_remove_page
,
2007 static const struct address_space_operations ext3_journalled_aops
= {
2008 .readpage
= ext3_readpage
,
2009 .readpages
= ext3_readpages
,
2010 .writepage
= ext3_journalled_writepage
,
2011 .write_begin
= ext3_write_begin
,
2012 .write_end
= ext3_journalled_write_end
,
2013 .set_page_dirty
= ext3_journalled_set_page_dirty
,
2015 .invalidatepage
= ext3_invalidatepage
,
2016 .releasepage
= ext3_releasepage
,
2017 .is_partially_uptodate
= block_is_partially_uptodate
,
2018 .error_remove_page
= generic_error_remove_page
,
2021 void ext3_set_aops(struct inode
*inode
)
2023 if (ext3_should_order_data(inode
))
2024 inode
->i_mapping
->a_ops
= &ext3_ordered_aops
;
2025 else if (ext3_should_writeback_data(inode
))
2026 inode
->i_mapping
->a_ops
= &ext3_writeback_aops
;
2028 inode
->i_mapping
->a_ops
= &ext3_journalled_aops
;
2032 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2033 * up to the end of the block which corresponds to `from'.
2034 * This required during truncate. We need to physically zero the tail end
2035 * of that block so it doesn't yield old data if the file is later grown.
2037 static int ext3_block_truncate_page(struct inode
*inode
, loff_t from
)
2039 ext3_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
2040 unsigned offset
= from
& (PAGE_CACHE_SIZE
- 1);
2041 unsigned blocksize
, iblock
, length
, pos
;
2043 handle_t
*handle
= NULL
;
2044 struct buffer_head
*bh
;
2047 /* Truncated on block boundary - nothing to do */
2048 blocksize
= inode
->i_sb
->s_blocksize
;
2049 if ((from
& (blocksize
- 1)) == 0)
2052 page
= grab_cache_page(inode
->i_mapping
, index
);
2055 length
= blocksize
- (offset
& (blocksize
- 1));
2056 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2058 if (!page_has_buffers(page
))
2059 create_empty_buffers(page
, blocksize
, 0);
2061 /* Find the buffer that contains "offset" */
2062 bh
= page_buffers(page
);
2064 while (offset
>= pos
) {
2065 bh
= bh
->b_this_page
;
2071 if (buffer_freed(bh
)) {
2072 BUFFER_TRACE(bh
, "freed: skip");
2076 if (!buffer_mapped(bh
)) {
2077 BUFFER_TRACE(bh
, "unmapped");
2078 ext3_get_block(inode
, iblock
, bh
, 0);
2079 /* unmapped? It's a hole - nothing to do */
2080 if (!buffer_mapped(bh
)) {
2081 BUFFER_TRACE(bh
, "still unmapped");
2086 /* Ok, it's mapped. Make sure it's up-to-date */
2087 if (PageUptodate(page
))
2088 set_buffer_uptodate(bh
);
2090 if (!bh_uptodate_or_lock(bh
)) {
2091 err
= bh_submit_read(bh
);
2092 /* Uhhuh. Read error. Complain and punt. */
2097 /* data=writeback mode doesn't need transaction to zero-out data */
2098 if (!ext3_should_writeback_data(inode
)) {
2099 /* We journal at most one block */
2100 handle
= ext3_journal_start(inode
, 1);
2101 if (IS_ERR(handle
)) {
2102 clear_highpage(page
);
2103 flush_dcache_page(page
);
2104 err
= PTR_ERR(handle
);
2109 if (ext3_should_journal_data(inode
)) {
2110 BUFFER_TRACE(bh
, "get write access");
2111 err
= ext3_journal_get_write_access(handle
, bh
);
2116 zero_user(page
, offset
, length
);
2117 BUFFER_TRACE(bh
, "zeroed end of block");
2120 if (ext3_should_journal_data(inode
)) {
2121 err
= ext3_journal_dirty_metadata(handle
, bh
);
2123 if (ext3_should_order_data(inode
))
2124 err
= ext3_journal_dirty_data(handle
, bh
);
2125 mark_buffer_dirty(bh
);
2129 ext3_journal_stop(handle
);
2133 page_cache_release(page
);
2138 * Probably it should be a library function... search for first non-zero word
2139 * or memcmp with zero_page, whatever is better for particular architecture.
2142 static inline int all_zeroes(__le32
*p
, __le32
*q
)
2151 * ext3_find_shared - find the indirect blocks for partial truncation.
2152 * @inode: inode in question
2153 * @depth: depth of the affected branch
2154 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2155 * @chain: place to store the pointers to partial indirect blocks
2156 * @top: place to the (detached) top of branch
2158 * This is a helper function used by ext3_truncate().
2160 * When we do truncate() we may have to clean the ends of several
2161 * indirect blocks but leave the blocks themselves alive. Block is
2162 * partially truncated if some data below the new i_size is referred
2163 * from it (and it is on the path to the first completely truncated
2164 * data block, indeed). We have to free the top of that path along
2165 * with everything to the right of the path. Since no allocation
2166 * past the truncation point is possible until ext3_truncate()
2167 * finishes, we may safely do the latter, but top of branch may
2168 * require special attention - pageout below the truncation point
2169 * might try to populate it.
2171 * We atomically detach the top of branch from the tree, store the
2172 * block number of its root in *@top, pointers to buffer_heads of
2173 * partially truncated blocks - in @chain[].bh and pointers to
2174 * their last elements that should not be removed - in
2175 * @chain[].p. Return value is the pointer to last filled element
2178 * The work left to caller to do the actual freeing of subtrees:
2179 * a) free the subtree starting from *@top
2180 * b) free the subtrees whose roots are stored in
2181 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2182 * c) free the subtrees growing from the inode past the @chain[0].
2183 * (no partially truncated stuff there). */
2185 static Indirect
*ext3_find_shared(struct inode
*inode
, int depth
,
2186 int offsets
[4], Indirect chain
[4], __le32
*top
)
2188 Indirect
*partial
, *p
;
2192 /* Make k index the deepest non-null offset + 1 */
2193 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
2195 partial
= ext3_get_branch(inode
, k
, offsets
, chain
, &err
);
2196 /* Writer: pointers */
2198 partial
= chain
+ k
-1;
2200 * If the branch acquired continuation since we've looked at it -
2201 * fine, it should all survive and (new) top doesn't belong to us.
2203 if (!partial
->key
&& *partial
->p
)
2206 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
2209 * OK, we've found the last block that must survive. The rest of our
2210 * branch should be detached before unlocking. However, if that rest
2211 * of branch is all ours and does not grow immediately from the inode
2212 * it's easier to cheat and just decrement partial->p.
2214 if (p
== chain
+ k
- 1 && p
> chain
) {
2218 /* Nope, don't do this in ext3. Must leave the tree intact */
2225 while(partial
> p
) {
2226 brelse(partial
->bh
);
2234 * Zero a number of block pointers in either an inode or an indirect block.
2235 * If we restart the transaction we must again get write access to the
2236 * indirect block for further modification.
2238 * We release `count' blocks on disk, but (last - first) may be greater
2239 * than `count' because there can be holes in there.
2241 static void ext3_clear_blocks(handle_t
*handle
, struct inode
*inode
,
2242 struct buffer_head
*bh
, ext3_fsblk_t block_to_free
,
2243 unsigned long count
, __le32
*first
, __le32
*last
)
2246 if (try_to_extend_transaction(handle
, inode
)) {
2248 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
2249 if (ext3_journal_dirty_metadata(handle
, bh
))
2252 ext3_mark_inode_dirty(handle
, inode
);
2253 truncate_restart_transaction(handle
, inode
);
2255 BUFFER_TRACE(bh
, "retaking write access");
2256 if (ext3_journal_get_write_access(handle
, bh
))
2262 * Any buffers which are on the journal will be in memory. We find
2263 * them on the hash table so journal_revoke() will run journal_forget()
2264 * on them. We've already detached each block from the file, so
2265 * bforget() in journal_forget() should be safe.
2267 * AKPM: turn on bforget in journal_forget()!!!
2269 for (p
= first
; p
< last
; p
++) {
2270 u32 nr
= le32_to_cpu(*p
);
2272 struct buffer_head
*bh
;
2275 bh
= sb_find_get_block(inode
->i_sb
, nr
);
2276 ext3_forget(handle
, 0, inode
, bh
, nr
);
2280 ext3_free_blocks(handle
, inode
, block_to_free
, count
);
2284 * ext3_free_data - free a list of data blocks
2285 * @handle: handle for this transaction
2286 * @inode: inode we are dealing with
2287 * @this_bh: indirect buffer_head which contains *@first and *@last
2288 * @first: array of block numbers
2289 * @last: points immediately past the end of array
2291 * We are freeing all blocks referred from that array (numbers are stored as
2292 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2294 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2295 * blocks are contiguous then releasing them at one time will only affect one
2296 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2297 * actually use a lot of journal space.
2299 * @this_bh will be %NULL if @first and @last point into the inode's direct
2302 static void ext3_free_data(handle_t
*handle
, struct inode
*inode
,
2303 struct buffer_head
*this_bh
,
2304 __le32
*first
, __le32
*last
)
2306 ext3_fsblk_t block_to_free
= 0; /* Starting block # of a run */
2307 unsigned long count
= 0; /* Number of blocks in the run */
2308 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
2311 ext3_fsblk_t nr
; /* Current block # */
2312 __le32
*p
; /* Pointer into inode/ind
2313 for current block */
2316 if (this_bh
) { /* For indirect block */
2317 BUFFER_TRACE(this_bh
, "get_write_access");
2318 err
= ext3_journal_get_write_access(handle
, this_bh
);
2319 /* Important: if we can't update the indirect pointers
2320 * to the blocks, we can't free them. */
2325 for (p
= first
; p
< last
; p
++) {
2326 nr
= le32_to_cpu(*p
);
2328 /* accumulate blocks to free if they're contiguous */
2331 block_to_free_p
= p
;
2333 } else if (nr
== block_to_free
+ count
) {
2336 ext3_clear_blocks(handle
, inode
, this_bh
,
2338 count
, block_to_free_p
, p
);
2340 block_to_free_p
= p
;
2347 ext3_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
2348 count
, block_to_free_p
, p
);
2351 BUFFER_TRACE(this_bh
, "call ext3_journal_dirty_metadata");
2354 * The buffer head should have an attached journal head at this
2355 * point. However, if the data is corrupted and an indirect
2356 * block pointed to itself, it would have been detached when
2357 * the block was cleared. Check for this instead of OOPSing.
2360 ext3_journal_dirty_metadata(handle
, this_bh
);
2362 ext3_error(inode
->i_sb
, "ext3_free_data",
2363 "circular indirect block detected, "
2364 "inode=%lu, block=%llu",
2366 (unsigned long long)this_bh
->b_blocknr
);
2371 * ext3_free_branches - free an array of branches
2372 * @handle: JBD handle for this transaction
2373 * @inode: inode we are dealing with
2374 * @parent_bh: the buffer_head which contains *@first and *@last
2375 * @first: array of block numbers
2376 * @last: pointer immediately past the end of array
2377 * @depth: depth of the branches to free
2379 * We are freeing all blocks referred from these branches (numbers are
2380 * stored as little-endian 32-bit) and updating @inode->i_blocks
2383 static void ext3_free_branches(handle_t
*handle
, struct inode
*inode
,
2384 struct buffer_head
*parent_bh
,
2385 __le32
*first
, __le32
*last
, int depth
)
2390 if (is_handle_aborted(handle
))
2394 struct buffer_head
*bh
;
2395 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2397 while (--p
>= first
) {
2398 nr
= le32_to_cpu(*p
);
2400 continue; /* A hole */
2402 /* Go read the buffer for the next level down */
2403 bh
= sb_bread(inode
->i_sb
, nr
);
2406 * A read failure? Report error and clear slot
2410 ext3_error(inode
->i_sb
, "ext3_free_branches",
2411 "Read failure, inode=%lu, block="E3FSBLK
,
2416 /* This zaps the entire block. Bottom up. */
2417 BUFFER_TRACE(bh
, "free child branches");
2418 ext3_free_branches(handle
, inode
, bh
,
2419 (__le32
*)bh
->b_data
,
2420 (__le32
*)bh
->b_data
+ addr_per_block
,
2424 * Everything below this this pointer has been
2425 * released. Now let this top-of-subtree go.
2427 * We want the freeing of this indirect block to be
2428 * atomic in the journal with the updating of the
2429 * bitmap block which owns it. So make some room in
2432 * We zero the parent pointer *after* freeing its
2433 * pointee in the bitmaps, so if extend_transaction()
2434 * for some reason fails to put the bitmap changes and
2435 * the release into the same transaction, recovery
2436 * will merely complain about releasing a free block,
2437 * rather than leaking blocks.
2439 if (is_handle_aborted(handle
))
2441 if (try_to_extend_transaction(handle
, inode
)) {
2442 ext3_mark_inode_dirty(handle
, inode
);
2443 truncate_restart_transaction(handle
, inode
);
2447 * We've probably journalled the indirect block several
2448 * times during the truncate. But it's no longer
2449 * needed and we now drop it from the transaction via
2452 * That's easy if it's exclusively part of this
2453 * transaction. But if it's part of the committing
2454 * transaction then journal_forget() will simply
2455 * brelse() it. That means that if the underlying
2456 * block is reallocated in ext3_get_block(),
2457 * unmap_underlying_metadata() will find this block
2458 * and will try to get rid of it. damn, damn. Thus
2459 * we don't allow a block to be reallocated until
2460 * a transaction freeing it has fully committed.
2462 * We also have to make sure journal replay after a
2463 * crash does not overwrite non-journaled data blocks
2464 * with old metadata when the block got reallocated for
2465 * data. Thus we have to store a revoke record for a
2466 * block in the same transaction in which we free the
2469 ext3_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
2471 ext3_free_blocks(handle
, inode
, nr
, 1);
2475 * The block which we have just freed is
2476 * pointed to by an indirect block: journal it
2478 BUFFER_TRACE(parent_bh
, "get_write_access");
2479 if (!ext3_journal_get_write_access(handle
,
2482 BUFFER_TRACE(parent_bh
,
2483 "call ext3_journal_dirty_metadata");
2484 ext3_journal_dirty_metadata(handle
,
2490 /* We have reached the bottom of the tree. */
2491 BUFFER_TRACE(parent_bh
, "free data blocks");
2492 ext3_free_data(handle
, inode
, parent_bh
, first
, last
);
2496 int ext3_can_truncate(struct inode
*inode
)
2498 if (S_ISREG(inode
->i_mode
))
2500 if (S_ISDIR(inode
->i_mode
))
2502 if (S_ISLNK(inode
->i_mode
))
2503 return !ext3_inode_is_fast_symlink(inode
);
2510 * We block out ext3_get_block() block instantiations across the entire
2511 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2512 * simultaneously on behalf of the same inode.
2514 * As we work through the truncate and commit bits of it to the journal there
2515 * is one core, guiding principle: the file's tree must always be consistent on
2516 * disk. We must be able to restart the truncate after a crash.
2518 * The file's tree may be transiently inconsistent in memory (although it
2519 * probably isn't), but whenever we close off and commit a journal transaction,
2520 * the contents of (the filesystem + the journal) must be consistent and
2521 * restartable. It's pretty simple, really: bottom up, right to left (although
2522 * left-to-right works OK too).
2524 * Note that at recovery time, journal replay occurs *before* the restart of
2525 * truncate against the orphan inode list.
2527 * The committed inode has the new, desired i_size (which is the same as
2528 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2529 * that this inode's truncate did not complete and it will again call
2530 * ext3_truncate() to have another go. So there will be instantiated blocks
2531 * to the right of the truncation point in a crashed ext3 filesystem. But
2532 * that's fine - as long as they are linked from the inode, the post-crash
2533 * ext3_truncate() run will find them and release them.
2535 void ext3_truncate(struct inode
*inode
)
2538 struct ext3_inode_info
*ei
= EXT3_I(inode
);
2539 __le32
*i_data
= ei
->i_data
;
2540 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2547 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
2549 trace_ext3_truncate_enter(inode
);
2551 if (!ext3_can_truncate(inode
))
2554 if (inode
->i_size
== 0 && ext3_should_writeback_data(inode
))
2555 ext3_set_inode_state(inode
, EXT3_STATE_FLUSH_ON_CLOSE
);
2557 handle
= start_transaction(inode
);
2561 last_block
= (inode
->i_size
+ blocksize
-1)
2562 >> EXT3_BLOCK_SIZE_BITS(inode
->i_sb
);
2563 n
= ext3_block_to_path(inode
, last_block
, offsets
, NULL
);
2565 goto out_stop
; /* error */
2568 * OK. This truncate is going to happen. We add the inode to the
2569 * orphan list, so that if this truncate spans multiple transactions,
2570 * and we crash, we will resume the truncate when the filesystem
2571 * recovers. It also marks the inode dirty, to catch the new size.
2573 * Implication: the file must always be in a sane, consistent
2574 * truncatable state while each transaction commits.
2576 if (ext3_orphan_add(handle
, inode
))
2580 * The orphan list entry will now protect us from any crash which
2581 * occurs before the truncate completes, so it is now safe to propagate
2582 * the new, shorter inode size (held for now in i_size) into the
2583 * on-disk inode. We do this via i_disksize, which is the value which
2584 * ext3 *really* writes onto the disk inode.
2586 ei
->i_disksize
= inode
->i_size
;
2589 * From here we block out all ext3_get_block() callers who want to
2590 * modify the block allocation tree.
2592 mutex_lock(&ei
->truncate_mutex
);
2594 if (n
== 1) { /* direct blocks */
2595 ext3_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
2596 i_data
+ EXT3_NDIR_BLOCKS
);
2600 partial
= ext3_find_shared(inode
, n
, offsets
, chain
, &nr
);
2601 /* Kill the top of shared branch (not detached) */
2603 if (partial
== chain
) {
2604 /* Shared branch grows from the inode */
2605 ext3_free_branches(handle
, inode
, NULL
,
2606 &nr
, &nr
+1, (chain
+n
-1) - partial
);
2609 * We mark the inode dirty prior to restart,
2610 * and prior to stop. No need for it here.
2613 /* Shared branch grows from an indirect block */
2614 ext3_free_branches(handle
, inode
, partial
->bh
,
2616 partial
->p
+1, (chain
+n
-1) - partial
);
2619 /* Clear the ends of indirect blocks on the shared branch */
2620 while (partial
> chain
) {
2621 ext3_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
2622 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
2623 (chain
+n
-1) - partial
);
2624 BUFFER_TRACE(partial
->bh
, "call brelse");
2625 brelse (partial
->bh
);
2629 /* Kill the remaining (whole) subtrees */
2630 switch (offsets
[0]) {
2632 nr
= i_data
[EXT3_IND_BLOCK
];
2634 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
2635 i_data
[EXT3_IND_BLOCK
] = 0;
2637 case EXT3_IND_BLOCK
:
2638 nr
= i_data
[EXT3_DIND_BLOCK
];
2640 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
2641 i_data
[EXT3_DIND_BLOCK
] = 0;
2643 case EXT3_DIND_BLOCK
:
2644 nr
= i_data
[EXT3_TIND_BLOCK
];
2646 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
2647 i_data
[EXT3_TIND_BLOCK
] = 0;
2649 case EXT3_TIND_BLOCK
:
2653 ext3_discard_reservation(inode
);
2655 mutex_unlock(&ei
->truncate_mutex
);
2656 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
2657 ext3_mark_inode_dirty(handle
, inode
);
2660 * In a multi-transaction truncate, we only make the final transaction
2667 * If this was a simple ftruncate(), and the file will remain alive
2668 * then we need to clear up the orphan record which we created above.
2669 * However, if this was a real unlink then we were called by
2670 * ext3_evict_inode(), and we allow that function to clean up the
2671 * orphan info for us.
2674 ext3_orphan_del(handle
, inode
);
2676 ext3_journal_stop(handle
);
2677 trace_ext3_truncate_exit(inode
);
2681 * Delete the inode from orphan list so that it doesn't stay there
2682 * forever and trigger assertion on umount.
2685 ext3_orphan_del(NULL
, inode
);
2686 trace_ext3_truncate_exit(inode
);
2689 static ext3_fsblk_t
ext3_get_inode_block(struct super_block
*sb
,
2690 unsigned long ino
, struct ext3_iloc
*iloc
)
2692 unsigned long block_group
;
2693 unsigned long offset
;
2695 struct ext3_group_desc
*gdp
;
2697 if (!ext3_valid_inum(sb
, ino
)) {
2699 * This error is already checked for in namei.c unless we are
2700 * looking at an NFS filehandle, in which case no error
2706 block_group
= (ino
- 1) / EXT3_INODES_PER_GROUP(sb
);
2707 gdp
= ext3_get_group_desc(sb
, block_group
, NULL
);
2711 * Figure out the offset within the block group inode table
2713 offset
= ((ino
- 1) % EXT3_INODES_PER_GROUP(sb
)) *
2714 EXT3_INODE_SIZE(sb
);
2715 block
= le32_to_cpu(gdp
->bg_inode_table
) +
2716 (offset
>> EXT3_BLOCK_SIZE_BITS(sb
));
2718 iloc
->block_group
= block_group
;
2719 iloc
->offset
= offset
& (EXT3_BLOCK_SIZE(sb
) - 1);
2724 * ext3_get_inode_loc returns with an extra refcount against the inode's
2725 * underlying buffer_head on success. If 'in_mem' is true, we have all
2726 * data in memory that is needed to recreate the on-disk version of this
2729 static int __ext3_get_inode_loc(struct inode
*inode
,
2730 struct ext3_iloc
*iloc
, int in_mem
)
2733 struct buffer_head
*bh
;
2735 block
= ext3_get_inode_block(inode
->i_sb
, inode
->i_ino
, iloc
);
2739 bh
= sb_getblk(inode
->i_sb
, block
);
2740 if (unlikely(!bh
)) {
2741 ext3_error (inode
->i_sb
, "ext3_get_inode_loc",
2742 "unable to read inode block - "
2743 "inode=%lu, block="E3FSBLK
,
2744 inode
->i_ino
, block
);
2747 if (!buffer_uptodate(bh
)) {
2751 * If the buffer has the write error flag, we have failed
2752 * to write out another inode in the same block. In this
2753 * case, we don't have to read the block because we may
2754 * read the old inode data successfully.
2756 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
2757 set_buffer_uptodate(bh
);
2759 if (buffer_uptodate(bh
)) {
2760 /* someone brought it uptodate while we waited */
2766 * If we have all information of the inode in memory and this
2767 * is the only valid inode in the block, we need not read the
2771 struct buffer_head
*bitmap_bh
;
2772 struct ext3_group_desc
*desc
;
2773 int inodes_per_buffer
;
2774 int inode_offset
, i
;
2778 block_group
= (inode
->i_ino
- 1) /
2779 EXT3_INODES_PER_GROUP(inode
->i_sb
);
2780 inodes_per_buffer
= bh
->b_size
/
2781 EXT3_INODE_SIZE(inode
->i_sb
);
2782 inode_offset
= ((inode
->i_ino
- 1) %
2783 EXT3_INODES_PER_GROUP(inode
->i_sb
));
2784 start
= inode_offset
& ~(inodes_per_buffer
- 1);
2786 /* Is the inode bitmap in cache? */
2787 desc
= ext3_get_group_desc(inode
->i_sb
,
2792 bitmap_bh
= sb_getblk(inode
->i_sb
,
2793 le32_to_cpu(desc
->bg_inode_bitmap
));
2794 if (unlikely(!bitmap_bh
))
2798 * If the inode bitmap isn't in cache then the
2799 * optimisation may end up performing two reads instead
2800 * of one, so skip it.
2802 if (!buffer_uptodate(bitmap_bh
)) {
2806 for (i
= start
; i
< start
+ inodes_per_buffer
; i
++) {
2807 if (i
== inode_offset
)
2809 if (ext3_test_bit(i
, bitmap_bh
->b_data
))
2813 if (i
== start
+ inodes_per_buffer
) {
2814 /* all other inodes are free, so skip I/O */
2815 memset(bh
->b_data
, 0, bh
->b_size
);
2816 set_buffer_uptodate(bh
);
2824 * There are other valid inodes in the buffer, this inode
2825 * has in-inode xattrs, or we don't have this inode in memory.
2826 * Read the block from disk.
2828 trace_ext3_load_inode(inode
);
2830 bh
->b_end_io
= end_buffer_read_sync
;
2831 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
2833 if (!buffer_uptodate(bh
)) {
2834 ext3_error(inode
->i_sb
, "ext3_get_inode_loc",
2835 "unable to read inode block - "
2836 "inode=%lu, block="E3FSBLK
,
2837 inode
->i_ino
, block
);
2847 int ext3_get_inode_loc(struct inode
*inode
, struct ext3_iloc
*iloc
)
2849 /* We have all inode data except xattrs in memory here. */
2850 return __ext3_get_inode_loc(inode
, iloc
,
2851 !ext3_test_inode_state(inode
, EXT3_STATE_XATTR
));
2854 void ext3_set_inode_flags(struct inode
*inode
)
2856 unsigned int flags
= EXT3_I(inode
)->i_flags
;
2858 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
2859 if (flags
& EXT3_SYNC_FL
)
2860 inode
->i_flags
|= S_SYNC
;
2861 if (flags
& EXT3_APPEND_FL
)
2862 inode
->i_flags
|= S_APPEND
;
2863 if (flags
& EXT3_IMMUTABLE_FL
)
2864 inode
->i_flags
|= S_IMMUTABLE
;
2865 if (flags
& EXT3_NOATIME_FL
)
2866 inode
->i_flags
|= S_NOATIME
;
2867 if (flags
& EXT3_DIRSYNC_FL
)
2868 inode
->i_flags
|= S_DIRSYNC
;
2871 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2872 void ext3_get_inode_flags(struct ext3_inode_info
*ei
)
2874 unsigned int flags
= ei
->vfs_inode
.i_flags
;
2876 ei
->i_flags
&= ~(EXT3_SYNC_FL
|EXT3_APPEND_FL
|
2877 EXT3_IMMUTABLE_FL
|EXT3_NOATIME_FL
|EXT3_DIRSYNC_FL
);
2879 ei
->i_flags
|= EXT3_SYNC_FL
;
2880 if (flags
& S_APPEND
)
2881 ei
->i_flags
|= EXT3_APPEND_FL
;
2882 if (flags
& S_IMMUTABLE
)
2883 ei
->i_flags
|= EXT3_IMMUTABLE_FL
;
2884 if (flags
& S_NOATIME
)
2885 ei
->i_flags
|= EXT3_NOATIME_FL
;
2886 if (flags
& S_DIRSYNC
)
2887 ei
->i_flags
|= EXT3_DIRSYNC_FL
;
2890 struct inode
*ext3_iget(struct super_block
*sb
, unsigned long ino
)
2892 struct ext3_iloc iloc
;
2893 struct ext3_inode
*raw_inode
;
2894 struct ext3_inode_info
*ei
;
2895 struct buffer_head
*bh
;
2896 struct inode
*inode
;
2897 journal_t
*journal
= EXT3_SB(sb
)->s_journal
;
2898 transaction_t
*transaction
;
2904 inode
= iget_locked(sb
, ino
);
2906 return ERR_PTR(-ENOMEM
);
2907 if (!(inode
->i_state
& I_NEW
))
2911 ei
->i_block_alloc_info
= NULL
;
2913 ret
= __ext3_get_inode_loc(inode
, &iloc
, 0);
2917 raw_inode
= ext3_raw_inode(&iloc
);
2918 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
2919 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
2920 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
2921 if(!(test_opt (inode
->i_sb
, NO_UID32
))) {
2922 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
2923 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
2925 i_uid_write(inode
, i_uid
);
2926 i_gid_write(inode
, i_gid
);
2927 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
2928 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
2929 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
2930 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
2931 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
2932 inode
->i_atime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= 0;
2934 ei
->i_state_flags
= 0;
2935 ei
->i_dir_start_lookup
= 0;
2936 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
2937 /* We now have enough fields to check if the inode was active or not.
2938 * This is needed because nfsd might try to access dead inodes
2939 * the test is that same one that e2fsck uses
2940 * NeilBrown 1999oct15
2942 if (inode
->i_nlink
== 0) {
2943 if (inode
->i_mode
== 0 ||
2944 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ORPHAN_FS
)) {
2945 /* this inode is deleted */
2950 /* The only unlinked inodes we let through here have
2951 * valid i_mode and are being read by the orphan
2952 * recovery code: that's fine, we're about to complete
2953 * the process of deleting those. */
2955 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
2956 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
2957 #ifdef EXT3_FRAGMENTS
2958 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
2959 ei
->i_frag_no
= raw_inode
->i_frag
;
2960 ei
->i_frag_size
= raw_inode
->i_fsize
;
2962 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
2963 if (!S_ISREG(inode
->i_mode
)) {
2964 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
2967 ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
2969 ei
->i_disksize
= inode
->i_size
;
2970 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
2971 ei
->i_block_group
= iloc
.block_group
;
2973 * NOTE! The in-memory inode i_data array is in little-endian order
2974 * even on big-endian machines: we do NOT byteswap the block numbers!
2976 for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
2977 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
2978 INIT_LIST_HEAD(&ei
->i_orphan
);
2981 * Set transaction id's of transactions that have to be committed
2982 * to finish f[data]sync. We set them to currently running transaction
2983 * as we cannot be sure that the inode or some of its metadata isn't
2984 * part of the transaction - the inode could have been reclaimed and
2985 * now it is reread from disk.
2990 spin_lock(&journal
->j_state_lock
);
2991 if (journal
->j_running_transaction
)
2992 transaction
= journal
->j_running_transaction
;
2994 transaction
= journal
->j_committing_transaction
;
2996 tid
= transaction
->t_tid
;
2998 tid
= journal
->j_commit_sequence
;
2999 spin_unlock(&journal
->j_state_lock
);
3000 atomic_set(&ei
->i_sync_tid
, tid
);
3001 atomic_set(&ei
->i_datasync_tid
, tid
);
3004 if (inode
->i_ino
>= EXT3_FIRST_INO(inode
->i_sb
) + 1 &&
3005 EXT3_INODE_SIZE(inode
->i_sb
) > EXT3_GOOD_OLD_INODE_SIZE
) {
3007 * When mke2fs creates big inodes it does not zero out
3008 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
3009 * so ignore those first few inodes.
3011 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
3012 if (EXT3_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
3013 EXT3_INODE_SIZE(inode
->i_sb
)) {
3018 if (ei
->i_extra_isize
== 0) {
3019 /* The extra space is currently unused. Use it. */
3020 ei
->i_extra_isize
= sizeof(struct ext3_inode
) -
3021 EXT3_GOOD_OLD_INODE_SIZE
;
3023 __le32
*magic
= (void *)raw_inode
+
3024 EXT3_GOOD_OLD_INODE_SIZE
+
3026 if (*magic
== cpu_to_le32(EXT3_XATTR_MAGIC
))
3027 ext3_set_inode_state(inode
, EXT3_STATE_XATTR
);
3030 ei
->i_extra_isize
= 0;
3032 if (S_ISREG(inode
->i_mode
)) {
3033 inode
->i_op
= &ext3_file_inode_operations
;
3034 inode
->i_fop
= &ext3_file_operations
;
3035 ext3_set_aops(inode
);
3036 } else if (S_ISDIR(inode
->i_mode
)) {
3037 inode
->i_op
= &ext3_dir_inode_operations
;
3038 inode
->i_fop
= &ext3_dir_operations
;
3039 } else if (S_ISLNK(inode
->i_mode
)) {
3040 if (ext3_inode_is_fast_symlink(inode
)) {
3041 inode
->i_op
= &ext3_fast_symlink_inode_operations
;
3042 nd_terminate_link(ei
->i_data
, inode
->i_size
,
3043 sizeof(ei
->i_data
) - 1);
3045 inode
->i_op
= &ext3_symlink_inode_operations
;
3046 ext3_set_aops(inode
);
3049 inode
->i_op
= &ext3_special_inode_operations
;
3050 if (raw_inode
->i_block
[0])
3051 init_special_inode(inode
, inode
->i_mode
,
3052 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
3054 init_special_inode(inode
, inode
->i_mode
,
3055 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
3058 ext3_set_inode_flags(inode
);
3059 unlock_new_inode(inode
);
3064 return ERR_PTR(ret
);
3068 * Post the struct inode info into an on-disk inode location in the
3069 * buffer-cache. This gobbles the caller's reference to the
3070 * buffer_head in the inode location struct.
3072 * The caller must have write access to iloc->bh.
3074 static int ext3_do_update_inode(handle_t
*handle
,
3075 struct inode
*inode
,
3076 struct ext3_iloc
*iloc
)
3078 struct ext3_inode
*raw_inode
= ext3_raw_inode(iloc
);
3079 struct ext3_inode_info
*ei
= EXT3_I(inode
);
3080 struct buffer_head
*bh
= iloc
->bh
;
3081 int err
= 0, rc
, block
;
3082 int need_datasync
= 0;
3088 /* we can't allow multiple procs in here at once, its a bit racey */
3091 /* For fields not not tracking in the in-memory inode,
3092 * initialise them to zero for new inodes. */
3093 if (ext3_test_inode_state(inode
, EXT3_STATE_NEW
))
3094 memset(raw_inode
, 0, EXT3_SB(inode
->i_sb
)->s_inode_size
);
3096 ext3_get_inode_flags(ei
);
3097 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
3098 i_uid
= i_uid_read(inode
);
3099 i_gid
= i_gid_read(inode
);
3100 if(!(test_opt(inode
->i_sb
, NO_UID32
))) {
3101 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
3102 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
3104 * Fix up interoperability with old kernels. Otherwise, old inodes get
3105 * re-used with the upper 16 bits of the uid/gid intact
3108 raw_inode
->i_uid_high
=
3109 cpu_to_le16(high_16_bits(i_uid
));
3110 raw_inode
->i_gid_high
=
3111 cpu_to_le16(high_16_bits(i_gid
));
3113 raw_inode
->i_uid_high
= 0;
3114 raw_inode
->i_gid_high
= 0;
3117 raw_inode
->i_uid_low
=
3118 cpu_to_le16(fs_high2lowuid(i_uid
));
3119 raw_inode
->i_gid_low
=
3120 cpu_to_le16(fs_high2lowgid(i_gid
));
3121 raw_inode
->i_uid_high
= 0;
3122 raw_inode
->i_gid_high
= 0;
3124 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
3125 disksize
= cpu_to_le32(ei
->i_disksize
);
3126 if (disksize
!= raw_inode
->i_size
) {
3128 raw_inode
->i_size
= disksize
;
3130 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
3131 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
3132 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
3133 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
3134 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
3135 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
3136 #ifdef EXT3_FRAGMENTS
3137 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
3138 raw_inode
->i_frag
= ei
->i_frag_no
;
3139 raw_inode
->i_fsize
= ei
->i_frag_size
;
3141 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
3142 if (!S_ISREG(inode
->i_mode
)) {
3143 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
3145 disksize
= cpu_to_le32(ei
->i_disksize
>> 32);
3146 if (disksize
!= raw_inode
->i_size_high
) {
3147 raw_inode
->i_size_high
= disksize
;
3150 if (ei
->i_disksize
> 0x7fffffffULL
) {
3151 struct super_block
*sb
= inode
->i_sb
;
3152 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb
,
3153 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
) ||
3154 EXT3_SB(sb
)->s_es
->s_rev_level
==
3155 cpu_to_le32(EXT3_GOOD_OLD_REV
)) {
3156 /* If this is the first large file
3157 * created, add a flag to the superblock.
3160 err
= ext3_journal_get_write_access(handle
,
3161 EXT3_SB(sb
)->s_sbh
);
3165 ext3_update_dynamic_rev(sb
);
3166 EXT3_SET_RO_COMPAT_FEATURE(sb
,
3167 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
);
3169 err
= ext3_journal_dirty_metadata(handle
,
3170 EXT3_SB(sb
)->s_sbh
);
3171 /* get our lock and start over */
3176 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
3177 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
3178 if (old_valid_dev(inode
->i_rdev
)) {
3179 raw_inode
->i_block
[0] =
3180 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
3181 raw_inode
->i_block
[1] = 0;
3183 raw_inode
->i_block
[0] = 0;
3184 raw_inode
->i_block
[1] =
3185 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
3186 raw_inode
->i_block
[2] = 0;
3188 } else for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
3189 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
3191 if (ei
->i_extra_isize
)
3192 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
3194 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
3196 rc
= ext3_journal_dirty_metadata(handle
, bh
);
3199 ext3_clear_inode_state(inode
, EXT3_STATE_NEW
);
3201 atomic_set(&ei
->i_sync_tid
, handle
->h_transaction
->t_tid
);
3203 atomic_set(&ei
->i_datasync_tid
, handle
->h_transaction
->t_tid
);
3206 ext3_std_error(inode
->i_sb
, err
);
3211 * ext3_write_inode()
3213 * We are called from a few places:
3215 * - Within generic_file_write() for O_SYNC files.
3216 * Here, there will be no transaction running. We wait for any running
3217 * transaction to commit.
3219 * - Within sys_sync(), kupdate and such.
3220 * We wait on commit, if tol to.
3222 * - Within prune_icache() (PF_MEMALLOC == true)
3223 * Here we simply return. We can't afford to block kswapd on the
3226 * In all cases it is actually safe for us to return without doing anything,
3227 * because the inode has been copied into a raw inode buffer in
3228 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3231 * Note that we are absolutely dependent upon all inode dirtiers doing the
3232 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3233 * which we are interested.
3235 * It would be a bug for them to not do this. The code:
3237 * mark_inode_dirty(inode)
3239 * inode->i_size = expr;
3241 * is in error because a kswapd-driven write_inode() could occur while
3242 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3243 * will no longer be on the superblock's dirty inode list.
3245 int ext3_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
3247 if (current
->flags
& PF_MEMALLOC
)
3250 if (ext3_journal_current_handle()) {
3251 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3256 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
3259 return ext3_force_commit(inode
->i_sb
);
3265 * Called from notify_change.
3267 * We want to trap VFS attempts to truncate the file as soon as
3268 * possible. In particular, we want to make sure that when the VFS
3269 * shrinks i_size, we put the inode on the orphan list and modify
3270 * i_disksize immediately, so that during the subsequent flushing of
3271 * dirty pages and freeing of disk blocks, we can guarantee that any
3272 * commit will leave the blocks being flushed in an unused state on
3273 * disk. (On recovery, the inode will get truncated and the blocks will
3274 * be freed, so we have a strong guarantee that no future commit will
3275 * leave these blocks visible to the user.)
3277 * Called with inode->sem down.
3279 int ext3_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3281 struct inode
*inode
= dentry
->d_inode
;
3283 const unsigned int ia_valid
= attr
->ia_valid
;
3285 error
= inode_change_ok(inode
, attr
);
3289 if (is_quota_modification(inode
, attr
))
3290 dquot_initialize(inode
);
3291 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
3292 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
3295 /* (user+group)*(old+new) structure, inode write (sb,
3296 * inode block, ? - but truncate inode update has it) */
3297 handle
= ext3_journal_start(inode
, EXT3_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
3298 EXT3_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)+3);
3299 if (IS_ERR(handle
)) {
3300 error
= PTR_ERR(handle
);
3303 error
= dquot_transfer(inode
, attr
);
3305 ext3_journal_stop(handle
);
3308 /* Update corresponding info in inode so that everything is in
3309 * one transaction */
3310 if (attr
->ia_valid
& ATTR_UID
)
3311 inode
->i_uid
= attr
->ia_uid
;
3312 if (attr
->ia_valid
& ATTR_GID
)
3313 inode
->i_gid
= attr
->ia_gid
;
3314 error
= ext3_mark_inode_dirty(handle
, inode
);
3315 ext3_journal_stop(handle
);
3318 if (attr
->ia_valid
& ATTR_SIZE
)
3319 inode_dio_wait(inode
);
3321 if (S_ISREG(inode
->i_mode
) &&
3322 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
3325 handle
= ext3_journal_start(inode
, 3);
3326 if (IS_ERR(handle
)) {
3327 error
= PTR_ERR(handle
);
3331 error
= ext3_orphan_add(handle
, inode
);
3333 ext3_journal_stop(handle
);
3336 EXT3_I(inode
)->i_disksize
= attr
->ia_size
;
3337 error
= ext3_mark_inode_dirty(handle
, inode
);
3338 ext3_journal_stop(handle
);
3340 /* Some hard fs error must have happened. Bail out. */
3341 ext3_orphan_del(NULL
, inode
);
3344 rc
= ext3_block_truncate_page(inode
, attr
->ia_size
);
3346 /* Cleanup orphan list and exit */
3347 handle
= ext3_journal_start(inode
, 3);
3348 if (IS_ERR(handle
)) {
3349 ext3_orphan_del(NULL
, inode
);
3352 ext3_orphan_del(handle
, inode
);
3353 ext3_journal_stop(handle
);
3358 if ((attr
->ia_valid
& ATTR_SIZE
) &&
3359 attr
->ia_size
!= i_size_read(inode
)) {
3360 truncate_setsize(inode
, attr
->ia_size
);
3361 ext3_truncate(inode
);
3364 setattr_copy(inode
, attr
);
3365 mark_inode_dirty(inode
);
3367 if (ia_valid
& ATTR_MODE
)
3368 rc
= ext3_acl_chmod(inode
);
3371 ext3_std_error(inode
->i_sb
, error
);
3379 * How many blocks doth make a writepage()?
3381 * With N blocks per page, it may be:
3386 * N+5 bitmap blocks (from the above)
3387 * N+5 group descriptor summary blocks
3390 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3392 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3394 * With ordered or writeback data it's the same, less the N data blocks.
3396 * If the inode's direct blocks can hold an integral number of pages then a
3397 * page cannot straddle two indirect blocks, and we can only touch one indirect
3398 * and dindirect block, and the "5" above becomes "3".
3400 * This still overestimates under most circumstances. If we were to pass the
3401 * start and end offsets in here as well we could do block_to_path() on each
3402 * block and work out the exact number of indirects which are touched. Pah.
3405 static int ext3_writepage_trans_blocks(struct inode
*inode
)
3407 int bpp
= ext3_journal_blocks_per_page(inode
);
3408 int indirects
= (EXT3_NDIR_BLOCKS
% bpp
) ? 5 : 3;
3411 if (ext3_should_journal_data(inode
))
3412 ret
= 3 * (bpp
+ indirects
) + 2;
3414 ret
= 2 * (bpp
+ indirects
) + indirects
+ 2;
3417 /* We know that structure was already allocated during dquot_initialize so
3418 * we will be updating only the data blocks + inodes */
3419 ret
+= EXT3_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
);
3426 * The caller must have previously called ext3_reserve_inode_write().
3427 * Give this, we know that the caller already has write access to iloc->bh.
3429 int ext3_mark_iloc_dirty(handle_t
*handle
,
3430 struct inode
*inode
, struct ext3_iloc
*iloc
)
3434 /* the do_update_inode consumes one bh->b_count */
3437 /* ext3_do_update_inode() does journal_dirty_metadata */
3438 err
= ext3_do_update_inode(handle
, inode
, iloc
);
3444 * On success, We end up with an outstanding reference count against
3445 * iloc->bh. This _must_ be cleaned up later.
3449 ext3_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
3450 struct ext3_iloc
*iloc
)
3454 err
= ext3_get_inode_loc(inode
, iloc
);
3456 BUFFER_TRACE(iloc
->bh
, "get_write_access");
3457 err
= ext3_journal_get_write_access(handle
, iloc
->bh
);
3464 ext3_std_error(inode
->i_sb
, err
);
3469 * What we do here is to mark the in-core inode as clean with respect to inode
3470 * dirtiness (it may still be data-dirty).
3471 * This means that the in-core inode may be reaped by prune_icache
3472 * without having to perform any I/O. This is a very good thing,
3473 * because *any* task may call prune_icache - even ones which
3474 * have a transaction open against a different journal.
3476 * Is this cheating? Not really. Sure, we haven't written the
3477 * inode out, but prune_icache isn't a user-visible syncing function.
3478 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3479 * we start and wait on commits.
3481 int ext3_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
3483 struct ext3_iloc iloc
;
3487 trace_ext3_mark_inode_dirty(inode
, _RET_IP_
);
3488 err
= ext3_reserve_inode_write(handle
, inode
, &iloc
);
3490 err
= ext3_mark_iloc_dirty(handle
, inode
, &iloc
);
3495 * ext3_dirty_inode() is called from __mark_inode_dirty()
3497 * We're really interested in the case where a file is being extended.
3498 * i_size has been changed by generic_commit_write() and we thus need
3499 * to include the updated inode in the current transaction.
3501 * Also, dquot_alloc_space() will always dirty the inode when blocks
3502 * are allocated to the file.
3504 * If the inode is marked synchronous, we don't honour that here - doing
3505 * so would cause a commit on atime updates, which we don't bother doing.
3506 * We handle synchronous inodes at the highest possible level.
3508 void ext3_dirty_inode(struct inode
*inode
, int flags
)
3510 handle_t
*current_handle
= ext3_journal_current_handle();
3513 handle
= ext3_journal_start(inode
, 2);
3516 if (current_handle
&&
3517 current_handle
->h_transaction
!= handle
->h_transaction
) {
3518 /* This task has a transaction open against a different fs */
3519 printk(KERN_EMERG
"%s: transactions do not match!\n",
3522 jbd_debug(5, "marking dirty. outer handle=%p\n",
3524 ext3_mark_inode_dirty(handle
, inode
);
3526 ext3_journal_stop(handle
);
3533 * Bind an inode's backing buffer_head into this transaction, to prevent
3534 * it from being flushed to disk early. Unlike
3535 * ext3_reserve_inode_write, this leaves behind no bh reference and
3536 * returns no iloc structure, so the caller needs to repeat the iloc
3537 * lookup to mark the inode dirty later.
3539 static int ext3_pin_inode(handle_t
*handle
, struct inode
*inode
)
3541 struct ext3_iloc iloc
;
3545 err
= ext3_get_inode_loc(inode
, &iloc
);
3547 BUFFER_TRACE(iloc
.bh
, "get_write_access");
3548 err
= journal_get_write_access(handle
, iloc
.bh
);
3550 err
= ext3_journal_dirty_metadata(handle
,
3555 ext3_std_error(inode
->i_sb
, err
);
3560 int ext3_change_inode_journal_flag(struct inode
*inode
, int val
)
3567 * We have to be very careful here: changing a data block's
3568 * journaling status dynamically is dangerous. If we write a
3569 * data block to the journal, change the status and then delete
3570 * that block, we risk forgetting to revoke the old log record
3571 * from the journal and so a subsequent replay can corrupt data.
3572 * So, first we make sure that the journal is empty and that
3573 * nobody is changing anything.
3576 journal
= EXT3_JOURNAL(inode
);
3577 if (is_journal_aborted(journal
))
3580 journal_lock_updates(journal
);
3581 journal_flush(journal
);
3584 * OK, there are no updates running now, and all cached data is
3585 * synced to disk. We are now in a completely consistent state
3586 * which doesn't have anything in the journal, and we know that
3587 * no filesystem updates are running, so it is safe to modify
3588 * the inode's in-core data-journaling state flag now.
3592 EXT3_I(inode
)->i_flags
|= EXT3_JOURNAL_DATA_FL
;
3594 EXT3_I(inode
)->i_flags
&= ~EXT3_JOURNAL_DATA_FL
;
3595 ext3_set_aops(inode
);
3597 journal_unlock_updates(journal
);
3599 /* Finally we can mark the inode as dirty. */
3601 handle
= ext3_journal_start(inode
, 1);
3603 return PTR_ERR(handle
);
3605 err
= ext3_mark_inode_dirty(handle
, inode
);
3607 ext3_journal_stop(handle
);
3608 ext3_std_error(inode
->i_sb
, err
);