[PATCH] ppc32: fix 44x early serial debug for configurations with more than 512M...
[linux-2.6.git] / fs / reiserfs / fix_node.c
blob2706e2adffab2df85da09f8884f68f38d5b9a747
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 /**
6 ** old_item_num
7 ** old_entry_num
8 ** set_entry_sizes
9 ** create_virtual_node
10 ** check_left
11 ** check_right
12 ** directory_part_size
13 ** get_num_ver
14 ** set_parameters
15 ** is_leaf_removable
16 ** are_leaves_removable
17 ** get_empty_nodes
18 ** get_lfree
19 ** get_rfree
20 ** is_left_neighbor_in_cache
21 ** decrement_key
22 ** get_far_parent
23 ** get_parents
24 ** can_node_be_removed
25 ** ip_check_balance
26 ** dc_check_balance_internal
27 ** dc_check_balance_leaf
28 ** dc_check_balance
29 ** check_balance
30 ** get_direct_parent
31 ** get_neighbors
32 ** fix_nodes
33 **
34 **
35 **/
37 #include <linux/config.h>
38 #include <linux/time.h>
39 #include <linux/string.h>
40 #include <linux/reiserfs_fs.h>
41 #include <linux/buffer_head.h>
43 /* To make any changes in the tree we find a node, that contains item
44 to be changed/deleted or position in the node we insert a new item
45 to. We call this node S. To do balancing we need to decide what we
46 will shift to left/right neighbor, or to a new node, where new item
47 will be etc. To make this analysis simpler we build virtual
48 node. Virtual node is an array of items, that will replace items of
49 node S. (For instance if we are going to delete an item, virtual
50 node does not contain it). Virtual node keeps information about
51 item sizes and types, mergeability of first and last items, sizes
52 of all entries in directory item. We use this array of items when
53 calculating what we can shift to neighbors and how many nodes we
54 have to have if we do not any shiftings, if we shift to left/right
55 neighbor or to both. */
57 /* taking item number in virtual node, returns number of item, that it has in source buffer */
58 static inline int old_item_num(int new_num, int affected_item_num, int mode)
60 if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
61 return new_num;
63 if (mode == M_INSERT) {
65 RFALSE(new_num == 0,
66 "vs-8005: for INSERT mode and item number of inserted item");
68 return new_num - 1;
71 RFALSE(mode != M_DELETE,
72 "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
73 mode);
74 /* delete mode */
75 return new_num + 1;
78 static void create_virtual_node(struct tree_balance *tb, int h)
80 struct item_head *ih;
81 struct virtual_node *vn = tb->tb_vn;
82 int new_num;
83 struct buffer_head *Sh; /* this comes from tb->S[h] */
85 Sh = PATH_H_PBUFFER(tb->tb_path, h);
87 /* size of changed node */
88 vn->vn_size =
89 MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
91 /* for internal nodes array if virtual items is not created */
92 if (h) {
93 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
94 return;
97 /* number of items in virtual node */
98 vn->vn_nr_item =
99 B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
100 ((vn->vn_mode == M_DELETE) ? 1 : 0);
102 /* first virtual item */
103 vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
104 memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
105 vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
107 /* first item in the node */
108 ih = B_N_PITEM_HEAD(Sh, 0);
110 /* define the mergeability for 0-th item (if it is not being deleted) */
111 if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
112 && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
113 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
115 /* go through all items those remain in the virtual node (except for the new (inserted) one) */
116 for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
117 int j;
118 struct virtual_item *vi = vn->vn_vi + new_num;
119 int is_affected =
120 ((new_num != vn->vn_affected_item_num) ? 0 : 1);
122 if (is_affected && vn->vn_mode == M_INSERT)
123 continue;
125 /* get item number in source node */
126 j = old_item_num(new_num, vn->vn_affected_item_num,
127 vn->vn_mode);
129 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
130 vi->vi_ih = ih + j;
131 vi->vi_item = B_I_PITEM(Sh, ih + j);
132 vi->vi_uarea = vn->vn_free_ptr;
134 // FIXME: there is no check, that item operation did not
135 // consume too much memory
136 vn->vn_free_ptr +=
137 op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
138 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
139 reiserfs_panic(tb->tb_sb,
140 "vs-8030: create_virtual_node: "
141 "virtual node space consumed");
143 if (!is_affected)
144 /* this is not being changed */
145 continue;
147 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
148 vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
149 vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted
153 /* virtual inserted item is not defined yet */
154 if (vn->vn_mode == M_INSERT) {
155 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
157 RFALSE(vn->vn_ins_ih == 0,
158 "vs-8040: item header of inserted item is not specified");
159 vi->vi_item_len = tb->insert_size[0];
160 vi->vi_ih = vn->vn_ins_ih;
161 vi->vi_item = vn->vn_data;
162 vi->vi_uarea = vn->vn_free_ptr;
164 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
165 tb->insert_size[0]);
168 /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
169 if (tb->CFR[0]) {
170 struct reiserfs_key *key;
172 key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
173 if (op_is_left_mergeable(key, Sh->b_size)
174 && (vn->vn_mode != M_DELETE
175 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
176 vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
177 VI_TYPE_RIGHT_MERGEABLE;
179 #ifdef CONFIG_REISERFS_CHECK
180 if (op_is_left_mergeable(key, Sh->b_size) &&
181 !(vn->vn_mode != M_DELETE
182 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
183 /* we delete last item and it could be merged with right neighbor's first item */
184 if (!
185 (B_NR_ITEMS(Sh) == 1
186 && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
187 && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
188 /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
189 print_block(Sh, 0, -1, -1);
190 reiserfs_panic(tb->tb_sb,
191 "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c",
192 key, vn->vn_affected_item_num,
193 vn->vn_mode, M_DELETE);
194 } else
195 /* we can delete directory item, that has only one directory entry in it */
198 #endif
203 /* using virtual node check, how many items can be shifted to left
204 neighbor */
205 static void check_left(struct tree_balance *tb, int h, int cur_free)
207 int i;
208 struct virtual_node *vn = tb->tb_vn;
209 struct virtual_item *vi;
210 int d_size, ih_size;
212 RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
214 /* internal level */
215 if (h > 0) {
216 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
217 return;
220 /* leaf level */
222 if (!cur_free || !vn->vn_nr_item) {
223 /* no free space or nothing to move */
224 tb->lnum[h] = 0;
225 tb->lbytes = -1;
226 return;
229 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
230 "vs-8055: parent does not exist or invalid");
232 vi = vn->vn_vi;
233 if ((unsigned int)cur_free >=
234 (vn->vn_size -
235 ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
236 /* all contents of S[0] fits into L[0] */
238 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
239 "vs-8055: invalid mode or balance condition failed");
241 tb->lnum[0] = vn->vn_nr_item;
242 tb->lbytes = -1;
243 return;
246 d_size = 0, ih_size = IH_SIZE;
248 /* first item may be merge with last item in left neighbor */
249 if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
250 d_size = -((int)IH_SIZE), ih_size = 0;
252 tb->lnum[0] = 0;
253 for (i = 0; i < vn->vn_nr_item;
254 i++, ih_size = IH_SIZE, d_size = 0, vi++) {
255 d_size += vi->vi_item_len;
256 if (cur_free >= d_size) {
257 /* the item can be shifted entirely */
258 cur_free -= d_size;
259 tb->lnum[0]++;
260 continue;
263 /* the item cannot be shifted entirely, try to split it */
264 /* check whether L[0] can hold ih and at least one byte of the item body */
265 if (cur_free <= ih_size) {
266 /* cannot shift even a part of the current item */
267 tb->lbytes = -1;
268 return;
270 cur_free -= ih_size;
272 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
273 if (tb->lbytes != -1)
274 /* count partially shifted item */
275 tb->lnum[0]++;
277 break;
280 return;
283 /* using virtual node check, how many items can be shifted to right
284 neighbor */
285 static void check_right(struct tree_balance *tb, int h, int cur_free)
287 int i;
288 struct virtual_node *vn = tb->tb_vn;
289 struct virtual_item *vi;
290 int d_size, ih_size;
292 RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
294 /* internal level */
295 if (h > 0) {
296 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
297 return;
300 /* leaf level */
302 if (!cur_free || !vn->vn_nr_item) {
303 /* no free space */
304 tb->rnum[h] = 0;
305 tb->rbytes = -1;
306 return;
309 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
310 "vs-8075: parent does not exist or invalid");
312 vi = vn->vn_vi + vn->vn_nr_item - 1;
313 if ((unsigned int)cur_free >=
314 (vn->vn_size -
315 ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
316 /* all contents of S[0] fits into R[0] */
318 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
319 "vs-8080: invalid mode or balance condition failed");
321 tb->rnum[h] = vn->vn_nr_item;
322 tb->rbytes = -1;
323 return;
326 d_size = 0, ih_size = IH_SIZE;
328 /* last item may be merge with first item in right neighbor */
329 if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
330 d_size = -(int)IH_SIZE, ih_size = 0;
332 tb->rnum[0] = 0;
333 for (i = vn->vn_nr_item - 1; i >= 0;
334 i--, d_size = 0, ih_size = IH_SIZE, vi--) {
335 d_size += vi->vi_item_len;
336 if (cur_free >= d_size) {
337 /* the item can be shifted entirely */
338 cur_free -= d_size;
339 tb->rnum[0]++;
340 continue;
343 /* check whether R[0] can hold ih and at least one byte of the item body */
344 if (cur_free <= ih_size) { /* cannot shift even a part of the current item */
345 tb->rbytes = -1;
346 return;
349 /* R[0] can hold the header of the item and at least one byte of its body */
350 cur_free -= ih_size; /* cur_free is still > 0 */
352 tb->rbytes = op_check_right(vi, cur_free);
353 if (tb->rbytes != -1)
354 /* count partially shifted item */
355 tb->rnum[0]++;
357 break;
360 return;
364 * from - number of items, which are shifted to left neighbor entirely
365 * to - number of item, which are shifted to right neighbor entirely
366 * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
367 * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
368 static int get_num_ver(int mode, struct tree_balance *tb, int h,
369 int from, int from_bytes,
370 int to, int to_bytes, short *snum012, int flow)
372 int i;
373 int cur_free;
374 // int bytes;
375 int units;
376 struct virtual_node *vn = tb->tb_vn;
377 // struct virtual_item * vi;
379 int total_node_size, max_node_size, current_item_size;
380 int needed_nodes;
381 int start_item, /* position of item we start filling node from */
382 end_item, /* position of item we finish filling node by */
383 start_bytes, /* number of first bytes (entries for directory) of start_item-th item
384 we do not include into node that is being filled */
385 end_bytes; /* number of last bytes (entries for directory) of end_item-th item
386 we do node include into node that is being filled */
387 int split_item_positions[2]; /* these are positions in virtual item of
388 items, that are split between S[0] and
389 S1new and S1new and S2new */
391 split_item_positions[0] = -1;
392 split_item_positions[1] = -1;
394 /* We only create additional nodes if we are in insert or paste mode
395 or we are in replace mode at the internal level. If h is 0 and
396 the mode is M_REPLACE then in fix_nodes we change the mode to
397 paste or insert before we get here in the code. */
398 RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
399 "vs-8100: insert_size < 0 in overflow");
401 max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
403 /* snum012 [0-2] - number of items, that lay
404 to S[0], first new node and second new node */
405 snum012[3] = -1; /* s1bytes */
406 snum012[4] = -1; /* s2bytes */
408 /* internal level */
409 if (h > 0) {
410 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
411 if (i == max_node_size)
412 return 1;
413 return (i / max_node_size + 1);
416 /* leaf level */
417 needed_nodes = 1;
418 total_node_size = 0;
419 cur_free = max_node_size;
421 // start from 'from'-th item
422 start_item = from;
423 // skip its first 'start_bytes' units
424 start_bytes = ((from_bytes != -1) ? from_bytes : 0);
426 // last included item is the 'end_item'-th one
427 end_item = vn->vn_nr_item - to - 1;
428 // do not count last 'end_bytes' units of 'end_item'-th item
429 end_bytes = (to_bytes != -1) ? to_bytes : 0;
431 /* go through all item beginning from the start_item-th item and ending by
432 the end_item-th item. Do not count first 'start_bytes' units of
433 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
435 for (i = start_item; i <= end_item; i++) {
436 struct virtual_item *vi = vn->vn_vi + i;
437 int skip_from_end = ((i == end_item) ? end_bytes : 0);
439 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
441 /* get size of current item */
442 current_item_size = vi->vi_item_len;
444 /* do not take in calculation head part (from_bytes) of from-th item */
445 current_item_size -=
446 op_part_size(vi, 0 /*from start */ , start_bytes);
448 /* do not take in calculation tail part of last item */
449 current_item_size -=
450 op_part_size(vi, 1 /*from end */ , skip_from_end);
452 /* if item fits into current node entierly */
453 if (total_node_size + current_item_size <= max_node_size) {
454 snum012[needed_nodes - 1]++;
455 total_node_size += current_item_size;
456 start_bytes = 0;
457 continue;
460 if (current_item_size > max_node_size) {
461 /* virtual item length is longer, than max size of item in
462 a node. It is impossible for direct item */
463 RFALSE(is_direct_le_ih(vi->vi_ih),
464 "vs-8110: "
465 "direct item length is %d. It can not be longer than %d",
466 current_item_size, max_node_size);
467 /* we will try to split it */
468 flow = 1;
471 if (!flow) {
472 /* as we do not split items, take new node and continue */
473 needed_nodes++;
474 i--;
475 total_node_size = 0;
476 continue;
478 // calculate number of item units which fit into node being
479 // filled
481 int free_space;
483 free_space = max_node_size - total_node_size - IH_SIZE;
484 units =
485 op_check_left(vi, free_space, start_bytes,
486 skip_from_end);
487 if (units == -1) {
488 /* nothing fits into current node, take new node and continue */
489 needed_nodes++, i--, total_node_size = 0;
490 continue;
494 /* something fits into the current node */
495 //if (snum012[3] != -1 || needed_nodes != 1)
496 // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
497 //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
498 start_bytes += units;
499 snum012[needed_nodes - 1 + 3] = units;
501 if (needed_nodes > 2)
502 reiserfs_warning(tb->tb_sb, "vs-8111: get_num_ver: "
503 "split_item_position is out of boundary");
504 snum012[needed_nodes - 1]++;
505 split_item_positions[needed_nodes - 1] = i;
506 needed_nodes++;
507 /* continue from the same item with start_bytes != -1 */
508 start_item = i;
509 i--;
510 total_node_size = 0;
513 // sum012[4] (if it is not -1) contains number of units of which
514 // are to be in S1new, snum012[3] - to be in S0. They are supposed
515 // to be S1bytes and S2bytes correspondingly, so recalculate
516 if (snum012[4] > 0) {
517 int split_item_num;
518 int bytes_to_r, bytes_to_l;
519 int bytes_to_S1new;
521 split_item_num = split_item_positions[1];
522 bytes_to_l =
523 ((from == split_item_num
524 && from_bytes != -1) ? from_bytes : 0);
525 bytes_to_r =
526 ((end_item == split_item_num
527 && end_bytes != -1) ? end_bytes : 0);
528 bytes_to_S1new =
529 ((split_item_positions[0] ==
530 split_item_positions[1]) ? snum012[3] : 0);
532 // s2bytes
533 snum012[4] =
534 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
535 bytes_to_r - bytes_to_l - bytes_to_S1new;
537 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
538 vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
539 reiserfs_warning(tb->tb_sb, "vs-8115: get_num_ver: not "
540 "directory or indirect item");
543 /* now we know S2bytes, calculate S1bytes */
544 if (snum012[3] > 0) {
545 int split_item_num;
546 int bytes_to_r, bytes_to_l;
547 int bytes_to_S2new;
549 split_item_num = split_item_positions[0];
550 bytes_to_l =
551 ((from == split_item_num
552 && from_bytes != -1) ? from_bytes : 0);
553 bytes_to_r =
554 ((end_item == split_item_num
555 && end_bytes != -1) ? end_bytes : 0);
556 bytes_to_S2new =
557 ((split_item_positions[0] == split_item_positions[1]
558 && snum012[4] != -1) ? snum012[4] : 0);
560 // s1bytes
561 snum012[3] =
562 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
563 bytes_to_r - bytes_to_l - bytes_to_S2new;
566 return needed_nodes;
569 #ifdef CONFIG_REISERFS_CHECK
570 extern struct tree_balance *cur_tb;
571 #endif
573 /* Set parameters for balancing.
574 * Performs write of results of analysis of balancing into structure tb,
575 * where it will later be used by the functions that actually do the balancing.
576 * Parameters:
577 * tb tree_balance structure;
578 * h current level of the node;
579 * lnum number of items from S[h] that must be shifted to L[h];
580 * rnum number of items from S[h] that must be shifted to R[h];
581 * blk_num number of blocks that S[h] will be splitted into;
582 * s012 number of items that fall into splitted nodes.
583 * lbytes number of bytes which flow to the left neighbor from the item that is not
584 * not shifted entirely
585 * rbytes number of bytes which flow to the right neighbor from the item that is not
586 * not shifted entirely
587 * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array)
590 static void set_parameters(struct tree_balance *tb, int h, int lnum,
591 int rnum, int blk_num, short *s012, int lb, int rb)
594 tb->lnum[h] = lnum;
595 tb->rnum[h] = rnum;
596 tb->blknum[h] = blk_num;
598 if (h == 0) { /* only for leaf level */
599 if (s012 != NULL) {
600 tb->s0num = *s012++,
601 tb->s1num = *s012++, tb->s2num = *s012++;
602 tb->s1bytes = *s012++;
603 tb->s2bytes = *s012;
605 tb->lbytes = lb;
606 tb->rbytes = rb;
608 PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
609 PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
611 PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
612 PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
615 /* check, does node disappear if we shift tb->lnum[0] items to left
616 neighbor and tb->rnum[0] to the right one. */
617 static int is_leaf_removable(struct tree_balance *tb)
619 struct virtual_node *vn = tb->tb_vn;
620 int to_left, to_right;
621 int size;
622 int remain_items;
624 /* number of items, that will be shifted to left (right) neighbor
625 entirely */
626 to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
627 to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
628 remain_items = vn->vn_nr_item;
630 /* how many items remain in S[0] after shiftings to neighbors */
631 remain_items -= (to_left + to_right);
633 if (remain_items < 1) {
634 /* all content of node can be shifted to neighbors */
635 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
636 NULL, -1, -1);
637 return 1;
640 if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
641 /* S[0] is not removable */
642 return 0;
644 /* check, whether we can divide 1 remaining item between neighbors */
646 /* get size of remaining item (in item units) */
647 size = op_unit_num(&(vn->vn_vi[to_left]));
649 if (tb->lbytes + tb->rbytes >= size) {
650 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
651 tb->lbytes, -1);
652 return 1;
655 return 0;
658 /* check whether L, S, R can be joined in one node */
659 static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
661 struct virtual_node *vn = tb->tb_vn;
662 int ih_size;
663 struct buffer_head *S0;
665 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
667 ih_size = 0;
668 if (vn->vn_nr_item) {
669 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
670 ih_size += IH_SIZE;
672 if (vn->vn_vi[vn->vn_nr_item - 1].
673 vi_type & VI_TYPE_RIGHT_MERGEABLE)
674 ih_size += IH_SIZE;
675 } else {
676 /* there was only one item and it will be deleted */
677 struct item_head *ih;
679 RFALSE(B_NR_ITEMS(S0) != 1,
680 "vs-8125: item number must be 1: it is %d",
681 B_NR_ITEMS(S0));
683 ih = B_N_PITEM_HEAD(S0, 0);
684 if (tb->CFR[0]
685 && !comp_short_le_keys(&(ih->ih_key),
686 B_N_PDELIM_KEY(tb->CFR[0],
687 tb->rkey[0])))
688 if (is_direntry_le_ih(ih)) {
689 /* Directory must be in correct state here: that is
690 somewhere at the left side should exist first directory
691 item. But the item being deleted can not be that first
692 one because its right neighbor is item of the same
693 directory. (But first item always gets deleted in last
694 turn). So, neighbors of deleted item can be merged, so
695 we can save ih_size */
696 ih_size = IH_SIZE;
698 /* we might check that left neighbor exists and is of the
699 same directory */
700 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
701 "vs-8130: first directory item can not be removed until directory is not empty");
706 if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
707 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
708 PROC_INFO_INC(tb->tb_sb, leaves_removable);
709 return 1;
711 return 0;
715 /* when we do not split item, lnum and rnum are numbers of entire items */
716 #define SET_PAR_SHIFT_LEFT \
717 if (h)\
719 int to_l;\
721 to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
722 (MAX_NR_KEY(Sh) + 1 - lpar);\
724 set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
726 else \
728 if (lset==LEFT_SHIFT_FLOW)\
729 set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
730 tb->lbytes, -1);\
731 else\
732 set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
733 -1, -1);\
736 #define SET_PAR_SHIFT_RIGHT \
737 if (h)\
739 int to_r;\
741 to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
743 set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
745 else \
747 if (rset==RIGHT_SHIFT_FLOW)\
748 set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
749 -1, tb->rbytes);\
750 else\
751 set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
752 -1, -1);\
755 static void free_buffers_in_tb(struct tree_balance *p_s_tb)
757 int n_counter;
759 decrement_counters_in_path(p_s_tb->tb_path);
761 for (n_counter = 0; n_counter < MAX_HEIGHT; n_counter++) {
762 decrement_bcount(p_s_tb->L[n_counter]);
763 p_s_tb->L[n_counter] = NULL;
764 decrement_bcount(p_s_tb->R[n_counter]);
765 p_s_tb->R[n_counter] = NULL;
766 decrement_bcount(p_s_tb->FL[n_counter]);
767 p_s_tb->FL[n_counter] = NULL;
768 decrement_bcount(p_s_tb->FR[n_counter]);
769 p_s_tb->FR[n_counter] = NULL;
770 decrement_bcount(p_s_tb->CFL[n_counter]);
771 p_s_tb->CFL[n_counter] = NULL;
772 decrement_bcount(p_s_tb->CFR[n_counter]);
773 p_s_tb->CFR[n_counter] = NULL;
777 /* Get new buffers for storing new nodes that are created while balancing.
778 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
779 * CARRY_ON - schedule didn't occur while the function worked;
780 * NO_DISK_SPACE - no disk space.
782 /* The function is NOT SCHEDULE-SAFE! */
783 static int get_empty_nodes(struct tree_balance *p_s_tb, int n_h)
785 struct buffer_head *p_s_new_bh,
786 *p_s_Sh = PATH_H_PBUFFER(p_s_tb->tb_path, n_h);
787 b_blocknr_t *p_n_blocknr, a_n_blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
788 int n_counter, n_number_of_freeblk, n_amount_needed, /* number of needed empty blocks */
789 n_retval = CARRY_ON;
790 struct super_block *p_s_sb = p_s_tb->tb_sb;
792 /* number_of_freeblk is the number of empty blocks which have been
793 acquired for use by the balancing algorithm minus the number of
794 empty blocks used in the previous levels of the analysis,
795 number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
796 after empty blocks are acquired, and the balancing analysis is
797 then restarted, amount_needed is the number needed by this level
798 (n_h) of the balancing analysis.
800 Note that for systems with many processes writing, it would be
801 more layout optimal to calculate the total number needed by all
802 levels and then to run reiserfs_new_blocks to get all of them at once. */
804 /* Initiate number_of_freeblk to the amount acquired prior to the restart of
805 the analysis or 0 if not restarted, then subtract the amount needed
806 by all of the levels of the tree below n_h. */
807 /* blknum includes S[n_h], so we subtract 1 in this calculation */
808 for (n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum;
809 n_counter < n_h; n_counter++)
810 n_number_of_freeblk -=
811 (p_s_tb->blknum[n_counter]) ? (p_s_tb->blknum[n_counter] -
812 1) : 0;
814 /* Allocate missing empty blocks. */
815 /* if p_s_Sh == 0 then we are getting a new root */
816 n_amount_needed = (p_s_Sh) ? (p_s_tb->blknum[n_h] - 1) : 1;
817 /* Amount_needed = the amount that we need more than the amount that we have. */
818 if (n_amount_needed > n_number_of_freeblk)
819 n_amount_needed -= n_number_of_freeblk;
820 else /* If we have enough already then there is nothing to do. */
821 return CARRY_ON;
823 /* No need to check quota - is not allocated for blocks used for formatted nodes */
824 if (reiserfs_new_form_blocknrs(p_s_tb, a_n_blocknrs,
825 n_amount_needed) == NO_DISK_SPACE)
826 return NO_DISK_SPACE;
828 /* for each blocknumber we just got, get a buffer and stick it on FEB */
829 for (p_n_blocknr = a_n_blocknrs, n_counter = 0;
830 n_counter < n_amount_needed; p_n_blocknr++, n_counter++) {
832 RFALSE(!*p_n_blocknr,
833 "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
835 p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr);
836 RFALSE(buffer_dirty(p_s_new_bh) ||
837 buffer_journaled(p_s_new_bh) ||
838 buffer_journal_dirty(p_s_new_bh),
839 "PAP-8140: journlaled or dirty buffer %b for the new block",
840 p_s_new_bh);
842 /* Put empty buffers into the array. */
843 RFALSE(p_s_tb->FEB[p_s_tb->cur_blknum],
844 "PAP-8141: busy slot for new buffer");
846 set_buffer_journal_new(p_s_new_bh);
847 p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh;
850 if (n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB(p_s_tb))
851 n_retval = REPEAT_SEARCH;
853 return n_retval;
856 /* Get free space of the left neighbor, which is stored in the parent
857 * node of the left neighbor. */
858 static int get_lfree(struct tree_balance *tb, int h)
860 struct buffer_head *l, *f;
861 int order;
863 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0)
864 return 0;
866 if (f == l)
867 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
868 else {
869 order = B_NR_ITEMS(l);
870 f = l;
873 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
876 /* Get free space of the right neighbor,
877 * which is stored in the parent node of the right neighbor.
879 static int get_rfree(struct tree_balance *tb, int h)
881 struct buffer_head *r, *f;
882 int order;
884 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0)
885 return 0;
887 if (f == r)
888 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
889 else {
890 order = 0;
891 f = r;
894 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
898 /* Check whether left neighbor is in memory. */
899 static int is_left_neighbor_in_cache(struct tree_balance *p_s_tb, int n_h)
901 struct buffer_head *p_s_father, *left;
902 struct super_block *p_s_sb = p_s_tb->tb_sb;
903 b_blocknr_t n_left_neighbor_blocknr;
904 int n_left_neighbor_position;
906 if (!p_s_tb->FL[n_h]) /* Father of the left neighbor does not exist. */
907 return 0;
909 /* Calculate father of the node to be balanced. */
910 p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1);
912 RFALSE(!p_s_father ||
913 !B_IS_IN_TREE(p_s_father) ||
914 !B_IS_IN_TREE(p_s_tb->FL[n_h]) ||
915 !buffer_uptodate(p_s_father) ||
916 !buffer_uptodate(p_s_tb->FL[n_h]),
917 "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
918 p_s_father, p_s_tb->FL[n_h]);
920 /* Get position of the pointer to the left neighbor into the left father. */
921 n_left_neighbor_position = (p_s_father == p_s_tb->FL[n_h]) ?
922 p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->FL[n_h]);
923 /* Get left neighbor block number. */
924 n_left_neighbor_blocknr =
925 B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position);
926 /* Look for the left neighbor in the cache. */
927 if ((left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr))) {
929 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
930 "vs-8170: left neighbor (%b %z) is not in the tree",
931 left, left);
932 put_bh(left);
933 return 1;
936 return 0;
939 #define LEFT_PARENTS 'l'
940 #define RIGHT_PARENTS 'r'
942 static void decrement_key(struct cpu_key *p_s_key)
944 // call item specific function for this key
945 item_ops[cpu_key_k_type(p_s_key)]->decrement_key(p_s_key);
948 /* Calculate far left/right parent of the left/right neighbor of the current node, that
949 * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
950 * Calculate left/right common parent of the current node and L[h]/R[h].
951 * Calculate left/right delimiting key position.
952 * Returns: PATH_INCORRECT - path in the tree is not correct;
953 SCHEDULE_OCCURRED - schedule occurred while the function worked;
954 * CARRY_ON - schedule didn't occur while the function worked;
956 static int get_far_parent(struct tree_balance *p_s_tb,
957 int n_h,
958 struct buffer_head **pp_s_father,
959 struct buffer_head **pp_s_com_father, char c_lr_par)
961 struct buffer_head *p_s_parent;
962 INITIALIZE_PATH(s_path_to_neighbor_father);
963 struct path *p_s_path = p_s_tb->tb_path;
964 struct cpu_key s_lr_father_key;
965 int n_counter,
966 n_position = INT_MAX,
967 n_first_last_position = 0,
968 n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h);
970 /* Starting from F[n_h] go upwards in the tree, and look for the common
971 ancestor of F[n_h], and its neighbor l/r, that should be obtained. */
973 n_counter = n_path_offset;
975 RFALSE(n_counter < FIRST_PATH_ELEMENT_OFFSET,
976 "PAP-8180: invalid path length");
978 for (; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter--) {
979 /* Check whether parent of the current buffer in the path is really parent in the tree. */
980 if (!B_IS_IN_TREE
981 (p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1)))
982 return REPEAT_SEARCH;
983 /* Check whether position in the parent is correct. */
984 if ((n_position =
985 PATH_OFFSET_POSITION(p_s_path,
986 n_counter - 1)) >
987 B_NR_ITEMS(p_s_parent))
988 return REPEAT_SEARCH;
989 /* Check whether parent at the path really points to the child. */
990 if (B_N_CHILD_NUM(p_s_parent, n_position) !=
991 PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr)
992 return REPEAT_SEARCH;
993 /* Return delimiting key if position in the parent is not equal to first/last one. */
994 if (c_lr_par == RIGHT_PARENTS)
995 n_first_last_position = B_NR_ITEMS(p_s_parent);
996 if (n_position != n_first_last_position) {
997 *pp_s_com_father = p_s_parent;
998 get_bh(*pp_s_com_father);
999 /*(*pp_s_com_father = p_s_parent)->b_count++; */
1000 break;
1004 /* if we are in the root of the tree, then there is no common father */
1005 if (n_counter == FIRST_PATH_ELEMENT_OFFSET) {
1006 /* Check whether first buffer in the path is the root of the tree. */
1007 if (PATH_OFFSET_PBUFFER
1008 (p_s_tb->tb_path,
1009 FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1010 SB_ROOT_BLOCK(p_s_tb->tb_sb)) {
1011 *pp_s_father = *pp_s_com_father = NULL;
1012 return CARRY_ON;
1014 return REPEAT_SEARCH;
1017 RFALSE(B_LEVEL(*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL,
1018 "PAP-8185: (%b %z) level too small",
1019 *pp_s_com_father, *pp_s_com_father);
1021 /* Check whether the common parent is locked. */
1023 if (buffer_locked(*pp_s_com_father)) {
1024 __wait_on_buffer(*pp_s_com_father);
1025 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1026 decrement_bcount(*pp_s_com_father);
1027 return REPEAT_SEARCH;
1031 /* So, we got common parent of the current node and its left/right neighbor.
1032 Now we are geting the parent of the left/right neighbor. */
1034 /* Form key to get parent of the left/right neighbor. */
1035 le_key2cpu_key(&s_lr_father_key,
1036 B_N_PDELIM_KEY(*pp_s_com_father,
1037 (c_lr_par ==
1038 LEFT_PARENTS) ? (p_s_tb->lkey[n_h - 1] =
1039 n_position -
1040 1) : (p_s_tb->rkey[n_h -
1041 1] =
1042 n_position)));
1044 if (c_lr_par == LEFT_PARENTS)
1045 decrement_key(&s_lr_father_key);
1047 if (search_by_key
1048 (p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1049 n_h + 1) == IO_ERROR)
1050 // path is released
1051 return IO_ERROR;
1053 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1054 decrement_counters_in_path(&s_path_to_neighbor_father);
1055 decrement_bcount(*pp_s_com_father);
1056 return REPEAT_SEARCH;
1059 *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1061 RFALSE(B_LEVEL(*pp_s_father) != n_h + 1,
1062 "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father);
1063 RFALSE(s_path_to_neighbor_father.path_length <
1064 FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1066 s_path_to_neighbor_father.path_length--;
1067 decrement_counters_in_path(&s_path_to_neighbor_father);
1068 return CARRY_ON;
1071 /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of
1072 * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset],
1073 * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset].
1074 * Calculate numbers of left and right delimiting keys position: lkey[n_path_offset], rkey[n_path_offset].
1075 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1076 * CARRY_ON - schedule didn't occur while the function worked;
1078 static int get_parents(struct tree_balance *p_s_tb, int n_h)
1080 struct path *p_s_path = p_s_tb->tb_path;
1081 int n_position,
1082 n_ret_value,
1083 n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
1084 struct buffer_head *p_s_curf, *p_s_curcf;
1086 /* Current node is the root of the tree or will be root of the tree */
1087 if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1088 /* The root can not have parents.
1089 Release nodes which previously were obtained as parents of the current node neighbors. */
1090 decrement_bcount(p_s_tb->FL[n_h]);
1091 decrement_bcount(p_s_tb->CFL[n_h]);
1092 decrement_bcount(p_s_tb->FR[n_h]);
1093 decrement_bcount(p_s_tb->CFR[n_h]);
1094 p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] =
1095 p_s_tb->CFR[n_h] = NULL;
1096 return CARRY_ON;
1099 /* Get parent FL[n_path_offset] of L[n_path_offset]. */
1100 if ((n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1))) {
1101 /* Current node is not the first child of its parent. */
1102 /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */
1103 p_s_curf = p_s_curcf =
1104 PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1105 get_bh(p_s_curf);
1106 get_bh(p_s_curf);
1107 p_s_tb->lkey[n_h] = n_position - 1;
1108 } else {
1109 /* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node.
1110 Calculate current common parent of L[n_path_offset] and the current node. Note that
1111 CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset].
1112 Calculate lkey[n_path_offset]. */
1113 if ((n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf,
1114 &p_s_curcf,
1115 LEFT_PARENTS)) != CARRY_ON)
1116 return n_ret_value;
1119 decrement_bcount(p_s_tb->FL[n_h]);
1120 p_s_tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */
1121 decrement_bcount(p_s_tb->CFL[n_h]);
1122 p_s_tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */
1124 RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) ||
1125 (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)),
1126 "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf);
1128 /* Get parent FR[n_h] of R[n_h]. */
1130 /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */
1131 if (n_position == B_NR_ITEMS(PATH_H_PBUFFER(p_s_path, n_h + 1))) {
1132 /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h].
1133 Calculate current common parent of R[n_h] and current node. Note that CFR[n_h]
1134 not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */
1135 if ((n_ret_value =
1136 get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf,
1137 RIGHT_PARENTS)) != CARRY_ON)
1138 return n_ret_value;
1139 } else {
1140 /* Current node is not the last child of its parent F[n_h]. */
1141 /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */
1142 p_s_curf = p_s_curcf =
1143 PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1144 get_bh(p_s_curf);
1145 get_bh(p_s_curf);
1146 p_s_tb->rkey[n_h] = n_position;
1149 decrement_bcount(p_s_tb->FR[n_h]);
1150 p_s_tb->FR[n_h] = p_s_curf; /* New initialization of FR[n_path_offset]. */
1152 decrement_bcount(p_s_tb->CFR[n_h]);
1153 p_s_tb->CFR[n_h] = p_s_curcf; /* New initialization of CFR[n_path_offset]. */
1155 RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) ||
1156 (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)),
1157 "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf);
1159 return CARRY_ON;
1162 /* it is possible to remove node as result of shiftings to
1163 neighbors even when we insert or paste item. */
1164 static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1165 struct tree_balance *tb, int h)
1167 struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1168 int levbytes = tb->insert_size[h];
1169 struct item_head *ih;
1170 struct reiserfs_key *r_key = NULL;
1172 ih = B_N_PITEM_HEAD(Sh, 0);
1173 if (tb->CFR[h])
1174 r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
1176 if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1177 /* shifting may merge items which might save space */
1179 ((!h
1180 && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1182 ((!h && r_key
1183 && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1184 + ((h) ? KEY_SIZE : 0)) {
1185 /* node can not be removed */
1186 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1187 if (!h)
1188 tb->s0num =
1189 B_NR_ITEMS(Sh) +
1190 ((mode == M_INSERT) ? 1 : 0);
1191 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1192 return NO_BALANCING_NEEDED;
1195 PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1196 return !NO_BALANCING_NEEDED;
1199 /* Check whether current node S[h] is balanced when increasing its size by
1200 * Inserting or Pasting.
1201 * Calculate parameters for balancing for current level h.
1202 * Parameters:
1203 * tb tree_balance structure;
1204 * h current level of the node;
1205 * inum item number in S[h];
1206 * mode i - insert, p - paste;
1207 * Returns: 1 - schedule occurred;
1208 * 0 - balancing for higher levels needed;
1209 * -1 - no balancing for higher levels needed;
1210 * -2 - no disk space.
1212 /* ip means Inserting or Pasting */
1213 static int ip_check_balance(struct tree_balance *tb, int h)
1215 struct virtual_node *vn = tb->tb_vn;
1216 int levbytes, /* Number of bytes that must be inserted into (value
1217 is negative if bytes are deleted) buffer which
1218 contains node being balanced. The mnemonic is
1219 that the attempted change in node space used level
1220 is levbytes bytes. */
1221 n_ret_value;
1223 int lfree, sfree, rfree /* free space in L, S and R */ ;
1225 /* nver is short for number of vertixes, and lnver is the number if
1226 we shift to the left, rnver is the number if we shift to the
1227 right, and lrnver is the number if we shift in both directions.
1228 The goal is to minimize first the number of vertixes, and second,
1229 the number of vertixes whose contents are changed by shifting,
1230 and third the number of uncached vertixes whose contents are
1231 changed by shifting and must be read from disk. */
1232 int nver, lnver, rnver, lrnver;
1234 /* used at leaf level only, S0 = S[0] is the node being balanced,
1235 sInum [ I = 0,1,2 ] is the number of items that will
1236 remain in node SI after balancing. S1 and S2 are new
1237 nodes that might be created. */
1239 /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters.
1240 where 4th parameter is s1bytes and 5th - s2bytes
1242 short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases
1243 0,1 - do not shift and do not shift but bottle
1244 2 - shift only whole item to left
1245 3 - shift to left and bottle as much as possible
1246 4,5 - shift to right (whole items and as much as possible
1247 6,7 - shift to both directions (whole items and as much as possible)
1250 /* Sh is the node whose balance is currently being checked */
1251 struct buffer_head *Sh;
1253 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1254 levbytes = tb->insert_size[h];
1256 /* Calculate balance parameters for creating new root. */
1257 if (!Sh) {
1258 if (!h)
1259 reiserfs_panic(tb->tb_sb,
1260 "vs-8210: ip_check_balance: S[0] can not be 0");
1261 switch (n_ret_value = get_empty_nodes(tb, h)) {
1262 case CARRY_ON:
1263 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1264 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1266 case NO_DISK_SPACE:
1267 case REPEAT_SEARCH:
1268 return n_ret_value;
1269 default:
1270 reiserfs_panic(tb->tb_sb,
1271 "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes");
1275 if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) /* get parents of S[h] neighbors. */
1276 return n_ret_value;
1278 sfree = B_FREE_SPACE(Sh);
1280 /* get free space of neighbors */
1281 rfree = get_rfree(tb, h);
1282 lfree = get_lfree(tb, h);
1284 if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1285 NO_BALANCING_NEEDED)
1286 /* and new item fits into node S[h] without any shifting */
1287 return NO_BALANCING_NEEDED;
1289 create_virtual_node(tb, h);
1292 determine maximal number of items we can shift to the left neighbor (in tb structure)
1293 and the maximal number of bytes that can flow to the left neighbor
1294 from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1296 check_left(tb, h, lfree);
1299 determine maximal number of items we can shift to the right neighbor (in tb structure)
1300 and the maximal number of bytes that can flow to the right neighbor
1301 from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1303 check_right(tb, h, rfree);
1305 /* all contents of internal node S[h] can be moved into its
1306 neighbors, S[h] will be removed after balancing */
1307 if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1308 int to_r;
1310 /* Since we are working on internal nodes, and our internal
1311 nodes have fixed size entries, then we can balance by the
1312 number of items rather than the space they consume. In this
1313 routine we set the left node equal to the right node,
1314 allowing a difference of less than or equal to 1 child
1315 pointer. */
1316 to_r =
1317 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1318 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1319 tb->rnum[h]);
1320 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1321 -1, -1);
1322 return CARRY_ON;
1325 /* this checks balance condition, that any two neighboring nodes can not fit in one node */
1326 RFALSE(h &&
1327 (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1328 tb->rnum[h] >= vn->vn_nr_item + 1),
1329 "vs-8220: tree is not balanced on internal level");
1330 RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1331 (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1332 "vs-8225: tree is not balanced on leaf level");
1334 /* all contents of S[0] can be moved into its neighbors
1335 S[0] will be removed after balancing. */
1336 if (!h && is_leaf_removable(tb))
1337 return CARRY_ON;
1339 /* why do we perform this check here rather than earlier??
1340 Answer: we can win 1 node in some cases above. Moreover we
1341 checked it above, when we checked, that S[0] is not removable
1342 in principle */
1343 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1344 if (!h)
1345 tb->s0num = vn->vn_nr_item;
1346 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1347 return NO_BALANCING_NEEDED;
1351 int lpar, rpar, nset, lset, rset, lrset;
1353 * regular overflowing of the node
1356 /* get_num_ver works in 2 modes (FLOW & NO_FLOW)
1357 lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
1358 nset, lset, rset, lrset - shows, whether flowing items give better packing
1360 #define FLOW 1
1361 #define NO_FLOW 0 /* do not any splitting */
1363 /* we choose one the following */
1364 #define NOTHING_SHIFT_NO_FLOW 0
1365 #define NOTHING_SHIFT_FLOW 5
1366 #define LEFT_SHIFT_NO_FLOW 10
1367 #define LEFT_SHIFT_FLOW 15
1368 #define RIGHT_SHIFT_NO_FLOW 20
1369 #define RIGHT_SHIFT_FLOW 25
1370 #define LR_SHIFT_NO_FLOW 30
1371 #define LR_SHIFT_FLOW 35
1373 lpar = tb->lnum[h];
1374 rpar = tb->rnum[h];
1376 /* calculate number of blocks S[h] must be split into when
1377 nothing is shifted to the neighbors,
1378 as well as number of items in each part of the split node (s012 numbers),
1379 and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1380 nset = NOTHING_SHIFT_NO_FLOW;
1381 nver = get_num_ver(vn->vn_mode, tb, h,
1382 0, -1, h ? vn->vn_nr_item : 0, -1,
1383 snum012, NO_FLOW);
1385 if (!h) {
1386 int nver1;
1388 /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1389 nver1 = get_num_ver(vn->vn_mode, tb, h,
1390 0, -1, 0, -1,
1391 snum012 + NOTHING_SHIFT_FLOW, FLOW);
1392 if (nver > nver1)
1393 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1396 /* calculate number of blocks S[h] must be split into when
1397 l_shift_num first items and l_shift_bytes of the right most
1398 liquid item to be shifted are shifted to the left neighbor,
1399 as well as number of items in each part of the splitted node (s012 numbers),
1400 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1402 lset = LEFT_SHIFT_NO_FLOW;
1403 lnver = get_num_ver(vn->vn_mode, tb, h,
1404 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1405 -1, h ? vn->vn_nr_item : 0, -1,
1406 snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1407 if (!h) {
1408 int lnver1;
1410 lnver1 = get_num_ver(vn->vn_mode, tb, h,
1411 lpar -
1412 ((tb->lbytes != -1) ? 1 : 0),
1413 tb->lbytes, 0, -1,
1414 snum012 + LEFT_SHIFT_FLOW, FLOW);
1415 if (lnver > lnver1)
1416 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1419 /* calculate number of blocks S[h] must be split into when
1420 r_shift_num first items and r_shift_bytes of the left most
1421 liquid item to be shifted are shifted to the right neighbor,
1422 as well as number of items in each part of the splitted node (s012 numbers),
1423 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1425 rset = RIGHT_SHIFT_NO_FLOW;
1426 rnver = get_num_ver(vn->vn_mode, tb, h,
1427 0, -1,
1428 h ? (vn->vn_nr_item - rpar) : (rpar -
1429 ((tb->
1430 rbytes !=
1431 -1) ? 1 :
1432 0)), -1,
1433 snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1434 if (!h) {
1435 int rnver1;
1437 rnver1 = get_num_ver(vn->vn_mode, tb, h,
1438 0, -1,
1439 (rpar -
1440 ((tb->rbytes != -1) ? 1 : 0)),
1441 tb->rbytes,
1442 snum012 + RIGHT_SHIFT_FLOW, FLOW);
1444 if (rnver > rnver1)
1445 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1448 /* calculate number of blocks S[h] must be split into when
1449 items are shifted in both directions,
1450 as well as number of items in each part of the splitted node (s012 numbers),
1451 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1453 lrset = LR_SHIFT_NO_FLOW;
1454 lrnver = get_num_ver(vn->vn_mode, tb, h,
1455 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1457 h ? (vn->vn_nr_item - rpar) : (rpar -
1458 ((tb->
1459 rbytes !=
1460 -1) ? 1 :
1461 0)), -1,
1462 snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1463 if (!h) {
1464 int lrnver1;
1466 lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1467 lpar -
1468 ((tb->lbytes != -1) ? 1 : 0),
1469 tb->lbytes,
1470 (rpar -
1471 ((tb->rbytes != -1) ? 1 : 0)),
1472 tb->rbytes,
1473 snum012 + LR_SHIFT_FLOW, FLOW);
1474 if (lrnver > lrnver1)
1475 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1478 /* Our general shifting strategy is:
1479 1) to minimized number of new nodes;
1480 2) to minimized number of neighbors involved in shifting;
1481 3) to minimized number of disk reads; */
1483 /* we can win TWO or ONE nodes by shifting in both directions */
1484 if (lrnver < lnver && lrnver < rnver) {
1485 RFALSE(h &&
1486 (tb->lnum[h] != 1 ||
1487 tb->rnum[h] != 1 ||
1488 lrnver != 1 || rnver != 2 || lnver != 2
1489 || h != 1), "vs-8230: bad h");
1490 if (lrset == LR_SHIFT_FLOW)
1491 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1492 lrnver, snum012 + lrset,
1493 tb->lbytes, tb->rbytes);
1494 else
1495 set_parameters(tb, h,
1496 tb->lnum[h] -
1497 ((tb->lbytes == -1) ? 0 : 1),
1498 tb->rnum[h] -
1499 ((tb->rbytes == -1) ? 0 : 1),
1500 lrnver, snum012 + lrset, -1, -1);
1502 return CARRY_ON;
1505 /* if shifting doesn't lead to better packing then don't shift */
1506 if (nver == lrnver) {
1507 set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1508 -1);
1509 return CARRY_ON;
1512 /* now we know that for better packing shifting in only one
1513 direction either to the left or to the right is required */
1515 /* if shifting to the left is better than shifting to the right */
1516 if (lnver < rnver) {
1517 SET_PAR_SHIFT_LEFT;
1518 return CARRY_ON;
1521 /* if shifting to the right is better than shifting to the left */
1522 if (lnver > rnver) {
1523 SET_PAR_SHIFT_RIGHT;
1524 return CARRY_ON;
1527 /* now shifting in either direction gives the same number
1528 of nodes and we can make use of the cached neighbors */
1529 if (is_left_neighbor_in_cache(tb, h)) {
1530 SET_PAR_SHIFT_LEFT;
1531 return CARRY_ON;
1534 /* shift to the right independently on whether the right neighbor in cache or not */
1535 SET_PAR_SHIFT_RIGHT;
1536 return CARRY_ON;
1540 /* Check whether current node S[h] is balanced when Decreasing its size by
1541 * Deleting or Cutting for INTERNAL node of S+tree.
1542 * Calculate parameters for balancing for current level h.
1543 * Parameters:
1544 * tb tree_balance structure;
1545 * h current level of the node;
1546 * inum item number in S[h];
1547 * mode i - insert, p - paste;
1548 * Returns: 1 - schedule occurred;
1549 * 0 - balancing for higher levels needed;
1550 * -1 - no balancing for higher levels needed;
1551 * -2 - no disk space.
1553 * Note: Items of internal nodes have fixed size, so the balance condition for
1554 * the internal part of S+tree is as for the B-trees.
1556 static int dc_check_balance_internal(struct tree_balance *tb, int h)
1558 struct virtual_node *vn = tb->tb_vn;
1560 /* Sh is the node whose balance is currently being checked,
1561 and Fh is its father. */
1562 struct buffer_head *Sh, *Fh;
1563 int maxsize, n_ret_value;
1564 int lfree, rfree /* free space in L and R */ ;
1566 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1567 Fh = PATH_H_PPARENT(tb->tb_path, h);
1569 maxsize = MAX_CHILD_SIZE(Sh);
1571 /* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1572 /* new_nr_item = number of items node would have if operation is */
1573 /* performed without balancing (new_nr_item); */
1574 create_virtual_node(tb, h);
1576 if (!Fh) { /* S[h] is the root. */
1577 if (vn->vn_nr_item > 0) {
1578 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1579 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1581 /* new_nr_item == 0.
1582 * Current root will be deleted resulting in
1583 * decrementing the tree height. */
1584 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1585 return CARRY_ON;
1588 if ((n_ret_value = get_parents(tb, h)) != CARRY_ON)
1589 return n_ret_value;
1591 /* get free space of neighbors */
1592 rfree = get_rfree(tb, h);
1593 lfree = get_lfree(tb, h);
1595 /* determine maximal number of items we can fit into neighbors */
1596 check_left(tb, h, lfree);
1597 check_right(tb, h, rfree);
1599 if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid.
1600 * In this case we balance only if it leads to better packing. */
1601 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors,
1602 * which is impossible with greater values of new_nr_item. */
1603 if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1604 /* All contents of S[h] can be moved to L[h]. */
1605 int n;
1606 int order_L;
1608 order_L =
1609 ((n =
1610 PATH_H_B_ITEM_ORDER(tb->tb_path,
1611 h)) ==
1612 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1613 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1614 (DC_SIZE + KEY_SIZE);
1615 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1616 -1);
1617 return CARRY_ON;
1620 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1621 /* All contents of S[h] can be moved to R[h]. */
1622 int n;
1623 int order_R;
1625 order_R =
1626 ((n =
1627 PATH_H_B_ITEM_ORDER(tb->tb_path,
1628 h)) ==
1629 B_NR_ITEMS(Fh)) ? 0 : n + 1;
1630 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1631 (DC_SIZE + KEY_SIZE);
1632 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1633 -1);
1634 return CARRY_ON;
1638 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1639 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1640 int to_r;
1642 to_r =
1643 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1644 tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1645 (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1646 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1647 0, NULL, -1, -1);
1648 return CARRY_ON;
1651 /* Balancing does not lead to better packing. */
1652 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1653 return NO_BALANCING_NEEDED;
1656 /* Current node contain insufficient number of items. Balancing is required. */
1657 /* Check whether we can merge S[h] with left neighbor. */
1658 if (tb->lnum[h] >= vn->vn_nr_item + 1)
1659 if (is_left_neighbor_in_cache(tb, h)
1660 || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1661 int n;
1662 int order_L;
1664 order_L =
1665 ((n =
1666 PATH_H_B_ITEM_ORDER(tb->tb_path,
1667 h)) ==
1668 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1669 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1670 KEY_SIZE);
1671 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1672 return CARRY_ON;
1675 /* Check whether we can merge S[h] with right neighbor. */
1676 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1677 int n;
1678 int order_R;
1680 order_R =
1681 ((n =
1682 PATH_H_B_ITEM_ORDER(tb->tb_path,
1683 h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1684 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1685 KEY_SIZE);
1686 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1687 return CARRY_ON;
1690 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1691 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1692 int to_r;
1694 to_r =
1695 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1696 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1697 tb->rnum[h]);
1698 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1699 -1, -1);
1700 return CARRY_ON;
1703 /* For internal nodes try to borrow item from a neighbor */
1704 RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1706 /* Borrow one or two items from caching neighbor */
1707 if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1708 int from_l;
1710 from_l =
1711 (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1712 1) / 2 - (vn->vn_nr_item + 1);
1713 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1714 return CARRY_ON;
1717 set_parameters(tb, h, 0,
1718 -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1719 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1720 return CARRY_ON;
1723 /* Check whether current node S[h] is balanced when Decreasing its size by
1724 * Deleting or Truncating for LEAF node of S+tree.
1725 * Calculate parameters for balancing for current level h.
1726 * Parameters:
1727 * tb tree_balance structure;
1728 * h current level of the node;
1729 * inum item number in S[h];
1730 * mode i - insert, p - paste;
1731 * Returns: 1 - schedule occurred;
1732 * 0 - balancing for higher levels needed;
1733 * -1 - no balancing for higher levels needed;
1734 * -2 - no disk space.
1736 static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1738 struct virtual_node *vn = tb->tb_vn;
1740 /* Number of bytes that must be deleted from
1741 (value is negative if bytes are deleted) buffer which
1742 contains node being balanced. The mnemonic is that the
1743 attempted change in node space used level is levbytes bytes. */
1744 int levbytes;
1745 /* the maximal item size */
1746 int maxsize, n_ret_value;
1747 /* S0 is the node whose balance is currently being checked,
1748 and F0 is its father. */
1749 struct buffer_head *S0, *F0;
1750 int lfree, rfree /* free space in L and R */ ;
1752 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1753 F0 = PATH_H_PPARENT(tb->tb_path, 0);
1755 levbytes = tb->insert_size[h];
1757 maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */
1759 if (!F0) { /* S[0] is the root now. */
1761 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1762 "vs-8240: attempt to create empty buffer tree");
1764 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1765 return NO_BALANCING_NEEDED;
1768 if ((n_ret_value = get_parents(tb, h)) != CARRY_ON)
1769 return n_ret_value;
1771 /* get free space of neighbors */
1772 rfree = get_rfree(tb, h);
1773 lfree = get_lfree(tb, h);
1775 create_virtual_node(tb, h);
1777 /* if 3 leaves can be merge to one, set parameters and return */
1778 if (are_leaves_removable(tb, lfree, rfree))
1779 return CARRY_ON;
1781 /* determine maximal number of items we can shift to the left/right neighbor
1782 and the maximal number of bytes that can flow to the left/right neighbor
1783 from the left/right most liquid item that cannot be shifted from S[0] entirely
1785 check_left(tb, h, lfree);
1786 check_right(tb, h, rfree);
1788 /* check whether we can merge S with left neighbor. */
1789 if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1790 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */
1791 !tb->FR[h]) {
1793 RFALSE(!tb->FL[h],
1794 "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1796 /* set parameter to merge S[0] with its left neighbor */
1797 set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1798 return CARRY_ON;
1801 /* check whether we can merge S[0] with right neighbor. */
1802 if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1803 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1804 return CARRY_ON;
1807 /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1808 if (is_leaf_removable(tb))
1809 return CARRY_ON;
1811 /* Balancing is not required. */
1812 tb->s0num = vn->vn_nr_item;
1813 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1814 return NO_BALANCING_NEEDED;
1817 /* Check whether current node S[h] is balanced when Decreasing its size by
1818 * Deleting or Cutting.
1819 * Calculate parameters for balancing for current level h.
1820 * Parameters:
1821 * tb tree_balance structure;
1822 * h current level of the node;
1823 * inum item number in S[h];
1824 * mode d - delete, c - cut.
1825 * Returns: 1 - schedule occurred;
1826 * 0 - balancing for higher levels needed;
1827 * -1 - no balancing for higher levels needed;
1828 * -2 - no disk space.
1830 static int dc_check_balance(struct tree_balance *tb, int h)
1832 RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1833 "vs-8250: S is not initialized");
1835 if (h)
1836 return dc_check_balance_internal(tb, h);
1837 else
1838 return dc_check_balance_leaf(tb, h);
1841 /* Check whether current node S[h] is balanced.
1842 * Calculate parameters for balancing for current level h.
1843 * Parameters:
1845 * tb tree_balance structure:
1847 * tb is a large structure that must be read about in the header file
1848 * at the same time as this procedure if the reader is to successfully
1849 * understand this procedure
1851 * h current level of the node;
1852 * inum item number in S[h];
1853 * mode i - insert, p - paste, d - delete, c - cut.
1854 * Returns: 1 - schedule occurred;
1855 * 0 - balancing for higher levels needed;
1856 * -1 - no balancing for higher levels needed;
1857 * -2 - no disk space.
1859 static int check_balance(int mode,
1860 struct tree_balance *tb,
1861 int h,
1862 int inum,
1863 int pos_in_item,
1864 struct item_head *ins_ih, const void *data)
1866 struct virtual_node *vn;
1868 vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1869 vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1870 vn->vn_mode = mode;
1871 vn->vn_affected_item_num = inum;
1872 vn->vn_pos_in_item = pos_in_item;
1873 vn->vn_ins_ih = ins_ih;
1874 vn->vn_data = data;
1876 RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1877 "vs-8255: ins_ih can not be 0 in insert mode");
1879 if (tb->insert_size[h] > 0)
1880 /* Calculate balance parameters when size of node is increasing. */
1881 return ip_check_balance(tb, h);
1883 /* Calculate balance parameters when size of node is decreasing. */
1884 return dc_check_balance(tb, h);
1887 /* Check whether parent at the path is the really parent of the current node.*/
1888 static int get_direct_parent(struct tree_balance *p_s_tb, int n_h)
1890 struct buffer_head *p_s_bh;
1891 struct path *p_s_path = p_s_tb->tb_path;
1892 int n_position,
1893 n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
1895 /* We are in the root or in the new root. */
1896 if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1898 RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
1899 "PAP-8260: invalid offset in the path");
1901 if (PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)->
1902 b_blocknr == SB_ROOT_BLOCK(p_s_tb->tb_sb)) {
1903 /* Root is not changed. */
1904 PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL;
1905 PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0;
1906 return CARRY_ON;
1908 return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */
1911 if (!B_IS_IN_TREE
1912 (p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1)))
1913 return REPEAT_SEARCH; /* Parent in the path is not in the tree. */
1915 if ((n_position =
1916 PATH_OFFSET_POSITION(p_s_path,
1917 n_path_offset - 1)) > B_NR_ITEMS(p_s_bh))
1918 return REPEAT_SEARCH;
1920 if (B_N_CHILD_NUM(p_s_bh, n_position) !=
1921 PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr)
1922 /* Parent in the path is not parent of the current node in the tree. */
1923 return REPEAT_SEARCH;
1925 if (buffer_locked(p_s_bh)) {
1926 __wait_on_buffer(p_s_bh);
1927 if (FILESYSTEM_CHANGED_TB(p_s_tb))
1928 return REPEAT_SEARCH;
1931 return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */
1934 /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors
1935 * of S[n_h] we
1936 * need in order to balance S[n_h], and get them if necessary.
1937 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1938 * CARRY_ON - schedule didn't occur while the function worked;
1940 static int get_neighbors(struct tree_balance *p_s_tb, int n_h)
1942 int n_child_position,
1943 n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1);
1944 unsigned long n_son_number;
1945 struct super_block *p_s_sb = p_s_tb->tb_sb;
1946 struct buffer_head *p_s_bh;
1948 PROC_INFO_INC(p_s_sb, get_neighbors[n_h]);
1950 if (p_s_tb->lnum[n_h]) {
1951 /* We need left neighbor to balance S[n_h]. */
1952 PROC_INFO_INC(p_s_sb, need_l_neighbor[n_h]);
1953 p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
1955 RFALSE(p_s_bh == p_s_tb->FL[n_h] &&
1956 !PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset),
1957 "PAP-8270: invalid position in the parent");
1959 n_child_position =
1960 (p_s_bh ==
1961 p_s_tb->FL[n_h]) ? p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->
1962 FL[n_h]);
1963 n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position);
1964 p_s_bh = sb_bread(p_s_sb, n_son_number);
1965 if (!p_s_bh)
1966 return IO_ERROR;
1967 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1968 decrement_bcount(p_s_bh);
1969 PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]);
1970 return REPEAT_SEARCH;
1973 RFALSE(!B_IS_IN_TREE(p_s_tb->FL[n_h]) ||
1974 n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) ||
1975 B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) !=
1976 p_s_bh->b_blocknr, "PAP-8275: invalid parent");
1977 RFALSE(!B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child");
1978 RFALSE(!n_h &&
1979 B_FREE_SPACE(p_s_bh) !=
1980 MAX_CHILD_SIZE(p_s_bh) -
1981 dc_size(B_N_CHILD(p_s_tb->FL[0], n_child_position)),
1982 "PAP-8290: invalid child size of left neighbor");
1984 decrement_bcount(p_s_tb->L[n_h]);
1985 p_s_tb->L[n_h] = p_s_bh;
1988 if (p_s_tb->rnum[n_h]) { /* We need right neighbor to balance S[n_path_offset]. */
1989 PROC_INFO_INC(p_s_sb, need_r_neighbor[n_h]);
1990 p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
1992 RFALSE(p_s_bh == p_s_tb->FR[n_h] &&
1993 PATH_OFFSET_POSITION(p_s_tb->tb_path,
1994 n_path_offset) >=
1995 B_NR_ITEMS(p_s_bh),
1996 "PAP-8295: invalid position in the parent");
1998 n_child_position =
1999 (p_s_bh == p_s_tb->FR[n_h]) ? p_s_tb->rkey[n_h] + 1 : 0;
2000 n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position);
2001 p_s_bh = sb_bread(p_s_sb, n_son_number);
2002 if (!p_s_bh)
2003 return IO_ERROR;
2004 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2005 decrement_bcount(p_s_bh);
2006 PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]);
2007 return REPEAT_SEARCH;
2009 decrement_bcount(p_s_tb->R[n_h]);
2010 p_s_tb->R[n_h] = p_s_bh;
2012 RFALSE(!n_h
2013 && B_FREE_SPACE(p_s_bh) !=
2014 MAX_CHILD_SIZE(p_s_bh) -
2015 dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)),
2016 "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2017 B_FREE_SPACE(p_s_bh), MAX_CHILD_SIZE(p_s_bh),
2018 dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)));
2021 return CARRY_ON;
2024 #ifdef CONFIG_REISERFS_CHECK
2025 void *reiserfs_kmalloc(size_t size, int flags, struct super_block *s)
2027 void *vp;
2028 static size_t malloced;
2030 vp = kmalloc(size, flags);
2031 if (vp) {
2032 REISERFS_SB(s)->s_kmallocs += size;
2033 if (REISERFS_SB(s)->s_kmallocs > malloced + 200000) {
2034 reiserfs_warning(s,
2035 "vs-8301: reiserfs_kmalloc: allocated memory %d",
2036 REISERFS_SB(s)->s_kmallocs);
2037 malloced = REISERFS_SB(s)->s_kmallocs;
2040 return vp;
2043 void reiserfs_kfree(const void *vp, size_t size, struct super_block *s)
2045 kfree(vp);
2047 REISERFS_SB(s)->s_kmallocs -= size;
2048 if (REISERFS_SB(s)->s_kmallocs < 0)
2049 reiserfs_warning(s,
2050 "vs-8302: reiserfs_kfree: allocated memory %d",
2051 REISERFS_SB(s)->s_kmallocs);
2054 #endif
2056 static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2058 int max_num_of_items;
2059 int max_num_of_entries;
2060 unsigned long blocksize = sb->s_blocksize;
2062 #define MIN_NAME_LEN 1
2064 max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2065 max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2066 (DEH_SIZE + MIN_NAME_LEN);
2068 return sizeof(struct virtual_node) +
2069 max(max_num_of_items * sizeof(struct virtual_item),
2070 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2071 (max_num_of_entries - 1) * sizeof(__u16));
2074 /* maybe we should fail balancing we are going to perform when kmalloc
2075 fails several times. But now it will loop until kmalloc gets
2076 required memory */
2077 static int get_mem_for_virtual_node(struct tree_balance *tb)
2079 int check_fs = 0;
2080 int size;
2081 char *buf;
2083 size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2085 if (size > tb->vn_buf_size) {
2086 /* we have to allocate more memory for virtual node */
2087 if (tb->vn_buf) {
2088 /* free memory allocated before */
2089 reiserfs_kfree(tb->vn_buf, tb->vn_buf_size, tb->tb_sb);
2090 /* this is not needed if kfree is atomic */
2091 check_fs = 1;
2094 /* virtual node requires now more memory */
2095 tb->vn_buf_size = size;
2097 /* get memory for virtual item */
2098 buf =
2099 reiserfs_kmalloc(size, GFP_ATOMIC | __GFP_NOWARN,
2100 tb->tb_sb);
2101 if (!buf) {
2102 /* getting memory with GFP_KERNEL priority may involve
2103 balancing now (due to indirect_to_direct conversion on
2104 dcache shrinking). So, release path and collected
2105 resources here */
2106 free_buffers_in_tb(tb);
2107 buf = reiserfs_kmalloc(size, GFP_NOFS, tb->tb_sb);
2108 if (!buf) {
2109 #ifdef CONFIG_REISERFS_CHECK
2110 reiserfs_warning(tb->tb_sb,
2111 "vs-8345: get_mem_for_virtual_node: "
2112 "kmalloc failed. reiserfs kmalloced %d bytes",
2113 REISERFS_SB(tb->tb_sb)->
2114 s_kmallocs);
2115 #endif
2116 tb->vn_buf_size = 0;
2118 tb->vn_buf = buf;
2119 schedule();
2120 return REPEAT_SEARCH;
2123 tb->vn_buf = buf;
2126 if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2127 return REPEAT_SEARCH;
2129 return CARRY_ON;
2132 #ifdef CONFIG_REISERFS_CHECK
2133 static void tb_buffer_sanity_check(struct super_block *p_s_sb,
2134 struct buffer_head *p_s_bh,
2135 const char *descr, int level)
2137 if (p_s_bh) {
2138 if (atomic_read(&(p_s_bh->b_count)) <= 0) {
2140 reiserfs_panic(p_s_sb,
2141 "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n",
2142 descr, level, p_s_bh);
2145 if (!buffer_uptodate(p_s_bh)) {
2146 reiserfs_panic(p_s_sb,
2147 "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n",
2148 descr, level, p_s_bh);
2151 if (!B_IS_IN_TREE(p_s_bh)) {
2152 reiserfs_panic(p_s_sb,
2153 "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n",
2154 descr, level, p_s_bh);
2157 if (p_s_bh->b_bdev != p_s_sb->s_bdev) {
2158 reiserfs_panic(p_s_sb,
2159 "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n",
2160 descr, level, p_s_bh);
2163 if (p_s_bh->b_size != p_s_sb->s_blocksize) {
2164 reiserfs_panic(p_s_sb,
2165 "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n",
2166 descr, level, p_s_bh);
2169 if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) {
2170 reiserfs_panic(p_s_sb,
2171 "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n",
2172 descr, level, p_s_bh);
2176 #else
2177 static void tb_buffer_sanity_check(struct super_block *p_s_sb,
2178 struct buffer_head *p_s_bh,
2179 const char *descr, int level)
2182 #endif
2184 static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2186 return reiserfs_prepare_for_journal(s, bh, 0);
2189 static int wait_tb_buffers_until_unlocked(struct tree_balance *p_s_tb)
2191 struct buffer_head *locked;
2192 #ifdef CONFIG_REISERFS_CHECK
2193 int repeat_counter = 0;
2194 #endif
2195 int i;
2197 do {
2199 locked = NULL;
2201 for (i = p_s_tb->tb_path->path_length;
2202 !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2203 if (PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) {
2204 /* if I understand correctly, we can only be sure the last buffer
2205 ** in the path is in the tree --clm
2207 #ifdef CONFIG_REISERFS_CHECK
2208 if (PATH_PLAST_BUFFER(p_s_tb->tb_path) ==
2209 PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) {
2210 tb_buffer_sanity_check(p_s_tb->tb_sb,
2211 PATH_OFFSET_PBUFFER
2212 (p_s_tb->tb_path,
2213 i), "S",
2214 p_s_tb->tb_path->
2215 path_length - i);
2217 #endif
2218 if (!clear_all_dirty_bits(p_s_tb->tb_sb,
2219 PATH_OFFSET_PBUFFER
2220 (p_s_tb->tb_path,
2221 i))) {
2222 locked =
2223 PATH_OFFSET_PBUFFER(p_s_tb->tb_path,
2229 for (i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i];
2230 i++) {
2232 if (p_s_tb->lnum[i]) {
2234 if (p_s_tb->L[i]) {
2235 tb_buffer_sanity_check(p_s_tb->tb_sb,
2236 p_s_tb->L[i],
2237 "L", i);
2238 if (!clear_all_dirty_bits
2239 (p_s_tb->tb_sb, p_s_tb->L[i]))
2240 locked = p_s_tb->L[i];
2243 if (!locked && p_s_tb->FL[i]) {
2244 tb_buffer_sanity_check(p_s_tb->tb_sb,
2245 p_s_tb->FL[i],
2246 "FL", i);
2247 if (!clear_all_dirty_bits
2248 (p_s_tb->tb_sb, p_s_tb->FL[i]))
2249 locked = p_s_tb->FL[i];
2252 if (!locked && p_s_tb->CFL[i]) {
2253 tb_buffer_sanity_check(p_s_tb->tb_sb,
2254 p_s_tb->CFL[i],
2255 "CFL", i);
2256 if (!clear_all_dirty_bits
2257 (p_s_tb->tb_sb, p_s_tb->CFL[i]))
2258 locked = p_s_tb->CFL[i];
2263 if (!locked && (p_s_tb->rnum[i])) {
2265 if (p_s_tb->R[i]) {
2266 tb_buffer_sanity_check(p_s_tb->tb_sb,
2267 p_s_tb->R[i],
2268 "R", i);
2269 if (!clear_all_dirty_bits
2270 (p_s_tb->tb_sb, p_s_tb->R[i]))
2271 locked = p_s_tb->R[i];
2274 if (!locked && p_s_tb->FR[i]) {
2275 tb_buffer_sanity_check(p_s_tb->tb_sb,
2276 p_s_tb->FR[i],
2277 "FR", i);
2278 if (!clear_all_dirty_bits
2279 (p_s_tb->tb_sb, p_s_tb->FR[i]))
2280 locked = p_s_tb->FR[i];
2283 if (!locked && p_s_tb->CFR[i]) {
2284 tb_buffer_sanity_check(p_s_tb->tb_sb,
2285 p_s_tb->CFR[i],
2286 "CFR", i);
2287 if (!clear_all_dirty_bits
2288 (p_s_tb->tb_sb, p_s_tb->CFR[i]))
2289 locked = p_s_tb->CFR[i];
2293 /* as far as I can tell, this is not required. The FEB list seems
2294 ** to be full of newly allocated nodes, which will never be locked,
2295 ** dirty, or anything else.
2296 ** To be safe, I'm putting in the checks and waits in. For the moment,
2297 ** they are needed to keep the code in journal.c from complaining
2298 ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well.
2299 ** --clm
2301 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2302 if (p_s_tb->FEB[i]) {
2303 if (!clear_all_dirty_bits
2304 (p_s_tb->tb_sb, p_s_tb->FEB[i]))
2305 locked = p_s_tb->FEB[i];
2309 if (locked) {
2310 #ifdef CONFIG_REISERFS_CHECK
2311 repeat_counter++;
2312 if ((repeat_counter % 10000) == 0) {
2313 reiserfs_warning(p_s_tb->tb_sb,
2314 "wait_tb_buffers_until_released(): too many "
2315 "iterations waiting for buffer to unlock "
2316 "(%b)", locked);
2318 /* Don't loop forever. Try to recover from possible error. */
2320 return (FILESYSTEM_CHANGED_TB(p_s_tb)) ?
2321 REPEAT_SEARCH : CARRY_ON;
2323 #endif
2324 __wait_on_buffer(locked);
2325 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2326 return REPEAT_SEARCH;
2330 } while (locked);
2332 return CARRY_ON;
2335 /* Prepare for balancing, that is
2336 * get all necessary parents, and neighbors;
2337 * analyze what and where should be moved;
2338 * get sufficient number of new nodes;
2339 * Balancing will start only after all resources will be collected at a time.
2341 * When ported to SMP kernels, only at the last moment after all needed nodes
2342 * are collected in cache, will the resources be locked using the usual
2343 * textbook ordered lock acquisition algorithms. Note that ensuring that
2344 * this code neither write locks what it does not need to write lock nor locks out of order
2345 * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans
2347 * fix is meant in the sense of render unchanging
2349 * Latency might be improved by first gathering a list of what buffers are needed
2350 * and then getting as many of them in parallel as possible? -Hans
2352 * Parameters:
2353 * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2354 * tb tree_balance structure;
2355 * inum item number in S[h];
2356 * pos_in_item - comment this if you can
2357 * ins_ih & ins_sd are used when inserting
2358 * Returns: 1 - schedule occurred while the function worked;
2359 * 0 - schedule didn't occur while the function worked;
2360 * -1 - if no_disk_space
2363 int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb, struct item_head *p_s_ins_ih, // item head of item being inserted
2364 const void *data // inserted item or data to be pasted
2367 int n_ret_value, n_h, n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path);
2368 int n_pos_in_item;
2370 /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2371 ** during wait_tb_buffers_run
2373 int wait_tb_buffers_run = 0;
2374 struct buffer_head *p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path);
2376 ++REISERFS_SB(p_s_tb->tb_sb)->s_fix_nodes;
2378 n_pos_in_item = p_s_tb->tb_path->pos_in_item;
2380 p_s_tb->fs_gen = get_generation(p_s_tb->tb_sb);
2382 /* we prepare and log the super here so it will already be in the
2383 ** transaction when do_balance needs to change it.
2384 ** This way do_balance won't have to schedule when trying to prepare
2385 ** the super for logging
2387 reiserfs_prepare_for_journal(p_s_tb->tb_sb,
2388 SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1);
2389 journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb,
2390 SB_BUFFER_WITH_SB(p_s_tb->tb_sb));
2391 if (FILESYSTEM_CHANGED_TB(p_s_tb))
2392 return REPEAT_SEARCH;
2394 /* if it possible in indirect_to_direct conversion */
2395 if (buffer_locked(p_s_tbS0)) {
2396 __wait_on_buffer(p_s_tbS0);
2397 if (FILESYSTEM_CHANGED_TB(p_s_tb))
2398 return REPEAT_SEARCH;
2400 #ifdef CONFIG_REISERFS_CHECK
2401 if (cur_tb) {
2402 print_cur_tb("fix_nodes");
2403 reiserfs_panic(p_s_tb->tb_sb,
2404 "PAP-8305: fix_nodes: there is pending do_balance");
2407 if (!buffer_uptodate(p_s_tbS0) || !B_IS_IN_TREE(p_s_tbS0)) {
2408 reiserfs_panic(p_s_tb->tb_sb,
2409 "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate "
2410 "at the beginning of fix_nodes or not in tree (mode %c)",
2411 p_s_tbS0, p_s_tbS0, n_op_mode);
2414 /* Check parameters. */
2415 switch (n_op_mode) {
2416 case M_INSERT:
2417 if (n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0))
2418 reiserfs_panic(p_s_tb->tb_sb,
2419 "PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert",
2420 n_item_num, B_NR_ITEMS(p_s_tbS0));
2421 break;
2422 case M_PASTE:
2423 case M_DELETE:
2424 case M_CUT:
2425 if (n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0)) {
2426 print_block(p_s_tbS0, 0, -1, -1);
2427 reiserfs_panic(p_s_tb->tb_sb,
2428 "PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n",
2429 n_item_num, n_op_mode,
2430 p_s_tb->insert_size[0]);
2432 break;
2433 default:
2434 reiserfs_panic(p_s_tb->tb_sb,
2435 "PAP-8340: fix_nodes: Incorrect mode of operation");
2437 #endif
2439 if (get_mem_for_virtual_node(p_s_tb) == REPEAT_SEARCH)
2440 // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2441 return REPEAT_SEARCH;
2443 /* Starting from the leaf level; for all levels n_h of the tree. */
2444 for (n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++) {
2445 if ((n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON) {
2446 goto repeat;
2449 if ((n_ret_value =
2450 check_balance(n_op_mode, p_s_tb, n_h, n_item_num,
2451 n_pos_in_item, p_s_ins_ih,
2452 data)) != CARRY_ON) {
2453 if (n_ret_value == NO_BALANCING_NEEDED) {
2454 /* No balancing for higher levels needed. */
2455 if ((n_ret_value =
2456 get_neighbors(p_s_tb, n_h)) != CARRY_ON) {
2457 goto repeat;
2459 if (n_h != MAX_HEIGHT - 1)
2460 p_s_tb->insert_size[n_h + 1] = 0;
2461 /* ok, analysis and resource gathering are complete */
2462 break;
2464 goto repeat;
2467 if ((n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON) {
2468 goto repeat;
2471 if ((n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON) {
2472 goto repeat; /* No disk space, or schedule occurred and
2473 analysis may be invalid and needs to be redone. */
2476 if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h)) {
2477 /* We have a positive insert size but no nodes exist on this
2478 level, this means that we are creating a new root. */
2480 RFALSE(p_s_tb->blknum[n_h] != 1,
2481 "PAP-8350: creating new empty root");
2483 if (n_h < MAX_HEIGHT - 1)
2484 p_s_tb->insert_size[n_h + 1] = 0;
2485 } else if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1)) {
2486 if (p_s_tb->blknum[n_h] > 1) {
2487 /* The tree needs to be grown, so this node S[n_h]
2488 which is the root node is split into two nodes,
2489 and a new node (S[n_h+1]) will be created to
2490 become the root node. */
2492 RFALSE(n_h == MAX_HEIGHT - 1,
2493 "PAP-8355: attempt to create too high of a tree");
2495 p_s_tb->insert_size[n_h + 1] =
2496 (DC_SIZE +
2497 KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) +
2498 DC_SIZE;
2499 } else if (n_h < MAX_HEIGHT - 1)
2500 p_s_tb->insert_size[n_h + 1] = 0;
2501 } else
2502 p_s_tb->insert_size[n_h + 1] =
2503 (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1);
2506 if ((n_ret_value = wait_tb_buffers_until_unlocked(p_s_tb)) == CARRY_ON) {
2507 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2508 wait_tb_buffers_run = 1;
2509 n_ret_value = REPEAT_SEARCH;
2510 goto repeat;
2511 } else {
2512 return CARRY_ON;
2514 } else {
2515 wait_tb_buffers_run = 1;
2516 goto repeat;
2519 repeat:
2520 // fix_nodes was unable to perform its calculation due to
2521 // filesystem got changed under us, lack of free disk space or i/o
2522 // failure. If the first is the case - the search will be
2523 // repeated. For now - free all resources acquired so far except
2524 // for the new allocated nodes
2526 int i;
2528 /* Release path buffers. */
2529 if (wait_tb_buffers_run) {
2530 pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path);
2531 } else {
2532 pathrelse(p_s_tb->tb_path);
2534 /* brelse all resources collected for balancing */
2535 for (i = 0; i < MAX_HEIGHT; i++) {
2536 if (wait_tb_buffers_run) {
2537 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2538 p_s_tb->L[i]);
2539 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2540 p_s_tb->R[i]);
2541 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2542 p_s_tb->FL[i]);
2543 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2544 p_s_tb->FR[i]);
2545 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2546 p_s_tb->
2547 CFL[i]);
2548 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2549 p_s_tb->
2550 CFR[i]);
2553 brelse(p_s_tb->L[i]);
2554 p_s_tb->L[i] = NULL;
2555 brelse(p_s_tb->R[i]);
2556 p_s_tb->R[i] = NULL;
2557 brelse(p_s_tb->FL[i]);
2558 p_s_tb->FL[i] = NULL;
2559 brelse(p_s_tb->FR[i]);
2560 p_s_tb->FR[i] = NULL;
2561 brelse(p_s_tb->CFL[i]);
2562 p_s_tb->CFL[i] = NULL;
2563 brelse(p_s_tb->CFR[i]);
2564 p_s_tb->CFR[i] = NULL;
2567 if (wait_tb_buffers_run) {
2568 for (i = 0; i < MAX_FEB_SIZE; i++) {
2569 if (p_s_tb->FEB[i]) {
2570 reiserfs_restore_prepared_buffer
2571 (p_s_tb->tb_sb, p_s_tb->FEB[i]);
2575 return n_ret_value;
2580 /* Anatoly will probably forgive me renaming p_s_tb to tb. I just
2581 wanted to make lines shorter */
2582 void unfix_nodes(struct tree_balance *tb)
2584 int i;
2586 /* Release path buffers. */
2587 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2589 /* brelse all resources collected for balancing */
2590 for (i = 0; i < MAX_HEIGHT; i++) {
2591 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2592 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2593 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2594 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2595 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2596 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2598 brelse(tb->L[i]);
2599 brelse(tb->R[i]);
2600 brelse(tb->FL[i]);
2601 brelse(tb->FR[i]);
2602 brelse(tb->CFL[i]);
2603 brelse(tb->CFR[i]);
2606 /* deal with list of allocated (used and unused) nodes */
2607 for (i = 0; i < MAX_FEB_SIZE; i++) {
2608 if (tb->FEB[i]) {
2609 b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2610 /* de-allocated block which was not used by balancing and
2611 bforget about buffer for it */
2612 brelse(tb->FEB[i]);
2613 reiserfs_free_block(tb->transaction_handle, NULL,
2614 blocknr, 0);
2616 if (tb->used[i]) {
2617 /* release used as new nodes including a new root */
2618 brelse(tb->used[i]);
2622 if (tb->vn_buf)
2623 reiserfs_kfree(tb->vn_buf, tb->vn_buf_size, tb->tb_sb);