net: Make static
[linux-2.6.git] / net / core / sock.c
blobac4f0e79226bd7c796ceb69931ccb4bdfaa5b570
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <net/xfrm.h>
124 #include <linux/ipsec.h>
126 #include <linux/filter.h>
128 #ifdef CONFIG_INET
129 #include <net/tcp.h>
130 #endif
133 * Each address family might have different locking rules, so we have
134 * one slock key per address family:
136 static struct lock_class_key af_family_keys[AF_MAX];
137 static struct lock_class_key af_family_slock_keys[AF_MAX];
140 * Make lock validator output more readable. (we pre-construct these
141 * strings build-time, so that runtime initialization of socket
142 * locks is fast):
144 static const char *af_family_key_strings[AF_MAX+1] = {
145 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
146 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
147 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
148 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
149 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
150 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
151 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
152 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
153 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
154 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
155 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
156 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
157 "sk_lock-AF_MAX"
159 static const char *af_family_slock_key_strings[AF_MAX+1] = {
160 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
161 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
162 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
163 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
164 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
165 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
166 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
167 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
168 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
169 "slock-27" , "slock-28" , "slock-AF_CAN" ,
170 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
171 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
172 "slock-AF_MAX"
174 static const char *af_family_clock_key_strings[AF_MAX+1] = {
175 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
176 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
177 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
178 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
179 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
180 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
181 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
182 "clock-21" , "clock-AF_SNA" , "clock-AF_IRDA" ,
183 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
184 "clock-27" , "clock-28" , "clock-AF_CAN" ,
185 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
186 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
187 "clock-AF_MAX"
191 * sk_callback_lock locking rules are per-address-family,
192 * so split the lock classes by using a per-AF key:
194 static struct lock_class_key af_callback_keys[AF_MAX];
196 /* Take into consideration the size of the struct sk_buff overhead in the
197 * determination of these values, since that is non-constant across
198 * platforms. This makes socket queueing behavior and performance
199 * not depend upon such differences.
201 #define _SK_MEM_PACKETS 256
202 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
203 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
204 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206 /* Run time adjustable parameters. */
207 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
208 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
209 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
210 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212 /* Maximal space eaten by iovec or ancilliary data plus some space */
213 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 struct timeval tv;
219 if (optlen < sizeof(tv))
220 return -EINVAL;
221 if (copy_from_user(&tv, optval, sizeof(tv)))
222 return -EFAULT;
223 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
224 return -EDOM;
226 if (tv.tv_sec < 0) {
227 static int warned __read_mostly;
229 *timeo_p = 0;
230 if (warned < 10 && net_ratelimit()) {
231 warned++;
232 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
233 "tries to set negative timeout\n",
234 current->comm, task_pid_nr(current));
236 return 0;
238 *timeo_p = MAX_SCHEDULE_TIMEOUT;
239 if (tv.tv_sec == 0 && tv.tv_usec == 0)
240 return 0;
241 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243 return 0;
246 static void sock_warn_obsolete_bsdism(const char *name)
248 static int warned;
249 static char warncomm[TASK_COMM_LEN];
250 if (strcmp(warncomm, current->comm) && warned < 5) {
251 strcpy(warncomm, current->comm);
252 printk(KERN_WARNING "process `%s' is using obsolete "
253 "%s SO_BSDCOMPAT\n", warncomm, name);
254 warned++;
258 static void sock_disable_timestamp(struct sock *sk)
260 if (sock_flag(sk, SOCK_TIMESTAMP)) {
261 sock_reset_flag(sk, SOCK_TIMESTAMP);
262 net_disable_timestamp();
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
269 int err = 0;
270 int skb_len;
272 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
273 number of warnings when compiling with -W --ANK
275 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276 (unsigned)sk->sk_rcvbuf) {
277 err = -ENOMEM;
278 goto out;
281 err = sk_filter(sk, skb);
282 if (err)
283 goto out;
285 if (!sk_rmem_schedule(sk, skb->truesize)) {
286 err = -ENOBUFS;
287 goto out;
290 skb->dev = NULL;
291 skb_set_owner_r(skb, sk);
293 * release dst right now while its hot
295 dst_release(skb->dst);
296 skb->dst = NULL;
297 /* Cache the SKB length before we tack it onto the receive
298 * queue. Once it is added it no longer belongs to us and
299 * may be freed by other threads of control pulling packets
300 * from the queue.
302 skb_len = skb->len;
304 skb_queue_tail(&sk->sk_receive_queue, skb);
306 if (!sock_flag(sk, SOCK_DEAD))
307 sk->sk_data_ready(sk, skb_len);
308 out:
309 return err;
311 EXPORT_SYMBOL(sock_queue_rcv_skb);
313 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
315 int rc = NET_RX_SUCCESS;
317 if (sk_filter(sk, skb))
318 goto discard_and_relse;
320 skb->dev = NULL;
322 if (nested)
323 bh_lock_sock_nested(sk);
324 else
325 bh_lock_sock(sk);
326 if (!sock_owned_by_user(sk)) {
328 * trylock + unlock semantics:
330 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
332 rc = sk_backlog_rcv(sk, skb);
334 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
335 } else
336 sk_add_backlog(sk, skb);
337 bh_unlock_sock(sk);
338 out:
339 sock_put(sk);
340 return rc;
341 discard_and_relse:
342 kfree_skb(skb);
343 goto out;
345 EXPORT_SYMBOL(sk_receive_skb);
347 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
349 struct dst_entry *dst = sk->sk_dst_cache;
351 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
352 sk->sk_dst_cache = NULL;
353 dst_release(dst);
354 return NULL;
357 return dst;
359 EXPORT_SYMBOL(__sk_dst_check);
361 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
363 struct dst_entry *dst = sk_dst_get(sk);
365 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
366 sk_dst_reset(sk);
367 dst_release(dst);
368 return NULL;
371 return dst;
373 EXPORT_SYMBOL(sk_dst_check);
375 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
377 int ret = -ENOPROTOOPT;
378 #ifdef CONFIG_NETDEVICES
379 struct net *net = sock_net(sk);
380 char devname[IFNAMSIZ];
381 int index;
383 /* Sorry... */
384 ret = -EPERM;
385 if (!capable(CAP_NET_RAW))
386 goto out;
388 ret = -EINVAL;
389 if (optlen < 0)
390 goto out;
392 /* Bind this socket to a particular device like "eth0",
393 * as specified in the passed interface name. If the
394 * name is "" or the option length is zero the socket
395 * is not bound.
397 if (optlen > IFNAMSIZ - 1)
398 optlen = IFNAMSIZ - 1;
399 memset(devname, 0, sizeof(devname));
401 ret = -EFAULT;
402 if (copy_from_user(devname, optval, optlen))
403 goto out;
405 if (devname[0] == '\0') {
406 index = 0;
407 } else {
408 struct net_device *dev = dev_get_by_name(net, devname);
410 ret = -ENODEV;
411 if (!dev)
412 goto out;
414 index = dev->ifindex;
415 dev_put(dev);
418 lock_sock(sk);
419 sk->sk_bound_dev_if = index;
420 sk_dst_reset(sk);
421 release_sock(sk);
423 ret = 0;
425 out:
426 #endif
428 return ret;
431 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
433 if (valbool)
434 sock_set_flag(sk, bit);
435 else
436 sock_reset_flag(sk, bit);
440 * This is meant for all protocols to use and covers goings on
441 * at the socket level. Everything here is generic.
444 int sock_setsockopt(struct socket *sock, int level, int optname,
445 char __user *optval, int optlen)
447 struct sock *sk=sock->sk;
448 int val;
449 int valbool;
450 struct linger ling;
451 int ret = 0;
454 * Options without arguments
457 if (optname == SO_BINDTODEVICE)
458 return sock_bindtodevice(sk, optval, optlen);
460 if (optlen < sizeof(int))
461 return -EINVAL;
463 if (get_user(val, (int __user *)optval))
464 return -EFAULT;
466 valbool = val?1:0;
468 lock_sock(sk);
470 switch(optname) {
471 case SO_DEBUG:
472 if (val && !capable(CAP_NET_ADMIN)) {
473 ret = -EACCES;
474 } else
475 sock_valbool_flag(sk, SOCK_DBG, valbool);
476 break;
477 case SO_REUSEADDR:
478 sk->sk_reuse = valbool;
479 break;
480 case SO_TYPE:
481 case SO_ERROR:
482 ret = -ENOPROTOOPT;
483 break;
484 case SO_DONTROUTE:
485 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
486 break;
487 case SO_BROADCAST:
488 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
489 break;
490 case SO_SNDBUF:
491 /* Don't error on this BSD doesn't and if you think
492 about it this is right. Otherwise apps have to
493 play 'guess the biggest size' games. RCVBUF/SNDBUF
494 are treated in BSD as hints */
496 if (val > sysctl_wmem_max)
497 val = sysctl_wmem_max;
498 set_sndbuf:
499 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
500 if ((val * 2) < SOCK_MIN_SNDBUF)
501 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
502 else
503 sk->sk_sndbuf = val * 2;
506 * Wake up sending tasks if we
507 * upped the value.
509 sk->sk_write_space(sk);
510 break;
512 case SO_SNDBUFFORCE:
513 if (!capable(CAP_NET_ADMIN)) {
514 ret = -EPERM;
515 break;
517 goto set_sndbuf;
519 case SO_RCVBUF:
520 /* Don't error on this BSD doesn't and if you think
521 about it this is right. Otherwise apps have to
522 play 'guess the biggest size' games. RCVBUF/SNDBUF
523 are treated in BSD as hints */
525 if (val > sysctl_rmem_max)
526 val = sysctl_rmem_max;
527 set_rcvbuf:
528 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
530 * We double it on the way in to account for
531 * "struct sk_buff" etc. overhead. Applications
532 * assume that the SO_RCVBUF setting they make will
533 * allow that much actual data to be received on that
534 * socket.
536 * Applications are unaware that "struct sk_buff" and
537 * other overheads allocate from the receive buffer
538 * during socket buffer allocation.
540 * And after considering the possible alternatives,
541 * returning the value we actually used in getsockopt
542 * is the most desirable behavior.
544 if ((val * 2) < SOCK_MIN_RCVBUF)
545 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
546 else
547 sk->sk_rcvbuf = val * 2;
548 break;
550 case SO_RCVBUFFORCE:
551 if (!capable(CAP_NET_ADMIN)) {
552 ret = -EPERM;
553 break;
555 goto set_rcvbuf;
557 case SO_KEEPALIVE:
558 #ifdef CONFIG_INET
559 if (sk->sk_protocol == IPPROTO_TCP)
560 tcp_set_keepalive(sk, valbool);
561 #endif
562 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
563 break;
565 case SO_OOBINLINE:
566 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
567 break;
569 case SO_NO_CHECK:
570 sk->sk_no_check = valbool;
571 break;
573 case SO_PRIORITY:
574 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
575 sk->sk_priority = val;
576 else
577 ret = -EPERM;
578 break;
580 case SO_LINGER:
581 if (optlen < sizeof(ling)) {
582 ret = -EINVAL; /* 1003.1g */
583 break;
585 if (copy_from_user(&ling,optval,sizeof(ling))) {
586 ret = -EFAULT;
587 break;
589 if (!ling.l_onoff)
590 sock_reset_flag(sk, SOCK_LINGER);
591 else {
592 #if (BITS_PER_LONG == 32)
593 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
594 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
595 else
596 #endif
597 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
598 sock_set_flag(sk, SOCK_LINGER);
600 break;
602 case SO_BSDCOMPAT:
603 sock_warn_obsolete_bsdism("setsockopt");
604 break;
606 case SO_PASSCRED:
607 if (valbool)
608 set_bit(SOCK_PASSCRED, &sock->flags);
609 else
610 clear_bit(SOCK_PASSCRED, &sock->flags);
611 break;
613 case SO_TIMESTAMP:
614 case SO_TIMESTAMPNS:
615 if (valbool) {
616 if (optname == SO_TIMESTAMP)
617 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
618 else
619 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
620 sock_set_flag(sk, SOCK_RCVTSTAMP);
621 sock_enable_timestamp(sk);
622 } else {
623 sock_reset_flag(sk, SOCK_RCVTSTAMP);
624 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
626 break;
628 case SO_RCVLOWAT:
629 if (val < 0)
630 val = INT_MAX;
631 sk->sk_rcvlowat = val ? : 1;
632 break;
634 case SO_RCVTIMEO:
635 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
636 break;
638 case SO_SNDTIMEO:
639 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
640 break;
642 case SO_ATTACH_FILTER:
643 ret = -EINVAL;
644 if (optlen == sizeof(struct sock_fprog)) {
645 struct sock_fprog fprog;
647 ret = -EFAULT;
648 if (copy_from_user(&fprog, optval, sizeof(fprog)))
649 break;
651 ret = sk_attach_filter(&fprog, sk);
653 break;
655 case SO_DETACH_FILTER:
656 ret = sk_detach_filter(sk);
657 break;
659 case SO_PASSSEC:
660 if (valbool)
661 set_bit(SOCK_PASSSEC, &sock->flags);
662 else
663 clear_bit(SOCK_PASSSEC, &sock->flags);
664 break;
665 case SO_MARK:
666 if (!capable(CAP_NET_ADMIN))
667 ret = -EPERM;
668 else {
669 sk->sk_mark = val;
671 break;
673 /* We implement the SO_SNDLOWAT etc to
674 not be settable (1003.1g 5.3) */
675 default:
676 ret = -ENOPROTOOPT;
677 break;
679 release_sock(sk);
680 return ret;
684 int sock_getsockopt(struct socket *sock, int level, int optname,
685 char __user *optval, int __user *optlen)
687 struct sock *sk = sock->sk;
689 union {
690 int val;
691 struct linger ling;
692 struct timeval tm;
693 } v;
695 unsigned int lv = sizeof(int);
696 int len;
698 if (get_user(len, optlen))
699 return -EFAULT;
700 if (len < 0)
701 return -EINVAL;
703 switch(optname) {
704 case SO_DEBUG:
705 v.val = sock_flag(sk, SOCK_DBG);
706 break;
708 case SO_DONTROUTE:
709 v.val = sock_flag(sk, SOCK_LOCALROUTE);
710 break;
712 case SO_BROADCAST:
713 v.val = !!sock_flag(sk, SOCK_BROADCAST);
714 break;
716 case SO_SNDBUF:
717 v.val = sk->sk_sndbuf;
718 break;
720 case SO_RCVBUF:
721 v.val = sk->sk_rcvbuf;
722 break;
724 case SO_REUSEADDR:
725 v.val = sk->sk_reuse;
726 break;
728 case SO_KEEPALIVE:
729 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
730 break;
732 case SO_TYPE:
733 v.val = sk->sk_type;
734 break;
736 case SO_ERROR:
737 v.val = -sock_error(sk);
738 if (v.val==0)
739 v.val = xchg(&sk->sk_err_soft, 0);
740 break;
742 case SO_OOBINLINE:
743 v.val = !!sock_flag(sk, SOCK_URGINLINE);
744 break;
746 case SO_NO_CHECK:
747 v.val = sk->sk_no_check;
748 break;
750 case SO_PRIORITY:
751 v.val = sk->sk_priority;
752 break;
754 case SO_LINGER:
755 lv = sizeof(v.ling);
756 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
757 v.ling.l_linger = sk->sk_lingertime / HZ;
758 break;
760 case SO_BSDCOMPAT:
761 sock_warn_obsolete_bsdism("getsockopt");
762 break;
764 case SO_TIMESTAMP:
765 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
766 !sock_flag(sk, SOCK_RCVTSTAMPNS);
767 break;
769 case SO_TIMESTAMPNS:
770 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
771 break;
773 case SO_RCVTIMEO:
774 lv=sizeof(struct timeval);
775 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
776 v.tm.tv_sec = 0;
777 v.tm.tv_usec = 0;
778 } else {
779 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
780 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
782 break;
784 case SO_SNDTIMEO:
785 lv=sizeof(struct timeval);
786 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
787 v.tm.tv_sec = 0;
788 v.tm.tv_usec = 0;
789 } else {
790 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
791 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
793 break;
795 case SO_RCVLOWAT:
796 v.val = sk->sk_rcvlowat;
797 break;
799 case SO_SNDLOWAT:
800 v.val=1;
801 break;
803 case SO_PASSCRED:
804 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
805 break;
807 case SO_PEERCRED:
808 if (len > sizeof(sk->sk_peercred))
809 len = sizeof(sk->sk_peercred);
810 if (copy_to_user(optval, &sk->sk_peercred, len))
811 return -EFAULT;
812 goto lenout;
814 case SO_PEERNAME:
816 char address[128];
818 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
819 return -ENOTCONN;
820 if (lv < len)
821 return -EINVAL;
822 if (copy_to_user(optval, address, len))
823 return -EFAULT;
824 goto lenout;
827 /* Dubious BSD thing... Probably nobody even uses it, but
828 * the UNIX standard wants it for whatever reason... -DaveM
830 case SO_ACCEPTCONN:
831 v.val = sk->sk_state == TCP_LISTEN;
832 break;
834 case SO_PASSSEC:
835 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
836 break;
838 case SO_PEERSEC:
839 return security_socket_getpeersec_stream(sock, optval, optlen, len);
841 case SO_MARK:
842 v.val = sk->sk_mark;
843 break;
845 default:
846 return -ENOPROTOOPT;
849 if (len > lv)
850 len = lv;
851 if (copy_to_user(optval, &v, len))
852 return -EFAULT;
853 lenout:
854 if (put_user(len, optlen))
855 return -EFAULT;
856 return 0;
860 * Initialize an sk_lock.
862 * (We also register the sk_lock with the lock validator.)
864 static inline void sock_lock_init(struct sock *sk)
866 sock_lock_init_class_and_name(sk,
867 af_family_slock_key_strings[sk->sk_family],
868 af_family_slock_keys + sk->sk_family,
869 af_family_key_strings[sk->sk_family],
870 af_family_keys + sk->sk_family);
873 static void sock_copy(struct sock *nsk, const struct sock *osk)
875 #ifdef CONFIG_SECURITY_NETWORK
876 void *sptr = nsk->sk_security;
877 #endif
879 memcpy(nsk, osk, osk->sk_prot->obj_size);
880 #ifdef CONFIG_SECURITY_NETWORK
881 nsk->sk_security = sptr;
882 security_sk_clone(osk, nsk);
883 #endif
886 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
887 int family)
889 struct sock *sk;
890 struct kmem_cache *slab;
892 slab = prot->slab;
893 if (slab != NULL)
894 sk = kmem_cache_alloc(slab, priority);
895 else
896 sk = kmalloc(prot->obj_size, priority);
898 if (sk != NULL) {
899 if (security_sk_alloc(sk, family, priority))
900 goto out_free;
902 if (!try_module_get(prot->owner))
903 goto out_free_sec;
906 return sk;
908 out_free_sec:
909 security_sk_free(sk);
910 out_free:
911 if (slab != NULL)
912 kmem_cache_free(slab, sk);
913 else
914 kfree(sk);
915 return NULL;
918 static void sk_prot_free(struct proto *prot, struct sock *sk)
920 struct kmem_cache *slab;
921 struct module *owner;
923 owner = prot->owner;
924 slab = prot->slab;
926 security_sk_free(sk);
927 if (slab != NULL)
928 kmem_cache_free(slab, sk);
929 else
930 kfree(sk);
931 module_put(owner);
935 * sk_alloc - All socket objects are allocated here
936 * @net: the applicable net namespace
937 * @family: protocol family
938 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
939 * @prot: struct proto associated with this new sock instance
941 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
942 struct proto *prot)
944 struct sock *sk;
946 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
947 if (sk) {
948 sk->sk_family = family;
950 * See comment in struct sock definition to understand
951 * why we need sk_prot_creator -acme
953 sk->sk_prot = sk->sk_prot_creator = prot;
954 sock_lock_init(sk);
955 sock_net_set(sk, get_net(net));
958 return sk;
961 void sk_free(struct sock *sk)
963 struct sk_filter *filter;
965 if (sk->sk_destruct)
966 sk->sk_destruct(sk);
968 filter = rcu_dereference(sk->sk_filter);
969 if (filter) {
970 sk_filter_uncharge(sk, filter);
971 rcu_assign_pointer(sk->sk_filter, NULL);
974 sock_disable_timestamp(sk);
976 if (atomic_read(&sk->sk_omem_alloc))
977 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
978 __func__, atomic_read(&sk->sk_omem_alloc));
980 put_net(sock_net(sk));
981 sk_prot_free(sk->sk_prot_creator, sk);
985 * Last sock_put should drop referrence to sk->sk_net. It has already
986 * been dropped in sk_change_net. Taking referrence to stopping namespace
987 * is not an option.
988 * Take referrence to a socket to remove it from hash _alive_ and after that
989 * destroy it in the context of init_net.
991 void sk_release_kernel(struct sock *sk)
993 if (sk == NULL || sk->sk_socket == NULL)
994 return;
996 sock_hold(sk);
997 sock_release(sk->sk_socket);
998 release_net(sock_net(sk));
999 sock_net_set(sk, get_net(&init_net));
1000 sock_put(sk);
1002 EXPORT_SYMBOL(sk_release_kernel);
1004 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1006 struct sock *newsk;
1008 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1009 if (newsk != NULL) {
1010 struct sk_filter *filter;
1012 sock_copy(newsk, sk);
1014 /* SANITY */
1015 get_net(sock_net(newsk));
1016 sk_node_init(&newsk->sk_node);
1017 sock_lock_init(newsk);
1018 bh_lock_sock(newsk);
1019 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1021 atomic_set(&newsk->sk_rmem_alloc, 0);
1022 atomic_set(&newsk->sk_wmem_alloc, 0);
1023 atomic_set(&newsk->sk_omem_alloc, 0);
1024 skb_queue_head_init(&newsk->sk_receive_queue);
1025 skb_queue_head_init(&newsk->sk_write_queue);
1026 #ifdef CONFIG_NET_DMA
1027 skb_queue_head_init(&newsk->sk_async_wait_queue);
1028 #endif
1030 rwlock_init(&newsk->sk_dst_lock);
1031 rwlock_init(&newsk->sk_callback_lock);
1032 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1033 af_callback_keys + newsk->sk_family,
1034 af_family_clock_key_strings[newsk->sk_family]);
1036 newsk->sk_dst_cache = NULL;
1037 newsk->sk_wmem_queued = 0;
1038 newsk->sk_forward_alloc = 0;
1039 newsk->sk_send_head = NULL;
1040 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1042 sock_reset_flag(newsk, SOCK_DONE);
1043 skb_queue_head_init(&newsk->sk_error_queue);
1045 filter = newsk->sk_filter;
1046 if (filter != NULL)
1047 sk_filter_charge(newsk, filter);
1049 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1050 /* It is still raw copy of parent, so invalidate
1051 * destructor and make plain sk_free() */
1052 newsk->sk_destruct = NULL;
1053 sk_free(newsk);
1054 newsk = NULL;
1055 goto out;
1058 newsk->sk_err = 0;
1059 newsk->sk_priority = 0;
1060 atomic_set(&newsk->sk_refcnt, 2);
1063 * Increment the counter in the same struct proto as the master
1064 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1065 * is the same as sk->sk_prot->socks, as this field was copied
1066 * with memcpy).
1068 * This _changes_ the previous behaviour, where
1069 * tcp_create_openreq_child always was incrementing the
1070 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1071 * to be taken into account in all callers. -acme
1073 sk_refcnt_debug_inc(newsk);
1074 sk_set_socket(newsk, NULL);
1075 newsk->sk_sleep = NULL;
1077 if (newsk->sk_prot->sockets_allocated)
1078 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1080 out:
1081 return newsk;
1084 EXPORT_SYMBOL_GPL(sk_clone);
1086 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1088 __sk_dst_set(sk, dst);
1089 sk->sk_route_caps = dst->dev->features;
1090 if (sk->sk_route_caps & NETIF_F_GSO)
1091 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1092 if (sk_can_gso(sk)) {
1093 if (dst->header_len) {
1094 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1095 } else {
1096 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1097 sk->sk_gso_max_size = dst->dev->gso_max_size;
1101 EXPORT_SYMBOL_GPL(sk_setup_caps);
1103 void __init sk_init(void)
1105 if (num_physpages <= 4096) {
1106 sysctl_wmem_max = 32767;
1107 sysctl_rmem_max = 32767;
1108 sysctl_wmem_default = 32767;
1109 sysctl_rmem_default = 32767;
1110 } else if (num_physpages >= 131072) {
1111 sysctl_wmem_max = 131071;
1112 sysctl_rmem_max = 131071;
1117 * Simple resource managers for sockets.
1122 * Write buffer destructor automatically called from kfree_skb.
1124 void sock_wfree(struct sk_buff *skb)
1126 struct sock *sk = skb->sk;
1128 /* In case it might be waiting for more memory. */
1129 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1130 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1131 sk->sk_write_space(sk);
1132 sock_put(sk);
1136 * Read buffer destructor automatically called from kfree_skb.
1138 void sock_rfree(struct sk_buff *skb)
1140 struct sock *sk = skb->sk;
1142 skb_truesize_check(skb);
1143 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1144 sk_mem_uncharge(skb->sk, skb->truesize);
1148 int sock_i_uid(struct sock *sk)
1150 int uid;
1152 read_lock(&sk->sk_callback_lock);
1153 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1154 read_unlock(&sk->sk_callback_lock);
1155 return uid;
1158 unsigned long sock_i_ino(struct sock *sk)
1160 unsigned long ino;
1162 read_lock(&sk->sk_callback_lock);
1163 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1164 read_unlock(&sk->sk_callback_lock);
1165 return ino;
1169 * Allocate a skb from the socket's send buffer.
1171 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1172 gfp_t priority)
1174 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1175 struct sk_buff * skb = alloc_skb(size, priority);
1176 if (skb) {
1177 skb_set_owner_w(skb, sk);
1178 return skb;
1181 return NULL;
1185 * Allocate a skb from the socket's receive buffer.
1187 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1188 gfp_t priority)
1190 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1191 struct sk_buff *skb = alloc_skb(size, priority);
1192 if (skb) {
1193 skb_set_owner_r(skb, sk);
1194 return skb;
1197 return NULL;
1201 * Allocate a memory block from the socket's option memory buffer.
1203 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1205 if ((unsigned)size <= sysctl_optmem_max &&
1206 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1207 void *mem;
1208 /* First do the add, to avoid the race if kmalloc
1209 * might sleep.
1211 atomic_add(size, &sk->sk_omem_alloc);
1212 mem = kmalloc(size, priority);
1213 if (mem)
1214 return mem;
1215 atomic_sub(size, &sk->sk_omem_alloc);
1217 return NULL;
1221 * Free an option memory block.
1223 void sock_kfree_s(struct sock *sk, void *mem, int size)
1225 kfree(mem);
1226 atomic_sub(size, &sk->sk_omem_alloc);
1229 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1230 I think, these locks should be removed for datagram sockets.
1232 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1234 DEFINE_WAIT(wait);
1236 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1237 for (;;) {
1238 if (!timeo)
1239 break;
1240 if (signal_pending(current))
1241 break;
1242 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1243 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1244 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1245 break;
1246 if (sk->sk_shutdown & SEND_SHUTDOWN)
1247 break;
1248 if (sk->sk_err)
1249 break;
1250 timeo = schedule_timeout(timeo);
1252 finish_wait(sk->sk_sleep, &wait);
1253 return timeo;
1258 * Generic send/receive buffer handlers
1261 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1262 unsigned long header_len,
1263 unsigned long data_len,
1264 int noblock, int *errcode)
1266 struct sk_buff *skb;
1267 gfp_t gfp_mask;
1268 long timeo;
1269 int err;
1271 gfp_mask = sk->sk_allocation;
1272 if (gfp_mask & __GFP_WAIT)
1273 gfp_mask |= __GFP_REPEAT;
1275 timeo = sock_sndtimeo(sk, noblock);
1276 while (1) {
1277 err = sock_error(sk);
1278 if (err != 0)
1279 goto failure;
1281 err = -EPIPE;
1282 if (sk->sk_shutdown & SEND_SHUTDOWN)
1283 goto failure;
1285 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1286 skb = alloc_skb(header_len, gfp_mask);
1287 if (skb) {
1288 int npages;
1289 int i;
1291 /* No pages, we're done... */
1292 if (!data_len)
1293 break;
1295 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1296 skb->truesize += data_len;
1297 skb_shinfo(skb)->nr_frags = npages;
1298 for (i = 0; i < npages; i++) {
1299 struct page *page;
1300 skb_frag_t *frag;
1302 page = alloc_pages(sk->sk_allocation, 0);
1303 if (!page) {
1304 err = -ENOBUFS;
1305 skb_shinfo(skb)->nr_frags = i;
1306 kfree_skb(skb);
1307 goto failure;
1310 frag = &skb_shinfo(skb)->frags[i];
1311 frag->page = page;
1312 frag->page_offset = 0;
1313 frag->size = (data_len >= PAGE_SIZE ?
1314 PAGE_SIZE :
1315 data_len);
1316 data_len -= PAGE_SIZE;
1319 /* Full success... */
1320 break;
1322 err = -ENOBUFS;
1323 goto failure;
1325 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1326 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1327 err = -EAGAIN;
1328 if (!timeo)
1329 goto failure;
1330 if (signal_pending(current))
1331 goto interrupted;
1332 timeo = sock_wait_for_wmem(sk, timeo);
1335 skb_set_owner_w(skb, sk);
1336 return skb;
1338 interrupted:
1339 err = sock_intr_errno(timeo);
1340 failure:
1341 *errcode = err;
1342 return NULL;
1345 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1346 int noblock, int *errcode)
1348 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1351 static void __lock_sock(struct sock *sk)
1353 DEFINE_WAIT(wait);
1355 for (;;) {
1356 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1357 TASK_UNINTERRUPTIBLE);
1358 spin_unlock_bh(&sk->sk_lock.slock);
1359 schedule();
1360 spin_lock_bh(&sk->sk_lock.slock);
1361 if (!sock_owned_by_user(sk))
1362 break;
1364 finish_wait(&sk->sk_lock.wq, &wait);
1367 static void __release_sock(struct sock *sk)
1369 struct sk_buff *skb = sk->sk_backlog.head;
1371 do {
1372 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1373 bh_unlock_sock(sk);
1375 do {
1376 struct sk_buff *next = skb->next;
1378 skb->next = NULL;
1379 sk_backlog_rcv(sk, skb);
1382 * We are in process context here with softirqs
1383 * disabled, use cond_resched_softirq() to preempt.
1384 * This is safe to do because we've taken the backlog
1385 * queue private:
1387 cond_resched_softirq();
1389 skb = next;
1390 } while (skb != NULL);
1392 bh_lock_sock(sk);
1393 } while ((skb = sk->sk_backlog.head) != NULL);
1397 * sk_wait_data - wait for data to arrive at sk_receive_queue
1398 * @sk: sock to wait on
1399 * @timeo: for how long
1401 * Now socket state including sk->sk_err is changed only under lock,
1402 * hence we may omit checks after joining wait queue.
1403 * We check receive queue before schedule() only as optimization;
1404 * it is very likely that release_sock() added new data.
1406 int sk_wait_data(struct sock *sk, long *timeo)
1408 int rc;
1409 DEFINE_WAIT(wait);
1411 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1412 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1413 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1414 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1415 finish_wait(sk->sk_sleep, &wait);
1416 return rc;
1419 EXPORT_SYMBOL(sk_wait_data);
1422 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1423 * @sk: socket
1424 * @size: memory size to allocate
1425 * @kind: allocation type
1427 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1428 * rmem allocation. This function assumes that protocols which have
1429 * memory_pressure use sk_wmem_queued as write buffer accounting.
1431 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1433 struct proto *prot = sk->sk_prot;
1434 int amt = sk_mem_pages(size);
1435 int allocated;
1437 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1438 allocated = atomic_add_return(amt, prot->memory_allocated);
1440 /* Under limit. */
1441 if (allocated <= prot->sysctl_mem[0]) {
1442 if (prot->memory_pressure && *prot->memory_pressure)
1443 *prot->memory_pressure = 0;
1444 return 1;
1447 /* Under pressure. */
1448 if (allocated > prot->sysctl_mem[1])
1449 if (prot->enter_memory_pressure)
1450 prot->enter_memory_pressure(sk);
1452 /* Over hard limit. */
1453 if (allocated > prot->sysctl_mem[2])
1454 goto suppress_allocation;
1456 /* guarantee minimum buffer size under pressure */
1457 if (kind == SK_MEM_RECV) {
1458 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1459 return 1;
1460 } else { /* SK_MEM_SEND */
1461 if (sk->sk_type == SOCK_STREAM) {
1462 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1463 return 1;
1464 } else if (atomic_read(&sk->sk_wmem_alloc) <
1465 prot->sysctl_wmem[0])
1466 return 1;
1469 if (prot->memory_pressure) {
1470 int alloc;
1472 if (!*prot->memory_pressure)
1473 return 1;
1474 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1475 if (prot->sysctl_mem[2] > alloc *
1476 sk_mem_pages(sk->sk_wmem_queued +
1477 atomic_read(&sk->sk_rmem_alloc) +
1478 sk->sk_forward_alloc))
1479 return 1;
1482 suppress_allocation:
1484 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1485 sk_stream_moderate_sndbuf(sk);
1487 /* Fail only if socket is _under_ its sndbuf.
1488 * In this case we cannot block, so that we have to fail.
1490 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1491 return 1;
1494 /* Alas. Undo changes. */
1495 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1496 atomic_sub(amt, prot->memory_allocated);
1497 return 0;
1500 EXPORT_SYMBOL(__sk_mem_schedule);
1503 * __sk_reclaim - reclaim memory_allocated
1504 * @sk: socket
1506 void __sk_mem_reclaim(struct sock *sk)
1508 struct proto *prot = sk->sk_prot;
1510 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1511 prot->memory_allocated);
1512 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1514 if (prot->memory_pressure && *prot->memory_pressure &&
1515 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1516 *prot->memory_pressure = 0;
1519 EXPORT_SYMBOL(__sk_mem_reclaim);
1523 * Set of default routines for initialising struct proto_ops when
1524 * the protocol does not support a particular function. In certain
1525 * cases where it makes no sense for a protocol to have a "do nothing"
1526 * function, some default processing is provided.
1529 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1531 return -EOPNOTSUPP;
1534 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1535 int len, int flags)
1537 return -EOPNOTSUPP;
1540 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1542 return -EOPNOTSUPP;
1545 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1547 return -EOPNOTSUPP;
1550 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1551 int *len, int peer)
1553 return -EOPNOTSUPP;
1556 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1558 return 0;
1561 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1563 return -EOPNOTSUPP;
1566 int sock_no_listen(struct socket *sock, int backlog)
1568 return -EOPNOTSUPP;
1571 int sock_no_shutdown(struct socket *sock, int how)
1573 return -EOPNOTSUPP;
1576 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1577 char __user *optval, int optlen)
1579 return -EOPNOTSUPP;
1582 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1583 char __user *optval, int __user *optlen)
1585 return -EOPNOTSUPP;
1588 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1589 size_t len)
1591 return -EOPNOTSUPP;
1594 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1595 size_t len, int flags)
1597 return -EOPNOTSUPP;
1600 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1602 /* Mirror missing mmap method error code */
1603 return -ENODEV;
1606 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1608 ssize_t res;
1609 struct msghdr msg = {.msg_flags = flags};
1610 struct kvec iov;
1611 char *kaddr = kmap(page);
1612 iov.iov_base = kaddr + offset;
1613 iov.iov_len = size;
1614 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1615 kunmap(page);
1616 return res;
1620 * Default Socket Callbacks
1623 static void sock_def_wakeup(struct sock *sk)
1625 read_lock(&sk->sk_callback_lock);
1626 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1627 wake_up_interruptible_all(sk->sk_sleep);
1628 read_unlock(&sk->sk_callback_lock);
1631 static void sock_def_error_report(struct sock *sk)
1633 read_lock(&sk->sk_callback_lock);
1634 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1635 wake_up_interruptible(sk->sk_sleep);
1636 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1637 read_unlock(&sk->sk_callback_lock);
1640 static void sock_def_readable(struct sock *sk, int len)
1642 read_lock(&sk->sk_callback_lock);
1643 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1644 wake_up_interruptible_sync(sk->sk_sleep);
1645 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1646 read_unlock(&sk->sk_callback_lock);
1649 static void sock_def_write_space(struct sock *sk)
1651 read_lock(&sk->sk_callback_lock);
1653 /* Do not wake up a writer until he can make "significant"
1654 * progress. --DaveM
1656 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1657 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1658 wake_up_interruptible_sync(sk->sk_sleep);
1660 /* Should agree with poll, otherwise some programs break */
1661 if (sock_writeable(sk))
1662 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1665 read_unlock(&sk->sk_callback_lock);
1668 static void sock_def_destruct(struct sock *sk)
1670 kfree(sk->sk_protinfo);
1673 void sk_send_sigurg(struct sock *sk)
1675 if (sk->sk_socket && sk->sk_socket->file)
1676 if (send_sigurg(&sk->sk_socket->file->f_owner))
1677 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1680 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1681 unsigned long expires)
1683 if (!mod_timer(timer, expires))
1684 sock_hold(sk);
1687 EXPORT_SYMBOL(sk_reset_timer);
1689 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1691 if (timer_pending(timer) && del_timer(timer))
1692 __sock_put(sk);
1695 EXPORT_SYMBOL(sk_stop_timer);
1697 void sock_init_data(struct socket *sock, struct sock *sk)
1699 skb_queue_head_init(&sk->sk_receive_queue);
1700 skb_queue_head_init(&sk->sk_write_queue);
1701 skb_queue_head_init(&sk->sk_error_queue);
1702 #ifdef CONFIG_NET_DMA
1703 skb_queue_head_init(&sk->sk_async_wait_queue);
1704 #endif
1706 sk->sk_send_head = NULL;
1708 init_timer(&sk->sk_timer);
1710 sk->sk_allocation = GFP_KERNEL;
1711 sk->sk_rcvbuf = sysctl_rmem_default;
1712 sk->sk_sndbuf = sysctl_wmem_default;
1713 sk->sk_state = TCP_CLOSE;
1714 sk_set_socket(sk, sock);
1716 sock_set_flag(sk, SOCK_ZAPPED);
1718 if (sock) {
1719 sk->sk_type = sock->type;
1720 sk->sk_sleep = &sock->wait;
1721 sock->sk = sk;
1722 } else
1723 sk->sk_sleep = NULL;
1725 rwlock_init(&sk->sk_dst_lock);
1726 rwlock_init(&sk->sk_callback_lock);
1727 lockdep_set_class_and_name(&sk->sk_callback_lock,
1728 af_callback_keys + sk->sk_family,
1729 af_family_clock_key_strings[sk->sk_family]);
1731 sk->sk_state_change = sock_def_wakeup;
1732 sk->sk_data_ready = sock_def_readable;
1733 sk->sk_write_space = sock_def_write_space;
1734 sk->sk_error_report = sock_def_error_report;
1735 sk->sk_destruct = sock_def_destruct;
1737 sk->sk_sndmsg_page = NULL;
1738 sk->sk_sndmsg_off = 0;
1740 sk->sk_peercred.pid = 0;
1741 sk->sk_peercred.uid = -1;
1742 sk->sk_peercred.gid = -1;
1743 sk->sk_write_pending = 0;
1744 sk->sk_rcvlowat = 1;
1745 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1746 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1748 sk->sk_stamp = ktime_set(-1L, 0);
1750 atomic_set(&sk->sk_refcnt, 1);
1751 atomic_set(&sk->sk_drops, 0);
1754 void lock_sock_nested(struct sock *sk, int subclass)
1756 might_sleep();
1757 spin_lock_bh(&sk->sk_lock.slock);
1758 if (sk->sk_lock.owned)
1759 __lock_sock(sk);
1760 sk->sk_lock.owned = 1;
1761 spin_unlock(&sk->sk_lock.slock);
1763 * The sk_lock has mutex_lock() semantics here:
1765 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1766 local_bh_enable();
1769 EXPORT_SYMBOL(lock_sock_nested);
1771 void release_sock(struct sock *sk)
1774 * The sk_lock has mutex_unlock() semantics:
1776 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1778 spin_lock_bh(&sk->sk_lock.slock);
1779 if (sk->sk_backlog.tail)
1780 __release_sock(sk);
1781 sk->sk_lock.owned = 0;
1782 if (waitqueue_active(&sk->sk_lock.wq))
1783 wake_up(&sk->sk_lock.wq);
1784 spin_unlock_bh(&sk->sk_lock.slock);
1786 EXPORT_SYMBOL(release_sock);
1788 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1790 struct timeval tv;
1791 if (!sock_flag(sk, SOCK_TIMESTAMP))
1792 sock_enable_timestamp(sk);
1793 tv = ktime_to_timeval(sk->sk_stamp);
1794 if (tv.tv_sec == -1)
1795 return -ENOENT;
1796 if (tv.tv_sec == 0) {
1797 sk->sk_stamp = ktime_get_real();
1798 tv = ktime_to_timeval(sk->sk_stamp);
1800 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1802 EXPORT_SYMBOL(sock_get_timestamp);
1804 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1806 struct timespec ts;
1807 if (!sock_flag(sk, SOCK_TIMESTAMP))
1808 sock_enable_timestamp(sk);
1809 ts = ktime_to_timespec(sk->sk_stamp);
1810 if (ts.tv_sec == -1)
1811 return -ENOENT;
1812 if (ts.tv_sec == 0) {
1813 sk->sk_stamp = ktime_get_real();
1814 ts = ktime_to_timespec(sk->sk_stamp);
1816 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1818 EXPORT_SYMBOL(sock_get_timestampns);
1820 void sock_enable_timestamp(struct sock *sk)
1822 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1823 sock_set_flag(sk, SOCK_TIMESTAMP);
1824 net_enable_timestamp();
1829 * Get a socket option on an socket.
1831 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1832 * asynchronous errors should be reported by getsockopt. We assume
1833 * this means if you specify SO_ERROR (otherwise whats the point of it).
1835 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1836 char __user *optval, int __user *optlen)
1838 struct sock *sk = sock->sk;
1840 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1843 EXPORT_SYMBOL(sock_common_getsockopt);
1845 #ifdef CONFIG_COMPAT
1846 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1847 char __user *optval, int __user *optlen)
1849 struct sock *sk = sock->sk;
1851 if (sk->sk_prot->compat_getsockopt != NULL)
1852 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1853 optval, optlen);
1854 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1856 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1857 #endif
1859 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1860 struct msghdr *msg, size_t size, int flags)
1862 struct sock *sk = sock->sk;
1863 int addr_len = 0;
1864 int err;
1866 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1867 flags & ~MSG_DONTWAIT, &addr_len);
1868 if (err >= 0)
1869 msg->msg_namelen = addr_len;
1870 return err;
1873 EXPORT_SYMBOL(sock_common_recvmsg);
1876 * Set socket options on an inet socket.
1878 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1879 char __user *optval, int optlen)
1881 struct sock *sk = sock->sk;
1883 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1886 EXPORT_SYMBOL(sock_common_setsockopt);
1888 #ifdef CONFIG_COMPAT
1889 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1890 char __user *optval, int optlen)
1892 struct sock *sk = sock->sk;
1894 if (sk->sk_prot->compat_setsockopt != NULL)
1895 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1896 optval, optlen);
1897 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1899 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1900 #endif
1902 void sk_common_release(struct sock *sk)
1904 if (sk->sk_prot->destroy)
1905 sk->sk_prot->destroy(sk);
1908 * Observation: when sock_common_release is called, processes have
1909 * no access to socket. But net still has.
1910 * Step one, detach it from networking:
1912 * A. Remove from hash tables.
1915 sk->sk_prot->unhash(sk);
1918 * In this point socket cannot receive new packets, but it is possible
1919 * that some packets are in flight because some CPU runs receiver and
1920 * did hash table lookup before we unhashed socket. They will achieve
1921 * receive queue and will be purged by socket destructor.
1923 * Also we still have packets pending on receive queue and probably,
1924 * our own packets waiting in device queues. sock_destroy will drain
1925 * receive queue, but transmitted packets will delay socket destruction
1926 * until the last reference will be released.
1929 sock_orphan(sk);
1931 xfrm_sk_free_policy(sk);
1933 sk_refcnt_debug_release(sk);
1934 sock_put(sk);
1937 EXPORT_SYMBOL(sk_common_release);
1939 static DEFINE_RWLOCK(proto_list_lock);
1940 static LIST_HEAD(proto_list);
1942 #ifdef CONFIG_PROC_FS
1943 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1944 struct prot_inuse {
1945 int val[PROTO_INUSE_NR];
1948 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
1950 #ifdef CONFIG_NET_NS
1951 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
1953 int cpu = smp_processor_id();
1954 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
1956 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
1958 int sock_prot_inuse_get(struct net *net, struct proto *prot)
1960 int cpu, idx = prot->inuse_idx;
1961 int res = 0;
1963 for_each_possible_cpu(cpu)
1964 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
1966 return res >= 0 ? res : 0;
1968 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
1970 static int sock_inuse_init_net(struct net *net)
1972 net->core.inuse = alloc_percpu(struct prot_inuse);
1973 return net->core.inuse ? 0 : -ENOMEM;
1976 static void sock_inuse_exit_net(struct net *net)
1978 free_percpu(net->core.inuse);
1981 static struct pernet_operations net_inuse_ops = {
1982 .init = sock_inuse_init_net,
1983 .exit = sock_inuse_exit_net,
1986 static __init int net_inuse_init(void)
1988 if (register_pernet_subsys(&net_inuse_ops))
1989 panic("Cannot initialize net inuse counters");
1991 return 0;
1994 core_initcall(net_inuse_init);
1995 #else
1996 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
1998 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2000 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2002 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2004 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2006 int cpu, idx = prot->inuse_idx;
2007 int res = 0;
2009 for_each_possible_cpu(cpu)
2010 res += per_cpu(prot_inuse, cpu).val[idx];
2012 return res >= 0 ? res : 0;
2014 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2015 #endif
2017 static void assign_proto_idx(struct proto *prot)
2019 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2021 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2022 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2023 return;
2026 set_bit(prot->inuse_idx, proto_inuse_idx);
2029 static void release_proto_idx(struct proto *prot)
2031 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2032 clear_bit(prot->inuse_idx, proto_inuse_idx);
2034 #else
2035 static inline void assign_proto_idx(struct proto *prot)
2039 static inline void release_proto_idx(struct proto *prot)
2042 #endif
2044 int proto_register(struct proto *prot, int alloc_slab)
2046 if (alloc_slab) {
2047 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2048 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2049 NULL);
2051 if (prot->slab == NULL) {
2052 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2053 prot->name);
2054 goto out;
2057 if (prot->rsk_prot != NULL) {
2058 static const char mask[] = "request_sock_%s";
2060 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2061 if (prot->rsk_prot->slab_name == NULL)
2062 goto out_free_sock_slab;
2064 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2065 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2066 prot->rsk_prot->obj_size, 0,
2067 SLAB_HWCACHE_ALIGN, NULL);
2069 if (prot->rsk_prot->slab == NULL) {
2070 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2071 prot->name);
2072 goto out_free_request_sock_slab_name;
2076 if (prot->twsk_prot != NULL) {
2077 static const char mask[] = "tw_sock_%s";
2079 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2081 if (prot->twsk_prot->twsk_slab_name == NULL)
2082 goto out_free_request_sock_slab;
2084 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2085 prot->twsk_prot->twsk_slab =
2086 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2087 prot->twsk_prot->twsk_obj_size,
2089 SLAB_HWCACHE_ALIGN |
2090 prot->slab_flags,
2091 NULL);
2092 if (prot->twsk_prot->twsk_slab == NULL)
2093 goto out_free_timewait_sock_slab_name;
2097 write_lock(&proto_list_lock);
2098 list_add(&prot->node, &proto_list);
2099 assign_proto_idx(prot);
2100 write_unlock(&proto_list_lock);
2101 return 0;
2103 out_free_timewait_sock_slab_name:
2104 kfree(prot->twsk_prot->twsk_slab_name);
2105 out_free_request_sock_slab:
2106 if (prot->rsk_prot && prot->rsk_prot->slab) {
2107 kmem_cache_destroy(prot->rsk_prot->slab);
2108 prot->rsk_prot->slab = NULL;
2110 out_free_request_sock_slab_name:
2111 kfree(prot->rsk_prot->slab_name);
2112 out_free_sock_slab:
2113 kmem_cache_destroy(prot->slab);
2114 prot->slab = NULL;
2115 out:
2116 return -ENOBUFS;
2119 EXPORT_SYMBOL(proto_register);
2121 void proto_unregister(struct proto *prot)
2123 write_lock(&proto_list_lock);
2124 release_proto_idx(prot);
2125 list_del(&prot->node);
2126 write_unlock(&proto_list_lock);
2128 if (prot->slab != NULL) {
2129 kmem_cache_destroy(prot->slab);
2130 prot->slab = NULL;
2133 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2134 kmem_cache_destroy(prot->rsk_prot->slab);
2135 kfree(prot->rsk_prot->slab_name);
2136 prot->rsk_prot->slab = NULL;
2139 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2140 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2141 kfree(prot->twsk_prot->twsk_slab_name);
2142 prot->twsk_prot->twsk_slab = NULL;
2146 EXPORT_SYMBOL(proto_unregister);
2148 #ifdef CONFIG_PROC_FS
2149 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2150 __acquires(proto_list_lock)
2152 read_lock(&proto_list_lock);
2153 return seq_list_start_head(&proto_list, *pos);
2156 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2158 return seq_list_next(v, &proto_list, pos);
2161 static void proto_seq_stop(struct seq_file *seq, void *v)
2162 __releases(proto_list_lock)
2164 read_unlock(&proto_list_lock);
2167 static char proto_method_implemented(const void *method)
2169 return method == NULL ? 'n' : 'y';
2172 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2174 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2175 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2176 proto->name,
2177 proto->obj_size,
2178 sock_prot_inuse_get(seq_file_net(seq), proto),
2179 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2180 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2181 proto->max_header,
2182 proto->slab == NULL ? "no" : "yes",
2183 module_name(proto->owner),
2184 proto_method_implemented(proto->close),
2185 proto_method_implemented(proto->connect),
2186 proto_method_implemented(proto->disconnect),
2187 proto_method_implemented(proto->accept),
2188 proto_method_implemented(proto->ioctl),
2189 proto_method_implemented(proto->init),
2190 proto_method_implemented(proto->destroy),
2191 proto_method_implemented(proto->shutdown),
2192 proto_method_implemented(proto->setsockopt),
2193 proto_method_implemented(proto->getsockopt),
2194 proto_method_implemented(proto->sendmsg),
2195 proto_method_implemented(proto->recvmsg),
2196 proto_method_implemented(proto->sendpage),
2197 proto_method_implemented(proto->bind),
2198 proto_method_implemented(proto->backlog_rcv),
2199 proto_method_implemented(proto->hash),
2200 proto_method_implemented(proto->unhash),
2201 proto_method_implemented(proto->get_port),
2202 proto_method_implemented(proto->enter_memory_pressure));
2205 static int proto_seq_show(struct seq_file *seq, void *v)
2207 if (v == &proto_list)
2208 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2209 "protocol",
2210 "size",
2211 "sockets",
2212 "memory",
2213 "press",
2214 "maxhdr",
2215 "slab",
2216 "module",
2217 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2218 else
2219 proto_seq_printf(seq, list_entry(v, struct proto, node));
2220 return 0;
2223 static const struct seq_operations proto_seq_ops = {
2224 .start = proto_seq_start,
2225 .next = proto_seq_next,
2226 .stop = proto_seq_stop,
2227 .show = proto_seq_show,
2230 static int proto_seq_open(struct inode *inode, struct file *file)
2232 return seq_open_net(inode, file, &proto_seq_ops,
2233 sizeof(struct seq_net_private));
2236 static const struct file_operations proto_seq_fops = {
2237 .owner = THIS_MODULE,
2238 .open = proto_seq_open,
2239 .read = seq_read,
2240 .llseek = seq_lseek,
2241 .release = seq_release_net,
2244 static __net_init int proto_init_net(struct net *net)
2246 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2247 return -ENOMEM;
2249 return 0;
2252 static __net_exit void proto_exit_net(struct net *net)
2254 proc_net_remove(net, "protocols");
2258 static __net_initdata struct pernet_operations proto_net_ops = {
2259 .init = proto_init_net,
2260 .exit = proto_exit_net,
2263 static int __init proto_init(void)
2265 return register_pernet_subsys(&proto_net_ops);
2268 subsys_initcall(proto_init);
2270 #endif /* PROC_FS */
2272 EXPORT_SYMBOL(sk_alloc);
2273 EXPORT_SYMBOL(sk_free);
2274 EXPORT_SYMBOL(sk_send_sigurg);
2275 EXPORT_SYMBOL(sock_alloc_send_skb);
2276 EXPORT_SYMBOL(sock_init_data);
2277 EXPORT_SYMBOL(sock_kfree_s);
2278 EXPORT_SYMBOL(sock_kmalloc);
2279 EXPORT_SYMBOL(sock_no_accept);
2280 EXPORT_SYMBOL(sock_no_bind);
2281 EXPORT_SYMBOL(sock_no_connect);
2282 EXPORT_SYMBOL(sock_no_getname);
2283 EXPORT_SYMBOL(sock_no_getsockopt);
2284 EXPORT_SYMBOL(sock_no_ioctl);
2285 EXPORT_SYMBOL(sock_no_listen);
2286 EXPORT_SYMBOL(sock_no_mmap);
2287 EXPORT_SYMBOL(sock_no_poll);
2288 EXPORT_SYMBOL(sock_no_recvmsg);
2289 EXPORT_SYMBOL(sock_no_sendmsg);
2290 EXPORT_SYMBOL(sock_no_sendpage);
2291 EXPORT_SYMBOL(sock_no_setsockopt);
2292 EXPORT_SYMBOL(sock_no_shutdown);
2293 EXPORT_SYMBOL(sock_no_socketpair);
2294 EXPORT_SYMBOL(sock_rfree);
2295 EXPORT_SYMBOL(sock_setsockopt);
2296 EXPORT_SYMBOL(sock_wfree);
2297 EXPORT_SYMBOL(sock_wmalloc);
2298 EXPORT_SYMBOL(sock_i_uid);
2299 EXPORT_SYMBOL(sock_i_ino);
2300 EXPORT_SYMBOL(sysctl_optmem_max);