4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/perf_event.h>
16 #include <linux/resource.h>
17 #include <linux/kernel.h>
18 #include <linux/kexec.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/gfp.h>
39 #include <linux/syscore_ops.h>
41 #include <linux/compat.h>
42 #include <linux/syscalls.h>
43 #include <linux/kprobes.h>
44 #include <linux/user_namespace.h>
46 #include <linux/kmsg_dump.h>
48 #include <asm/uaccess.h>
50 #include <asm/unistd.h>
52 #ifndef SET_UNALIGN_CTL
53 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
55 #ifndef GET_UNALIGN_CTL
56 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
59 # define SET_FPEMU_CTL(a,b) (-EINVAL)
62 # define GET_FPEMU_CTL(a,b) (-EINVAL)
65 # define SET_FPEXC_CTL(a,b) (-EINVAL)
68 # define GET_FPEXC_CTL(a,b) (-EINVAL)
71 # define GET_ENDIAN(a,b) (-EINVAL)
74 # define SET_ENDIAN(a,b) (-EINVAL)
77 # define GET_TSC_CTL(a) (-EINVAL)
80 # define SET_TSC_CTL(a) (-EINVAL)
84 * this is where the system-wide overflow UID and GID are defined, for
85 * architectures that now have 32-bit UID/GID but didn't in the past
88 int overflowuid
= DEFAULT_OVERFLOWUID
;
89 int overflowgid
= DEFAULT_OVERFLOWGID
;
92 EXPORT_SYMBOL(overflowuid
);
93 EXPORT_SYMBOL(overflowgid
);
97 * the same as above, but for filesystems which can only store a 16-bit
98 * UID and GID. as such, this is needed on all architectures
101 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
102 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
104 EXPORT_SYMBOL(fs_overflowuid
);
105 EXPORT_SYMBOL(fs_overflowgid
);
108 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
113 EXPORT_SYMBOL(cad_pid
);
116 * If set, this is used for preparing the system to power off.
119 void (*pm_power_off_prepare
)(void);
122 * Returns true if current's euid is same as p's uid or euid,
123 * or has CAP_SYS_NICE to p's user_ns.
125 * Called with rcu_read_lock, creds are safe
127 static bool set_one_prio_perm(struct task_struct
*p
)
129 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
131 if (pcred
->user
->user_ns
== cred
->user
->user_ns
&&
132 (pcred
->uid
== cred
->euid
||
133 pcred
->euid
== cred
->euid
))
135 if (ns_capable(pcred
->user
->user_ns
, CAP_SYS_NICE
))
141 * set the priority of a task
142 * - the caller must hold the RCU read lock
144 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
148 if (!set_one_prio_perm(p
)) {
152 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
156 no_nice
= security_task_setnice(p
, niceval
);
163 set_user_nice(p
, niceval
);
168 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
170 struct task_struct
*g
, *p
;
171 struct user_struct
*user
;
172 const struct cred
*cred
= current_cred();
176 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
179 /* normalize: avoid signed division (rounding problems) */
187 read_lock(&tasklist_lock
);
191 p
= find_task_by_vpid(who
);
195 error
= set_one_prio(p
, niceval
, error
);
199 pgrp
= find_vpid(who
);
201 pgrp
= task_pgrp(current
);
202 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
203 error
= set_one_prio(p
, niceval
, error
);
204 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
207 user
= (struct user_struct
*) cred
->user
;
210 else if ((who
!= cred
->uid
) &&
211 !(user
= find_user(who
)))
212 goto out_unlock
; /* No processes for this user */
214 do_each_thread(g
, p
) {
215 if (__task_cred(p
)->uid
== who
)
216 error
= set_one_prio(p
, niceval
, error
);
217 } while_each_thread(g
, p
);
218 if (who
!= cred
->uid
)
219 free_uid(user
); /* For find_user() */
223 read_unlock(&tasklist_lock
);
230 * Ugh. To avoid negative return values, "getpriority()" will
231 * not return the normal nice-value, but a negated value that
232 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
233 * to stay compatible.
235 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
237 struct task_struct
*g
, *p
;
238 struct user_struct
*user
;
239 const struct cred
*cred
= current_cred();
240 long niceval
, retval
= -ESRCH
;
243 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
247 read_lock(&tasklist_lock
);
251 p
= find_task_by_vpid(who
);
255 niceval
= 20 - task_nice(p
);
256 if (niceval
> retval
)
262 pgrp
= find_vpid(who
);
264 pgrp
= task_pgrp(current
);
265 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
266 niceval
= 20 - task_nice(p
);
267 if (niceval
> retval
)
269 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
272 user
= (struct user_struct
*) cred
->user
;
275 else if ((who
!= cred
->uid
) &&
276 !(user
= find_user(who
)))
277 goto out_unlock
; /* No processes for this user */
279 do_each_thread(g
, p
) {
280 if (__task_cred(p
)->uid
== who
) {
281 niceval
= 20 - task_nice(p
);
282 if (niceval
> retval
)
285 } while_each_thread(g
, p
);
286 if (who
!= cred
->uid
)
287 free_uid(user
); /* for find_user() */
291 read_unlock(&tasklist_lock
);
298 * emergency_restart - reboot the system
300 * Without shutting down any hardware or taking any locks
301 * reboot the system. This is called when we know we are in
302 * trouble so this is our best effort to reboot. This is
303 * safe to call in interrupt context.
305 void emergency_restart(void)
307 kmsg_dump(KMSG_DUMP_EMERG
);
308 machine_emergency_restart();
310 EXPORT_SYMBOL_GPL(emergency_restart
);
312 void kernel_restart_prepare(char *cmd
)
314 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
315 system_state
= SYSTEM_RESTART
;
316 usermodehelper_disable();
322 * register_reboot_notifier - Register function to be called at reboot time
323 * @nb: Info about notifier function to be called
325 * Registers a function with the list of functions
326 * to be called at reboot time.
328 * Currently always returns zero, as blocking_notifier_chain_register()
329 * always returns zero.
331 int register_reboot_notifier(struct notifier_block
*nb
)
333 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
335 EXPORT_SYMBOL(register_reboot_notifier
);
338 * unregister_reboot_notifier - Unregister previously registered reboot notifier
339 * @nb: Hook to be unregistered
341 * Unregisters a previously registered reboot
344 * Returns zero on success, or %-ENOENT on failure.
346 int unregister_reboot_notifier(struct notifier_block
*nb
)
348 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
350 EXPORT_SYMBOL(unregister_reboot_notifier
);
353 * kernel_restart - reboot the system
354 * @cmd: pointer to buffer containing command to execute for restart
357 * Shutdown everything and perform a clean reboot.
358 * This is not safe to call in interrupt context.
360 void kernel_restart(char *cmd
)
362 kernel_restart_prepare(cmd
);
364 printk(KERN_EMERG
"Restarting system.\n");
366 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
367 kmsg_dump(KMSG_DUMP_RESTART
);
368 machine_restart(cmd
);
370 EXPORT_SYMBOL_GPL(kernel_restart
);
372 static void kernel_shutdown_prepare(enum system_states state
)
374 blocking_notifier_call_chain(&reboot_notifier_list
,
375 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
376 system_state
= state
;
377 usermodehelper_disable();
381 * kernel_halt - halt the system
383 * Shutdown everything and perform a clean system halt.
385 void kernel_halt(void)
387 kernel_shutdown_prepare(SYSTEM_HALT
);
389 printk(KERN_EMERG
"System halted.\n");
390 kmsg_dump(KMSG_DUMP_HALT
);
394 EXPORT_SYMBOL_GPL(kernel_halt
);
397 * kernel_power_off - power_off the system
399 * Shutdown everything and perform a clean system power_off.
401 void kernel_power_off(void)
403 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
404 if (pm_power_off_prepare
)
405 pm_power_off_prepare();
406 disable_nonboot_cpus();
408 printk(KERN_EMERG
"Power down.\n");
409 kmsg_dump(KMSG_DUMP_POWEROFF
);
412 EXPORT_SYMBOL_GPL(kernel_power_off
);
414 static DEFINE_MUTEX(reboot_mutex
);
417 * Reboot system call: for obvious reasons only root may call it,
418 * and even root needs to set up some magic numbers in the registers
419 * so that some mistake won't make this reboot the whole machine.
420 * You can also set the meaning of the ctrl-alt-del-key here.
422 * reboot doesn't sync: do that yourself before calling this.
424 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
430 /* We only trust the superuser with rebooting the system. */
431 if (!capable(CAP_SYS_BOOT
))
434 /* For safety, we require "magic" arguments. */
435 if (magic1
!= LINUX_REBOOT_MAGIC1
||
436 (magic2
!= LINUX_REBOOT_MAGIC2
&&
437 magic2
!= LINUX_REBOOT_MAGIC2A
&&
438 magic2
!= LINUX_REBOOT_MAGIC2B
&&
439 magic2
!= LINUX_REBOOT_MAGIC2C
))
442 /* Instead of trying to make the power_off code look like
443 * halt when pm_power_off is not set do it the easy way.
445 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
446 cmd
= LINUX_REBOOT_CMD_HALT
;
448 mutex_lock(&reboot_mutex
);
450 case LINUX_REBOOT_CMD_RESTART
:
451 kernel_restart(NULL
);
454 case LINUX_REBOOT_CMD_CAD_ON
:
458 case LINUX_REBOOT_CMD_CAD_OFF
:
462 case LINUX_REBOOT_CMD_HALT
:
465 panic("cannot halt");
467 case LINUX_REBOOT_CMD_POWER_OFF
:
472 case LINUX_REBOOT_CMD_RESTART2
:
473 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
477 buffer
[sizeof(buffer
) - 1] = '\0';
479 kernel_restart(buffer
);
483 case LINUX_REBOOT_CMD_KEXEC
:
484 ret
= kernel_kexec();
488 #ifdef CONFIG_HIBERNATION
489 case LINUX_REBOOT_CMD_SW_SUSPEND
:
498 mutex_unlock(&reboot_mutex
);
502 static void deferred_cad(struct work_struct
*dummy
)
504 kernel_restart(NULL
);
508 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
509 * As it's called within an interrupt, it may NOT sync: the only choice
510 * is whether to reboot at once, or just ignore the ctrl-alt-del.
512 void ctrl_alt_del(void)
514 static DECLARE_WORK(cad_work
, deferred_cad
);
517 schedule_work(&cad_work
);
519 kill_cad_pid(SIGINT
, 1);
523 * Unprivileged users may change the real gid to the effective gid
524 * or vice versa. (BSD-style)
526 * If you set the real gid at all, or set the effective gid to a value not
527 * equal to the real gid, then the saved gid is set to the new effective gid.
529 * This makes it possible for a setgid program to completely drop its
530 * privileges, which is often a useful assertion to make when you are doing
531 * a security audit over a program.
533 * The general idea is that a program which uses just setregid() will be
534 * 100% compatible with BSD. A program which uses just setgid() will be
535 * 100% compatible with POSIX with saved IDs.
537 * SMP: There are not races, the GIDs are checked only by filesystem
538 * operations (as far as semantic preservation is concerned).
540 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
542 const struct cred
*old
;
546 new = prepare_creds();
549 old
= current_cred();
552 if (rgid
!= (gid_t
) -1) {
553 if (old
->gid
== rgid
||
555 nsown_capable(CAP_SETGID
))
560 if (egid
!= (gid_t
) -1) {
561 if (old
->gid
== egid
||
564 nsown_capable(CAP_SETGID
))
570 if (rgid
!= (gid_t
) -1 ||
571 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
572 new->sgid
= new->egid
;
573 new->fsgid
= new->egid
;
575 return commit_creds(new);
583 * setgid() is implemented like SysV w/ SAVED_IDS
585 * SMP: Same implicit races as above.
587 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
589 const struct cred
*old
;
593 new = prepare_creds();
596 old
= current_cred();
599 if (nsown_capable(CAP_SETGID
))
600 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
601 else if (gid
== old
->gid
|| gid
== old
->sgid
)
602 new->egid
= new->fsgid
= gid
;
606 return commit_creds(new);
614 * change the user struct in a credentials set to match the new UID
616 static int set_user(struct cred
*new)
618 struct user_struct
*new_user
;
620 new_user
= alloc_uid(current_user_ns(), new->uid
);
625 * We don't fail in case of NPROC limit excess here because too many
626 * poorly written programs don't check set*uid() return code, assuming
627 * it never fails if called by root. We may still enforce NPROC limit
628 * for programs doing set*uid()+execve() by harmlessly deferring the
629 * failure to the execve() stage.
631 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
632 new_user
!= INIT_USER
)
633 current
->flags
|= PF_NPROC_EXCEEDED
;
635 current
->flags
&= ~PF_NPROC_EXCEEDED
;
638 new->user
= new_user
;
643 * Unprivileged users may change the real uid to the effective uid
644 * or vice versa. (BSD-style)
646 * If you set the real uid at all, or set the effective uid to a value not
647 * equal to the real uid, then the saved uid is set to the new effective uid.
649 * This makes it possible for a setuid program to completely drop its
650 * privileges, which is often a useful assertion to make when you are doing
651 * a security audit over a program.
653 * The general idea is that a program which uses just setreuid() will be
654 * 100% compatible with BSD. A program which uses just setuid() will be
655 * 100% compatible with POSIX with saved IDs.
657 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
659 const struct cred
*old
;
663 new = prepare_creds();
666 old
= current_cred();
669 if (ruid
!= (uid_t
) -1) {
671 if (old
->uid
!= ruid
&&
673 !nsown_capable(CAP_SETUID
))
677 if (euid
!= (uid_t
) -1) {
679 if (old
->uid
!= euid
&&
682 !nsown_capable(CAP_SETUID
))
686 if (new->uid
!= old
->uid
) {
687 retval
= set_user(new);
691 if (ruid
!= (uid_t
) -1 ||
692 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
693 new->suid
= new->euid
;
694 new->fsuid
= new->euid
;
696 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
700 return commit_creds(new);
708 * setuid() is implemented like SysV with SAVED_IDS
710 * Note that SAVED_ID's is deficient in that a setuid root program
711 * like sendmail, for example, cannot set its uid to be a normal
712 * user and then switch back, because if you're root, setuid() sets
713 * the saved uid too. If you don't like this, blame the bright people
714 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
715 * will allow a root program to temporarily drop privileges and be able to
716 * regain them by swapping the real and effective uid.
718 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
720 const struct cred
*old
;
724 new = prepare_creds();
727 old
= current_cred();
730 if (nsown_capable(CAP_SETUID
)) {
731 new->suid
= new->uid
= uid
;
732 if (uid
!= old
->uid
) {
733 retval
= set_user(new);
737 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
741 new->fsuid
= new->euid
= uid
;
743 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
747 return commit_creds(new);
756 * This function implements a generic ability to update ruid, euid,
757 * and suid. This allows you to implement the 4.4 compatible seteuid().
759 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
761 const struct cred
*old
;
765 new = prepare_creds();
769 old
= current_cred();
772 if (!nsown_capable(CAP_SETUID
)) {
773 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
774 ruid
!= old
->euid
&& ruid
!= old
->suid
)
776 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
777 euid
!= old
->euid
&& euid
!= old
->suid
)
779 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
780 suid
!= old
->euid
&& suid
!= old
->suid
)
784 if (ruid
!= (uid_t
) -1) {
786 if (ruid
!= old
->uid
) {
787 retval
= set_user(new);
792 if (euid
!= (uid_t
) -1)
794 if (suid
!= (uid_t
) -1)
796 new->fsuid
= new->euid
;
798 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
802 return commit_creds(new);
809 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
811 const struct cred
*cred
= current_cred();
814 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
815 !(retval
= put_user(cred
->euid
, euid
)))
816 retval
= put_user(cred
->suid
, suid
);
822 * Same as above, but for rgid, egid, sgid.
824 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
826 const struct cred
*old
;
830 new = prepare_creds();
833 old
= current_cred();
836 if (!nsown_capable(CAP_SETGID
)) {
837 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
838 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
840 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
841 egid
!= old
->egid
&& egid
!= old
->sgid
)
843 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
844 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
848 if (rgid
!= (gid_t
) -1)
850 if (egid
!= (gid_t
) -1)
852 if (sgid
!= (gid_t
) -1)
854 new->fsgid
= new->egid
;
856 return commit_creds(new);
863 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
865 const struct cred
*cred
= current_cred();
868 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
869 !(retval
= put_user(cred
->egid
, egid
)))
870 retval
= put_user(cred
->sgid
, sgid
);
877 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
878 * is used for "access()" and for the NFS daemon (letting nfsd stay at
879 * whatever uid it wants to). It normally shadows "euid", except when
880 * explicitly set by setfsuid() or for access..
882 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
884 const struct cred
*old
;
888 new = prepare_creds();
890 return current_fsuid();
891 old
= current_cred();
892 old_fsuid
= old
->fsuid
;
894 if (uid
== old
->uid
|| uid
== old
->euid
||
895 uid
== old
->suid
|| uid
== old
->fsuid
||
896 nsown_capable(CAP_SETUID
)) {
897 if (uid
!= old_fsuid
) {
899 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
913 * Samma på svenska..
915 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
917 const struct cred
*old
;
921 new = prepare_creds();
923 return current_fsgid();
924 old
= current_cred();
925 old_fsgid
= old
->fsgid
;
927 if (gid
== old
->gid
|| gid
== old
->egid
||
928 gid
== old
->sgid
|| gid
== old
->fsgid
||
929 nsown_capable(CAP_SETGID
)) {
930 if (gid
!= old_fsgid
) {
944 void do_sys_times(struct tms
*tms
)
946 cputime_t tgutime
, tgstime
, cutime
, cstime
;
948 spin_lock_irq(¤t
->sighand
->siglock
);
949 thread_group_times(current
, &tgutime
, &tgstime
);
950 cutime
= current
->signal
->cutime
;
951 cstime
= current
->signal
->cstime
;
952 spin_unlock_irq(¤t
->sighand
->siglock
);
953 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
954 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
955 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
956 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
959 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
965 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
968 force_successful_syscall_return();
969 return (long) jiffies_64_to_clock_t(get_jiffies_64());
973 * This needs some heavy checking ...
974 * I just haven't the stomach for it. I also don't fully
975 * understand sessions/pgrp etc. Let somebody who does explain it.
977 * OK, I think I have the protection semantics right.... this is really
978 * only important on a multi-user system anyway, to make sure one user
979 * can't send a signal to a process owned by another. -TYT, 12/12/91
981 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
984 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
986 struct task_struct
*p
;
987 struct task_struct
*group_leader
= current
->group_leader
;
992 pid
= task_pid_vnr(group_leader
);
999 /* From this point forward we keep holding onto the tasklist lock
1000 * so that our parent does not change from under us. -DaveM
1002 write_lock_irq(&tasklist_lock
);
1005 p
= find_task_by_vpid(pid
);
1010 if (!thread_group_leader(p
))
1013 if (same_thread_group(p
->real_parent
, group_leader
)) {
1015 if (task_session(p
) != task_session(group_leader
))
1022 if (p
!= group_leader
)
1027 if (p
->signal
->leader
)
1032 struct task_struct
*g
;
1034 pgrp
= find_vpid(pgid
);
1035 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1036 if (!g
|| task_session(g
) != task_session(group_leader
))
1040 err
= security_task_setpgid(p
, pgid
);
1044 if (task_pgrp(p
) != pgrp
)
1045 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1049 /* All paths lead to here, thus we are safe. -DaveM */
1050 write_unlock_irq(&tasklist_lock
);
1055 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1057 struct task_struct
*p
;
1063 grp
= task_pgrp(current
);
1066 p
= find_task_by_vpid(pid
);
1073 retval
= security_task_getpgid(p
);
1077 retval
= pid_vnr(grp
);
1083 #ifdef __ARCH_WANT_SYS_GETPGRP
1085 SYSCALL_DEFINE0(getpgrp
)
1087 return sys_getpgid(0);
1092 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1094 struct task_struct
*p
;
1100 sid
= task_session(current
);
1103 p
= find_task_by_vpid(pid
);
1106 sid
= task_session(p
);
1110 retval
= security_task_getsid(p
);
1114 retval
= pid_vnr(sid
);
1120 SYSCALL_DEFINE0(setsid
)
1122 struct task_struct
*group_leader
= current
->group_leader
;
1123 struct pid
*sid
= task_pid(group_leader
);
1124 pid_t session
= pid_vnr(sid
);
1127 write_lock_irq(&tasklist_lock
);
1128 /* Fail if I am already a session leader */
1129 if (group_leader
->signal
->leader
)
1132 /* Fail if a process group id already exists that equals the
1133 * proposed session id.
1135 if (pid_task(sid
, PIDTYPE_PGID
))
1138 group_leader
->signal
->leader
= 1;
1139 __set_special_pids(sid
);
1141 proc_clear_tty(group_leader
);
1145 write_unlock_irq(&tasklist_lock
);
1147 proc_sid_connector(group_leader
);
1148 sched_autogroup_create_attach(group_leader
);
1153 DECLARE_RWSEM(uts_sem
);
1155 #ifdef COMPAT_UTS_MACHINE
1156 #define override_architecture(name) \
1157 (personality(current->personality) == PER_LINUX32 && \
1158 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1159 sizeof(COMPAT_UTS_MACHINE)))
1161 #define override_architecture(name) 0
1164 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1168 down_read(&uts_sem
);
1169 if (copy_to_user(name
, utsname(), sizeof *name
))
1173 if (!errno
&& override_architecture(name
))
1178 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1182 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1189 down_read(&uts_sem
);
1190 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1194 if (!error
&& override_architecture(name
))
1199 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1205 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1208 down_read(&uts_sem
);
1209 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1211 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1212 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1214 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1215 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1217 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1218 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1220 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1221 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1223 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1226 if (!error
&& override_architecture(name
))
1228 return error
? -EFAULT
: 0;
1232 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1235 char tmp
[__NEW_UTS_LEN
];
1237 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1240 if (len
< 0 || len
> __NEW_UTS_LEN
)
1242 down_write(&uts_sem
);
1244 if (!copy_from_user(tmp
, name
, len
)) {
1245 struct new_utsname
*u
= utsname();
1247 memcpy(u
->nodename
, tmp
, len
);
1248 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1255 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1257 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1260 struct new_utsname
*u
;
1264 down_read(&uts_sem
);
1266 i
= 1 + strlen(u
->nodename
);
1270 if (copy_to_user(name
, u
->nodename
, i
))
1279 * Only setdomainname; getdomainname can be implemented by calling
1282 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1285 char tmp
[__NEW_UTS_LEN
];
1287 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1289 if (len
< 0 || len
> __NEW_UTS_LEN
)
1292 down_write(&uts_sem
);
1294 if (!copy_from_user(tmp
, name
, len
)) {
1295 struct new_utsname
*u
= utsname();
1297 memcpy(u
->domainname
, tmp
, len
);
1298 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1305 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1307 struct rlimit value
;
1310 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1312 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1317 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1320 * Back compatibility for getrlimit. Needed for some apps.
1323 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1324 struct rlimit __user
*, rlim
)
1327 if (resource
>= RLIM_NLIMITS
)
1330 task_lock(current
->group_leader
);
1331 x
= current
->signal
->rlim
[resource
];
1332 task_unlock(current
->group_leader
);
1333 if (x
.rlim_cur
> 0x7FFFFFFF)
1334 x
.rlim_cur
= 0x7FFFFFFF;
1335 if (x
.rlim_max
> 0x7FFFFFFF)
1336 x
.rlim_max
= 0x7FFFFFFF;
1337 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1342 static inline bool rlim64_is_infinity(__u64 rlim64
)
1344 #if BITS_PER_LONG < 64
1345 return rlim64
>= ULONG_MAX
;
1347 return rlim64
== RLIM64_INFINITY
;
1351 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1353 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1354 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1356 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1357 if (rlim
->rlim_max
== RLIM_INFINITY
)
1358 rlim64
->rlim_max
= RLIM64_INFINITY
;
1360 rlim64
->rlim_max
= rlim
->rlim_max
;
1363 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1365 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1366 rlim
->rlim_cur
= RLIM_INFINITY
;
1368 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1369 if (rlim64_is_infinity(rlim64
->rlim_max
))
1370 rlim
->rlim_max
= RLIM_INFINITY
;
1372 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1375 /* make sure you are allowed to change @tsk limits before calling this */
1376 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1377 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1379 struct rlimit
*rlim
;
1382 if (resource
>= RLIM_NLIMITS
)
1385 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1387 if (resource
== RLIMIT_NOFILE
&&
1388 new_rlim
->rlim_max
> sysctl_nr_open
)
1392 /* protect tsk->signal and tsk->sighand from disappearing */
1393 read_lock(&tasklist_lock
);
1394 if (!tsk
->sighand
) {
1399 rlim
= tsk
->signal
->rlim
+ resource
;
1400 task_lock(tsk
->group_leader
);
1402 /* Keep the capable check against init_user_ns until
1403 cgroups can contain all limits */
1404 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1405 !capable(CAP_SYS_RESOURCE
))
1408 retval
= security_task_setrlimit(tsk
->group_leader
,
1409 resource
, new_rlim
);
1410 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1412 * The caller is asking for an immediate RLIMIT_CPU
1413 * expiry. But we use the zero value to mean "it was
1414 * never set". So let's cheat and make it one second
1417 new_rlim
->rlim_cur
= 1;
1426 task_unlock(tsk
->group_leader
);
1429 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1430 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1431 * very long-standing error, and fixing it now risks breakage of
1432 * applications, so we live with it
1434 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1435 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1436 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1438 read_unlock(&tasklist_lock
);
1442 /* rcu lock must be held */
1443 static int check_prlimit_permission(struct task_struct
*task
)
1445 const struct cred
*cred
= current_cred(), *tcred
;
1447 if (current
== task
)
1450 tcred
= __task_cred(task
);
1451 if (cred
->user
->user_ns
== tcred
->user
->user_ns
&&
1452 (cred
->uid
== tcred
->euid
&&
1453 cred
->uid
== tcred
->suid
&&
1454 cred
->uid
== tcred
->uid
&&
1455 cred
->gid
== tcred
->egid
&&
1456 cred
->gid
== tcred
->sgid
&&
1457 cred
->gid
== tcred
->gid
))
1459 if (ns_capable(tcred
->user
->user_ns
, CAP_SYS_RESOURCE
))
1465 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1466 const struct rlimit64 __user
*, new_rlim
,
1467 struct rlimit64 __user
*, old_rlim
)
1469 struct rlimit64 old64
, new64
;
1470 struct rlimit old
, new;
1471 struct task_struct
*tsk
;
1475 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1477 rlim64_to_rlim(&new64
, &new);
1481 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1486 ret
= check_prlimit_permission(tsk
);
1491 get_task_struct(tsk
);
1494 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1495 old_rlim
? &old
: NULL
);
1497 if (!ret
&& old_rlim
) {
1498 rlim_to_rlim64(&old
, &old64
);
1499 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1503 put_task_struct(tsk
);
1507 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1509 struct rlimit new_rlim
;
1511 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1513 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1517 * It would make sense to put struct rusage in the task_struct,
1518 * except that would make the task_struct be *really big*. After
1519 * task_struct gets moved into malloc'ed memory, it would
1520 * make sense to do this. It will make moving the rest of the information
1521 * a lot simpler! (Which we're not doing right now because we're not
1522 * measuring them yet).
1524 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1525 * races with threads incrementing their own counters. But since word
1526 * reads are atomic, we either get new values or old values and we don't
1527 * care which for the sums. We always take the siglock to protect reading
1528 * the c* fields from p->signal from races with exit.c updating those
1529 * fields when reaping, so a sample either gets all the additions of a
1530 * given child after it's reaped, or none so this sample is before reaping.
1533 * We need to take the siglock for CHILDEREN, SELF and BOTH
1534 * for the cases current multithreaded, non-current single threaded
1535 * non-current multithreaded. Thread traversal is now safe with
1537 * Strictly speaking, we donot need to take the siglock if we are current and
1538 * single threaded, as no one else can take our signal_struct away, no one
1539 * else can reap the children to update signal->c* counters, and no one else
1540 * can race with the signal-> fields. If we do not take any lock, the
1541 * signal-> fields could be read out of order while another thread was just
1542 * exiting. So we should place a read memory barrier when we avoid the lock.
1543 * On the writer side, write memory barrier is implied in __exit_signal
1544 * as __exit_signal releases the siglock spinlock after updating the signal->
1545 * fields. But we don't do this yet to keep things simple.
1549 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1551 r
->ru_nvcsw
+= t
->nvcsw
;
1552 r
->ru_nivcsw
+= t
->nivcsw
;
1553 r
->ru_minflt
+= t
->min_flt
;
1554 r
->ru_majflt
+= t
->maj_flt
;
1555 r
->ru_inblock
+= task_io_get_inblock(t
);
1556 r
->ru_oublock
+= task_io_get_oublock(t
);
1559 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1561 struct task_struct
*t
;
1562 unsigned long flags
;
1563 cputime_t tgutime
, tgstime
, utime
, stime
;
1564 unsigned long maxrss
= 0;
1566 memset((char *) r
, 0, sizeof *r
);
1567 utime
= stime
= cputime_zero
;
1569 if (who
== RUSAGE_THREAD
) {
1570 task_times(current
, &utime
, &stime
);
1571 accumulate_thread_rusage(p
, r
);
1572 maxrss
= p
->signal
->maxrss
;
1576 if (!lock_task_sighand(p
, &flags
))
1581 case RUSAGE_CHILDREN
:
1582 utime
= p
->signal
->cutime
;
1583 stime
= p
->signal
->cstime
;
1584 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1585 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1586 r
->ru_minflt
= p
->signal
->cmin_flt
;
1587 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1588 r
->ru_inblock
= p
->signal
->cinblock
;
1589 r
->ru_oublock
= p
->signal
->coublock
;
1590 maxrss
= p
->signal
->cmaxrss
;
1592 if (who
== RUSAGE_CHILDREN
)
1596 thread_group_times(p
, &tgutime
, &tgstime
);
1597 utime
= cputime_add(utime
, tgutime
);
1598 stime
= cputime_add(stime
, tgstime
);
1599 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1600 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1601 r
->ru_minflt
+= p
->signal
->min_flt
;
1602 r
->ru_majflt
+= p
->signal
->maj_flt
;
1603 r
->ru_inblock
+= p
->signal
->inblock
;
1604 r
->ru_oublock
+= p
->signal
->oublock
;
1605 if (maxrss
< p
->signal
->maxrss
)
1606 maxrss
= p
->signal
->maxrss
;
1609 accumulate_thread_rusage(t
, r
);
1617 unlock_task_sighand(p
, &flags
);
1620 cputime_to_timeval(utime
, &r
->ru_utime
);
1621 cputime_to_timeval(stime
, &r
->ru_stime
);
1623 if (who
!= RUSAGE_CHILDREN
) {
1624 struct mm_struct
*mm
= get_task_mm(p
);
1626 setmax_mm_hiwater_rss(&maxrss
, mm
);
1630 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1633 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1636 k_getrusage(p
, who
, &r
);
1637 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1640 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1642 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1643 who
!= RUSAGE_THREAD
)
1645 return getrusage(current
, who
, ru
);
1648 SYSCALL_DEFINE1(umask
, int, mask
)
1650 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1654 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1655 unsigned long, arg4
, unsigned long, arg5
)
1657 struct task_struct
*me
= current
;
1658 unsigned char comm
[sizeof(me
->comm
)];
1661 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1662 if (error
!= -ENOSYS
)
1667 case PR_SET_PDEATHSIG
:
1668 if (!valid_signal(arg2
)) {
1672 me
->pdeath_signal
= arg2
;
1675 case PR_GET_PDEATHSIG
:
1676 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1678 case PR_GET_DUMPABLE
:
1679 error
= get_dumpable(me
->mm
);
1681 case PR_SET_DUMPABLE
:
1682 if (arg2
< 0 || arg2
> 1) {
1686 set_dumpable(me
->mm
, arg2
);
1690 case PR_SET_UNALIGN
:
1691 error
= SET_UNALIGN_CTL(me
, arg2
);
1693 case PR_GET_UNALIGN
:
1694 error
= GET_UNALIGN_CTL(me
, arg2
);
1697 error
= SET_FPEMU_CTL(me
, arg2
);
1700 error
= GET_FPEMU_CTL(me
, arg2
);
1703 error
= SET_FPEXC_CTL(me
, arg2
);
1706 error
= GET_FPEXC_CTL(me
, arg2
);
1709 error
= PR_TIMING_STATISTICAL
;
1712 if (arg2
!= PR_TIMING_STATISTICAL
)
1719 comm
[sizeof(me
->comm
)-1] = 0;
1720 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1721 sizeof(me
->comm
) - 1) < 0)
1723 set_task_comm(me
, comm
);
1726 get_task_comm(comm
, me
);
1727 if (copy_to_user((char __user
*)arg2
, comm
,
1732 error
= GET_ENDIAN(me
, arg2
);
1735 error
= SET_ENDIAN(me
, arg2
);
1738 case PR_GET_SECCOMP
:
1739 error
= prctl_get_seccomp();
1741 case PR_SET_SECCOMP
:
1742 error
= prctl_set_seccomp(arg2
);
1745 error
= GET_TSC_CTL(arg2
);
1748 error
= SET_TSC_CTL(arg2
);
1750 case PR_TASK_PERF_EVENTS_DISABLE
:
1751 error
= perf_event_task_disable();
1753 case PR_TASK_PERF_EVENTS_ENABLE
:
1754 error
= perf_event_task_enable();
1756 case PR_GET_TIMERSLACK
:
1757 error
= current
->timer_slack_ns
;
1759 case PR_SET_TIMERSLACK
:
1761 current
->timer_slack_ns
=
1762 current
->default_timer_slack_ns
;
1764 current
->timer_slack_ns
= arg2
;
1771 case PR_MCE_KILL_CLEAR
:
1774 current
->flags
&= ~PF_MCE_PROCESS
;
1776 case PR_MCE_KILL_SET
:
1777 current
->flags
|= PF_MCE_PROCESS
;
1778 if (arg3
== PR_MCE_KILL_EARLY
)
1779 current
->flags
|= PF_MCE_EARLY
;
1780 else if (arg3
== PR_MCE_KILL_LATE
)
1781 current
->flags
&= ~PF_MCE_EARLY
;
1782 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1784 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1793 case PR_MCE_KILL_GET
:
1794 if (arg2
| arg3
| arg4
| arg5
)
1796 if (current
->flags
& PF_MCE_PROCESS
)
1797 error
= (current
->flags
& PF_MCE_EARLY
) ?
1798 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1800 error
= PR_MCE_KILL_DEFAULT
;
1809 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1810 struct getcpu_cache __user
*, unused
)
1813 int cpu
= raw_smp_processor_id();
1815 err
|= put_user(cpu
, cpup
);
1817 err
|= put_user(cpu_to_node(cpu
), nodep
);
1818 return err
? -EFAULT
: 0;
1821 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1823 static void argv_cleanup(struct subprocess_info
*info
)
1825 argv_free(info
->argv
);
1829 * orderly_poweroff - Trigger an orderly system poweroff
1830 * @force: force poweroff if command execution fails
1832 * This may be called from any context to trigger a system shutdown.
1833 * If the orderly shutdown fails, it will force an immediate shutdown.
1835 int orderly_poweroff(bool force
)
1838 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1839 static char *envp
[] = {
1841 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1845 struct subprocess_info
*info
;
1848 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1849 __func__
, poweroff_cmd
);
1853 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1859 call_usermodehelper_setfns(info
, NULL
, argv_cleanup
, NULL
);
1861 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1865 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1866 "forcing the issue\n");
1868 /* I guess this should try to kick off some daemon to
1869 sync and poweroff asap. Or not even bother syncing
1870 if we're doing an emergency shutdown? */
1877 EXPORT_SYMBOL_GPL(orderly_poweroff
);