ipv4: Don't drop redirected route cache entry unless PTMU actually expired
[linux-2.6.git] / net / ipv4 / route.c
blob54fd68c14c87d9aad528e9ae07a27efc633cfa40
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * ROUTE - implementation of the IP router.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
14 * Fixes:
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
24 * clamper.
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
71 #include <linux/mm.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
77 #include <linux/in.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
93 #include <net/dst.h>
94 #include <net/net_namespace.h>
95 #include <net/protocol.h>
96 #include <net/ip.h>
97 #include <net/route.h>
98 #include <net/inetpeer.h>
99 #include <net/sock.h>
100 #include <net/ip_fib.h>
101 #include <net/arp.h>
102 #include <net/tcp.h>
103 #include <net/icmp.h>
104 #include <net/xfrm.h>
105 #include <net/netevent.h>
106 #include <net/rtnetlink.h>
107 #ifdef CONFIG_SYSCTL
108 #include <linux/sysctl.h>
109 #endif
111 #define RT_FL_TOS(oldflp) \
112 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
114 #define IP_MAX_MTU 0xFFF0
116 #define RT_GC_TIMEOUT (300*HZ)
118 static int ip_rt_max_size;
119 static int ip_rt_gc_timeout __read_mostly = RT_GC_TIMEOUT;
120 static int ip_rt_gc_interval __read_mostly = 60 * HZ;
121 static int ip_rt_gc_min_interval __read_mostly = HZ / 2;
122 static int ip_rt_redirect_number __read_mostly = 9;
123 static int ip_rt_redirect_load __read_mostly = HZ / 50;
124 static int ip_rt_redirect_silence __read_mostly = ((HZ / 50) << (9 + 1));
125 static int ip_rt_error_cost __read_mostly = HZ;
126 static int ip_rt_error_burst __read_mostly = 5 * HZ;
127 static int ip_rt_gc_elasticity __read_mostly = 8;
128 static int ip_rt_mtu_expires __read_mostly = 10 * 60 * HZ;
129 static int ip_rt_min_pmtu __read_mostly = 512 + 20 + 20;
130 static int ip_rt_min_advmss __read_mostly = 256;
131 static int ip_rt_secret_interval __read_mostly = 10 * 60 * HZ;
132 static int rt_chain_length_max __read_mostly = 20;
134 static struct delayed_work expires_work;
135 static unsigned long expires_ljiffies;
138 * Interface to generic destination cache.
141 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
142 static void ipv4_dst_destroy(struct dst_entry *dst);
143 static void ipv4_dst_ifdown(struct dst_entry *dst,
144 struct net_device *dev, int how);
145 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
146 static void ipv4_link_failure(struct sk_buff *skb);
147 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
148 static int rt_garbage_collect(struct dst_ops *ops);
151 static struct dst_ops ipv4_dst_ops = {
152 .family = AF_INET,
153 .protocol = cpu_to_be16(ETH_P_IP),
154 .gc = rt_garbage_collect,
155 .check = ipv4_dst_check,
156 .destroy = ipv4_dst_destroy,
157 .ifdown = ipv4_dst_ifdown,
158 .negative_advice = ipv4_negative_advice,
159 .link_failure = ipv4_link_failure,
160 .update_pmtu = ip_rt_update_pmtu,
161 .local_out = __ip_local_out,
162 .entries = ATOMIC_INIT(0),
165 #define ECN_OR_COST(class) TC_PRIO_##class
167 const __u8 ip_tos2prio[16] = {
168 TC_PRIO_BESTEFFORT,
169 ECN_OR_COST(FILLER),
170 TC_PRIO_BESTEFFORT,
171 ECN_OR_COST(BESTEFFORT),
172 TC_PRIO_BULK,
173 ECN_OR_COST(BULK),
174 TC_PRIO_BULK,
175 ECN_OR_COST(BULK),
176 TC_PRIO_INTERACTIVE,
177 ECN_OR_COST(INTERACTIVE),
178 TC_PRIO_INTERACTIVE,
179 ECN_OR_COST(INTERACTIVE),
180 TC_PRIO_INTERACTIVE_BULK,
181 ECN_OR_COST(INTERACTIVE_BULK),
182 TC_PRIO_INTERACTIVE_BULK,
183 ECN_OR_COST(INTERACTIVE_BULK)
188 * Route cache.
191 /* The locking scheme is rather straight forward:
193 * 1) Read-Copy Update protects the buckets of the central route hash.
194 * 2) Only writers remove entries, and they hold the lock
195 * as they look at rtable reference counts.
196 * 3) Only readers acquire references to rtable entries,
197 * they do so with atomic increments and with the
198 * lock held.
201 struct rt_hash_bucket {
202 struct rtable *chain;
205 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
206 defined(CONFIG_PROVE_LOCKING)
208 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
209 * The size of this table is a power of two and depends on the number of CPUS.
210 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
212 #ifdef CONFIG_LOCKDEP
213 # define RT_HASH_LOCK_SZ 256
214 #else
215 # if NR_CPUS >= 32
216 # define RT_HASH_LOCK_SZ 4096
217 # elif NR_CPUS >= 16
218 # define RT_HASH_LOCK_SZ 2048
219 # elif NR_CPUS >= 8
220 # define RT_HASH_LOCK_SZ 1024
221 # elif NR_CPUS >= 4
222 # define RT_HASH_LOCK_SZ 512
223 # else
224 # define RT_HASH_LOCK_SZ 256
225 # endif
226 #endif
228 static spinlock_t *rt_hash_locks;
229 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
231 static __init void rt_hash_lock_init(void)
233 int i;
235 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
236 GFP_KERNEL);
237 if (!rt_hash_locks)
238 panic("IP: failed to allocate rt_hash_locks\n");
240 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
241 spin_lock_init(&rt_hash_locks[i]);
243 #else
244 # define rt_hash_lock_addr(slot) NULL
246 static inline void rt_hash_lock_init(void)
249 #endif
251 static struct rt_hash_bucket *rt_hash_table __read_mostly;
252 static unsigned rt_hash_mask __read_mostly;
253 static unsigned int rt_hash_log __read_mostly;
255 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
256 #define RT_CACHE_STAT_INC(field) \
257 (__raw_get_cpu_var(rt_cache_stat).field++)
259 static inline unsigned int rt_hash(__be32 daddr, __be32 saddr, int idx,
260 int genid)
262 return jhash_3words((__force u32)(__be32)(daddr),
263 (__force u32)(__be32)(saddr),
264 idx, genid)
265 & rt_hash_mask;
268 static inline int rt_genid(struct net *net)
270 return atomic_read(&net->ipv4.rt_genid);
273 #ifdef CONFIG_PROC_FS
274 struct rt_cache_iter_state {
275 struct seq_net_private p;
276 int bucket;
277 int genid;
280 static struct rtable *rt_cache_get_first(struct seq_file *seq)
282 struct rt_cache_iter_state *st = seq->private;
283 struct rtable *r = NULL;
285 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
286 if (!rt_hash_table[st->bucket].chain)
287 continue;
288 rcu_read_lock_bh();
289 r = rcu_dereference_bh(rt_hash_table[st->bucket].chain);
290 while (r) {
291 if (dev_net(r->u.dst.dev) == seq_file_net(seq) &&
292 r->rt_genid == st->genid)
293 return r;
294 r = rcu_dereference_bh(r->u.dst.rt_next);
296 rcu_read_unlock_bh();
298 return r;
301 static struct rtable *__rt_cache_get_next(struct seq_file *seq,
302 struct rtable *r)
304 struct rt_cache_iter_state *st = seq->private;
306 r = r->u.dst.rt_next;
307 while (!r) {
308 rcu_read_unlock_bh();
309 do {
310 if (--st->bucket < 0)
311 return NULL;
312 } while (!rt_hash_table[st->bucket].chain);
313 rcu_read_lock_bh();
314 r = rt_hash_table[st->bucket].chain;
316 return rcu_dereference_bh(r);
319 static struct rtable *rt_cache_get_next(struct seq_file *seq,
320 struct rtable *r)
322 struct rt_cache_iter_state *st = seq->private;
323 while ((r = __rt_cache_get_next(seq, r)) != NULL) {
324 if (dev_net(r->u.dst.dev) != seq_file_net(seq))
325 continue;
326 if (r->rt_genid == st->genid)
327 break;
329 return r;
332 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
334 struct rtable *r = rt_cache_get_first(seq);
336 if (r)
337 while (pos && (r = rt_cache_get_next(seq, r)))
338 --pos;
339 return pos ? NULL : r;
342 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
344 struct rt_cache_iter_state *st = seq->private;
345 if (*pos)
346 return rt_cache_get_idx(seq, *pos - 1);
347 st->genid = rt_genid(seq_file_net(seq));
348 return SEQ_START_TOKEN;
351 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
353 struct rtable *r;
355 if (v == SEQ_START_TOKEN)
356 r = rt_cache_get_first(seq);
357 else
358 r = rt_cache_get_next(seq, v);
359 ++*pos;
360 return r;
363 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
365 if (v && v != SEQ_START_TOKEN)
366 rcu_read_unlock_bh();
369 static int rt_cache_seq_show(struct seq_file *seq, void *v)
371 if (v == SEQ_START_TOKEN)
372 seq_printf(seq, "%-127s\n",
373 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
374 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
375 "HHUptod\tSpecDst");
376 else {
377 struct rtable *r = v;
378 int len;
380 seq_printf(seq, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
381 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
382 r->u.dst.dev ? r->u.dst.dev->name : "*",
383 (unsigned long)r->rt_dst, (unsigned long)r->rt_gateway,
384 r->rt_flags, atomic_read(&r->u.dst.__refcnt),
385 r->u.dst.__use, 0, (unsigned long)r->rt_src,
386 (dst_metric(&r->u.dst, RTAX_ADVMSS) ?
387 (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
388 dst_metric(&r->u.dst, RTAX_WINDOW),
389 (int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
390 dst_metric(&r->u.dst, RTAX_RTTVAR)),
391 r->fl.fl4_tos,
392 r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
393 r->u.dst.hh ? (r->u.dst.hh->hh_output ==
394 dev_queue_xmit) : 0,
395 r->rt_spec_dst, &len);
397 seq_printf(seq, "%*s\n", 127 - len, "");
399 return 0;
402 static const struct seq_operations rt_cache_seq_ops = {
403 .start = rt_cache_seq_start,
404 .next = rt_cache_seq_next,
405 .stop = rt_cache_seq_stop,
406 .show = rt_cache_seq_show,
409 static int rt_cache_seq_open(struct inode *inode, struct file *file)
411 return seq_open_net(inode, file, &rt_cache_seq_ops,
412 sizeof(struct rt_cache_iter_state));
415 static const struct file_operations rt_cache_seq_fops = {
416 .owner = THIS_MODULE,
417 .open = rt_cache_seq_open,
418 .read = seq_read,
419 .llseek = seq_lseek,
420 .release = seq_release_net,
424 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
426 int cpu;
428 if (*pos == 0)
429 return SEQ_START_TOKEN;
431 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
432 if (!cpu_possible(cpu))
433 continue;
434 *pos = cpu+1;
435 return &per_cpu(rt_cache_stat, cpu);
437 return NULL;
440 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
442 int cpu;
444 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
445 if (!cpu_possible(cpu))
446 continue;
447 *pos = cpu+1;
448 return &per_cpu(rt_cache_stat, cpu);
450 return NULL;
454 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
459 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
461 struct rt_cache_stat *st = v;
463 if (v == SEQ_START_TOKEN) {
464 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
465 return 0;
468 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
469 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
470 atomic_read(&ipv4_dst_ops.entries),
471 st->in_hit,
472 st->in_slow_tot,
473 st->in_slow_mc,
474 st->in_no_route,
475 st->in_brd,
476 st->in_martian_dst,
477 st->in_martian_src,
479 st->out_hit,
480 st->out_slow_tot,
481 st->out_slow_mc,
483 st->gc_total,
484 st->gc_ignored,
485 st->gc_goal_miss,
486 st->gc_dst_overflow,
487 st->in_hlist_search,
488 st->out_hlist_search
490 return 0;
493 static const struct seq_operations rt_cpu_seq_ops = {
494 .start = rt_cpu_seq_start,
495 .next = rt_cpu_seq_next,
496 .stop = rt_cpu_seq_stop,
497 .show = rt_cpu_seq_show,
501 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
503 return seq_open(file, &rt_cpu_seq_ops);
506 static const struct file_operations rt_cpu_seq_fops = {
507 .owner = THIS_MODULE,
508 .open = rt_cpu_seq_open,
509 .read = seq_read,
510 .llseek = seq_lseek,
511 .release = seq_release,
514 #ifdef CONFIG_NET_CLS_ROUTE
515 static int rt_acct_proc_show(struct seq_file *m, void *v)
517 struct ip_rt_acct *dst, *src;
518 unsigned int i, j;
520 dst = kcalloc(256, sizeof(struct ip_rt_acct), GFP_KERNEL);
521 if (!dst)
522 return -ENOMEM;
524 for_each_possible_cpu(i) {
525 src = (struct ip_rt_acct *)per_cpu_ptr(ip_rt_acct, i);
526 for (j = 0; j < 256; j++) {
527 dst[j].o_bytes += src[j].o_bytes;
528 dst[j].o_packets += src[j].o_packets;
529 dst[j].i_bytes += src[j].i_bytes;
530 dst[j].i_packets += src[j].i_packets;
534 seq_write(m, dst, 256 * sizeof(struct ip_rt_acct));
535 kfree(dst);
536 return 0;
539 static int rt_acct_proc_open(struct inode *inode, struct file *file)
541 return single_open(file, rt_acct_proc_show, NULL);
544 static const struct file_operations rt_acct_proc_fops = {
545 .owner = THIS_MODULE,
546 .open = rt_acct_proc_open,
547 .read = seq_read,
548 .llseek = seq_lseek,
549 .release = single_release,
551 #endif
553 static int __net_init ip_rt_do_proc_init(struct net *net)
555 struct proc_dir_entry *pde;
557 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
558 &rt_cache_seq_fops);
559 if (!pde)
560 goto err1;
562 pde = proc_create("rt_cache", S_IRUGO,
563 net->proc_net_stat, &rt_cpu_seq_fops);
564 if (!pde)
565 goto err2;
567 #ifdef CONFIG_NET_CLS_ROUTE
568 pde = proc_create("rt_acct", 0, net->proc_net, &rt_acct_proc_fops);
569 if (!pde)
570 goto err3;
571 #endif
572 return 0;
574 #ifdef CONFIG_NET_CLS_ROUTE
575 err3:
576 remove_proc_entry("rt_cache", net->proc_net_stat);
577 #endif
578 err2:
579 remove_proc_entry("rt_cache", net->proc_net);
580 err1:
581 return -ENOMEM;
584 static void __net_exit ip_rt_do_proc_exit(struct net *net)
586 remove_proc_entry("rt_cache", net->proc_net_stat);
587 remove_proc_entry("rt_cache", net->proc_net);
588 #ifdef CONFIG_NET_CLS_ROUTE
589 remove_proc_entry("rt_acct", net->proc_net);
590 #endif
593 static struct pernet_operations ip_rt_proc_ops __net_initdata = {
594 .init = ip_rt_do_proc_init,
595 .exit = ip_rt_do_proc_exit,
598 static int __init ip_rt_proc_init(void)
600 return register_pernet_subsys(&ip_rt_proc_ops);
603 #else
604 static inline int ip_rt_proc_init(void)
606 return 0;
608 #endif /* CONFIG_PROC_FS */
610 static inline void rt_free(struct rtable *rt)
612 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
615 static inline void rt_drop(struct rtable *rt)
617 ip_rt_put(rt);
618 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
621 static inline int rt_fast_clean(struct rtable *rth)
623 /* Kill broadcast/multicast entries very aggresively, if they
624 collide in hash table with more useful entries */
625 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
626 rth->fl.iif && rth->u.dst.rt_next;
629 static inline int rt_valuable(struct rtable *rth)
631 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
632 rth->u.dst.expires;
635 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
637 unsigned long age;
638 int ret = 0;
640 if (atomic_read(&rth->u.dst.__refcnt))
641 goto out;
643 ret = 1;
644 if (rth->u.dst.expires &&
645 time_after_eq(jiffies, rth->u.dst.expires))
646 goto out;
648 age = jiffies - rth->u.dst.lastuse;
649 ret = 0;
650 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
651 (age <= tmo2 && rt_valuable(rth)))
652 goto out;
653 ret = 1;
654 out: return ret;
657 /* Bits of score are:
658 * 31: very valuable
659 * 30: not quite useless
660 * 29..0: usage counter
662 static inline u32 rt_score(struct rtable *rt)
664 u32 score = jiffies - rt->u.dst.lastuse;
666 score = ~score & ~(3<<30);
668 if (rt_valuable(rt))
669 score |= (1<<31);
671 if (!rt->fl.iif ||
672 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
673 score |= (1<<30);
675 return score;
678 static inline bool rt_caching(const struct net *net)
680 return net->ipv4.current_rt_cache_rebuild_count <=
681 net->ipv4.sysctl_rt_cache_rebuild_count;
684 static inline bool compare_hash_inputs(const struct flowi *fl1,
685 const struct flowi *fl2)
687 return (__force u32)(((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
688 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr) |
689 (fl1->iif ^ fl2->iif)) == 0);
692 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
694 return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
695 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) |
696 (fl1->mark ^ fl2->mark) |
697 (*(u16 *)&fl1->nl_u.ip4_u.tos ^
698 *(u16 *)&fl2->nl_u.ip4_u.tos) |
699 (fl1->oif ^ fl2->oif) |
700 (fl1->iif ^ fl2->iif)) == 0;
703 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
705 return net_eq(dev_net(rt1->u.dst.dev), dev_net(rt2->u.dst.dev));
708 static inline int rt_is_expired(struct rtable *rth)
710 return rth->rt_genid != rt_genid(dev_net(rth->u.dst.dev));
714 * Perform a full scan of hash table and free all entries.
715 * Can be called by a softirq or a process.
716 * In the later case, we want to be reschedule if necessary
718 static void rt_do_flush(int process_context)
720 unsigned int i;
721 struct rtable *rth, *next;
722 struct rtable * tail;
724 for (i = 0; i <= rt_hash_mask; i++) {
725 if (process_context && need_resched())
726 cond_resched();
727 rth = rt_hash_table[i].chain;
728 if (!rth)
729 continue;
731 spin_lock_bh(rt_hash_lock_addr(i));
732 #ifdef CONFIG_NET_NS
734 struct rtable ** prev, * p;
736 rth = rt_hash_table[i].chain;
738 /* defer releasing the head of the list after spin_unlock */
739 for (tail = rth; tail; tail = tail->u.dst.rt_next)
740 if (!rt_is_expired(tail))
741 break;
742 if (rth != tail)
743 rt_hash_table[i].chain = tail;
745 /* call rt_free on entries after the tail requiring flush */
746 prev = &rt_hash_table[i].chain;
747 for (p = *prev; p; p = next) {
748 next = p->u.dst.rt_next;
749 if (!rt_is_expired(p)) {
750 prev = &p->u.dst.rt_next;
751 } else {
752 *prev = next;
753 rt_free(p);
757 #else
758 rth = rt_hash_table[i].chain;
759 rt_hash_table[i].chain = NULL;
760 tail = NULL;
761 #endif
762 spin_unlock_bh(rt_hash_lock_addr(i));
764 for (; rth != tail; rth = next) {
765 next = rth->u.dst.rt_next;
766 rt_free(rth);
772 * While freeing expired entries, we compute average chain length
773 * and standard deviation, using fixed-point arithmetic.
774 * This to have an estimation of rt_chain_length_max
775 * rt_chain_length_max = max(elasticity, AVG + 4*SD)
776 * We use 3 bits for frational part, and 29 (or 61) for magnitude.
779 #define FRACT_BITS 3
780 #define ONE (1UL << FRACT_BITS)
783 * Given a hash chain and an item in this hash chain,
784 * find if a previous entry has the same hash_inputs
785 * (but differs on tos, mark or oif)
786 * Returns 0 if an alias is found.
787 * Returns ONE if rth has no alias before itself.
789 static int has_noalias(const struct rtable *head, const struct rtable *rth)
791 const struct rtable *aux = head;
793 while (aux != rth) {
794 if (compare_hash_inputs(&aux->fl, &rth->fl))
795 return 0;
796 aux = aux->u.dst.rt_next;
798 return ONE;
801 static void rt_check_expire(void)
803 static unsigned int rover;
804 unsigned int i = rover, goal;
805 struct rtable *rth, **rthp;
806 unsigned long samples = 0;
807 unsigned long sum = 0, sum2 = 0;
808 unsigned long delta;
809 u64 mult;
811 delta = jiffies - expires_ljiffies;
812 expires_ljiffies = jiffies;
813 mult = ((u64)delta) << rt_hash_log;
814 if (ip_rt_gc_timeout > 1)
815 do_div(mult, ip_rt_gc_timeout);
816 goal = (unsigned int)mult;
817 if (goal > rt_hash_mask)
818 goal = rt_hash_mask + 1;
819 for (; goal > 0; goal--) {
820 unsigned long tmo = ip_rt_gc_timeout;
821 unsigned long length;
823 i = (i + 1) & rt_hash_mask;
824 rthp = &rt_hash_table[i].chain;
826 if (need_resched())
827 cond_resched();
829 samples++;
831 if (*rthp == NULL)
832 continue;
833 length = 0;
834 spin_lock_bh(rt_hash_lock_addr(i));
835 while ((rth = *rthp) != NULL) {
836 prefetch(rth->u.dst.rt_next);
837 if (rt_is_expired(rth)) {
838 *rthp = rth->u.dst.rt_next;
839 rt_free(rth);
840 continue;
842 if (rth->u.dst.expires) {
843 /* Entry is expired even if it is in use */
844 if (time_before_eq(jiffies, rth->u.dst.expires)) {
845 nofree:
846 tmo >>= 1;
847 rthp = &rth->u.dst.rt_next;
849 * We only count entries on
850 * a chain with equal hash inputs once
851 * so that entries for different QOS
852 * levels, and other non-hash input
853 * attributes don't unfairly skew
854 * the length computation
856 length += has_noalias(rt_hash_table[i].chain, rth);
857 continue;
859 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout))
860 goto nofree;
862 /* Cleanup aged off entries. */
863 *rthp = rth->u.dst.rt_next;
864 rt_free(rth);
866 spin_unlock_bh(rt_hash_lock_addr(i));
867 sum += length;
868 sum2 += length*length;
870 if (samples) {
871 unsigned long avg = sum / samples;
872 unsigned long sd = int_sqrt(sum2 / samples - avg*avg);
873 rt_chain_length_max = max_t(unsigned long,
874 ip_rt_gc_elasticity,
875 (avg + 4*sd) >> FRACT_BITS);
877 rover = i;
881 * rt_worker_func() is run in process context.
882 * we call rt_check_expire() to scan part of the hash table
884 static void rt_worker_func(struct work_struct *work)
886 rt_check_expire();
887 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
891 * Pertubation of rt_genid by a small quantity [1..256]
892 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
893 * many times (2^24) without giving recent rt_genid.
894 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
896 static void rt_cache_invalidate(struct net *net)
898 unsigned char shuffle;
900 get_random_bytes(&shuffle, sizeof(shuffle));
901 atomic_add(shuffle + 1U, &net->ipv4.rt_genid);
905 * delay < 0 : invalidate cache (fast : entries will be deleted later)
906 * delay >= 0 : invalidate & flush cache (can be long)
908 void rt_cache_flush(struct net *net, int delay)
910 rt_cache_invalidate(net);
911 if (delay >= 0)
912 rt_do_flush(!in_softirq());
915 /* Flush previous cache invalidated entries from the cache */
916 void rt_cache_flush_batch(void)
918 rt_do_flush(!in_softirq());
922 * We change rt_genid and let gc do the cleanup
924 static void rt_secret_rebuild(unsigned long __net)
926 struct net *net = (struct net *)__net;
927 rt_cache_invalidate(net);
928 mod_timer(&net->ipv4.rt_secret_timer, jiffies + ip_rt_secret_interval);
931 static void rt_secret_rebuild_oneshot(struct net *net)
933 del_timer_sync(&net->ipv4.rt_secret_timer);
934 rt_cache_invalidate(net);
935 if (ip_rt_secret_interval)
936 mod_timer(&net->ipv4.rt_secret_timer, jiffies + ip_rt_secret_interval);
939 static void rt_emergency_hash_rebuild(struct net *net)
941 if (net_ratelimit()) {
942 printk(KERN_WARNING "Route hash chain too long!\n");
943 printk(KERN_WARNING "Adjust your secret_interval!\n");
946 rt_secret_rebuild_oneshot(net);
950 Short description of GC goals.
952 We want to build algorithm, which will keep routing cache
953 at some equilibrium point, when number of aged off entries
954 is kept approximately equal to newly generated ones.
956 Current expiration strength is variable "expire".
957 We try to adjust it dynamically, so that if networking
958 is idle expires is large enough to keep enough of warm entries,
959 and when load increases it reduces to limit cache size.
962 static int rt_garbage_collect(struct dst_ops *ops)
964 static unsigned long expire = RT_GC_TIMEOUT;
965 static unsigned long last_gc;
966 static int rover;
967 static int equilibrium;
968 struct rtable *rth, **rthp;
969 unsigned long now = jiffies;
970 int goal;
973 * Garbage collection is pretty expensive,
974 * do not make it too frequently.
977 RT_CACHE_STAT_INC(gc_total);
979 if (now - last_gc < ip_rt_gc_min_interval &&
980 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
981 RT_CACHE_STAT_INC(gc_ignored);
982 goto out;
985 /* Calculate number of entries, which we want to expire now. */
986 goal = atomic_read(&ipv4_dst_ops.entries) -
987 (ip_rt_gc_elasticity << rt_hash_log);
988 if (goal <= 0) {
989 if (equilibrium < ipv4_dst_ops.gc_thresh)
990 equilibrium = ipv4_dst_ops.gc_thresh;
991 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
992 if (goal > 0) {
993 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
994 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
996 } else {
997 /* We are in dangerous area. Try to reduce cache really
998 * aggressively.
1000 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
1001 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
1004 if (now - last_gc >= ip_rt_gc_min_interval)
1005 last_gc = now;
1007 if (goal <= 0) {
1008 equilibrium += goal;
1009 goto work_done;
1012 do {
1013 int i, k;
1015 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
1016 unsigned long tmo = expire;
1018 k = (k + 1) & rt_hash_mask;
1019 rthp = &rt_hash_table[k].chain;
1020 spin_lock_bh(rt_hash_lock_addr(k));
1021 while ((rth = *rthp) != NULL) {
1022 if (!rt_is_expired(rth) &&
1023 !rt_may_expire(rth, tmo, expire)) {
1024 tmo >>= 1;
1025 rthp = &rth->u.dst.rt_next;
1026 continue;
1028 *rthp = rth->u.dst.rt_next;
1029 rt_free(rth);
1030 goal--;
1032 spin_unlock_bh(rt_hash_lock_addr(k));
1033 if (goal <= 0)
1034 break;
1036 rover = k;
1038 if (goal <= 0)
1039 goto work_done;
1041 /* Goal is not achieved. We stop process if:
1043 - if expire reduced to zero. Otherwise, expire is halfed.
1044 - if table is not full.
1045 - if we are called from interrupt.
1046 - jiffies check is just fallback/debug loop breaker.
1047 We will not spin here for long time in any case.
1050 RT_CACHE_STAT_INC(gc_goal_miss);
1052 if (expire == 0)
1053 break;
1055 expire >>= 1;
1056 #if RT_CACHE_DEBUG >= 2
1057 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
1058 atomic_read(&ipv4_dst_ops.entries), goal, i);
1059 #endif
1061 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1062 goto out;
1063 } while (!in_softirq() && time_before_eq(jiffies, now));
1065 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1066 goto out;
1067 if (net_ratelimit())
1068 printk(KERN_WARNING "dst cache overflow\n");
1069 RT_CACHE_STAT_INC(gc_dst_overflow);
1070 return 1;
1072 work_done:
1073 expire += ip_rt_gc_min_interval;
1074 if (expire > ip_rt_gc_timeout ||
1075 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
1076 expire = ip_rt_gc_timeout;
1077 #if RT_CACHE_DEBUG >= 2
1078 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
1079 atomic_read(&ipv4_dst_ops.entries), goal, rover);
1080 #endif
1081 out: return 0;
1085 * Returns number of entries in a hash chain that have different hash_inputs
1087 static int slow_chain_length(const struct rtable *head)
1089 int length = 0;
1090 const struct rtable *rth = head;
1092 while (rth) {
1093 length += has_noalias(head, rth);
1094 rth = rth->u.dst.rt_next;
1096 return length >> FRACT_BITS;
1099 static int rt_intern_hash(unsigned hash, struct rtable *rt,
1100 struct rtable **rp, struct sk_buff *skb)
1102 struct rtable *rth, **rthp;
1103 unsigned long now;
1104 struct rtable *cand, **candp;
1105 u32 min_score;
1106 int chain_length;
1107 int attempts = !in_softirq();
1109 restart:
1110 chain_length = 0;
1111 min_score = ~(u32)0;
1112 cand = NULL;
1113 candp = NULL;
1114 now = jiffies;
1116 if (!rt_caching(dev_net(rt->u.dst.dev))) {
1118 * If we're not caching, just tell the caller we
1119 * were successful and don't touch the route. The
1120 * caller hold the sole reference to the cache entry, and
1121 * it will be released when the caller is done with it.
1122 * If we drop it here, the callers have no way to resolve routes
1123 * when we're not caching. Instead, just point *rp at rt, so
1124 * the caller gets a single use out of the route
1125 * Note that we do rt_free on this new route entry, so that
1126 * once its refcount hits zero, we are still able to reap it
1127 * (Thanks Alexey)
1128 * Note also the rt_free uses call_rcu. We don't actually
1129 * need rcu protection here, this is just our path to get
1130 * on the route gc list.
1133 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1134 int err = arp_bind_neighbour(&rt->u.dst);
1135 if (err) {
1136 if (net_ratelimit())
1137 printk(KERN_WARNING
1138 "Neighbour table failure & not caching routes.\n");
1139 rt_drop(rt);
1140 return err;
1144 rt_free(rt);
1145 goto skip_hashing;
1148 rthp = &rt_hash_table[hash].chain;
1150 spin_lock_bh(rt_hash_lock_addr(hash));
1151 while ((rth = *rthp) != NULL) {
1152 if (rt_is_expired(rth)) {
1153 *rthp = rth->u.dst.rt_next;
1154 rt_free(rth);
1155 continue;
1157 if (compare_keys(&rth->fl, &rt->fl) && compare_netns(rth, rt)) {
1158 /* Put it first */
1159 *rthp = rth->u.dst.rt_next;
1161 * Since lookup is lockfree, the deletion
1162 * must be visible to another weakly ordered CPU before
1163 * the insertion at the start of the hash chain.
1165 rcu_assign_pointer(rth->u.dst.rt_next,
1166 rt_hash_table[hash].chain);
1168 * Since lookup is lockfree, the update writes
1169 * must be ordered for consistency on SMP.
1171 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
1173 dst_use(&rth->u.dst, now);
1174 spin_unlock_bh(rt_hash_lock_addr(hash));
1176 rt_drop(rt);
1177 if (rp)
1178 *rp = rth;
1179 else
1180 skb_dst_set(skb, &rth->u.dst);
1181 return 0;
1184 if (!atomic_read(&rth->u.dst.__refcnt)) {
1185 u32 score = rt_score(rth);
1187 if (score <= min_score) {
1188 cand = rth;
1189 candp = rthp;
1190 min_score = score;
1194 chain_length++;
1196 rthp = &rth->u.dst.rt_next;
1199 if (cand) {
1200 /* ip_rt_gc_elasticity used to be average length of chain
1201 * length, when exceeded gc becomes really aggressive.
1203 * The second limit is less certain. At the moment it allows
1204 * only 2 entries per bucket. We will see.
1206 if (chain_length > ip_rt_gc_elasticity) {
1207 *candp = cand->u.dst.rt_next;
1208 rt_free(cand);
1210 } else {
1211 if (chain_length > rt_chain_length_max &&
1212 slow_chain_length(rt_hash_table[hash].chain) > rt_chain_length_max) {
1213 struct net *net = dev_net(rt->u.dst.dev);
1214 int num = ++net->ipv4.current_rt_cache_rebuild_count;
1215 if (!rt_caching(dev_net(rt->u.dst.dev))) {
1216 printk(KERN_WARNING "%s: %d rebuilds is over limit, route caching disabled\n",
1217 rt->u.dst.dev->name, num);
1219 rt_emergency_hash_rebuild(dev_net(rt->u.dst.dev));
1223 /* Try to bind route to arp only if it is output
1224 route or unicast forwarding path.
1226 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1227 int err = arp_bind_neighbour(&rt->u.dst);
1228 if (err) {
1229 spin_unlock_bh(rt_hash_lock_addr(hash));
1231 if (err != -ENOBUFS) {
1232 rt_drop(rt);
1233 return err;
1236 /* Neighbour tables are full and nothing
1237 can be released. Try to shrink route cache,
1238 it is most likely it holds some neighbour records.
1240 if (attempts-- > 0) {
1241 int saved_elasticity = ip_rt_gc_elasticity;
1242 int saved_int = ip_rt_gc_min_interval;
1243 ip_rt_gc_elasticity = 1;
1244 ip_rt_gc_min_interval = 0;
1245 rt_garbage_collect(&ipv4_dst_ops);
1246 ip_rt_gc_min_interval = saved_int;
1247 ip_rt_gc_elasticity = saved_elasticity;
1248 goto restart;
1251 if (net_ratelimit())
1252 printk(KERN_WARNING "Neighbour table overflow.\n");
1253 rt_drop(rt);
1254 return -ENOBUFS;
1258 rt->u.dst.rt_next = rt_hash_table[hash].chain;
1260 #if RT_CACHE_DEBUG >= 2
1261 if (rt->u.dst.rt_next) {
1262 struct rtable *trt;
1263 printk(KERN_DEBUG "rt_cache @%02x: %pI4",
1264 hash, &rt->rt_dst);
1265 for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
1266 printk(" . %pI4", &trt->rt_dst);
1267 printk("\n");
1269 #endif
1271 * Since lookup is lockfree, we must make sure
1272 * previous writes to rt are comitted to memory
1273 * before making rt visible to other CPUS.
1275 rcu_assign_pointer(rt_hash_table[hash].chain, rt);
1277 spin_unlock_bh(rt_hash_lock_addr(hash));
1279 skip_hashing:
1280 if (rp)
1281 *rp = rt;
1282 else
1283 skb_dst_set(skb, &rt->u.dst);
1284 return 0;
1287 void rt_bind_peer(struct rtable *rt, int create)
1289 static DEFINE_SPINLOCK(rt_peer_lock);
1290 struct inet_peer *peer;
1292 peer = inet_getpeer(rt->rt_dst, create);
1294 spin_lock_bh(&rt_peer_lock);
1295 if (rt->peer == NULL) {
1296 rt->peer = peer;
1297 peer = NULL;
1299 spin_unlock_bh(&rt_peer_lock);
1300 if (peer)
1301 inet_putpeer(peer);
1305 * Peer allocation may fail only in serious out-of-memory conditions. However
1306 * we still can generate some output.
1307 * Random ID selection looks a bit dangerous because we have no chances to
1308 * select ID being unique in a reasonable period of time.
1309 * But broken packet identifier may be better than no packet at all.
1311 static void ip_select_fb_ident(struct iphdr *iph)
1313 static DEFINE_SPINLOCK(ip_fb_id_lock);
1314 static u32 ip_fallback_id;
1315 u32 salt;
1317 spin_lock_bh(&ip_fb_id_lock);
1318 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1319 iph->id = htons(salt & 0xFFFF);
1320 ip_fallback_id = salt;
1321 spin_unlock_bh(&ip_fb_id_lock);
1324 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1326 struct rtable *rt = (struct rtable *) dst;
1328 if (rt) {
1329 if (rt->peer == NULL)
1330 rt_bind_peer(rt, 1);
1332 /* If peer is attached to destination, it is never detached,
1333 so that we need not to grab a lock to dereference it.
1335 if (rt->peer) {
1336 iph->id = htons(inet_getid(rt->peer, more));
1337 return;
1339 } else
1340 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1341 __builtin_return_address(0));
1343 ip_select_fb_ident(iph);
1346 static void rt_del(unsigned hash, struct rtable *rt)
1348 struct rtable **rthp, *aux;
1350 rthp = &rt_hash_table[hash].chain;
1351 spin_lock_bh(rt_hash_lock_addr(hash));
1352 ip_rt_put(rt);
1353 while ((aux = *rthp) != NULL) {
1354 if (aux == rt || rt_is_expired(aux)) {
1355 *rthp = aux->u.dst.rt_next;
1356 rt_free(aux);
1357 continue;
1359 rthp = &aux->u.dst.rt_next;
1361 spin_unlock_bh(rt_hash_lock_addr(hash));
1364 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1365 __be32 saddr, struct net_device *dev)
1367 int i, k;
1368 struct in_device *in_dev = in_dev_get(dev);
1369 struct rtable *rth, **rthp;
1370 __be32 skeys[2] = { saddr, 0 };
1371 int ikeys[2] = { dev->ifindex, 0 };
1372 struct netevent_redirect netevent;
1373 struct net *net;
1375 if (!in_dev)
1376 return;
1378 net = dev_net(dev);
1379 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev) ||
1380 ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw) ||
1381 ipv4_is_zeronet(new_gw))
1382 goto reject_redirect;
1384 if (!rt_caching(net))
1385 goto reject_redirect;
1387 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1388 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1389 goto reject_redirect;
1390 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1391 goto reject_redirect;
1392 } else {
1393 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1394 goto reject_redirect;
1397 for (i = 0; i < 2; i++) {
1398 for (k = 0; k < 2; k++) {
1399 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1400 rt_genid(net));
1402 rthp=&rt_hash_table[hash].chain;
1404 rcu_read_lock();
1405 while ((rth = rcu_dereference(*rthp)) != NULL) {
1406 struct rtable *rt;
1408 if (rth->fl.fl4_dst != daddr ||
1409 rth->fl.fl4_src != skeys[i] ||
1410 rth->fl.oif != ikeys[k] ||
1411 rth->fl.iif != 0 ||
1412 rt_is_expired(rth) ||
1413 !net_eq(dev_net(rth->u.dst.dev), net)) {
1414 rthp = &rth->u.dst.rt_next;
1415 continue;
1418 if (rth->rt_dst != daddr ||
1419 rth->rt_src != saddr ||
1420 rth->u.dst.error ||
1421 rth->rt_gateway != old_gw ||
1422 rth->u.dst.dev != dev)
1423 break;
1425 dst_hold(&rth->u.dst);
1426 rcu_read_unlock();
1428 rt = dst_alloc(&ipv4_dst_ops);
1429 if (rt == NULL) {
1430 ip_rt_put(rth);
1431 in_dev_put(in_dev);
1432 return;
1435 /* Copy all the information. */
1436 *rt = *rth;
1437 rt->u.dst.__use = 1;
1438 atomic_set(&rt->u.dst.__refcnt, 1);
1439 rt->u.dst.child = NULL;
1440 if (rt->u.dst.dev)
1441 dev_hold(rt->u.dst.dev);
1442 if (rt->idev)
1443 in_dev_hold(rt->idev);
1444 rt->u.dst.obsolete = -1;
1445 rt->u.dst.lastuse = jiffies;
1446 rt->u.dst.path = &rt->u.dst;
1447 rt->u.dst.neighbour = NULL;
1448 rt->u.dst.hh = NULL;
1449 #ifdef CONFIG_XFRM
1450 rt->u.dst.xfrm = NULL;
1451 #endif
1452 rt->rt_genid = rt_genid(net);
1453 rt->rt_flags |= RTCF_REDIRECTED;
1455 /* Gateway is different ... */
1456 rt->rt_gateway = new_gw;
1458 /* Redirect received -> path was valid */
1459 dst_confirm(&rth->u.dst);
1461 if (rt->peer)
1462 atomic_inc(&rt->peer->refcnt);
1464 if (arp_bind_neighbour(&rt->u.dst) ||
1465 !(rt->u.dst.neighbour->nud_state &
1466 NUD_VALID)) {
1467 if (rt->u.dst.neighbour)
1468 neigh_event_send(rt->u.dst.neighbour, NULL);
1469 ip_rt_put(rth);
1470 rt_drop(rt);
1471 goto do_next;
1474 netevent.old = &rth->u.dst;
1475 netevent.new = &rt->u.dst;
1476 call_netevent_notifiers(NETEVENT_REDIRECT,
1477 &netevent);
1479 rt_del(hash, rth);
1480 if (!rt_intern_hash(hash, rt, &rt, NULL))
1481 ip_rt_put(rt);
1482 goto do_next;
1484 rcu_read_unlock();
1485 do_next:
1489 in_dev_put(in_dev);
1490 return;
1492 reject_redirect:
1493 #ifdef CONFIG_IP_ROUTE_VERBOSE
1494 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1495 printk(KERN_INFO "Redirect from %pI4 on %s about %pI4 ignored.\n"
1496 " Advised path = %pI4 -> %pI4\n",
1497 &old_gw, dev->name, &new_gw,
1498 &saddr, &daddr);
1499 #endif
1500 in_dev_put(in_dev);
1503 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1505 struct rtable *rt = (struct rtable *)dst;
1506 struct dst_entry *ret = dst;
1508 if (rt) {
1509 if (dst->obsolete > 0) {
1510 ip_rt_put(rt);
1511 ret = NULL;
1512 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1513 (rt->u.dst.expires &&
1514 time_after_eq(jiffies, rt->u.dst.expires))) {
1515 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1516 rt->fl.oif,
1517 rt_genid(dev_net(dst->dev)));
1518 #if RT_CACHE_DEBUG >= 1
1519 printk(KERN_DEBUG "ipv4_negative_advice: redirect to %pI4/%02x dropped\n",
1520 &rt->rt_dst, rt->fl.fl4_tos);
1521 #endif
1522 rt_del(hash, rt);
1523 ret = NULL;
1526 return ret;
1530 * Algorithm:
1531 * 1. The first ip_rt_redirect_number redirects are sent
1532 * with exponential backoff, then we stop sending them at all,
1533 * assuming that the host ignores our redirects.
1534 * 2. If we did not see packets requiring redirects
1535 * during ip_rt_redirect_silence, we assume that the host
1536 * forgot redirected route and start to send redirects again.
1538 * This algorithm is much cheaper and more intelligent than dumb load limiting
1539 * in icmp.c.
1541 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1542 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1545 void ip_rt_send_redirect(struct sk_buff *skb)
1547 struct rtable *rt = skb_rtable(skb);
1548 struct in_device *in_dev;
1549 int log_martians;
1551 rcu_read_lock();
1552 in_dev = __in_dev_get_rcu(rt->u.dst.dev);
1553 if (!in_dev || !IN_DEV_TX_REDIRECTS(in_dev)) {
1554 rcu_read_unlock();
1555 return;
1557 log_martians = IN_DEV_LOG_MARTIANS(in_dev);
1558 rcu_read_unlock();
1560 /* No redirected packets during ip_rt_redirect_silence;
1561 * reset the algorithm.
1563 if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1564 rt->u.dst.rate_tokens = 0;
1566 /* Too many ignored redirects; do not send anything
1567 * set u.dst.rate_last to the last seen redirected packet.
1569 if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1570 rt->u.dst.rate_last = jiffies;
1571 return;
1574 /* Check for load limit; set rate_last to the latest sent
1575 * redirect.
1577 if (rt->u.dst.rate_tokens == 0 ||
1578 time_after(jiffies,
1579 (rt->u.dst.rate_last +
1580 (ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1581 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1582 rt->u.dst.rate_last = jiffies;
1583 ++rt->u.dst.rate_tokens;
1584 #ifdef CONFIG_IP_ROUTE_VERBOSE
1585 if (log_martians &&
1586 rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1587 net_ratelimit())
1588 printk(KERN_WARNING "host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1589 &rt->rt_src, rt->rt_iif,
1590 &rt->rt_dst, &rt->rt_gateway);
1591 #endif
1595 static int ip_error(struct sk_buff *skb)
1597 struct rtable *rt = skb_rtable(skb);
1598 unsigned long now;
1599 int code;
1601 switch (rt->u.dst.error) {
1602 case EINVAL:
1603 default:
1604 goto out;
1605 case EHOSTUNREACH:
1606 code = ICMP_HOST_UNREACH;
1607 break;
1608 case ENETUNREACH:
1609 code = ICMP_NET_UNREACH;
1610 IP_INC_STATS_BH(dev_net(rt->u.dst.dev),
1611 IPSTATS_MIB_INNOROUTES);
1612 break;
1613 case EACCES:
1614 code = ICMP_PKT_FILTERED;
1615 break;
1618 now = jiffies;
1619 rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1620 if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1621 rt->u.dst.rate_tokens = ip_rt_error_burst;
1622 rt->u.dst.rate_last = now;
1623 if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1624 rt->u.dst.rate_tokens -= ip_rt_error_cost;
1625 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1628 out: kfree_skb(skb);
1629 return 0;
1633 * The last two values are not from the RFC but
1634 * are needed for AMPRnet AX.25 paths.
1637 static const unsigned short mtu_plateau[] =
1638 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1640 static inline unsigned short guess_mtu(unsigned short old_mtu)
1642 int i;
1644 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1645 if (old_mtu > mtu_plateau[i])
1646 return mtu_plateau[i];
1647 return 68;
1650 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph,
1651 unsigned short new_mtu,
1652 struct net_device *dev)
1654 int i, k;
1655 unsigned short old_mtu = ntohs(iph->tot_len);
1656 struct rtable *rth;
1657 int ikeys[2] = { dev->ifindex, 0 };
1658 __be32 skeys[2] = { iph->saddr, 0, };
1659 __be32 daddr = iph->daddr;
1660 unsigned short est_mtu = 0;
1662 for (k = 0; k < 2; k++) {
1663 for (i = 0; i < 2; i++) {
1664 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1665 rt_genid(net));
1667 rcu_read_lock();
1668 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1669 rth = rcu_dereference(rth->u.dst.rt_next)) {
1670 unsigned short mtu = new_mtu;
1672 if (rth->fl.fl4_dst != daddr ||
1673 rth->fl.fl4_src != skeys[i] ||
1674 rth->rt_dst != daddr ||
1675 rth->rt_src != iph->saddr ||
1676 rth->fl.oif != ikeys[k] ||
1677 rth->fl.iif != 0 ||
1678 dst_metric_locked(&rth->u.dst, RTAX_MTU) ||
1679 !net_eq(dev_net(rth->u.dst.dev), net) ||
1680 rt_is_expired(rth))
1681 continue;
1683 if (new_mtu < 68 || new_mtu >= old_mtu) {
1685 /* BSD 4.2 compatibility hack :-( */
1686 if (mtu == 0 &&
1687 old_mtu >= dst_mtu(&rth->u.dst) &&
1688 old_mtu >= 68 + (iph->ihl << 2))
1689 old_mtu -= iph->ihl << 2;
1691 mtu = guess_mtu(old_mtu);
1693 if (mtu <= dst_mtu(&rth->u.dst)) {
1694 if (mtu < dst_mtu(&rth->u.dst)) {
1695 dst_confirm(&rth->u.dst);
1696 if (mtu < ip_rt_min_pmtu) {
1697 mtu = ip_rt_min_pmtu;
1698 rth->u.dst.metrics[RTAX_LOCK-1] |=
1699 (1 << RTAX_MTU);
1701 rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1702 dst_set_expires(&rth->u.dst,
1703 ip_rt_mtu_expires);
1705 est_mtu = mtu;
1708 rcu_read_unlock();
1711 return est_mtu ? : new_mtu;
1714 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1716 if (dst_mtu(dst) > mtu && mtu >= 68 &&
1717 !(dst_metric_locked(dst, RTAX_MTU))) {
1718 if (mtu < ip_rt_min_pmtu) {
1719 mtu = ip_rt_min_pmtu;
1720 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1722 dst->metrics[RTAX_MTU-1] = mtu;
1723 dst_set_expires(dst, ip_rt_mtu_expires);
1724 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1728 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1730 if (rt_is_expired((struct rtable *)dst))
1731 return NULL;
1732 return dst;
1735 static void ipv4_dst_destroy(struct dst_entry *dst)
1737 struct rtable *rt = (struct rtable *) dst;
1738 struct inet_peer *peer = rt->peer;
1739 struct in_device *idev = rt->idev;
1741 if (peer) {
1742 rt->peer = NULL;
1743 inet_putpeer(peer);
1746 if (idev) {
1747 rt->idev = NULL;
1748 in_dev_put(idev);
1752 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1753 int how)
1755 struct rtable *rt = (struct rtable *) dst;
1756 struct in_device *idev = rt->idev;
1757 if (dev != dev_net(dev)->loopback_dev && idev && idev->dev == dev) {
1758 struct in_device *loopback_idev =
1759 in_dev_get(dev_net(dev)->loopback_dev);
1760 if (loopback_idev) {
1761 rt->idev = loopback_idev;
1762 in_dev_put(idev);
1767 static void ipv4_link_failure(struct sk_buff *skb)
1769 struct rtable *rt;
1771 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1773 rt = skb_rtable(skb);
1774 if (rt)
1775 dst_set_expires(&rt->u.dst, 0);
1778 static int ip_rt_bug(struct sk_buff *skb)
1780 printk(KERN_DEBUG "ip_rt_bug: %pI4 -> %pI4, %s\n",
1781 &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr,
1782 skb->dev ? skb->dev->name : "?");
1783 kfree_skb(skb);
1784 return 0;
1788 We do not cache source address of outgoing interface,
1789 because it is used only by IP RR, TS and SRR options,
1790 so that it out of fast path.
1792 BTW remember: "addr" is allowed to be not aligned
1793 in IP options!
1796 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1798 __be32 src;
1799 struct fib_result res;
1801 if (rt->fl.iif == 0)
1802 src = rt->rt_src;
1803 else if (fib_lookup(dev_net(rt->u.dst.dev), &rt->fl, &res) == 0) {
1804 src = FIB_RES_PREFSRC(res);
1805 fib_res_put(&res);
1806 } else
1807 src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1808 RT_SCOPE_UNIVERSE);
1809 memcpy(addr, &src, 4);
1812 #ifdef CONFIG_NET_CLS_ROUTE
1813 static void set_class_tag(struct rtable *rt, u32 tag)
1815 if (!(rt->u.dst.tclassid & 0xFFFF))
1816 rt->u.dst.tclassid |= tag & 0xFFFF;
1817 if (!(rt->u.dst.tclassid & 0xFFFF0000))
1818 rt->u.dst.tclassid |= tag & 0xFFFF0000;
1820 #endif
1822 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1824 struct fib_info *fi = res->fi;
1826 if (fi) {
1827 if (FIB_RES_GW(*res) &&
1828 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1829 rt->rt_gateway = FIB_RES_GW(*res);
1830 memcpy(rt->u.dst.metrics, fi->fib_metrics,
1831 sizeof(rt->u.dst.metrics));
1832 if (fi->fib_mtu == 0) {
1833 rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1834 if (dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1835 rt->rt_gateway != rt->rt_dst &&
1836 rt->u.dst.dev->mtu > 576)
1837 rt->u.dst.metrics[RTAX_MTU-1] = 576;
1839 #ifdef CONFIG_NET_CLS_ROUTE
1840 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1841 #endif
1842 } else
1843 rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1845 if (dst_metric(&rt->u.dst, RTAX_HOPLIMIT) == 0)
1846 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1847 if (dst_mtu(&rt->u.dst) > IP_MAX_MTU)
1848 rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1849 if (dst_metric(&rt->u.dst, RTAX_ADVMSS) == 0)
1850 rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1851 ip_rt_min_advmss);
1852 if (dst_metric(&rt->u.dst, RTAX_ADVMSS) > 65535 - 40)
1853 rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1855 #ifdef CONFIG_NET_CLS_ROUTE
1856 #ifdef CONFIG_IP_MULTIPLE_TABLES
1857 set_class_tag(rt, fib_rules_tclass(res));
1858 #endif
1859 set_class_tag(rt, itag);
1860 #endif
1861 rt->rt_type = res->type;
1864 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1865 u8 tos, struct net_device *dev, int our)
1867 unsigned hash;
1868 struct rtable *rth;
1869 __be32 spec_dst;
1870 struct in_device *in_dev = in_dev_get(dev);
1871 u32 itag = 0;
1873 /* Primary sanity checks. */
1875 if (in_dev == NULL)
1876 return -EINVAL;
1878 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1879 ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1880 goto e_inval;
1882 if (ipv4_is_zeronet(saddr)) {
1883 if (!ipv4_is_local_multicast(daddr))
1884 goto e_inval;
1885 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1886 } else if (fib_validate_source(saddr, 0, tos, 0,
1887 dev, &spec_dst, &itag, 0) < 0)
1888 goto e_inval;
1890 rth = dst_alloc(&ipv4_dst_ops);
1891 if (!rth)
1892 goto e_nobufs;
1894 rth->u.dst.output = ip_rt_bug;
1895 rth->u.dst.obsolete = -1;
1897 atomic_set(&rth->u.dst.__refcnt, 1);
1898 rth->u.dst.flags= DST_HOST;
1899 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1900 rth->u.dst.flags |= DST_NOPOLICY;
1901 rth->fl.fl4_dst = daddr;
1902 rth->rt_dst = daddr;
1903 rth->fl.fl4_tos = tos;
1904 rth->fl.mark = skb->mark;
1905 rth->fl.fl4_src = saddr;
1906 rth->rt_src = saddr;
1907 #ifdef CONFIG_NET_CLS_ROUTE
1908 rth->u.dst.tclassid = itag;
1909 #endif
1910 rth->rt_iif =
1911 rth->fl.iif = dev->ifindex;
1912 rth->u.dst.dev = init_net.loopback_dev;
1913 dev_hold(rth->u.dst.dev);
1914 rth->idev = in_dev_get(rth->u.dst.dev);
1915 rth->fl.oif = 0;
1916 rth->rt_gateway = daddr;
1917 rth->rt_spec_dst= spec_dst;
1918 rth->rt_genid = rt_genid(dev_net(dev));
1919 rth->rt_flags = RTCF_MULTICAST;
1920 rth->rt_type = RTN_MULTICAST;
1921 if (our) {
1922 rth->u.dst.input= ip_local_deliver;
1923 rth->rt_flags |= RTCF_LOCAL;
1926 #ifdef CONFIG_IP_MROUTE
1927 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1928 rth->u.dst.input = ip_mr_input;
1929 #endif
1930 RT_CACHE_STAT_INC(in_slow_mc);
1932 in_dev_put(in_dev);
1933 hash = rt_hash(daddr, saddr, dev->ifindex, rt_genid(dev_net(dev)));
1934 return rt_intern_hash(hash, rth, NULL, skb);
1936 e_nobufs:
1937 in_dev_put(in_dev);
1938 return -ENOBUFS;
1940 e_inval:
1941 in_dev_put(in_dev);
1942 return -EINVAL;
1946 static void ip_handle_martian_source(struct net_device *dev,
1947 struct in_device *in_dev,
1948 struct sk_buff *skb,
1949 __be32 daddr,
1950 __be32 saddr)
1952 RT_CACHE_STAT_INC(in_martian_src);
1953 #ifdef CONFIG_IP_ROUTE_VERBOSE
1954 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1956 * RFC1812 recommendation, if source is martian,
1957 * the only hint is MAC header.
1959 printk(KERN_WARNING "martian source %pI4 from %pI4, on dev %s\n",
1960 &daddr, &saddr, dev->name);
1961 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1962 int i;
1963 const unsigned char *p = skb_mac_header(skb);
1964 printk(KERN_WARNING "ll header: ");
1965 for (i = 0; i < dev->hard_header_len; i++, p++) {
1966 printk("%02x", *p);
1967 if (i < (dev->hard_header_len - 1))
1968 printk(":");
1970 printk("\n");
1973 #endif
1976 static int __mkroute_input(struct sk_buff *skb,
1977 struct fib_result *res,
1978 struct in_device *in_dev,
1979 __be32 daddr, __be32 saddr, u32 tos,
1980 struct rtable **result)
1983 struct rtable *rth;
1984 int err;
1985 struct in_device *out_dev;
1986 unsigned flags = 0;
1987 __be32 spec_dst;
1988 u32 itag;
1990 /* get a working reference to the output device */
1991 out_dev = in_dev_get(FIB_RES_DEV(*res));
1992 if (out_dev == NULL) {
1993 if (net_ratelimit())
1994 printk(KERN_CRIT "Bug in ip_route_input" \
1995 "_slow(). Please, report\n");
1996 return -EINVAL;
2000 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
2001 in_dev->dev, &spec_dst, &itag, skb->mark);
2002 if (err < 0) {
2003 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
2004 saddr);
2006 err = -EINVAL;
2007 goto cleanup;
2010 if (err)
2011 flags |= RTCF_DIRECTSRC;
2013 if (out_dev == in_dev && err &&
2014 (IN_DEV_SHARED_MEDIA(out_dev) ||
2015 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
2016 flags |= RTCF_DOREDIRECT;
2018 if (skb->protocol != htons(ETH_P_IP)) {
2019 /* Not IP (i.e. ARP). Do not create route, if it is
2020 * invalid for proxy arp. DNAT routes are always valid.
2022 * Proxy arp feature have been extended to allow, ARP
2023 * replies back to the same interface, to support
2024 * Private VLAN switch technologies. See arp.c.
2026 if (out_dev == in_dev &&
2027 IN_DEV_PROXY_ARP_PVLAN(in_dev) == 0) {
2028 err = -EINVAL;
2029 goto cleanup;
2034 rth = dst_alloc(&ipv4_dst_ops);
2035 if (!rth) {
2036 err = -ENOBUFS;
2037 goto cleanup;
2040 atomic_set(&rth->u.dst.__refcnt, 1);
2041 rth->u.dst.flags= DST_HOST;
2042 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2043 rth->u.dst.flags |= DST_NOPOLICY;
2044 if (IN_DEV_CONF_GET(out_dev, NOXFRM))
2045 rth->u.dst.flags |= DST_NOXFRM;
2046 rth->fl.fl4_dst = daddr;
2047 rth->rt_dst = daddr;
2048 rth->fl.fl4_tos = tos;
2049 rth->fl.mark = skb->mark;
2050 rth->fl.fl4_src = saddr;
2051 rth->rt_src = saddr;
2052 rth->rt_gateway = daddr;
2053 rth->rt_iif =
2054 rth->fl.iif = in_dev->dev->ifindex;
2055 rth->u.dst.dev = (out_dev)->dev;
2056 dev_hold(rth->u.dst.dev);
2057 rth->idev = in_dev_get(rth->u.dst.dev);
2058 rth->fl.oif = 0;
2059 rth->rt_spec_dst= spec_dst;
2061 rth->u.dst.obsolete = -1;
2062 rth->u.dst.input = ip_forward;
2063 rth->u.dst.output = ip_output;
2064 rth->rt_genid = rt_genid(dev_net(rth->u.dst.dev));
2066 rt_set_nexthop(rth, res, itag);
2068 rth->rt_flags = flags;
2070 *result = rth;
2071 err = 0;
2072 cleanup:
2073 /* release the working reference to the output device */
2074 in_dev_put(out_dev);
2075 return err;
2078 static int ip_mkroute_input(struct sk_buff *skb,
2079 struct fib_result *res,
2080 const struct flowi *fl,
2081 struct in_device *in_dev,
2082 __be32 daddr, __be32 saddr, u32 tos)
2084 struct rtable* rth = NULL;
2085 int err;
2086 unsigned hash;
2088 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2089 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
2090 fib_select_multipath(fl, res);
2091 #endif
2093 /* create a routing cache entry */
2094 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
2095 if (err)
2096 return err;
2098 /* put it into the cache */
2099 hash = rt_hash(daddr, saddr, fl->iif,
2100 rt_genid(dev_net(rth->u.dst.dev)));
2101 return rt_intern_hash(hash, rth, NULL, skb);
2105 * NOTE. We drop all the packets that has local source
2106 * addresses, because every properly looped back packet
2107 * must have correct destination already attached by output routine.
2109 * Such approach solves two big problems:
2110 * 1. Not simplex devices are handled properly.
2111 * 2. IP spoofing attempts are filtered with 100% of guarantee.
2114 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2115 u8 tos, struct net_device *dev)
2117 struct fib_result res;
2118 struct in_device *in_dev = in_dev_get(dev);
2119 struct flowi fl = { .nl_u = { .ip4_u =
2120 { .daddr = daddr,
2121 .saddr = saddr,
2122 .tos = tos,
2123 .scope = RT_SCOPE_UNIVERSE,
2124 } },
2125 .mark = skb->mark,
2126 .iif = dev->ifindex };
2127 unsigned flags = 0;
2128 u32 itag = 0;
2129 struct rtable * rth;
2130 unsigned hash;
2131 __be32 spec_dst;
2132 int err = -EINVAL;
2133 int free_res = 0;
2134 struct net * net = dev_net(dev);
2136 /* IP on this device is disabled. */
2138 if (!in_dev)
2139 goto out;
2141 /* Check for the most weird martians, which can be not detected
2142 by fib_lookup.
2145 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
2146 ipv4_is_loopback(saddr))
2147 goto martian_source;
2149 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
2150 goto brd_input;
2152 /* Accept zero addresses only to limited broadcast;
2153 * I even do not know to fix it or not. Waiting for complains :-)
2155 if (ipv4_is_zeronet(saddr))
2156 goto martian_source;
2158 if (ipv4_is_lbcast(daddr) || ipv4_is_zeronet(daddr) ||
2159 ipv4_is_loopback(daddr))
2160 goto martian_destination;
2163 * Now we are ready to route packet.
2165 if ((err = fib_lookup(net, &fl, &res)) != 0) {
2166 if (!IN_DEV_FORWARD(in_dev))
2167 goto e_hostunreach;
2168 goto no_route;
2170 free_res = 1;
2172 RT_CACHE_STAT_INC(in_slow_tot);
2174 if (res.type == RTN_BROADCAST)
2175 goto brd_input;
2177 if (res.type == RTN_LOCAL) {
2178 int result;
2179 result = fib_validate_source(saddr, daddr, tos,
2180 net->loopback_dev->ifindex,
2181 dev, &spec_dst, &itag, skb->mark);
2182 if (result < 0)
2183 goto martian_source;
2184 if (result)
2185 flags |= RTCF_DIRECTSRC;
2186 spec_dst = daddr;
2187 goto local_input;
2190 if (!IN_DEV_FORWARD(in_dev))
2191 goto e_hostunreach;
2192 if (res.type != RTN_UNICAST)
2193 goto martian_destination;
2195 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
2196 done:
2197 in_dev_put(in_dev);
2198 if (free_res)
2199 fib_res_put(&res);
2200 out: return err;
2202 brd_input:
2203 if (skb->protocol != htons(ETH_P_IP))
2204 goto e_inval;
2206 if (ipv4_is_zeronet(saddr))
2207 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
2208 else {
2209 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
2210 &itag, skb->mark);
2211 if (err < 0)
2212 goto martian_source;
2213 if (err)
2214 flags |= RTCF_DIRECTSRC;
2216 flags |= RTCF_BROADCAST;
2217 res.type = RTN_BROADCAST;
2218 RT_CACHE_STAT_INC(in_brd);
2220 local_input:
2221 rth = dst_alloc(&ipv4_dst_ops);
2222 if (!rth)
2223 goto e_nobufs;
2225 rth->u.dst.output= ip_rt_bug;
2226 rth->u.dst.obsolete = -1;
2227 rth->rt_genid = rt_genid(net);
2229 atomic_set(&rth->u.dst.__refcnt, 1);
2230 rth->u.dst.flags= DST_HOST;
2231 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2232 rth->u.dst.flags |= DST_NOPOLICY;
2233 rth->fl.fl4_dst = daddr;
2234 rth->rt_dst = daddr;
2235 rth->fl.fl4_tos = tos;
2236 rth->fl.mark = skb->mark;
2237 rth->fl.fl4_src = saddr;
2238 rth->rt_src = saddr;
2239 #ifdef CONFIG_NET_CLS_ROUTE
2240 rth->u.dst.tclassid = itag;
2241 #endif
2242 rth->rt_iif =
2243 rth->fl.iif = dev->ifindex;
2244 rth->u.dst.dev = net->loopback_dev;
2245 dev_hold(rth->u.dst.dev);
2246 rth->idev = in_dev_get(rth->u.dst.dev);
2247 rth->rt_gateway = daddr;
2248 rth->rt_spec_dst= spec_dst;
2249 rth->u.dst.input= ip_local_deliver;
2250 rth->rt_flags = flags|RTCF_LOCAL;
2251 if (res.type == RTN_UNREACHABLE) {
2252 rth->u.dst.input= ip_error;
2253 rth->u.dst.error= -err;
2254 rth->rt_flags &= ~RTCF_LOCAL;
2256 rth->rt_type = res.type;
2257 hash = rt_hash(daddr, saddr, fl.iif, rt_genid(net));
2258 err = rt_intern_hash(hash, rth, NULL, skb);
2259 goto done;
2261 no_route:
2262 RT_CACHE_STAT_INC(in_no_route);
2263 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2264 res.type = RTN_UNREACHABLE;
2265 if (err == -ESRCH)
2266 err = -ENETUNREACH;
2267 goto local_input;
2270 * Do not cache martian addresses: they should be logged (RFC1812)
2272 martian_destination:
2273 RT_CACHE_STAT_INC(in_martian_dst);
2274 #ifdef CONFIG_IP_ROUTE_VERBOSE
2275 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2276 printk(KERN_WARNING "martian destination %pI4 from %pI4, dev %s\n",
2277 &daddr, &saddr, dev->name);
2278 #endif
2280 e_hostunreach:
2281 err = -EHOSTUNREACH;
2282 goto done;
2284 e_inval:
2285 err = -EINVAL;
2286 goto done;
2288 e_nobufs:
2289 err = -ENOBUFS;
2290 goto done;
2292 martian_source:
2293 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2294 goto e_inval;
2297 int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2298 u8 tos, struct net_device *dev)
2300 struct rtable * rth;
2301 unsigned hash;
2302 int iif = dev->ifindex;
2303 struct net *net;
2305 net = dev_net(dev);
2307 if (!rt_caching(net))
2308 goto skip_cache;
2310 tos &= IPTOS_RT_MASK;
2311 hash = rt_hash(daddr, saddr, iif, rt_genid(net));
2313 rcu_read_lock();
2314 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2315 rth = rcu_dereference(rth->u.dst.rt_next)) {
2316 if (((rth->fl.fl4_dst ^ daddr) |
2317 (rth->fl.fl4_src ^ saddr) |
2318 (rth->fl.iif ^ iif) |
2319 rth->fl.oif |
2320 (rth->fl.fl4_tos ^ tos)) == 0 &&
2321 rth->fl.mark == skb->mark &&
2322 net_eq(dev_net(rth->u.dst.dev), net) &&
2323 !rt_is_expired(rth)) {
2324 dst_use(&rth->u.dst, jiffies);
2325 RT_CACHE_STAT_INC(in_hit);
2326 rcu_read_unlock();
2327 skb_dst_set(skb, &rth->u.dst);
2328 return 0;
2330 RT_CACHE_STAT_INC(in_hlist_search);
2332 rcu_read_unlock();
2334 skip_cache:
2335 /* Multicast recognition logic is moved from route cache to here.
2336 The problem was that too many Ethernet cards have broken/missing
2337 hardware multicast filters :-( As result the host on multicasting
2338 network acquires a lot of useless route cache entries, sort of
2339 SDR messages from all the world. Now we try to get rid of them.
2340 Really, provided software IP multicast filter is organized
2341 reasonably (at least, hashed), it does not result in a slowdown
2342 comparing with route cache reject entries.
2343 Note, that multicast routers are not affected, because
2344 route cache entry is created eventually.
2346 if (ipv4_is_multicast(daddr)) {
2347 struct in_device *in_dev;
2349 rcu_read_lock();
2350 if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
2351 int our = ip_check_mc(in_dev, daddr, saddr,
2352 ip_hdr(skb)->protocol);
2353 if (our
2354 #ifdef CONFIG_IP_MROUTE
2356 (!ipv4_is_local_multicast(daddr) &&
2357 IN_DEV_MFORWARD(in_dev))
2358 #endif
2360 rcu_read_unlock();
2361 return ip_route_input_mc(skb, daddr, saddr,
2362 tos, dev, our);
2365 rcu_read_unlock();
2366 return -EINVAL;
2368 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
2371 static int __mkroute_output(struct rtable **result,
2372 struct fib_result *res,
2373 const struct flowi *fl,
2374 const struct flowi *oldflp,
2375 struct net_device *dev_out,
2376 unsigned flags)
2378 struct rtable *rth;
2379 struct in_device *in_dev;
2380 u32 tos = RT_FL_TOS(oldflp);
2381 int err = 0;
2383 if (ipv4_is_loopback(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2384 return -EINVAL;
2386 if (fl->fl4_dst == htonl(0xFFFFFFFF))
2387 res->type = RTN_BROADCAST;
2388 else if (ipv4_is_multicast(fl->fl4_dst))
2389 res->type = RTN_MULTICAST;
2390 else if (ipv4_is_lbcast(fl->fl4_dst) || ipv4_is_zeronet(fl->fl4_dst))
2391 return -EINVAL;
2393 if (dev_out->flags & IFF_LOOPBACK)
2394 flags |= RTCF_LOCAL;
2396 /* get work reference to inet device */
2397 in_dev = in_dev_get(dev_out);
2398 if (!in_dev)
2399 return -EINVAL;
2401 if (res->type == RTN_BROADCAST) {
2402 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2403 if (res->fi) {
2404 fib_info_put(res->fi);
2405 res->fi = NULL;
2407 } else if (res->type == RTN_MULTICAST) {
2408 flags |= RTCF_MULTICAST|RTCF_LOCAL;
2409 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2410 oldflp->proto))
2411 flags &= ~RTCF_LOCAL;
2412 /* If multicast route do not exist use
2413 default one, but do not gateway in this case.
2414 Yes, it is hack.
2416 if (res->fi && res->prefixlen < 4) {
2417 fib_info_put(res->fi);
2418 res->fi = NULL;
2423 rth = dst_alloc(&ipv4_dst_ops);
2424 if (!rth) {
2425 err = -ENOBUFS;
2426 goto cleanup;
2429 atomic_set(&rth->u.dst.__refcnt, 1);
2430 rth->u.dst.flags= DST_HOST;
2431 if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2432 rth->u.dst.flags |= DST_NOXFRM;
2433 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2434 rth->u.dst.flags |= DST_NOPOLICY;
2436 rth->fl.fl4_dst = oldflp->fl4_dst;
2437 rth->fl.fl4_tos = tos;
2438 rth->fl.fl4_src = oldflp->fl4_src;
2439 rth->fl.oif = oldflp->oif;
2440 rth->fl.mark = oldflp->mark;
2441 rth->rt_dst = fl->fl4_dst;
2442 rth->rt_src = fl->fl4_src;
2443 rth->rt_iif = oldflp->oif ? : dev_out->ifindex;
2444 /* get references to the devices that are to be hold by the routing
2445 cache entry */
2446 rth->u.dst.dev = dev_out;
2447 dev_hold(dev_out);
2448 rth->idev = in_dev_get(dev_out);
2449 rth->rt_gateway = fl->fl4_dst;
2450 rth->rt_spec_dst= fl->fl4_src;
2452 rth->u.dst.output=ip_output;
2453 rth->u.dst.obsolete = -1;
2454 rth->rt_genid = rt_genid(dev_net(dev_out));
2456 RT_CACHE_STAT_INC(out_slow_tot);
2458 if (flags & RTCF_LOCAL) {
2459 rth->u.dst.input = ip_local_deliver;
2460 rth->rt_spec_dst = fl->fl4_dst;
2462 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2463 rth->rt_spec_dst = fl->fl4_src;
2464 if (flags & RTCF_LOCAL &&
2465 !(dev_out->flags & IFF_LOOPBACK)) {
2466 rth->u.dst.output = ip_mc_output;
2467 RT_CACHE_STAT_INC(out_slow_mc);
2469 #ifdef CONFIG_IP_MROUTE
2470 if (res->type == RTN_MULTICAST) {
2471 if (IN_DEV_MFORWARD(in_dev) &&
2472 !ipv4_is_local_multicast(oldflp->fl4_dst)) {
2473 rth->u.dst.input = ip_mr_input;
2474 rth->u.dst.output = ip_mc_output;
2477 #endif
2480 rt_set_nexthop(rth, res, 0);
2482 rth->rt_flags = flags;
2484 *result = rth;
2485 cleanup:
2486 /* release work reference to inet device */
2487 in_dev_put(in_dev);
2489 return err;
2492 static int ip_mkroute_output(struct rtable **rp,
2493 struct fib_result *res,
2494 const struct flowi *fl,
2495 const struct flowi *oldflp,
2496 struct net_device *dev_out,
2497 unsigned flags)
2499 struct rtable *rth = NULL;
2500 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2501 unsigned hash;
2502 if (err == 0) {
2503 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif,
2504 rt_genid(dev_net(dev_out)));
2505 err = rt_intern_hash(hash, rth, rp, NULL);
2508 return err;
2512 * Major route resolver routine.
2515 static int ip_route_output_slow(struct net *net, struct rtable **rp,
2516 const struct flowi *oldflp)
2518 u32 tos = RT_FL_TOS(oldflp);
2519 struct flowi fl = { .nl_u = { .ip4_u =
2520 { .daddr = oldflp->fl4_dst,
2521 .saddr = oldflp->fl4_src,
2522 .tos = tos & IPTOS_RT_MASK,
2523 .scope = ((tos & RTO_ONLINK) ?
2524 RT_SCOPE_LINK :
2525 RT_SCOPE_UNIVERSE),
2526 } },
2527 .mark = oldflp->mark,
2528 .iif = net->loopback_dev->ifindex,
2529 .oif = oldflp->oif };
2530 struct fib_result res;
2531 unsigned flags = 0;
2532 struct net_device *dev_out = NULL;
2533 int free_res = 0;
2534 int err;
2537 res.fi = NULL;
2538 #ifdef CONFIG_IP_MULTIPLE_TABLES
2539 res.r = NULL;
2540 #endif
2542 if (oldflp->fl4_src) {
2543 err = -EINVAL;
2544 if (ipv4_is_multicast(oldflp->fl4_src) ||
2545 ipv4_is_lbcast(oldflp->fl4_src) ||
2546 ipv4_is_zeronet(oldflp->fl4_src))
2547 goto out;
2549 /* I removed check for oif == dev_out->oif here.
2550 It was wrong for two reasons:
2551 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2552 is assigned to multiple interfaces.
2553 2. Moreover, we are allowed to send packets with saddr
2554 of another iface. --ANK
2557 if (oldflp->oif == 0 &&
2558 (ipv4_is_multicast(oldflp->fl4_dst) ||
2559 oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2560 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2561 dev_out = ip_dev_find(net, oldflp->fl4_src);
2562 if (dev_out == NULL)
2563 goto out;
2565 /* Special hack: user can direct multicasts
2566 and limited broadcast via necessary interface
2567 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2568 This hack is not just for fun, it allows
2569 vic,vat and friends to work.
2570 They bind socket to loopback, set ttl to zero
2571 and expect that it will work.
2572 From the viewpoint of routing cache they are broken,
2573 because we are not allowed to build multicast path
2574 with loopback source addr (look, routing cache
2575 cannot know, that ttl is zero, so that packet
2576 will not leave this host and route is valid).
2577 Luckily, this hack is good workaround.
2580 fl.oif = dev_out->ifindex;
2581 goto make_route;
2584 if (!(oldflp->flags & FLOWI_FLAG_ANYSRC)) {
2585 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2586 dev_out = ip_dev_find(net, oldflp->fl4_src);
2587 if (dev_out == NULL)
2588 goto out;
2589 dev_put(dev_out);
2590 dev_out = NULL;
2595 if (oldflp->oif) {
2596 dev_out = dev_get_by_index(net, oldflp->oif);
2597 err = -ENODEV;
2598 if (dev_out == NULL)
2599 goto out;
2601 /* RACE: Check return value of inet_select_addr instead. */
2602 if (__in_dev_get_rtnl(dev_out) == NULL) {
2603 dev_put(dev_out);
2604 goto out; /* Wrong error code */
2607 if (ipv4_is_local_multicast(oldflp->fl4_dst) ||
2608 oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2609 if (!fl.fl4_src)
2610 fl.fl4_src = inet_select_addr(dev_out, 0,
2611 RT_SCOPE_LINK);
2612 goto make_route;
2614 if (!fl.fl4_src) {
2615 if (ipv4_is_multicast(oldflp->fl4_dst))
2616 fl.fl4_src = inet_select_addr(dev_out, 0,
2617 fl.fl4_scope);
2618 else if (!oldflp->fl4_dst)
2619 fl.fl4_src = inet_select_addr(dev_out, 0,
2620 RT_SCOPE_HOST);
2624 if (!fl.fl4_dst) {
2625 fl.fl4_dst = fl.fl4_src;
2626 if (!fl.fl4_dst)
2627 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2628 if (dev_out)
2629 dev_put(dev_out);
2630 dev_out = net->loopback_dev;
2631 dev_hold(dev_out);
2632 fl.oif = net->loopback_dev->ifindex;
2633 res.type = RTN_LOCAL;
2634 flags |= RTCF_LOCAL;
2635 goto make_route;
2638 if (fib_lookup(net, &fl, &res)) {
2639 res.fi = NULL;
2640 if (oldflp->oif) {
2641 /* Apparently, routing tables are wrong. Assume,
2642 that the destination is on link.
2644 WHY? DW.
2645 Because we are allowed to send to iface
2646 even if it has NO routes and NO assigned
2647 addresses. When oif is specified, routing
2648 tables are looked up with only one purpose:
2649 to catch if destination is gatewayed, rather than
2650 direct. Moreover, if MSG_DONTROUTE is set,
2651 we send packet, ignoring both routing tables
2652 and ifaddr state. --ANK
2655 We could make it even if oif is unknown,
2656 likely IPv6, but we do not.
2659 if (fl.fl4_src == 0)
2660 fl.fl4_src = inet_select_addr(dev_out, 0,
2661 RT_SCOPE_LINK);
2662 res.type = RTN_UNICAST;
2663 goto make_route;
2665 if (dev_out)
2666 dev_put(dev_out);
2667 err = -ENETUNREACH;
2668 goto out;
2670 free_res = 1;
2672 if (res.type == RTN_LOCAL) {
2673 if (!fl.fl4_src)
2674 fl.fl4_src = fl.fl4_dst;
2675 if (dev_out)
2676 dev_put(dev_out);
2677 dev_out = net->loopback_dev;
2678 dev_hold(dev_out);
2679 fl.oif = dev_out->ifindex;
2680 if (res.fi)
2681 fib_info_put(res.fi);
2682 res.fi = NULL;
2683 flags |= RTCF_LOCAL;
2684 goto make_route;
2687 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2688 if (res.fi->fib_nhs > 1 && fl.oif == 0)
2689 fib_select_multipath(&fl, &res);
2690 else
2691 #endif
2692 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2693 fib_select_default(net, &fl, &res);
2695 if (!fl.fl4_src)
2696 fl.fl4_src = FIB_RES_PREFSRC(res);
2698 if (dev_out)
2699 dev_put(dev_out);
2700 dev_out = FIB_RES_DEV(res);
2701 dev_hold(dev_out);
2702 fl.oif = dev_out->ifindex;
2705 make_route:
2706 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2709 if (free_res)
2710 fib_res_put(&res);
2711 if (dev_out)
2712 dev_put(dev_out);
2713 out: return err;
2716 int __ip_route_output_key(struct net *net, struct rtable **rp,
2717 const struct flowi *flp)
2719 unsigned hash;
2720 struct rtable *rth;
2722 if (!rt_caching(net))
2723 goto slow_output;
2725 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif, rt_genid(net));
2727 rcu_read_lock_bh();
2728 for (rth = rcu_dereference_bh(rt_hash_table[hash].chain); rth;
2729 rth = rcu_dereference_bh(rth->u.dst.rt_next)) {
2730 if (rth->fl.fl4_dst == flp->fl4_dst &&
2731 rth->fl.fl4_src == flp->fl4_src &&
2732 rth->fl.iif == 0 &&
2733 rth->fl.oif == flp->oif &&
2734 rth->fl.mark == flp->mark &&
2735 !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2736 (IPTOS_RT_MASK | RTO_ONLINK)) &&
2737 net_eq(dev_net(rth->u.dst.dev), net) &&
2738 !rt_is_expired(rth)) {
2739 dst_use(&rth->u.dst, jiffies);
2740 RT_CACHE_STAT_INC(out_hit);
2741 rcu_read_unlock_bh();
2742 *rp = rth;
2743 return 0;
2745 RT_CACHE_STAT_INC(out_hlist_search);
2747 rcu_read_unlock_bh();
2749 slow_output:
2750 return ip_route_output_slow(net, rp, flp);
2753 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2755 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2759 static struct dst_ops ipv4_dst_blackhole_ops = {
2760 .family = AF_INET,
2761 .protocol = cpu_to_be16(ETH_P_IP),
2762 .destroy = ipv4_dst_destroy,
2763 .check = ipv4_dst_check,
2764 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2765 .entries = ATOMIC_INIT(0),
2769 static int ipv4_dst_blackhole(struct net *net, struct rtable **rp, struct flowi *flp)
2771 struct rtable *ort = *rp;
2772 struct rtable *rt = (struct rtable *)
2773 dst_alloc(&ipv4_dst_blackhole_ops);
2775 if (rt) {
2776 struct dst_entry *new = &rt->u.dst;
2778 atomic_set(&new->__refcnt, 1);
2779 new->__use = 1;
2780 new->input = dst_discard;
2781 new->output = dst_discard;
2782 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2784 new->dev = ort->u.dst.dev;
2785 if (new->dev)
2786 dev_hold(new->dev);
2788 rt->fl = ort->fl;
2790 rt->idev = ort->idev;
2791 if (rt->idev)
2792 in_dev_hold(rt->idev);
2793 rt->rt_genid = rt_genid(net);
2794 rt->rt_flags = ort->rt_flags;
2795 rt->rt_type = ort->rt_type;
2796 rt->rt_dst = ort->rt_dst;
2797 rt->rt_src = ort->rt_src;
2798 rt->rt_iif = ort->rt_iif;
2799 rt->rt_gateway = ort->rt_gateway;
2800 rt->rt_spec_dst = ort->rt_spec_dst;
2801 rt->peer = ort->peer;
2802 if (rt->peer)
2803 atomic_inc(&rt->peer->refcnt);
2805 dst_free(new);
2808 dst_release(&(*rp)->u.dst);
2809 *rp = rt;
2810 return (rt ? 0 : -ENOMEM);
2813 int ip_route_output_flow(struct net *net, struct rtable **rp, struct flowi *flp,
2814 struct sock *sk, int flags)
2816 int err;
2818 if ((err = __ip_route_output_key(net, rp, flp)) != 0)
2819 return err;
2821 if (flp->proto) {
2822 if (!flp->fl4_src)
2823 flp->fl4_src = (*rp)->rt_src;
2824 if (!flp->fl4_dst)
2825 flp->fl4_dst = (*rp)->rt_dst;
2826 err = __xfrm_lookup(net, (struct dst_entry **)rp, flp, sk,
2827 flags ? XFRM_LOOKUP_WAIT : 0);
2828 if (err == -EREMOTE)
2829 err = ipv4_dst_blackhole(net, rp, flp);
2831 return err;
2834 return 0;
2837 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2839 int ip_route_output_key(struct net *net, struct rtable **rp, struct flowi *flp)
2841 return ip_route_output_flow(net, rp, flp, NULL, 0);
2844 static int rt_fill_info(struct net *net,
2845 struct sk_buff *skb, u32 pid, u32 seq, int event,
2846 int nowait, unsigned int flags)
2848 struct rtable *rt = skb_rtable(skb);
2849 struct rtmsg *r;
2850 struct nlmsghdr *nlh;
2851 long expires;
2852 u32 id = 0, ts = 0, tsage = 0, error;
2854 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2855 if (nlh == NULL)
2856 return -EMSGSIZE;
2858 r = nlmsg_data(nlh);
2859 r->rtm_family = AF_INET;
2860 r->rtm_dst_len = 32;
2861 r->rtm_src_len = 0;
2862 r->rtm_tos = rt->fl.fl4_tos;
2863 r->rtm_table = RT_TABLE_MAIN;
2864 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2865 r->rtm_type = rt->rt_type;
2866 r->rtm_scope = RT_SCOPE_UNIVERSE;
2867 r->rtm_protocol = RTPROT_UNSPEC;
2868 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2869 if (rt->rt_flags & RTCF_NOTIFY)
2870 r->rtm_flags |= RTM_F_NOTIFY;
2872 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2874 if (rt->fl.fl4_src) {
2875 r->rtm_src_len = 32;
2876 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2878 if (rt->u.dst.dev)
2879 NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2880 #ifdef CONFIG_NET_CLS_ROUTE
2881 if (rt->u.dst.tclassid)
2882 NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2883 #endif
2884 if (rt->fl.iif)
2885 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2886 else if (rt->rt_src != rt->fl.fl4_src)
2887 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2889 if (rt->rt_dst != rt->rt_gateway)
2890 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2892 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2893 goto nla_put_failure;
2895 error = rt->u.dst.error;
2896 expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2897 if (rt->peer) {
2898 id = atomic_read(&rt->peer->ip_id_count) & 0xffff;
2899 if (rt->peer->tcp_ts_stamp) {
2900 ts = rt->peer->tcp_ts;
2901 tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2905 if (rt->fl.iif) {
2906 #ifdef CONFIG_IP_MROUTE
2907 __be32 dst = rt->rt_dst;
2909 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2910 IPV4_DEVCONF_ALL(net, MC_FORWARDING)) {
2911 int err = ipmr_get_route(net, skb, r, nowait);
2912 if (err <= 0) {
2913 if (!nowait) {
2914 if (err == 0)
2915 return 0;
2916 goto nla_put_failure;
2917 } else {
2918 if (err == -EMSGSIZE)
2919 goto nla_put_failure;
2920 error = err;
2923 } else
2924 #endif
2925 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2928 if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2929 expires, error) < 0)
2930 goto nla_put_failure;
2932 return nlmsg_end(skb, nlh);
2934 nla_put_failure:
2935 nlmsg_cancel(skb, nlh);
2936 return -EMSGSIZE;
2939 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2941 struct net *net = sock_net(in_skb->sk);
2942 struct rtmsg *rtm;
2943 struct nlattr *tb[RTA_MAX+1];
2944 struct rtable *rt = NULL;
2945 __be32 dst = 0;
2946 __be32 src = 0;
2947 u32 iif;
2948 int err;
2949 struct sk_buff *skb;
2951 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2952 if (err < 0)
2953 goto errout;
2955 rtm = nlmsg_data(nlh);
2957 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2958 if (skb == NULL) {
2959 err = -ENOBUFS;
2960 goto errout;
2963 /* Reserve room for dummy headers, this skb can pass
2964 through good chunk of routing engine.
2966 skb_reset_mac_header(skb);
2967 skb_reset_network_header(skb);
2969 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2970 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2971 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2973 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2974 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2975 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2977 if (iif) {
2978 struct net_device *dev;
2980 dev = __dev_get_by_index(net, iif);
2981 if (dev == NULL) {
2982 err = -ENODEV;
2983 goto errout_free;
2986 skb->protocol = htons(ETH_P_IP);
2987 skb->dev = dev;
2988 local_bh_disable();
2989 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2990 local_bh_enable();
2992 rt = skb_rtable(skb);
2993 if (err == 0 && rt->u.dst.error)
2994 err = -rt->u.dst.error;
2995 } else {
2996 struct flowi fl = {
2997 .nl_u = {
2998 .ip4_u = {
2999 .daddr = dst,
3000 .saddr = src,
3001 .tos = rtm->rtm_tos,
3004 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
3006 err = ip_route_output_key(net, &rt, &fl);
3009 if (err)
3010 goto errout_free;
3012 skb_dst_set(skb, &rt->u.dst);
3013 if (rtm->rtm_flags & RTM_F_NOTIFY)
3014 rt->rt_flags |= RTCF_NOTIFY;
3016 err = rt_fill_info(net, skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
3017 RTM_NEWROUTE, 0, 0);
3018 if (err <= 0)
3019 goto errout_free;
3021 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
3022 errout:
3023 return err;
3025 errout_free:
3026 kfree_skb(skb);
3027 goto errout;
3030 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
3032 struct rtable *rt;
3033 int h, s_h;
3034 int idx, s_idx;
3035 struct net *net;
3037 net = sock_net(skb->sk);
3039 s_h = cb->args[0];
3040 if (s_h < 0)
3041 s_h = 0;
3042 s_idx = idx = cb->args[1];
3043 for (h = s_h; h <= rt_hash_mask; h++, s_idx = 0) {
3044 if (!rt_hash_table[h].chain)
3045 continue;
3046 rcu_read_lock_bh();
3047 for (rt = rcu_dereference_bh(rt_hash_table[h].chain), idx = 0; rt;
3048 rt = rcu_dereference_bh(rt->u.dst.rt_next), idx++) {
3049 if (!net_eq(dev_net(rt->u.dst.dev), net) || idx < s_idx)
3050 continue;
3051 if (rt_is_expired(rt))
3052 continue;
3053 skb_dst_set(skb, dst_clone(&rt->u.dst));
3054 if (rt_fill_info(net, skb, NETLINK_CB(cb->skb).pid,
3055 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
3056 1, NLM_F_MULTI) <= 0) {
3057 skb_dst_drop(skb);
3058 rcu_read_unlock_bh();
3059 goto done;
3061 skb_dst_drop(skb);
3063 rcu_read_unlock_bh();
3066 done:
3067 cb->args[0] = h;
3068 cb->args[1] = idx;
3069 return skb->len;
3072 void ip_rt_multicast_event(struct in_device *in_dev)
3074 rt_cache_flush(dev_net(in_dev->dev), 0);
3077 #ifdef CONFIG_SYSCTL
3078 static int ipv4_sysctl_rtcache_flush(ctl_table *__ctl, int write,
3079 void __user *buffer,
3080 size_t *lenp, loff_t *ppos)
3082 if (write) {
3083 int flush_delay;
3084 ctl_table ctl;
3085 struct net *net;
3087 memcpy(&ctl, __ctl, sizeof(ctl));
3088 ctl.data = &flush_delay;
3089 proc_dointvec(&ctl, write, buffer, lenp, ppos);
3091 net = (struct net *)__ctl->extra1;
3092 rt_cache_flush(net, flush_delay);
3093 return 0;
3096 return -EINVAL;
3099 static void rt_secret_reschedule(int old)
3101 struct net *net;
3102 int new = ip_rt_secret_interval;
3103 int diff = new - old;
3105 if (!diff)
3106 return;
3108 rtnl_lock();
3109 for_each_net(net) {
3110 int deleted = del_timer_sync(&net->ipv4.rt_secret_timer);
3111 long time;
3113 if (!new)
3114 continue;
3116 if (deleted) {
3117 time = net->ipv4.rt_secret_timer.expires - jiffies;
3119 if (time <= 0 || (time += diff) <= 0)
3120 time = 0;
3121 } else
3122 time = new;
3124 mod_timer(&net->ipv4.rt_secret_timer, jiffies + time);
3126 rtnl_unlock();
3129 static int ipv4_sysctl_rt_secret_interval(ctl_table *ctl, int write,
3130 void __user *buffer, size_t *lenp,
3131 loff_t *ppos)
3133 int old = ip_rt_secret_interval;
3134 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3136 rt_secret_reschedule(old);
3138 return ret;
3141 static ctl_table ipv4_route_table[] = {
3143 .procname = "gc_thresh",
3144 .data = &ipv4_dst_ops.gc_thresh,
3145 .maxlen = sizeof(int),
3146 .mode = 0644,
3147 .proc_handler = proc_dointvec,
3150 .procname = "max_size",
3151 .data = &ip_rt_max_size,
3152 .maxlen = sizeof(int),
3153 .mode = 0644,
3154 .proc_handler = proc_dointvec,
3157 /* Deprecated. Use gc_min_interval_ms */
3159 .procname = "gc_min_interval",
3160 .data = &ip_rt_gc_min_interval,
3161 .maxlen = sizeof(int),
3162 .mode = 0644,
3163 .proc_handler = proc_dointvec_jiffies,
3166 .procname = "gc_min_interval_ms",
3167 .data = &ip_rt_gc_min_interval,
3168 .maxlen = sizeof(int),
3169 .mode = 0644,
3170 .proc_handler = proc_dointvec_ms_jiffies,
3173 .procname = "gc_timeout",
3174 .data = &ip_rt_gc_timeout,
3175 .maxlen = sizeof(int),
3176 .mode = 0644,
3177 .proc_handler = proc_dointvec_jiffies,
3180 .procname = "gc_interval",
3181 .data = &ip_rt_gc_interval,
3182 .maxlen = sizeof(int),
3183 .mode = 0644,
3184 .proc_handler = proc_dointvec_jiffies,
3187 .procname = "redirect_load",
3188 .data = &ip_rt_redirect_load,
3189 .maxlen = sizeof(int),
3190 .mode = 0644,
3191 .proc_handler = proc_dointvec,
3194 .procname = "redirect_number",
3195 .data = &ip_rt_redirect_number,
3196 .maxlen = sizeof(int),
3197 .mode = 0644,
3198 .proc_handler = proc_dointvec,
3201 .procname = "redirect_silence",
3202 .data = &ip_rt_redirect_silence,
3203 .maxlen = sizeof(int),
3204 .mode = 0644,
3205 .proc_handler = proc_dointvec,
3208 .procname = "error_cost",
3209 .data = &ip_rt_error_cost,
3210 .maxlen = sizeof(int),
3211 .mode = 0644,
3212 .proc_handler = proc_dointvec,
3215 .procname = "error_burst",
3216 .data = &ip_rt_error_burst,
3217 .maxlen = sizeof(int),
3218 .mode = 0644,
3219 .proc_handler = proc_dointvec,
3222 .procname = "gc_elasticity",
3223 .data = &ip_rt_gc_elasticity,
3224 .maxlen = sizeof(int),
3225 .mode = 0644,
3226 .proc_handler = proc_dointvec,
3229 .procname = "mtu_expires",
3230 .data = &ip_rt_mtu_expires,
3231 .maxlen = sizeof(int),
3232 .mode = 0644,
3233 .proc_handler = proc_dointvec_jiffies,
3236 .procname = "min_pmtu",
3237 .data = &ip_rt_min_pmtu,
3238 .maxlen = sizeof(int),
3239 .mode = 0644,
3240 .proc_handler = proc_dointvec,
3243 .procname = "min_adv_mss",
3244 .data = &ip_rt_min_advmss,
3245 .maxlen = sizeof(int),
3246 .mode = 0644,
3247 .proc_handler = proc_dointvec,
3250 .procname = "secret_interval",
3251 .data = &ip_rt_secret_interval,
3252 .maxlen = sizeof(int),
3253 .mode = 0644,
3254 .proc_handler = ipv4_sysctl_rt_secret_interval,
3259 static struct ctl_table empty[1];
3261 static struct ctl_table ipv4_skeleton[] =
3263 { .procname = "route",
3264 .mode = 0555, .child = ipv4_route_table},
3265 { .procname = "neigh",
3266 .mode = 0555, .child = empty},
3270 static __net_initdata struct ctl_path ipv4_path[] = {
3271 { .procname = "net", },
3272 { .procname = "ipv4", },
3273 { },
3276 static struct ctl_table ipv4_route_flush_table[] = {
3278 .procname = "flush",
3279 .maxlen = sizeof(int),
3280 .mode = 0200,
3281 .proc_handler = ipv4_sysctl_rtcache_flush,
3283 { },
3286 static __net_initdata struct ctl_path ipv4_route_path[] = {
3287 { .procname = "net", },
3288 { .procname = "ipv4", },
3289 { .procname = "route", },
3290 { },
3293 static __net_init int sysctl_route_net_init(struct net *net)
3295 struct ctl_table *tbl;
3297 tbl = ipv4_route_flush_table;
3298 if (!net_eq(net, &init_net)) {
3299 tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL);
3300 if (tbl == NULL)
3301 goto err_dup;
3303 tbl[0].extra1 = net;
3305 net->ipv4.route_hdr =
3306 register_net_sysctl_table(net, ipv4_route_path, tbl);
3307 if (net->ipv4.route_hdr == NULL)
3308 goto err_reg;
3309 return 0;
3311 err_reg:
3312 if (tbl != ipv4_route_flush_table)
3313 kfree(tbl);
3314 err_dup:
3315 return -ENOMEM;
3318 static __net_exit void sysctl_route_net_exit(struct net *net)
3320 struct ctl_table *tbl;
3322 tbl = net->ipv4.route_hdr->ctl_table_arg;
3323 unregister_net_sysctl_table(net->ipv4.route_hdr);
3324 BUG_ON(tbl == ipv4_route_flush_table);
3325 kfree(tbl);
3328 static __net_initdata struct pernet_operations sysctl_route_ops = {
3329 .init = sysctl_route_net_init,
3330 .exit = sysctl_route_net_exit,
3332 #endif
3335 static __net_init int rt_secret_timer_init(struct net *net)
3337 atomic_set(&net->ipv4.rt_genid,
3338 (int) ((num_physpages ^ (num_physpages>>8)) ^
3339 (jiffies ^ (jiffies >> 7))));
3341 net->ipv4.rt_secret_timer.function = rt_secret_rebuild;
3342 net->ipv4.rt_secret_timer.data = (unsigned long)net;
3343 init_timer_deferrable(&net->ipv4.rt_secret_timer);
3345 if (ip_rt_secret_interval) {
3346 net->ipv4.rt_secret_timer.expires =
3347 jiffies + net_random() % ip_rt_secret_interval +
3348 ip_rt_secret_interval;
3349 add_timer(&net->ipv4.rt_secret_timer);
3351 return 0;
3354 static __net_exit void rt_secret_timer_exit(struct net *net)
3356 del_timer_sync(&net->ipv4.rt_secret_timer);
3359 static __net_initdata struct pernet_operations rt_secret_timer_ops = {
3360 .init = rt_secret_timer_init,
3361 .exit = rt_secret_timer_exit,
3365 #ifdef CONFIG_NET_CLS_ROUTE
3366 struct ip_rt_acct __percpu *ip_rt_acct __read_mostly;
3367 #endif /* CONFIG_NET_CLS_ROUTE */
3369 static __initdata unsigned long rhash_entries;
3370 static int __init set_rhash_entries(char *str)
3372 if (!str)
3373 return 0;
3374 rhash_entries = simple_strtoul(str, &str, 0);
3375 return 1;
3377 __setup("rhash_entries=", set_rhash_entries);
3379 int __init ip_rt_init(void)
3381 int rc = 0;
3383 #ifdef CONFIG_NET_CLS_ROUTE
3384 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct), __alignof__(struct ip_rt_acct));
3385 if (!ip_rt_acct)
3386 panic("IP: failed to allocate ip_rt_acct\n");
3387 #endif
3389 ipv4_dst_ops.kmem_cachep =
3390 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3391 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3393 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3395 rt_hash_table = (struct rt_hash_bucket *)
3396 alloc_large_system_hash("IP route cache",
3397 sizeof(struct rt_hash_bucket),
3398 rhash_entries,
3399 (totalram_pages >= 128 * 1024) ?
3400 15 : 17,
3402 &rt_hash_log,
3403 &rt_hash_mask,
3404 rhash_entries ? 0 : 512 * 1024);
3405 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3406 rt_hash_lock_init();
3408 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3409 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3411 devinet_init();
3412 ip_fib_init();
3414 /* All the timers, started at system startup tend
3415 to synchronize. Perturb it a bit.
3417 INIT_DELAYED_WORK_DEFERRABLE(&expires_work, rt_worker_func);
3418 expires_ljiffies = jiffies;
3419 schedule_delayed_work(&expires_work,
3420 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3422 if (register_pernet_subsys(&rt_secret_timer_ops))
3423 printk(KERN_ERR "Unable to setup rt_secret_timer\n");
3425 if (ip_rt_proc_init())
3426 printk(KERN_ERR "Unable to create route proc files\n");
3427 #ifdef CONFIG_XFRM
3428 xfrm_init();
3429 xfrm4_init(ip_rt_max_size);
3430 #endif
3431 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3433 #ifdef CONFIG_SYSCTL
3434 register_pernet_subsys(&sysctl_route_ops);
3435 #endif
3436 return rc;
3439 #ifdef CONFIG_SYSCTL
3441 * We really need to sanitize the damn ipv4 init order, then all
3442 * this nonsense will go away.
3444 void __init ip_static_sysctl_init(void)
3446 register_sysctl_paths(ipv4_path, ipv4_skeleton);
3448 #endif
3450 EXPORT_SYMBOL(__ip_select_ident);
3451 EXPORT_SYMBOL(ip_route_input);
3452 EXPORT_SYMBOL(ip_route_output_key);