4 * Support for VIA PadLock hardware crypto engine.
6 * Copyright (c) 2006 Michal Ludvig <michal@logix.cz>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
15 #include <crypto/internal/hash.h>
16 #include <crypto/padlock.h>
17 #include <crypto/sha.h>
18 #include <linux/err.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/scatterlist.h>
25 #include <asm/cpu_device_id.h>
28 struct padlock_sha_desc
{
29 struct shash_desc fallback
;
32 struct padlock_sha_ctx
{
33 struct crypto_shash
*fallback
;
36 static int padlock_sha_init(struct shash_desc
*desc
)
38 struct padlock_sha_desc
*dctx
= shash_desc_ctx(desc
);
39 struct padlock_sha_ctx
*ctx
= crypto_shash_ctx(desc
->tfm
);
41 dctx
->fallback
.tfm
= ctx
->fallback
;
42 dctx
->fallback
.flags
= desc
->flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
43 return crypto_shash_init(&dctx
->fallback
);
46 static int padlock_sha_update(struct shash_desc
*desc
,
47 const u8
*data
, unsigned int length
)
49 struct padlock_sha_desc
*dctx
= shash_desc_ctx(desc
);
51 dctx
->fallback
.flags
= desc
->flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
52 return crypto_shash_update(&dctx
->fallback
, data
, length
);
55 static int padlock_sha_export(struct shash_desc
*desc
, void *out
)
57 struct padlock_sha_desc
*dctx
= shash_desc_ctx(desc
);
59 return crypto_shash_export(&dctx
->fallback
, out
);
62 static int padlock_sha_import(struct shash_desc
*desc
, const void *in
)
64 struct padlock_sha_desc
*dctx
= shash_desc_ctx(desc
);
65 struct padlock_sha_ctx
*ctx
= crypto_shash_ctx(desc
->tfm
);
67 dctx
->fallback
.tfm
= ctx
->fallback
;
68 dctx
->fallback
.flags
= desc
->flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
69 return crypto_shash_import(&dctx
->fallback
, in
);
72 static inline void padlock_output_block(uint32_t *src
,
73 uint32_t *dst
, size_t count
)
76 *dst
++ = swab32(*src
++);
79 static int padlock_sha1_finup(struct shash_desc
*desc
, const u8
*in
,
80 unsigned int count
, u8
*out
)
82 /* We can't store directly to *out as it may be unaligned. */
83 /* BTW Don't reduce the buffer size below 128 Bytes!
84 * PadLock microcode needs it that big. */
85 char buf
[128 + PADLOCK_ALIGNMENT
- STACK_ALIGN
] __attribute__
86 ((aligned(STACK_ALIGN
)));
87 char *result
= PTR_ALIGN(&buf
[0], PADLOCK_ALIGNMENT
);
88 struct padlock_sha_desc
*dctx
= shash_desc_ctx(desc
);
89 struct sha1_state state
;
91 unsigned int leftover
;
95 dctx
->fallback
.flags
= desc
->flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
96 err
= crypto_shash_export(&dctx
->fallback
, &state
);
100 if (state
.count
+ count
> ULONG_MAX
)
101 return crypto_shash_finup(&dctx
->fallback
, in
, count
, out
);
103 leftover
= ((state
.count
- 1) & (SHA1_BLOCK_SIZE
- 1)) + 1;
104 space
= SHA1_BLOCK_SIZE
- leftover
;
107 err
= crypto_shash_update(&dctx
->fallback
, in
, space
) ?:
108 crypto_shash_export(&dctx
->fallback
, &state
);
114 memcpy(state
.buffer
+ leftover
, in
, count
);
117 state
.count
&= ~(SHA1_BLOCK_SIZE
- 1);
121 memcpy(result
, &state
.state
, SHA1_DIGEST_SIZE
);
123 /* prevent taking the spurious DNA fault with padlock. */
124 ts_state
= irq_ts_save();
125 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
127 : "c"((unsigned long)state
.count
+ count
), \
128 "a"((unsigned long)state
.count
), \
129 "S"(in
), "D"(result
));
130 irq_ts_restore(ts_state
);
132 padlock_output_block((uint32_t *)result
, (uint32_t *)out
, 5);
138 static int padlock_sha1_final(struct shash_desc
*desc
, u8
*out
)
142 return padlock_sha1_finup(desc
, buf
, 0, out
);
145 static int padlock_sha256_finup(struct shash_desc
*desc
, const u8
*in
,
146 unsigned int count
, u8
*out
)
148 /* We can't store directly to *out as it may be unaligned. */
149 /* BTW Don't reduce the buffer size below 128 Bytes!
150 * PadLock microcode needs it that big. */
151 char buf
[128 + PADLOCK_ALIGNMENT
- STACK_ALIGN
] __attribute__
152 ((aligned(STACK_ALIGN
)));
153 char *result
= PTR_ALIGN(&buf
[0], PADLOCK_ALIGNMENT
);
154 struct padlock_sha_desc
*dctx
= shash_desc_ctx(desc
);
155 struct sha256_state state
;
157 unsigned int leftover
;
161 dctx
->fallback
.flags
= desc
->flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
162 err
= crypto_shash_export(&dctx
->fallback
, &state
);
166 if (state
.count
+ count
> ULONG_MAX
)
167 return crypto_shash_finup(&dctx
->fallback
, in
, count
, out
);
169 leftover
= ((state
.count
- 1) & (SHA256_BLOCK_SIZE
- 1)) + 1;
170 space
= SHA256_BLOCK_SIZE
- leftover
;
173 err
= crypto_shash_update(&dctx
->fallback
, in
, space
) ?:
174 crypto_shash_export(&dctx
->fallback
, &state
);
180 memcpy(state
.buf
+ leftover
, in
, count
);
183 state
.count
&= ~(SHA1_BLOCK_SIZE
- 1);
187 memcpy(result
, &state
.state
, SHA256_DIGEST_SIZE
);
189 /* prevent taking the spurious DNA fault with padlock. */
190 ts_state
= irq_ts_save();
191 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
193 : "c"((unsigned long)state
.count
+ count
), \
194 "a"((unsigned long)state
.count
), \
195 "S"(in
), "D"(result
));
196 irq_ts_restore(ts_state
);
198 padlock_output_block((uint32_t *)result
, (uint32_t *)out
, 8);
204 static int padlock_sha256_final(struct shash_desc
*desc
, u8
*out
)
208 return padlock_sha256_finup(desc
, buf
, 0, out
);
211 static int padlock_cra_init(struct crypto_tfm
*tfm
)
213 struct crypto_shash
*hash
= __crypto_shash_cast(tfm
);
214 const char *fallback_driver_name
= tfm
->__crt_alg
->cra_name
;
215 struct padlock_sha_ctx
*ctx
= crypto_tfm_ctx(tfm
);
216 struct crypto_shash
*fallback_tfm
;
219 /* Allocate a fallback and abort if it failed. */
220 fallback_tfm
= crypto_alloc_shash(fallback_driver_name
, 0,
221 CRYPTO_ALG_NEED_FALLBACK
);
222 if (IS_ERR(fallback_tfm
)) {
223 printk(KERN_WARNING PFX
"Fallback driver '%s' could not be loaded!\n",
224 fallback_driver_name
);
225 err
= PTR_ERR(fallback_tfm
);
229 ctx
->fallback
= fallback_tfm
;
230 hash
->descsize
+= crypto_shash_descsize(fallback_tfm
);
237 static void padlock_cra_exit(struct crypto_tfm
*tfm
)
239 struct padlock_sha_ctx
*ctx
= crypto_tfm_ctx(tfm
);
241 crypto_free_shash(ctx
->fallback
);
244 static struct shash_alg sha1_alg
= {
245 .digestsize
= SHA1_DIGEST_SIZE
,
246 .init
= padlock_sha_init
,
247 .update
= padlock_sha_update
,
248 .finup
= padlock_sha1_finup
,
249 .final
= padlock_sha1_final
,
250 .export
= padlock_sha_export
,
251 .import
= padlock_sha_import
,
252 .descsize
= sizeof(struct padlock_sha_desc
),
253 .statesize
= sizeof(struct sha1_state
),
256 .cra_driver_name
= "sha1-padlock",
257 .cra_priority
= PADLOCK_CRA_PRIORITY
,
258 .cra_flags
= CRYPTO_ALG_TYPE_SHASH
|
259 CRYPTO_ALG_NEED_FALLBACK
,
260 .cra_blocksize
= SHA1_BLOCK_SIZE
,
261 .cra_ctxsize
= sizeof(struct padlock_sha_ctx
),
262 .cra_module
= THIS_MODULE
,
263 .cra_init
= padlock_cra_init
,
264 .cra_exit
= padlock_cra_exit
,
268 static struct shash_alg sha256_alg
= {
269 .digestsize
= SHA256_DIGEST_SIZE
,
270 .init
= padlock_sha_init
,
271 .update
= padlock_sha_update
,
272 .finup
= padlock_sha256_finup
,
273 .final
= padlock_sha256_final
,
274 .export
= padlock_sha_export
,
275 .import
= padlock_sha_import
,
276 .descsize
= sizeof(struct padlock_sha_desc
),
277 .statesize
= sizeof(struct sha256_state
),
279 .cra_name
= "sha256",
280 .cra_driver_name
= "sha256-padlock",
281 .cra_priority
= PADLOCK_CRA_PRIORITY
,
282 .cra_flags
= CRYPTO_ALG_TYPE_SHASH
|
283 CRYPTO_ALG_NEED_FALLBACK
,
284 .cra_blocksize
= SHA256_BLOCK_SIZE
,
285 .cra_ctxsize
= sizeof(struct padlock_sha_ctx
),
286 .cra_module
= THIS_MODULE
,
287 .cra_init
= padlock_cra_init
,
288 .cra_exit
= padlock_cra_exit
,
292 /* Add two shash_alg instance for hardware-implemented *
293 * multiple-parts hash supported by VIA Nano Processor.*/
294 static int padlock_sha1_init_nano(struct shash_desc
*desc
)
296 struct sha1_state
*sctx
= shash_desc_ctx(desc
);
298 *sctx
= (struct sha1_state
){
299 .state
= { SHA1_H0
, SHA1_H1
, SHA1_H2
, SHA1_H3
, SHA1_H4
},
305 static int padlock_sha1_update_nano(struct shash_desc
*desc
,
306 const u8
*data
, unsigned int len
)
308 struct sha1_state
*sctx
= shash_desc_ctx(desc
);
309 unsigned int partial
, done
;
311 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
312 u8 buf
[128 + PADLOCK_ALIGNMENT
- STACK_ALIGN
] __attribute__
313 ((aligned(STACK_ALIGN
)));
314 u8
*dst
= PTR_ALIGN(&buf
[0], PADLOCK_ALIGNMENT
);
317 partial
= sctx
->count
& 0x3f;
321 memcpy(dst
, (u8
*)(sctx
->state
), SHA1_DIGEST_SIZE
);
323 if ((partial
+ len
) >= SHA1_BLOCK_SIZE
) {
325 /* Append the bytes in state's buffer to a block to handle */
328 memcpy(sctx
->buffer
+ partial
, data
,
329 done
+ SHA1_BLOCK_SIZE
);
331 ts_state
= irq_ts_save();
332 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
333 : "+S"(src
), "+D"(dst
) \
334 : "a"((long)-1), "c"((unsigned long)1));
335 irq_ts_restore(ts_state
);
336 done
+= SHA1_BLOCK_SIZE
;
340 /* Process the left bytes from the input data */
341 if (len
- done
>= SHA1_BLOCK_SIZE
) {
342 ts_state
= irq_ts_save();
343 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
344 : "+S"(src
), "+D"(dst
)
346 "c"((unsigned long)((len
- done
) / SHA1_BLOCK_SIZE
)));
347 irq_ts_restore(ts_state
);
348 done
+= ((len
- done
) - (len
- done
) % SHA1_BLOCK_SIZE
);
353 memcpy((u8
*)(sctx
->state
), dst
, SHA1_DIGEST_SIZE
);
354 memcpy(sctx
->buffer
+ partial
, src
, len
- done
);
359 static int padlock_sha1_final_nano(struct shash_desc
*desc
, u8
*out
)
361 struct sha1_state
*state
= (struct sha1_state
*)shash_desc_ctx(desc
);
362 unsigned int partial
, padlen
;
364 static const u8 padding
[64] = { 0x80, };
366 bits
= cpu_to_be64(state
->count
<< 3);
368 /* Pad out to 56 mod 64 */
369 partial
= state
->count
& 0x3f;
370 padlen
= (partial
< 56) ? (56 - partial
) : ((64+56) - partial
);
371 padlock_sha1_update_nano(desc
, padding
, padlen
);
373 /* Append length field bytes */
374 padlock_sha1_update_nano(desc
, (const u8
*)&bits
, sizeof(bits
));
377 padlock_output_block((uint32_t *)(state
->state
), (uint32_t *)out
, 5);
382 static int padlock_sha256_init_nano(struct shash_desc
*desc
)
384 struct sha256_state
*sctx
= shash_desc_ctx(desc
);
386 *sctx
= (struct sha256_state
){
387 .state
= { SHA256_H0
, SHA256_H1
, SHA256_H2
, SHA256_H3
, \
388 SHA256_H4
, SHA256_H5
, SHA256_H6
, SHA256_H7
},
394 static int padlock_sha256_update_nano(struct shash_desc
*desc
, const u8
*data
,
397 struct sha256_state
*sctx
= shash_desc_ctx(desc
);
398 unsigned int partial
, done
;
400 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
401 u8 buf
[128 + PADLOCK_ALIGNMENT
- STACK_ALIGN
] __attribute__
402 ((aligned(STACK_ALIGN
)));
403 u8
*dst
= PTR_ALIGN(&buf
[0], PADLOCK_ALIGNMENT
);
406 partial
= sctx
->count
& 0x3f;
410 memcpy(dst
, (u8
*)(sctx
->state
), SHA256_DIGEST_SIZE
);
412 if ((partial
+ len
) >= SHA256_BLOCK_SIZE
) {
414 /* Append the bytes in state's buffer to a block to handle */
417 memcpy(sctx
->buf
+ partial
, data
,
418 done
+ SHA256_BLOCK_SIZE
);
420 ts_state
= irq_ts_save();
421 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
422 : "+S"(src
), "+D"(dst
)
423 : "a"((long)-1), "c"((unsigned long)1));
424 irq_ts_restore(ts_state
);
425 done
+= SHA256_BLOCK_SIZE
;
429 /* Process the left bytes from input data*/
430 if (len
- done
>= SHA256_BLOCK_SIZE
) {
431 ts_state
= irq_ts_save();
432 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
433 : "+S"(src
), "+D"(dst
)
435 "c"((unsigned long)((len
- done
) / 64)));
436 irq_ts_restore(ts_state
);
437 done
+= ((len
- done
) - (len
- done
) % 64);
442 memcpy((u8
*)(sctx
->state
), dst
, SHA256_DIGEST_SIZE
);
443 memcpy(sctx
->buf
+ partial
, src
, len
- done
);
448 static int padlock_sha256_final_nano(struct shash_desc
*desc
, u8
*out
)
450 struct sha256_state
*state
=
451 (struct sha256_state
*)shash_desc_ctx(desc
);
452 unsigned int partial
, padlen
;
454 static const u8 padding
[64] = { 0x80, };
456 bits
= cpu_to_be64(state
->count
<< 3);
458 /* Pad out to 56 mod 64 */
459 partial
= state
->count
& 0x3f;
460 padlen
= (partial
< 56) ? (56 - partial
) : ((64+56) - partial
);
461 padlock_sha256_update_nano(desc
, padding
, padlen
);
463 /* Append length field bytes */
464 padlock_sha256_update_nano(desc
, (const u8
*)&bits
, sizeof(bits
));
467 padlock_output_block((uint32_t *)(state
->state
), (uint32_t *)out
, 8);
472 static int padlock_sha_export_nano(struct shash_desc
*desc
,
475 int statesize
= crypto_shash_statesize(desc
->tfm
);
476 void *sctx
= shash_desc_ctx(desc
);
478 memcpy(out
, sctx
, statesize
);
482 static int padlock_sha_import_nano(struct shash_desc
*desc
,
485 int statesize
= crypto_shash_statesize(desc
->tfm
);
486 void *sctx
= shash_desc_ctx(desc
);
488 memcpy(sctx
, in
, statesize
);
492 static struct shash_alg sha1_alg_nano
= {
493 .digestsize
= SHA1_DIGEST_SIZE
,
494 .init
= padlock_sha1_init_nano
,
495 .update
= padlock_sha1_update_nano
,
496 .final
= padlock_sha1_final_nano
,
497 .export
= padlock_sha_export_nano
,
498 .import
= padlock_sha_import_nano
,
499 .descsize
= sizeof(struct sha1_state
),
500 .statesize
= sizeof(struct sha1_state
),
503 .cra_driver_name
= "sha1-padlock-nano",
504 .cra_priority
= PADLOCK_CRA_PRIORITY
,
505 .cra_flags
= CRYPTO_ALG_TYPE_SHASH
,
506 .cra_blocksize
= SHA1_BLOCK_SIZE
,
507 .cra_module
= THIS_MODULE
,
511 static struct shash_alg sha256_alg_nano
= {
512 .digestsize
= SHA256_DIGEST_SIZE
,
513 .init
= padlock_sha256_init_nano
,
514 .update
= padlock_sha256_update_nano
,
515 .final
= padlock_sha256_final_nano
,
516 .export
= padlock_sha_export_nano
,
517 .import
= padlock_sha_import_nano
,
518 .descsize
= sizeof(struct sha256_state
),
519 .statesize
= sizeof(struct sha256_state
),
521 .cra_name
= "sha256",
522 .cra_driver_name
= "sha256-padlock-nano",
523 .cra_priority
= PADLOCK_CRA_PRIORITY
,
524 .cra_flags
= CRYPTO_ALG_TYPE_SHASH
,
525 .cra_blocksize
= SHA256_BLOCK_SIZE
,
526 .cra_module
= THIS_MODULE
,
530 static struct x86_cpu_id padlock_sha_ids
[] = {
531 X86_FEATURE_MATCH(X86_FEATURE_PHE
),
534 MODULE_DEVICE_TABLE(x86cpu
, padlock_sha_ids
);
536 static int __init
padlock_init(void)
539 struct cpuinfo_x86
*c
= &cpu_data(0);
540 struct shash_alg
*sha1
;
541 struct shash_alg
*sha256
;
543 if (!x86_match_cpu(padlock_sha_ids
) || !cpu_has_phe_enabled
)
546 /* Register the newly added algorithm module if on *
547 * VIA Nano processor, or else just do as before */
548 if (c
->x86_model
< 0x0f) {
550 sha256
= &sha256_alg
;
552 sha1
= &sha1_alg_nano
;
553 sha256
= &sha256_alg_nano
;
556 rc
= crypto_register_shash(sha1
);
560 rc
= crypto_register_shash(sha256
);
564 printk(KERN_NOTICE PFX
"Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
569 crypto_unregister_shash(sha1
);
572 printk(KERN_ERR PFX
"VIA PadLock SHA1/SHA256 initialization failed.\n");
576 static void __exit
padlock_fini(void)
578 struct cpuinfo_x86
*c
= &cpu_data(0);
580 if (c
->x86_model
>= 0x0f) {
581 crypto_unregister_shash(&sha1_alg_nano
);
582 crypto_unregister_shash(&sha256_alg_nano
);
584 crypto_unregister_shash(&sha1_alg
);
585 crypto_unregister_shash(&sha256_alg
);
589 module_init(padlock_init
);
590 module_exit(padlock_fini
);
592 MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
593 MODULE_LICENSE("GPL");
594 MODULE_AUTHOR("Michal Ludvig");
596 MODULE_ALIAS("sha1-all");
597 MODULE_ALIAS("sha256-all");
598 MODULE_ALIAS("sha1-padlock");
599 MODULE_ALIAS("sha256-padlock");