e1000e: allow for swflag to be held over consecutive PHY accesses
[linux-2.6.git] / drivers / net / e1000e / ich8lan.c
blobb6388b9535fdb59a41f2d2978bcad00c16122a32
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
57 #include <linux/netdevice.h>
58 #include <linux/ethtool.h>
59 #include <linux/delay.h>
60 #include <linux/pci.h>
62 #include "e1000.h"
64 #define ICH_FLASH_GFPREG 0x0000
65 #define ICH_FLASH_HSFSTS 0x0004
66 #define ICH_FLASH_HSFCTL 0x0006
67 #define ICH_FLASH_FADDR 0x0008
68 #define ICH_FLASH_FDATA0 0x0010
69 #define ICH_FLASH_PR0 0x0074
71 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
72 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
75 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
77 #define ICH_CYCLE_READ 0
78 #define ICH_CYCLE_WRITE 2
79 #define ICH_CYCLE_ERASE 3
81 #define FLASH_GFPREG_BASE_MASK 0x1FFF
82 #define FLASH_SECTOR_ADDR_SHIFT 12
84 #define ICH_FLASH_SEG_SIZE_256 256
85 #define ICH_FLASH_SEG_SIZE_4K 4096
86 #define ICH_FLASH_SEG_SIZE_8K 8192
87 #define ICH_FLASH_SEG_SIZE_64K 65536
90 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
92 #define E1000_ICH_MNG_IAMT_MODE 0x2
94 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
95 (ID_LED_DEF1_OFF2 << 8) | \
96 (ID_LED_DEF1_ON2 << 4) | \
97 (ID_LED_DEF1_DEF2))
99 #define E1000_ICH_NVM_SIG_WORD 0x13
100 #define E1000_ICH_NVM_SIG_MASK 0xC000
101 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
102 #define E1000_ICH_NVM_SIG_VALUE 0x80
104 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
106 #define E1000_FEXTNVM_SW_CONFIG 1
107 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
109 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
111 #define E1000_ICH_RAR_ENTRIES 7
113 #define PHY_PAGE_SHIFT 5
114 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115 ((reg) & MAX_PHY_REG_ADDRESS))
116 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
117 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
119 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
120 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
123 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
125 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
127 /* OEM Bits Phy Register */
128 #define HV_OEM_BITS PHY_REG(768, 25)
129 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
130 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
132 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
133 /* Offset 04h HSFSTS */
134 union ich8_hws_flash_status {
135 struct ich8_hsfsts {
136 u16 flcdone :1; /* bit 0 Flash Cycle Done */
137 u16 flcerr :1; /* bit 1 Flash Cycle Error */
138 u16 dael :1; /* bit 2 Direct Access error Log */
139 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
140 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
141 u16 reserved1 :2; /* bit 13:6 Reserved */
142 u16 reserved2 :6; /* bit 13:6 Reserved */
143 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
144 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
145 } hsf_status;
146 u16 regval;
149 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
150 /* Offset 06h FLCTL */
151 union ich8_hws_flash_ctrl {
152 struct ich8_hsflctl {
153 u16 flcgo :1; /* 0 Flash Cycle Go */
154 u16 flcycle :2; /* 2:1 Flash Cycle */
155 u16 reserved :5; /* 7:3 Reserved */
156 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
157 u16 flockdn :6; /* 15:10 Reserved */
158 } hsf_ctrl;
159 u16 regval;
162 /* ICH Flash Region Access Permissions */
163 union ich8_hws_flash_regacc {
164 struct ich8_flracc {
165 u32 grra :8; /* 0:7 GbE region Read Access */
166 u32 grwa :8; /* 8:15 GbE region Write Access */
167 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
168 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
169 } hsf_flregacc;
170 u16 regval;
173 /* ICH Flash Protected Region */
174 union ich8_flash_protected_range {
175 struct ich8_pr {
176 u32 base:13; /* 0:12 Protected Range Base */
177 u32 reserved1:2; /* 13:14 Reserved */
178 u32 rpe:1; /* 15 Read Protection Enable */
179 u32 limit:13; /* 16:28 Protected Range Limit */
180 u32 reserved2:2; /* 29:30 Reserved */
181 u32 wpe:1; /* 31 Write Protection Enable */
182 } range;
183 u32 regval;
186 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
187 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
188 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
189 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
190 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
191 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
192 u32 offset, u8 byte);
193 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
194 u8 *data);
195 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
196 u16 *data);
197 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
198 u8 size, u16 *data);
199 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
200 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
201 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
202 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
203 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
204 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
205 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
206 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
207 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
208 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
209 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
210 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
212 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
214 return readw(hw->flash_address + reg);
217 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
219 return readl(hw->flash_address + reg);
222 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
224 writew(val, hw->flash_address + reg);
227 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
229 writel(val, hw->flash_address + reg);
232 #define er16flash(reg) __er16flash(hw, (reg))
233 #define er32flash(reg) __er32flash(hw, (reg))
234 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
235 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
238 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
239 * @hw: pointer to the HW structure
241 * Initialize family-specific PHY parameters and function pointers.
243 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
245 struct e1000_phy_info *phy = &hw->phy;
246 s32 ret_val = 0;
248 phy->addr = 1;
249 phy->reset_delay_us = 100;
251 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
252 phy->ops.read_phy_reg = e1000_read_phy_reg_hv;
253 phy->ops.read_phy_reg_locked = e1000_read_phy_reg_hv_locked;
254 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
255 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
256 phy->ops.write_phy_reg = e1000_write_phy_reg_hv;
257 phy->ops.write_phy_reg_locked = e1000_write_phy_reg_hv_locked;
258 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
260 phy->id = e1000_phy_unknown;
261 e1000e_get_phy_id(hw);
262 phy->type = e1000e_get_phy_type_from_id(phy->id);
264 if (phy->type == e1000_phy_82577) {
265 phy->ops.check_polarity = e1000_check_polarity_82577;
266 phy->ops.force_speed_duplex =
267 e1000_phy_force_speed_duplex_82577;
268 phy->ops.get_cable_length = e1000_get_cable_length_82577;
269 phy->ops.get_phy_info = e1000_get_phy_info_82577;
270 phy->ops.commit_phy = e1000e_phy_sw_reset;
273 return ret_val;
277 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
278 * @hw: pointer to the HW structure
280 * Initialize family-specific PHY parameters and function pointers.
282 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
284 struct e1000_phy_info *phy = &hw->phy;
285 s32 ret_val;
286 u16 i = 0;
288 phy->addr = 1;
289 phy->reset_delay_us = 100;
292 * We may need to do this twice - once for IGP and if that fails,
293 * we'll set BM func pointers and try again
295 ret_val = e1000e_determine_phy_address(hw);
296 if (ret_val) {
297 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
298 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
299 ret_val = e1000e_determine_phy_address(hw);
300 if (ret_val)
301 return ret_val;
304 phy->id = 0;
305 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
306 (i++ < 100)) {
307 msleep(1);
308 ret_val = e1000e_get_phy_id(hw);
309 if (ret_val)
310 return ret_val;
313 /* Verify phy id */
314 switch (phy->id) {
315 case IGP03E1000_E_PHY_ID:
316 phy->type = e1000_phy_igp_3;
317 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
318 phy->ops.read_phy_reg_locked = e1000e_read_phy_reg_igp_locked;
319 phy->ops.write_phy_reg_locked = e1000e_write_phy_reg_igp_locked;
320 break;
321 case IFE_E_PHY_ID:
322 case IFE_PLUS_E_PHY_ID:
323 case IFE_C_E_PHY_ID:
324 phy->type = e1000_phy_ife;
325 phy->autoneg_mask = E1000_ALL_NOT_GIG;
326 break;
327 case BME1000_E_PHY_ID:
328 phy->type = e1000_phy_bm;
329 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
330 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
331 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
332 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
333 break;
334 default:
335 return -E1000_ERR_PHY;
336 break;
339 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
341 return 0;
345 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
346 * @hw: pointer to the HW structure
348 * Initialize family-specific NVM parameters and function
349 * pointers.
351 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
353 struct e1000_nvm_info *nvm = &hw->nvm;
354 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
355 u32 gfpreg, sector_base_addr, sector_end_addr;
356 u16 i;
358 /* Can't read flash registers if the register set isn't mapped. */
359 if (!hw->flash_address) {
360 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
361 return -E1000_ERR_CONFIG;
364 nvm->type = e1000_nvm_flash_sw;
366 gfpreg = er32flash(ICH_FLASH_GFPREG);
369 * sector_X_addr is a "sector"-aligned address (4096 bytes)
370 * Add 1 to sector_end_addr since this sector is included in
371 * the overall size.
373 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
374 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
376 /* flash_base_addr is byte-aligned */
377 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
380 * find total size of the NVM, then cut in half since the total
381 * size represents two separate NVM banks.
383 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
384 << FLASH_SECTOR_ADDR_SHIFT;
385 nvm->flash_bank_size /= 2;
386 /* Adjust to word count */
387 nvm->flash_bank_size /= sizeof(u16);
389 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
391 /* Clear shadow ram */
392 for (i = 0; i < nvm->word_size; i++) {
393 dev_spec->shadow_ram[i].modified = 0;
394 dev_spec->shadow_ram[i].value = 0xFFFF;
397 return 0;
401 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
402 * @hw: pointer to the HW structure
404 * Initialize family-specific MAC parameters and function
405 * pointers.
407 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
409 struct e1000_hw *hw = &adapter->hw;
410 struct e1000_mac_info *mac = &hw->mac;
412 /* Set media type function pointer */
413 hw->phy.media_type = e1000_media_type_copper;
415 /* Set mta register count */
416 mac->mta_reg_count = 32;
417 /* Set rar entry count */
418 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
419 if (mac->type == e1000_ich8lan)
420 mac->rar_entry_count--;
421 /* Set if manageability features are enabled. */
422 mac->arc_subsystem_valid = 1;
424 /* LED operations */
425 switch (mac->type) {
426 case e1000_ich8lan:
427 case e1000_ich9lan:
428 case e1000_ich10lan:
429 /* ID LED init */
430 mac->ops.id_led_init = e1000e_id_led_init;
431 /* setup LED */
432 mac->ops.setup_led = e1000e_setup_led_generic;
433 /* cleanup LED */
434 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
435 /* turn on/off LED */
436 mac->ops.led_on = e1000_led_on_ich8lan;
437 mac->ops.led_off = e1000_led_off_ich8lan;
438 break;
439 case e1000_pchlan:
440 /* ID LED init */
441 mac->ops.id_led_init = e1000_id_led_init_pchlan;
442 /* setup LED */
443 mac->ops.setup_led = e1000_setup_led_pchlan;
444 /* cleanup LED */
445 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
446 /* turn on/off LED */
447 mac->ops.led_on = e1000_led_on_pchlan;
448 mac->ops.led_off = e1000_led_off_pchlan;
449 break;
450 default:
451 break;
454 /* Enable PCS Lock-loss workaround for ICH8 */
455 if (mac->type == e1000_ich8lan)
456 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
458 return 0;
462 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
463 * @hw: pointer to the HW structure
465 * Checks to see of the link status of the hardware has changed. If a
466 * change in link status has been detected, then we read the PHY registers
467 * to get the current speed/duplex if link exists.
469 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
471 struct e1000_mac_info *mac = &hw->mac;
472 s32 ret_val;
473 bool link;
476 * We only want to go out to the PHY registers to see if Auto-Neg
477 * has completed and/or if our link status has changed. The
478 * get_link_status flag is set upon receiving a Link Status
479 * Change or Rx Sequence Error interrupt.
481 if (!mac->get_link_status) {
482 ret_val = 0;
483 goto out;
486 if (hw->mac.type == e1000_pchlan) {
487 ret_val = e1000e_write_kmrn_reg(hw,
488 E1000_KMRNCTRLSTA_K1_CONFIG,
489 E1000_KMRNCTRLSTA_K1_ENABLE);
490 if (ret_val)
491 goto out;
495 * First we want to see if the MII Status Register reports
496 * link. If so, then we want to get the current speed/duplex
497 * of the PHY.
499 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
500 if (ret_val)
501 goto out;
503 if (!link)
504 goto out; /* No link detected */
506 mac->get_link_status = false;
508 if (hw->phy.type == e1000_phy_82578) {
509 ret_val = e1000_link_stall_workaround_hv(hw);
510 if (ret_val)
511 goto out;
515 * Check if there was DownShift, must be checked
516 * immediately after link-up
518 e1000e_check_downshift(hw);
521 * If we are forcing speed/duplex, then we simply return since
522 * we have already determined whether we have link or not.
524 if (!mac->autoneg) {
525 ret_val = -E1000_ERR_CONFIG;
526 goto out;
530 * Auto-Neg is enabled. Auto Speed Detection takes care
531 * of MAC speed/duplex configuration. So we only need to
532 * configure Collision Distance in the MAC.
534 e1000e_config_collision_dist(hw);
537 * Configure Flow Control now that Auto-Neg has completed.
538 * First, we need to restore the desired flow control
539 * settings because we may have had to re-autoneg with a
540 * different link partner.
542 ret_val = e1000e_config_fc_after_link_up(hw);
543 if (ret_val)
544 hw_dbg(hw, "Error configuring flow control\n");
546 out:
547 return ret_val;
550 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
552 struct e1000_hw *hw = &adapter->hw;
553 s32 rc;
555 rc = e1000_init_mac_params_ich8lan(adapter);
556 if (rc)
557 return rc;
559 rc = e1000_init_nvm_params_ich8lan(hw);
560 if (rc)
561 return rc;
563 if (hw->mac.type == e1000_pchlan)
564 rc = e1000_init_phy_params_pchlan(hw);
565 else
566 rc = e1000_init_phy_params_ich8lan(hw);
567 if (rc)
568 return rc;
570 if (adapter->hw.phy.type == e1000_phy_ife) {
571 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
572 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
575 if ((adapter->hw.mac.type == e1000_ich8lan) &&
576 (adapter->hw.phy.type == e1000_phy_igp_3))
577 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
579 return 0;
582 static DEFINE_MUTEX(nvm_mutex);
585 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
586 * @hw: pointer to the HW structure
588 * Acquires the mutex for performing NVM operations.
590 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
592 mutex_lock(&nvm_mutex);
594 return 0;
598 * e1000_release_nvm_ich8lan - Release NVM mutex
599 * @hw: pointer to the HW structure
601 * Releases the mutex used while performing NVM operations.
603 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
605 mutex_unlock(&nvm_mutex);
607 return;
610 static DEFINE_MUTEX(swflag_mutex);
613 * e1000_acquire_swflag_ich8lan - Acquire software control flag
614 * @hw: pointer to the HW structure
616 * Acquires the software control flag for performing PHY and select
617 * MAC CSR accesses.
619 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
621 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
622 s32 ret_val = 0;
624 might_sleep();
626 mutex_lock(&swflag_mutex);
628 while (timeout) {
629 extcnf_ctrl = er32(EXTCNF_CTRL);
630 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
631 break;
633 mdelay(1);
634 timeout--;
637 if (!timeout) {
638 hw_dbg(hw, "SW/FW/HW has locked the resource for too long.\n");
639 ret_val = -E1000_ERR_CONFIG;
640 goto out;
643 timeout = SW_FLAG_TIMEOUT;
645 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
646 ew32(EXTCNF_CTRL, extcnf_ctrl);
648 while (timeout) {
649 extcnf_ctrl = er32(EXTCNF_CTRL);
650 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
651 break;
653 mdelay(1);
654 timeout--;
657 if (!timeout) {
658 hw_dbg(hw, "Failed to acquire the semaphore.\n");
659 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
660 ew32(EXTCNF_CTRL, extcnf_ctrl);
661 ret_val = -E1000_ERR_CONFIG;
662 goto out;
665 out:
666 if (ret_val)
667 mutex_unlock(&swflag_mutex);
669 return ret_val;
673 * e1000_release_swflag_ich8lan - Release software control flag
674 * @hw: pointer to the HW structure
676 * Releases the software control flag for performing PHY and select
677 * MAC CSR accesses.
679 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
681 u32 extcnf_ctrl;
683 extcnf_ctrl = er32(EXTCNF_CTRL);
684 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
685 ew32(EXTCNF_CTRL, extcnf_ctrl);
687 mutex_unlock(&swflag_mutex);
689 return;
693 * e1000_check_mng_mode_ich8lan - Checks management mode
694 * @hw: pointer to the HW structure
696 * This checks if the adapter has manageability enabled.
697 * This is a function pointer entry point only called by read/write
698 * routines for the PHY and NVM parts.
700 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
702 u32 fwsm = er32(FWSM);
704 return (fwsm & E1000_FWSM_MODE_MASK) ==
705 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
709 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
710 * @hw: pointer to the HW structure
712 * Checks if firmware is blocking the reset of the PHY.
713 * This is a function pointer entry point only called by
714 * reset routines.
716 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
718 u32 fwsm;
720 fwsm = er32(FWSM);
722 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
726 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
727 * @hw: pointer to the HW structure
729 * Forces the speed and duplex settings of the PHY.
730 * This is a function pointer entry point only called by
731 * PHY setup routines.
733 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
735 struct e1000_phy_info *phy = &hw->phy;
736 s32 ret_val;
737 u16 data;
738 bool link;
740 if (phy->type != e1000_phy_ife) {
741 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
742 return ret_val;
745 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
746 if (ret_val)
747 return ret_val;
749 e1000e_phy_force_speed_duplex_setup(hw, &data);
751 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
752 if (ret_val)
753 return ret_val;
755 /* Disable MDI-X support for 10/100 */
756 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
757 if (ret_val)
758 return ret_val;
760 data &= ~IFE_PMC_AUTO_MDIX;
761 data &= ~IFE_PMC_FORCE_MDIX;
763 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
764 if (ret_val)
765 return ret_val;
767 hw_dbg(hw, "IFE PMC: %X\n", data);
769 udelay(1);
771 if (phy->autoneg_wait_to_complete) {
772 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
774 ret_val = e1000e_phy_has_link_generic(hw,
775 PHY_FORCE_LIMIT,
776 100000,
777 &link);
778 if (ret_val)
779 return ret_val;
781 if (!link)
782 hw_dbg(hw, "Link taking longer than expected.\n");
784 /* Try once more */
785 ret_val = e1000e_phy_has_link_generic(hw,
786 PHY_FORCE_LIMIT,
787 100000,
788 &link);
789 if (ret_val)
790 return ret_val;
793 return 0;
797 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
798 * done after every PHY reset.
800 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
802 s32 ret_val = 0;
804 if (hw->mac.type != e1000_pchlan)
805 return ret_val;
807 if (((hw->phy.type == e1000_phy_82577) &&
808 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
809 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
810 /* Disable generation of early preamble */
811 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
812 if (ret_val)
813 return ret_val;
815 /* Preamble tuning for SSC */
816 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
817 if (ret_val)
818 return ret_val;
821 if (hw->phy.type == e1000_phy_82578) {
823 * Return registers to default by doing a soft reset then
824 * writing 0x3140 to the control register.
826 if (hw->phy.revision < 2) {
827 e1000e_phy_sw_reset(hw);
828 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
832 /* Select page 0 */
833 ret_val = hw->phy.ops.acquire_phy(hw);
834 if (ret_val)
835 return ret_val;
836 hw->phy.addr = 1;
837 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
838 hw->phy.ops.release_phy(hw);
840 return ret_val;
844 * e1000_lan_init_done_ich8lan - Check for PHY config completion
845 * @hw: pointer to the HW structure
847 * Check the appropriate indication the MAC has finished configuring the
848 * PHY after a software reset.
850 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
852 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
854 /* Wait for basic configuration completes before proceeding */
855 do {
856 data = er32(STATUS);
857 data &= E1000_STATUS_LAN_INIT_DONE;
858 udelay(100);
859 } while ((!data) && --loop);
862 * If basic configuration is incomplete before the above loop
863 * count reaches 0, loading the configuration from NVM will
864 * leave the PHY in a bad state possibly resulting in no link.
866 if (loop == 0)
867 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
869 /* Clear the Init Done bit for the next init event */
870 data = er32(STATUS);
871 data &= ~E1000_STATUS_LAN_INIT_DONE;
872 ew32(STATUS, data);
876 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
877 * @hw: pointer to the HW structure
879 * Resets the PHY
880 * This is a function pointer entry point called by drivers
881 * or other shared routines.
883 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
885 struct e1000_phy_info *phy = &hw->phy;
886 u32 i;
887 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
888 s32 ret_val;
889 u16 reg, word_addr, reg_data, reg_addr, phy_page = 0;
891 ret_val = e1000e_phy_hw_reset_generic(hw);
892 if (ret_val)
893 return ret_val;
895 /* Allow time for h/w to get to a quiescent state after reset */
896 mdelay(10);
898 if (hw->mac.type == e1000_pchlan) {
899 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
900 if (ret_val)
901 return ret_val;
904 /* Dummy read to clear the phy wakeup bit after lcd reset */
905 if (hw->mac.type == e1000_pchlan)
906 e1e_rphy(hw, BM_WUC, &reg);
909 * Initialize the PHY from the NVM on ICH platforms. This
910 * is needed due to an issue where the NVM configuration is
911 * not properly autoloaded after power transitions.
912 * Therefore, after each PHY reset, we will load the
913 * configuration data out of the NVM manually.
915 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
916 struct e1000_adapter *adapter = hw->adapter;
918 /* Check if SW needs configure the PHY */
919 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
920 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
921 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
922 else
923 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
925 data = er32(FEXTNVM);
926 if (!(data & sw_cfg_mask))
927 return 0;
929 /* Wait for basic configuration completes before proceeding */
930 e1000_lan_init_done_ich8lan(hw);
933 * Make sure HW does not configure LCD from PHY
934 * extended configuration before SW configuration
936 data = er32(EXTCNF_CTRL);
937 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
938 return 0;
940 cnf_size = er32(EXTCNF_SIZE);
941 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
942 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
943 if (!cnf_size)
944 return 0;
946 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
947 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
949 /* Configure LCD from extended configuration region. */
951 /* cnf_base_addr is in DWORD */
952 word_addr = (u16)(cnf_base_addr << 1);
954 for (i = 0; i < cnf_size; i++) {
955 ret_val = e1000_read_nvm(hw,
956 (word_addr + i * 2),
958 &reg_data);
959 if (ret_val)
960 return ret_val;
962 ret_val = e1000_read_nvm(hw,
963 (word_addr + i * 2 + 1),
965 &reg_addr);
966 if (ret_val)
967 return ret_val;
969 /* Save off the PHY page for future writes. */
970 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
971 phy_page = reg_data;
972 continue;
975 reg_addr |= phy_page;
977 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
978 if (ret_val)
979 return ret_val;
983 return 0;
987 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
988 * @hw: pointer to the HW structure
990 * Populates "phy" structure with various feature states.
991 * This function is only called by other family-specific
992 * routines.
994 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
996 struct e1000_phy_info *phy = &hw->phy;
997 s32 ret_val;
998 u16 data;
999 bool link;
1001 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1002 if (ret_val)
1003 return ret_val;
1005 if (!link) {
1006 hw_dbg(hw, "Phy info is only valid if link is up\n");
1007 return -E1000_ERR_CONFIG;
1010 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
1011 if (ret_val)
1012 return ret_val;
1013 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
1015 if (phy->polarity_correction) {
1016 ret_val = phy->ops.check_polarity(hw);
1017 if (ret_val)
1018 return ret_val;
1019 } else {
1020 /* Polarity is forced */
1021 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
1022 ? e1000_rev_polarity_reversed
1023 : e1000_rev_polarity_normal;
1026 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1027 if (ret_val)
1028 return ret_val;
1030 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
1032 /* The following parameters are undefined for 10/100 operation. */
1033 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1034 phy->local_rx = e1000_1000t_rx_status_undefined;
1035 phy->remote_rx = e1000_1000t_rx_status_undefined;
1037 return 0;
1041 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
1042 * @hw: pointer to the HW structure
1044 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
1045 * This is a function pointer entry point called by drivers
1046 * or other shared routines.
1048 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
1050 switch (hw->phy.type) {
1051 case e1000_phy_ife:
1052 return e1000_get_phy_info_ife_ich8lan(hw);
1053 break;
1054 case e1000_phy_igp_3:
1055 case e1000_phy_bm:
1056 case e1000_phy_82578:
1057 case e1000_phy_82577:
1058 return e1000e_get_phy_info_igp(hw);
1059 break;
1060 default:
1061 break;
1064 return -E1000_ERR_PHY_TYPE;
1068 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1069 * @hw: pointer to the HW structure
1071 * Polarity is determined on the polarity reversal feature being enabled.
1072 * This function is only called by other family-specific
1073 * routines.
1075 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
1077 struct e1000_phy_info *phy = &hw->phy;
1078 s32 ret_val;
1079 u16 phy_data, offset, mask;
1082 * Polarity is determined based on the reversal feature being enabled.
1084 if (phy->polarity_correction) {
1085 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1086 mask = IFE_PESC_POLARITY_REVERSED;
1087 } else {
1088 offset = IFE_PHY_SPECIAL_CONTROL;
1089 mask = IFE_PSC_FORCE_POLARITY;
1092 ret_val = e1e_rphy(hw, offset, &phy_data);
1094 if (!ret_val)
1095 phy->cable_polarity = (phy_data & mask)
1096 ? e1000_rev_polarity_reversed
1097 : e1000_rev_polarity_normal;
1099 return ret_val;
1103 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1104 * @hw: pointer to the HW structure
1105 * @active: true to enable LPLU, false to disable
1107 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1108 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1109 * the phy speed. This function will manually set the LPLU bit and restart
1110 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1111 * since it configures the same bit.
1113 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1115 s32 ret_val = 0;
1116 u16 oem_reg;
1118 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1119 if (ret_val)
1120 goto out;
1122 if (active)
1123 oem_reg |= HV_OEM_BITS_LPLU;
1124 else
1125 oem_reg &= ~HV_OEM_BITS_LPLU;
1127 oem_reg |= HV_OEM_BITS_RESTART_AN;
1128 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1130 out:
1131 return ret_val;
1135 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1136 * @hw: pointer to the HW structure
1137 * @active: TRUE to enable LPLU, FALSE to disable
1139 * Sets the LPLU D0 state according to the active flag. When
1140 * activating LPLU this function also disables smart speed
1141 * and vice versa. LPLU will not be activated unless the
1142 * device autonegotiation advertisement meets standards of
1143 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1144 * This is a function pointer entry point only called by
1145 * PHY setup routines.
1147 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1149 struct e1000_phy_info *phy = &hw->phy;
1150 u32 phy_ctrl;
1151 s32 ret_val = 0;
1152 u16 data;
1154 if (phy->type == e1000_phy_ife)
1155 return ret_val;
1157 phy_ctrl = er32(PHY_CTRL);
1159 if (active) {
1160 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1161 ew32(PHY_CTRL, phy_ctrl);
1163 if (phy->type != e1000_phy_igp_3)
1164 return 0;
1167 * Call gig speed drop workaround on LPLU before accessing
1168 * any PHY registers
1170 if (hw->mac.type == e1000_ich8lan)
1171 e1000e_gig_downshift_workaround_ich8lan(hw);
1173 /* When LPLU is enabled, we should disable SmartSpeed */
1174 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1175 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1176 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1177 if (ret_val)
1178 return ret_val;
1179 } else {
1180 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1181 ew32(PHY_CTRL, phy_ctrl);
1183 if (phy->type != e1000_phy_igp_3)
1184 return 0;
1187 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1188 * during Dx states where the power conservation is most
1189 * important. During driver activity we should enable
1190 * SmartSpeed, so performance is maintained.
1192 if (phy->smart_speed == e1000_smart_speed_on) {
1193 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1194 &data);
1195 if (ret_val)
1196 return ret_val;
1198 data |= IGP01E1000_PSCFR_SMART_SPEED;
1199 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1200 data);
1201 if (ret_val)
1202 return ret_val;
1203 } else if (phy->smart_speed == e1000_smart_speed_off) {
1204 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1205 &data);
1206 if (ret_val)
1207 return ret_val;
1209 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1210 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1211 data);
1212 if (ret_val)
1213 return ret_val;
1217 return 0;
1221 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1222 * @hw: pointer to the HW structure
1223 * @active: TRUE to enable LPLU, FALSE to disable
1225 * Sets the LPLU D3 state according to the active flag. When
1226 * activating LPLU this function also disables smart speed
1227 * and vice versa. LPLU will not be activated unless the
1228 * device autonegotiation advertisement meets standards of
1229 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1230 * This is a function pointer entry point only called by
1231 * PHY setup routines.
1233 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1235 struct e1000_phy_info *phy = &hw->phy;
1236 u32 phy_ctrl;
1237 s32 ret_val;
1238 u16 data;
1240 phy_ctrl = er32(PHY_CTRL);
1242 if (!active) {
1243 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1244 ew32(PHY_CTRL, phy_ctrl);
1246 if (phy->type != e1000_phy_igp_3)
1247 return 0;
1250 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1251 * during Dx states where the power conservation is most
1252 * important. During driver activity we should enable
1253 * SmartSpeed, so performance is maintained.
1255 if (phy->smart_speed == e1000_smart_speed_on) {
1256 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1257 &data);
1258 if (ret_val)
1259 return ret_val;
1261 data |= IGP01E1000_PSCFR_SMART_SPEED;
1262 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1263 data);
1264 if (ret_val)
1265 return ret_val;
1266 } else if (phy->smart_speed == e1000_smart_speed_off) {
1267 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1268 &data);
1269 if (ret_val)
1270 return ret_val;
1272 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1273 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1274 data);
1275 if (ret_val)
1276 return ret_val;
1278 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1279 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1280 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1281 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1282 ew32(PHY_CTRL, phy_ctrl);
1284 if (phy->type != e1000_phy_igp_3)
1285 return 0;
1288 * Call gig speed drop workaround on LPLU before accessing
1289 * any PHY registers
1291 if (hw->mac.type == e1000_ich8lan)
1292 e1000e_gig_downshift_workaround_ich8lan(hw);
1294 /* When LPLU is enabled, we should disable SmartSpeed */
1295 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1296 if (ret_val)
1297 return ret_val;
1299 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1300 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1303 return 0;
1307 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1308 * @hw: pointer to the HW structure
1309 * @bank: pointer to the variable that returns the active bank
1311 * Reads signature byte from the NVM using the flash access registers.
1312 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1314 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1316 u32 eecd;
1317 struct e1000_nvm_info *nvm = &hw->nvm;
1318 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1319 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1320 u8 sig_byte = 0;
1321 s32 ret_val = 0;
1323 switch (hw->mac.type) {
1324 case e1000_ich8lan:
1325 case e1000_ich9lan:
1326 eecd = er32(EECD);
1327 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1328 E1000_EECD_SEC1VAL_VALID_MASK) {
1329 if (eecd & E1000_EECD_SEC1VAL)
1330 *bank = 1;
1331 else
1332 *bank = 0;
1334 return 0;
1336 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
1337 "reading flash signature\n");
1338 /* fall-thru */
1339 default:
1340 /* set bank to 0 in case flash read fails */
1341 *bank = 0;
1343 /* Check bank 0 */
1344 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1345 &sig_byte);
1346 if (ret_val)
1347 return ret_val;
1348 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1349 E1000_ICH_NVM_SIG_VALUE) {
1350 *bank = 0;
1351 return 0;
1354 /* Check bank 1 */
1355 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1356 bank1_offset,
1357 &sig_byte);
1358 if (ret_val)
1359 return ret_val;
1360 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1361 E1000_ICH_NVM_SIG_VALUE) {
1362 *bank = 1;
1363 return 0;
1366 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1367 return -E1000_ERR_NVM;
1370 return 0;
1374 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1375 * @hw: pointer to the HW structure
1376 * @offset: The offset (in bytes) of the word(s) to read.
1377 * @words: Size of data to read in words
1378 * @data: Pointer to the word(s) to read at offset.
1380 * Reads a word(s) from the NVM using the flash access registers.
1382 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1383 u16 *data)
1385 struct e1000_nvm_info *nvm = &hw->nvm;
1386 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1387 u32 act_offset;
1388 s32 ret_val = 0;
1389 u32 bank = 0;
1390 u16 i, word;
1392 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1393 (words == 0)) {
1394 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1395 ret_val = -E1000_ERR_NVM;
1396 goto out;
1399 nvm->ops.acquire_nvm(hw);
1401 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1402 if (ret_val) {
1403 hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n");
1404 bank = 0;
1407 act_offset = (bank) ? nvm->flash_bank_size : 0;
1408 act_offset += offset;
1410 ret_val = 0;
1411 for (i = 0; i < words; i++) {
1412 if ((dev_spec->shadow_ram) &&
1413 (dev_spec->shadow_ram[offset+i].modified)) {
1414 data[i] = dev_spec->shadow_ram[offset+i].value;
1415 } else {
1416 ret_val = e1000_read_flash_word_ich8lan(hw,
1417 act_offset + i,
1418 &word);
1419 if (ret_val)
1420 break;
1421 data[i] = word;
1425 nvm->ops.release_nvm(hw);
1427 out:
1428 if (ret_val)
1429 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1431 return ret_val;
1435 * e1000_flash_cycle_init_ich8lan - Initialize flash
1436 * @hw: pointer to the HW structure
1438 * This function does initial flash setup so that a new read/write/erase cycle
1439 * can be started.
1441 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1443 union ich8_hws_flash_status hsfsts;
1444 s32 ret_val = -E1000_ERR_NVM;
1445 s32 i = 0;
1447 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1449 /* Check if the flash descriptor is valid */
1450 if (hsfsts.hsf_status.fldesvalid == 0) {
1451 hw_dbg(hw, "Flash descriptor invalid. "
1452 "SW Sequencing must be used.");
1453 return -E1000_ERR_NVM;
1456 /* Clear FCERR and DAEL in hw status by writing 1 */
1457 hsfsts.hsf_status.flcerr = 1;
1458 hsfsts.hsf_status.dael = 1;
1460 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1463 * Either we should have a hardware SPI cycle in progress
1464 * bit to check against, in order to start a new cycle or
1465 * FDONE bit should be changed in the hardware so that it
1466 * is 1 after hardware reset, which can then be used as an
1467 * indication whether a cycle is in progress or has been
1468 * completed.
1471 if (hsfsts.hsf_status.flcinprog == 0) {
1473 * There is no cycle running at present,
1474 * so we can start a cycle
1475 * Begin by setting Flash Cycle Done.
1477 hsfsts.hsf_status.flcdone = 1;
1478 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1479 ret_val = 0;
1480 } else {
1482 * otherwise poll for sometime so the current
1483 * cycle has a chance to end before giving up.
1485 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1486 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1487 if (hsfsts.hsf_status.flcinprog == 0) {
1488 ret_val = 0;
1489 break;
1491 udelay(1);
1493 if (ret_val == 0) {
1495 * Successful in waiting for previous cycle to timeout,
1496 * now set the Flash Cycle Done.
1498 hsfsts.hsf_status.flcdone = 1;
1499 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1500 } else {
1501 hw_dbg(hw, "Flash controller busy, cannot get access");
1505 return ret_val;
1509 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1510 * @hw: pointer to the HW structure
1511 * @timeout: maximum time to wait for completion
1513 * This function starts a flash cycle and waits for its completion.
1515 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1517 union ich8_hws_flash_ctrl hsflctl;
1518 union ich8_hws_flash_status hsfsts;
1519 s32 ret_val = -E1000_ERR_NVM;
1520 u32 i = 0;
1522 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1523 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1524 hsflctl.hsf_ctrl.flcgo = 1;
1525 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1527 /* wait till FDONE bit is set to 1 */
1528 do {
1529 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1530 if (hsfsts.hsf_status.flcdone == 1)
1531 break;
1532 udelay(1);
1533 } while (i++ < timeout);
1535 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1536 return 0;
1538 return ret_val;
1542 * e1000_read_flash_word_ich8lan - Read word from flash
1543 * @hw: pointer to the HW structure
1544 * @offset: offset to data location
1545 * @data: pointer to the location for storing the data
1547 * Reads the flash word at offset into data. Offset is converted
1548 * to bytes before read.
1550 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1551 u16 *data)
1553 /* Must convert offset into bytes. */
1554 offset <<= 1;
1556 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1560 * e1000_read_flash_byte_ich8lan - Read byte from flash
1561 * @hw: pointer to the HW structure
1562 * @offset: The offset of the byte to read.
1563 * @data: Pointer to a byte to store the value read.
1565 * Reads a single byte from the NVM using the flash access registers.
1567 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1568 u8 *data)
1570 s32 ret_val;
1571 u16 word = 0;
1573 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1574 if (ret_val)
1575 return ret_val;
1577 *data = (u8)word;
1579 return 0;
1583 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1584 * @hw: pointer to the HW structure
1585 * @offset: The offset (in bytes) of the byte or word to read.
1586 * @size: Size of data to read, 1=byte 2=word
1587 * @data: Pointer to the word to store the value read.
1589 * Reads a byte or word from the NVM using the flash access registers.
1591 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1592 u8 size, u16 *data)
1594 union ich8_hws_flash_status hsfsts;
1595 union ich8_hws_flash_ctrl hsflctl;
1596 u32 flash_linear_addr;
1597 u32 flash_data = 0;
1598 s32 ret_val = -E1000_ERR_NVM;
1599 u8 count = 0;
1601 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1602 return -E1000_ERR_NVM;
1604 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1605 hw->nvm.flash_base_addr;
1607 do {
1608 udelay(1);
1609 /* Steps */
1610 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1611 if (ret_val != 0)
1612 break;
1614 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1615 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1616 hsflctl.hsf_ctrl.fldbcount = size - 1;
1617 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1618 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1620 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1622 ret_val = e1000_flash_cycle_ich8lan(hw,
1623 ICH_FLASH_READ_COMMAND_TIMEOUT);
1626 * Check if FCERR is set to 1, if set to 1, clear it
1627 * and try the whole sequence a few more times, else
1628 * read in (shift in) the Flash Data0, the order is
1629 * least significant byte first msb to lsb
1631 if (ret_val == 0) {
1632 flash_data = er32flash(ICH_FLASH_FDATA0);
1633 if (size == 1) {
1634 *data = (u8)(flash_data & 0x000000FF);
1635 } else if (size == 2) {
1636 *data = (u16)(flash_data & 0x0000FFFF);
1638 break;
1639 } else {
1641 * If we've gotten here, then things are probably
1642 * completely hosed, but if the error condition is
1643 * detected, it won't hurt to give it another try...
1644 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1646 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1647 if (hsfsts.hsf_status.flcerr == 1) {
1648 /* Repeat for some time before giving up. */
1649 continue;
1650 } else if (hsfsts.hsf_status.flcdone == 0) {
1651 hw_dbg(hw, "Timeout error - flash cycle "
1652 "did not complete.");
1653 break;
1656 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1658 return ret_val;
1662 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1663 * @hw: pointer to the HW structure
1664 * @offset: The offset (in bytes) of the word(s) to write.
1665 * @words: Size of data to write in words
1666 * @data: Pointer to the word(s) to write at offset.
1668 * Writes a byte or word to the NVM using the flash access registers.
1670 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1671 u16 *data)
1673 struct e1000_nvm_info *nvm = &hw->nvm;
1674 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1675 u16 i;
1677 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1678 (words == 0)) {
1679 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1680 return -E1000_ERR_NVM;
1683 nvm->ops.acquire_nvm(hw);
1685 for (i = 0; i < words; i++) {
1686 dev_spec->shadow_ram[offset+i].modified = 1;
1687 dev_spec->shadow_ram[offset+i].value = data[i];
1690 nvm->ops.release_nvm(hw);
1692 return 0;
1696 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1697 * @hw: pointer to the HW structure
1699 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1700 * which writes the checksum to the shadow ram. The changes in the shadow
1701 * ram are then committed to the EEPROM by processing each bank at a time
1702 * checking for the modified bit and writing only the pending changes.
1703 * After a successful commit, the shadow ram is cleared and is ready for
1704 * future writes.
1706 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1708 struct e1000_nvm_info *nvm = &hw->nvm;
1709 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1710 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1711 s32 ret_val;
1712 u16 data;
1714 ret_val = e1000e_update_nvm_checksum_generic(hw);
1715 if (ret_val)
1716 goto out;
1718 if (nvm->type != e1000_nvm_flash_sw)
1719 goto out;
1721 nvm->ops.acquire_nvm(hw);
1724 * We're writing to the opposite bank so if we're on bank 1,
1725 * write to bank 0 etc. We also need to erase the segment that
1726 * is going to be written
1728 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1729 if (ret_val) {
1730 hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n");
1731 bank = 0;
1734 if (bank == 0) {
1735 new_bank_offset = nvm->flash_bank_size;
1736 old_bank_offset = 0;
1737 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1738 if (ret_val) {
1739 nvm->ops.release_nvm(hw);
1740 goto out;
1742 } else {
1743 old_bank_offset = nvm->flash_bank_size;
1744 new_bank_offset = 0;
1745 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1746 if (ret_val) {
1747 nvm->ops.release_nvm(hw);
1748 goto out;
1752 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1754 * Determine whether to write the value stored
1755 * in the other NVM bank or a modified value stored
1756 * in the shadow RAM
1758 if (dev_spec->shadow_ram[i].modified) {
1759 data = dev_spec->shadow_ram[i].value;
1760 } else {
1761 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1762 old_bank_offset,
1763 &data);
1764 if (ret_val)
1765 break;
1769 * If the word is 0x13, then make sure the signature bits
1770 * (15:14) are 11b until the commit has completed.
1771 * This will allow us to write 10b which indicates the
1772 * signature is valid. We want to do this after the write
1773 * has completed so that we don't mark the segment valid
1774 * while the write is still in progress
1776 if (i == E1000_ICH_NVM_SIG_WORD)
1777 data |= E1000_ICH_NVM_SIG_MASK;
1779 /* Convert offset to bytes. */
1780 act_offset = (i + new_bank_offset) << 1;
1782 udelay(100);
1783 /* Write the bytes to the new bank. */
1784 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1785 act_offset,
1786 (u8)data);
1787 if (ret_val)
1788 break;
1790 udelay(100);
1791 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1792 act_offset + 1,
1793 (u8)(data >> 8));
1794 if (ret_val)
1795 break;
1799 * Don't bother writing the segment valid bits if sector
1800 * programming failed.
1802 if (ret_val) {
1803 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1804 hw_dbg(hw, "Flash commit failed.\n");
1805 nvm->ops.release_nvm(hw);
1806 goto out;
1810 * Finally validate the new segment by setting bit 15:14
1811 * to 10b in word 0x13 , this can be done without an
1812 * erase as well since these bits are 11 to start with
1813 * and we need to change bit 14 to 0b
1815 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1816 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1817 if (ret_val) {
1818 nvm->ops.release_nvm(hw);
1819 goto out;
1821 data &= 0xBFFF;
1822 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1823 act_offset * 2 + 1,
1824 (u8)(data >> 8));
1825 if (ret_val) {
1826 nvm->ops.release_nvm(hw);
1827 goto out;
1831 * And invalidate the previously valid segment by setting
1832 * its signature word (0x13) high_byte to 0b. This can be
1833 * done without an erase because flash erase sets all bits
1834 * to 1's. We can write 1's to 0's without an erase
1836 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1837 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1838 if (ret_val) {
1839 nvm->ops.release_nvm(hw);
1840 goto out;
1843 /* Great! Everything worked, we can now clear the cached entries. */
1844 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1845 dev_spec->shadow_ram[i].modified = 0;
1846 dev_spec->shadow_ram[i].value = 0xFFFF;
1849 nvm->ops.release_nvm(hw);
1852 * Reload the EEPROM, or else modifications will not appear
1853 * until after the next adapter reset.
1855 e1000e_reload_nvm(hw);
1856 msleep(10);
1858 out:
1859 if (ret_val)
1860 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1862 return ret_val;
1866 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1867 * @hw: pointer to the HW structure
1869 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1870 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1871 * calculated, in which case we need to calculate the checksum and set bit 6.
1873 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1875 s32 ret_val;
1876 u16 data;
1879 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1880 * needs to be fixed. This bit is an indication that the NVM
1881 * was prepared by OEM software and did not calculate the
1882 * checksum...a likely scenario.
1884 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1885 if (ret_val)
1886 return ret_val;
1888 if ((data & 0x40) == 0) {
1889 data |= 0x40;
1890 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1891 if (ret_val)
1892 return ret_val;
1893 ret_val = e1000e_update_nvm_checksum(hw);
1894 if (ret_val)
1895 return ret_val;
1898 return e1000e_validate_nvm_checksum_generic(hw);
1902 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1903 * @hw: pointer to the HW structure
1905 * To prevent malicious write/erase of the NVM, set it to be read-only
1906 * so that the hardware ignores all write/erase cycles of the NVM via
1907 * the flash control registers. The shadow-ram copy of the NVM will
1908 * still be updated, however any updates to this copy will not stick
1909 * across driver reloads.
1911 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1913 struct e1000_nvm_info *nvm = &hw->nvm;
1914 union ich8_flash_protected_range pr0;
1915 union ich8_hws_flash_status hsfsts;
1916 u32 gfpreg;
1918 nvm->ops.acquire_nvm(hw);
1920 gfpreg = er32flash(ICH_FLASH_GFPREG);
1922 /* Write-protect GbE Sector of NVM */
1923 pr0.regval = er32flash(ICH_FLASH_PR0);
1924 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1925 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1926 pr0.range.wpe = true;
1927 ew32flash(ICH_FLASH_PR0, pr0.regval);
1930 * Lock down a subset of GbE Flash Control Registers, e.g.
1931 * PR0 to prevent the write-protection from being lifted.
1932 * Once FLOCKDN is set, the registers protected by it cannot
1933 * be written until FLOCKDN is cleared by a hardware reset.
1935 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1936 hsfsts.hsf_status.flockdn = true;
1937 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1939 nvm->ops.release_nvm(hw);
1943 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1944 * @hw: pointer to the HW structure
1945 * @offset: The offset (in bytes) of the byte/word to read.
1946 * @size: Size of data to read, 1=byte 2=word
1947 * @data: The byte(s) to write to the NVM.
1949 * Writes one/two bytes to the NVM using the flash access registers.
1951 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1952 u8 size, u16 data)
1954 union ich8_hws_flash_status hsfsts;
1955 union ich8_hws_flash_ctrl hsflctl;
1956 u32 flash_linear_addr;
1957 u32 flash_data = 0;
1958 s32 ret_val;
1959 u8 count = 0;
1961 if (size < 1 || size > 2 || data > size * 0xff ||
1962 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1963 return -E1000_ERR_NVM;
1965 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1966 hw->nvm.flash_base_addr;
1968 do {
1969 udelay(1);
1970 /* Steps */
1971 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1972 if (ret_val)
1973 break;
1975 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1976 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1977 hsflctl.hsf_ctrl.fldbcount = size -1;
1978 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1979 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1981 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1983 if (size == 1)
1984 flash_data = (u32)data & 0x00FF;
1985 else
1986 flash_data = (u32)data;
1988 ew32flash(ICH_FLASH_FDATA0, flash_data);
1991 * check if FCERR is set to 1 , if set to 1, clear it
1992 * and try the whole sequence a few more times else done
1994 ret_val = e1000_flash_cycle_ich8lan(hw,
1995 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1996 if (!ret_val)
1997 break;
2000 * If we're here, then things are most likely
2001 * completely hosed, but if the error condition
2002 * is detected, it won't hurt to give it another
2003 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2005 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2006 if (hsfsts.hsf_status.flcerr == 1)
2007 /* Repeat for some time before giving up. */
2008 continue;
2009 if (hsfsts.hsf_status.flcdone == 0) {
2010 hw_dbg(hw, "Timeout error - flash cycle "
2011 "did not complete.");
2012 break;
2014 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2016 return ret_val;
2020 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2021 * @hw: pointer to the HW structure
2022 * @offset: The index of the byte to read.
2023 * @data: The byte to write to the NVM.
2025 * Writes a single byte to the NVM using the flash access registers.
2027 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2028 u8 data)
2030 u16 word = (u16)data;
2032 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2036 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2037 * @hw: pointer to the HW structure
2038 * @offset: The offset of the byte to write.
2039 * @byte: The byte to write to the NVM.
2041 * Writes a single byte to the NVM using the flash access registers.
2042 * Goes through a retry algorithm before giving up.
2044 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2045 u32 offset, u8 byte)
2047 s32 ret_val;
2048 u16 program_retries;
2050 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2051 if (!ret_val)
2052 return ret_val;
2054 for (program_retries = 0; program_retries < 100; program_retries++) {
2055 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
2056 udelay(100);
2057 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2058 if (!ret_val)
2059 break;
2061 if (program_retries == 100)
2062 return -E1000_ERR_NVM;
2064 return 0;
2068 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2069 * @hw: pointer to the HW structure
2070 * @bank: 0 for first bank, 1 for second bank, etc.
2072 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2073 * bank N is 4096 * N + flash_reg_addr.
2075 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2077 struct e1000_nvm_info *nvm = &hw->nvm;
2078 union ich8_hws_flash_status hsfsts;
2079 union ich8_hws_flash_ctrl hsflctl;
2080 u32 flash_linear_addr;
2081 /* bank size is in 16bit words - adjust to bytes */
2082 u32 flash_bank_size = nvm->flash_bank_size * 2;
2083 s32 ret_val;
2084 s32 count = 0;
2085 s32 iteration;
2086 s32 sector_size;
2087 s32 j;
2089 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2092 * Determine HW Sector size: Read BERASE bits of hw flash status
2093 * register
2094 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2095 * consecutive sectors. The start index for the nth Hw sector
2096 * can be calculated as = bank * 4096 + n * 256
2097 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2098 * The start index for the nth Hw sector can be calculated
2099 * as = bank * 4096
2100 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2101 * (ich9 only, otherwise error condition)
2102 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2104 switch (hsfsts.hsf_status.berasesz) {
2105 case 0:
2106 /* Hw sector size 256 */
2107 sector_size = ICH_FLASH_SEG_SIZE_256;
2108 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2109 break;
2110 case 1:
2111 sector_size = ICH_FLASH_SEG_SIZE_4K;
2112 iteration = 1;
2113 break;
2114 case 2:
2115 sector_size = ICH_FLASH_SEG_SIZE_8K;
2116 iteration = 1;
2117 break;
2118 case 3:
2119 sector_size = ICH_FLASH_SEG_SIZE_64K;
2120 iteration = 1;
2121 break;
2122 default:
2123 return -E1000_ERR_NVM;
2126 /* Start with the base address, then add the sector offset. */
2127 flash_linear_addr = hw->nvm.flash_base_addr;
2128 flash_linear_addr += (bank) ? flash_bank_size : 0;
2130 for (j = 0; j < iteration ; j++) {
2131 do {
2132 /* Steps */
2133 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2134 if (ret_val)
2135 return ret_val;
2138 * Write a value 11 (block Erase) in Flash
2139 * Cycle field in hw flash control
2141 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2142 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2143 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2146 * Write the last 24 bits of an index within the
2147 * block into Flash Linear address field in Flash
2148 * Address.
2150 flash_linear_addr += (j * sector_size);
2151 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2153 ret_val = e1000_flash_cycle_ich8lan(hw,
2154 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2155 if (ret_val == 0)
2156 break;
2159 * Check if FCERR is set to 1. If 1,
2160 * clear it and try the whole sequence
2161 * a few more times else Done
2163 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2164 if (hsfsts.hsf_status.flcerr == 1)
2165 /* repeat for some time before giving up */
2166 continue;
2167 else if (hsfsts.hsf_status.flcdone == 0)
2168 return ret_val;
2169 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2172 return 0;
2176 * e1000_valid_led_default_ich8lan - Set the default LED settings
2177 * @hw: pointer to the HW structure
2178 * @data: Pointer to the LED settings
2180 * Reads the LED default settings from the NVM to data. If the NVM LED
2181 * settings is all 0's or F's, set the LED default to a valid LED default
2182 * setting.
2184 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2186 s32 ret_val;
2188 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2189 if (ret_val) {
2190 hw_dbg(hw, "NVM Read Error\n");
2191 return ret_val;
2194 if (*data == ID_LED_RESERVED_0000 ||
2195 *data == ID_LED_RESERVED_FFFF)
2196 *data = ID_LED_DEFAULT_ICH8LAN;
2198 return 0;
2202 * e1000_id_led_init_pchlan - store LED configurations
2203 * @hw: pointer to the HW structure
2205 * PCH does not control LEDs via the LEDCTL register, rather it uses
2206 * the PHY LED configuration register.
2208 * PCH also does not have an "always on" or "always off" mode which
2209 * complicates the ID feature. Instead of using the "on" mode to indicate
2210 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2211 * use "link_up" mode. The LEDs will still ID on request if there is no
2212 * link based on logic in e1000_led_[on|off]_pchlan().
2214 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2216 struct e1000_mac_info *mac = &hw->mac;
2217 s32 ret_val;
2218 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2219 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2220 u16 data, i, temp, shift;
2222 /* Get default ID LED modes */
2223 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2224 if (ret_val)
2225 goto out;
2227 mac->ledctl_default = er32(LEDCTL);
2228 mac->ledctl_mode1 = mac->ledctl_default;
2229 mac->ledctl_mode2 = mac->ledctl_default;
2231 for (i = 0; i < 4; i++) {
2232 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2233 shift = (i * 5);
2234 switch (temp) {
2235 case ID_LED_ON1_DEF2:
2236 case ID_LED_ON1_ON2:
2237 case ID_LED_ON1_OFF2:
2238 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2239 mac->ledctl_mode1 |= (ledctl_on << shift);
2240 break;
2241 case ID_LED_OFF1_DEF2:
2242 case ID_LED_OFF1_ON2:
2243 case ID_LED_OFF1_OFF2:
2244 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2245 mac->ledctl_mode1 |= (ledctl_off << shift);
2246 break;
2247 default:
2248 /* Do nothing */
2249 break;
2251 switch (temp) {
2252 case ID_LED_DEF1_ON2:
2253 case ID_LED_ON1_ON2:
2254 case ID_LED_OFF1_ON2:
2255 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2256 mac->ledctl_mode2 |= (ledctl_on << shift);
2257 break;
2258 case ID_LED_DEF1_OFF2:
2259 case ID_LED_ON1_OFF2:
2260 case ID_LED_OFF1_OFF2:
2261 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2262 mac->ledctl_mode2 |= (ledctl_off << shift);
2263 break;
2264 default:
2265 /* Do nothing */
2266 break;
2270 out:
2271 return ret_val;
2275 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2276 * @hw: pointer to the HW structure
2278 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2279 * register, so the the bus width is hard coded.
2281 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2283 struct e1000_bus_info *bus = &hw->bus;
2284 s32 ret_val;
2286 ret_val = e1000e_get_bus_info_pcie(hw);
2289 * ICH devices are "PCI Express"-ish. They have
2290 * a configuration space, but do not contain
2291 * PCI Express Capability registers, so bus width
2292 * must be hardcoded.
2294 if (bus->width == e1000_bus_width_unknown)
2295 bus->width = e1000_bus_width_pcie_x1;
2297 return ret_val;
2301 * e1000_reset_hw_ich8lan - Reset the hardware
2302 * @hw: pointer to the HW structure
2304 * Does a full reset of the hardware which includes a reset of the PHY and
2305 * MAC.
2307 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2309 u16 reg;
2310 u32 ctrl, icr, kab;
2311 s32 ret_val;
2314 * Prevent the PCI-E bus from sticking if there is no TLP connection
2315 * on the last TLP read/write transaction when MAC is reset.
2317 ret_val = e1000e_disable_pcie_master(hw);
2318 if (ret_val) {
2319 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
2322 hw_dbg(hw, "Masking off all interrupts\n");
2323 ew32(IMC, 0xffffffff);
2326 * Disable the Transmit and Receive units. Then delay to allow
2327 * any pending transactions to complete before we hit the MAC
2328 * with the global reset.
2330 ew32(RCTL, 0);
2331 ew32(TCTL, E1000_TCTL_PSP);
2332 e1e_flush();
2334 msleep(10);
2336 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2337 if (hw->mac.type == e1000_ich8lan) {
2338 /* Set Tx and Rx buffer allocation to 8k apiece. */
2339 ew32(PBA, E1000_PBA_8K);
2340 /* Set Packet Buffer Size to 16k. */
2341 ew32(PBS, E1000_PBS_16K);
2344 ctrl = er32(CTRL);
2346 if (!e1000_check_reset_block(hw)) {
2347 /* Clear PHY Reset Asserted bit */
2348 if (hw->mac.type >= e1000_pchlan) {
2349 u32 status = er32(STATUS);
2350 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2354 * PHY HW reset requires MAC CORE reset at the same
2355 * time to make sure the interface between MAC and the
2356 * external PHY is reset.
2358 ctrl |= E1000_CTRL_PHY_RST;
2360 ret_val = e1000_acquire_swflag_ich8lan(hw);
2361 /* Whether or not the swflag was acquired, we need to reset the part */
2362 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
2363 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2364 msleep(20);
2366 if (!ret_val)
2367 e1000_release_swflag_ich8lan(hw);
2369 if (ctrl & E1000_CTRL_PHY_RST)
2370 ret_val = hw->phy.ops.get_cfg_done(hw);
2372 if (hw->mac.type >= e1000_ich10lan) {
2373 e1000_lan_init_done_ich8lan(hw);
2374 } else {
2375 ret_val = e1000e_get_auto_rd_done(hw);
2376 if (ret_val) {
2378 * When auto config read does not complete, do not
2379 * return with an error. This can happen in situations
2380 * where there is no eeprom and prevents getting link.
2382 hw_dbg(hw, "Auto Read Done did not complete\n");
2385 /* Dummy read to clear the phy wakeup bit after lcd reset */
2386 if (hw->mac.type == e1000_pchlan)
2387 e1e_rphy(hw, BM_WUC, &reg);
2390 * For PCH, this write will make sure that any noise
2391 * will be detected as a CRC error and be dropped rather than show up
2392 * as a bad packet to the DMA engine.
2394 if (hw->mac.type == e1000_pchlan)
2395 ew32(CRC_OFFSET, 0x65656565);
2397 ew32(IMC, 0xffffffff);
2398 icr = er32(ICR);
2400 kab = er32(KABGTXD);
2401 kab |= E1000_KABGTXD_BGSQLBIAS;
2402 ew32(KABGTXD, kab);
2404 if (hw->mac.type == e1000_pchlan)
2405 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2407 return ret_val;
2411 * e1000_init_hw_ich8lan - Initialize the hardware
2412 * @hw: pointer to the HW structure
2414 * Prepares the hardware for transmit and receive by doing the following:
2415 * - initialize hardware bits
2416 * - initialize LED identification
2417 * - setup receive address registers
2418 * - setup flow control
2419 * - setup transmit descriptors
2420 * - clear statistics
2422 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2424 struct e1000_mac_info *mac = &hw->mac;
2425 u32 ctrl_ext, txdctl, snoop;
2426 s32 ret_val;
2427 u16 i;
2429 e1000_initialize_hw_bits_ich8lan(hw);
2431 /* Initialize identification LED */
2432 ret_val = mac->ops.id_led_init(hw);
2433 if (ret_val) {
2434 hw_dbg(hw, "Error initializing identification LED\n");
2435 return ret_val;
2438 /* Setup the receive address. */
2439 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2441 /* Zero out the Multicast HASH table */
2442 hw_dbg(hw, "Zeroing the MTA\n");
2443 for (i = 0; i < mac->mta_reg_count; i++)
2444 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2447 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2448 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2449 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2451 if (hw->phy.type == e1000_phy_82578) {
2452 hw->phy.ops.read_phy_reg(hw, BM_WUC, &i);
2453 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2454 if (ret_val)
2455 return ret_val;
2458 /* Setup link and flow control */
2459 ret_val = e1000_setup_link_ich8lan(hw);
2461 /* Set the transmit descriptor write-back policy for both queues */
2462 txdctl = er32(TXDCTL(0));
2463 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2464 E1000_TXDCTL_FULL_TX_DESC_WB;
2465 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2466 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2467 ew32(TXDCTL(0), txdctl);
2468 txdctl = er32(TXDCTL(1));
2469 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2470 E1000_TXDCTL_FULL_TX_DESC_WB;
2471 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2472 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2473 ew32(TXDCTL(1), txdctl);
2476 * ICH8 has opposite polarity of no_snoop bits.
2477 * By default, we should use snoop behavior.
2479 if (mac->type == e1000_ich8lan)
2480 snoop = PCIE_ICH8_SNOOP_ALL;
2481 else
2482 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2483 e1000e_set_pcie_no_snoop(hw, snoop);
2485 ctrl_ext = er32(CTRL_EXT);
2486 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2487 ew32(CTRL_EXT, ctrl_ext);
2490 * Clear all of the statistics registers (clear on read). It is
2491 * important that we do this after we have tried to establish link
2492 * because the symbol error count will increment wildly if there
2493 * is no link.
2495 e1000_clear_hw_cntrs_ich8lan(hw);
2497 return 0;
2500 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2501 * @hw: pointer to the HW structure
2503 * Sets/Clears required hardware bits necessary for correctly setting up the
2504 * hardware for transmit and receive.
2506 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2508 u32 reg;
2510 /* Extended Device Control */
2511 reg = er32(CTRL_EXT);
2512 reg |= (1 << 22);
2513 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2514 if (hw->mac.type >= e1000_pchlan)
2515 reg |= E1000_CTRL_EXT_PHYPDEN;
2516 ew32(CTRL_EXT, reg);
2518 /* Transmit Descriptor Control 0 */
2519 reg = er32(TXDCTL(0));
2520 reg |= (1 << 22);
2521 ew32(TXDCTL(0), reg);
2523 /* Transmit Descriptor Control 1 */
2524 reg = er32(TXDCTL(1));
2525 reg |= (1 << 22);
2526 ew32(TXDCTL(1), reg);
2528 /* Transmit Arbitration Control 0 */
2529 reg = er32(TARC(0));
2530 if (hw->mac.type == e1000_ich8lan)
2531 reg |= (1 << 28) | (1 << 29);
2532 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2533 ew32(TARC(0), reg);
2535 /* Transmit Arbitration Control 1 */
2536 reg = er32(TARC(1));
2537 if (er32(TCTL) & E1000_TCTL_MULR)
2538 reg &= ~(1 << 28);
2539 else
2540 reg |= (1 << 28);
2541 reg |= (1 << 24) | (1 << 26) | (1 << 30);
2542 ew32(TARC(1), reg);
2544 /* Device Status */
2545 if (hw->mac.type == e1000_ich8lan) {
2546 reg = er32(STATUS);
2547 reg &= ~(1 << 31);
2548 ew32(STATUS, reg);
2553 * e1000_setup_link_ich8lan - Setup flow control and link settings
2554 * @hw: pointer to the HW structure
2556 * Determines which flow control settings to use, then configures flow
2557 * control. Calls the appropriate media-specific link configuration
2558 * function. Assuming the adapter has a valid link partner, a valid link
2559 * should be established. Assumes the hardware has previously been reset
2560 * and the transmitter and receiver are not enabled.
2562 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2564 s32 ret_val;
2566 if (e1000_check_reset_block(hw))
2567 return 0;
2570 * ICH parts do not have a word in the NVM to determine
2571 * the default flow control setting, so we explicitly
2572 * set it to full.
2574 if (hw->fc.requested_mode == e1000_fc_default) {
2575 /* Workaround h/w hang when Tx flow control enabled */
2576 if (hw->mac.type == e1000_pchlan)
2577 hw->fc.requested_mode = e1000_fc_rx_pause;
2578 else
2579 hw->fc.requested_mode = e1000_fc_full;
2583 * Save off the requested flow control mode for use later. Depending
2584 * on the link partner's capabilities, we may or may not use this mode.
2586 hw->fc.current_mode = hw->fc.requested_mode;
2588 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2589 hw->fc.current_mode);
2591 /* Continue to configure the copper link. */
2592 ret_val = e1000_setup_copper_link_ich8lan(hw);
2593 if (ret_val)
2594 return ret_val;
2596 ew32(FCTTV, hw->fc.pause_time);
2597 if ((hw->phy.type == e1000_phy_82578) ||
2598 (hw->phy.type == e1000_phy_82577)) {
2599 ret_val = hw->phy.ops.write_phy_reg(hw,
2600 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2601 hw->fc.pause_time);
2602 if (ret_val)
2603 return ret_val;
2606 return e1000e_set_fc_watermarks(hw);
2610 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2611 * @hw: pointer to the HW structure
2613 * Configures the kumeran interface to the PHY to wait the appropriate time
2614 * when polling the PHY, then call the generic setup_copper_link to finish
2615 * configuring the copper link.
2617 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2619 u32 ctrl;
2620 s32 ret_val;
2621 u16 reg_data;
2623 ctrl = er32(CTRL);
2624 ctrl |= E1000_CTRL_SLU;
2625 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2626 ew32(CTRL, ctrl);
2629 * Set the mac to wait the maximum time between each iteration
2630 * and increase the max iterations when polling the phy;
2631 * this fixes erroneous timeouts at 10Mbps.
2633 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2634 if (ret_val)
2635 return ret_val;
2636 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2637 if (ret_val)
2638 return ret_val;
2639 reg_data |= 0x3F;
2640 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2641 if (ret_val)
2642 return ret_val;
2644 switch (hw->phy.type) {
2645 case e1000_phy_igp_3:
2646 ret_val = e1000e_copper_link_setup_igp(hw);
2647 if (ret_val)
2648 return ret_val;
2649 break;
2650 case e1000_phy_bm:
2651 case e1000_phy_82578:
2652 ret_val = e1000e_copper_link_setup_m88(hw);
2653 if (ret_val)
2654 return ret_val;
2655 break;
2656 case e1000_phy_82577:
2657 ret_val = e1000_copper_link_setup_82577(hw);
2658 if (ret_val)
2659 return ret_val;
2660 break;
2661 case e1000_phy_ife:
2662 ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2663 &reg_data);
2664 if (ret_val)
2665 return ret_val;
2667 reg_data &= ~IFE_PMC_AUTO_MDIX;
2669 switch (hw->phy.mdix) {
2670 case 1:
2671 reg_data &= ~IFE_PMC_FORCE_MDIX;
2672 break;
2673 case 2:
2674 reg_data |= IFE_PMC_FORCE_MDIX;
2675 break;
2676 case 0:
2677 default:
2678 reg_data |= IFE_PMC_AUTO_MDIX;
2679 break;
2681 ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2682 reg_data);
2683 if (ret_val)
2684 return ret_val;
2685 break;
2686 default:
2687 break;
2689 return e1000e_setup_copper_link(hw);
2693 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2694 * @hw: pointer to the HW structure
2695 * @speed: pointer to store current link speed
2696 * @duplex: pointer to store the current link duplex
2698 * Calls the generic get_speed_and_duplex to retrieve the current link
2699 * information and then calls the Kumeran lock loss workaround for links at
2700 * gigabit speeds.
2702 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2703 u16 *duplex)
2705 s32 ret_val;
2707 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2708 if (ret_val)
2709 return ret_val;
2711 if ((hw->mac.type == e1000_pchlan) && (*speed == SPEED_1000)) {
2712 ret_val = e1000e_write_kmrn_reg(hw,
2713 E1000_KMRNCTRLSTA_K1_CONFIG,
2714 E1000_KMRNCTRLSTA_K1_DISABLE);
2715 if (ret_val)
2716 return ret_val;
2719 if ((hw->mac.type == e1000_ich8lan) &&
2720 (hw->phy.type == e1000_phy_igp_3) &&
2721 (*speed == SPEED_1000)) {
2722 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2725 return ret_val;
2729 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2730 * @hw: pointer to the HW structure
2732 * Work-around for 82566 Kumeran PCS lock loss:
2733 * On link status change (i.e. PCI reset, speed change) and link is up and
2734 * speed is gigabit-
2735 * 0) if workaround is optionally disabled do nothing
2736 * 1) wait 1ms for Kumeran link to come up
2737 * 2) check Kumeran Diagnostic register PCS lock loss bit
2738 * 3) if not set the link is locked (all is good), otherwise...
2739 * 4) reset the PHY
2740 * 5) repeat up to 10 times
2741 * Note: this is only called for IGP3 copper when speed is 1gb.
2743 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2745 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2746 u32 phy_ctrl;
2747 s32 ret_val;
2748 u16 i, data;
2749 bool link;
2751 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2752 return 0;
2755 * Make sure link is up before proceeding. If not just return.
2756 * Attempting this while link is negotiating fouled up link
2757 * stability
2759 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2760 if (!link)
2761 return 0;
2763 for (i = 0; i < 10; i++) {
2764 /* read once to clear */
2765 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2766 if (ret_val)
2767 return ret_val;
2768 /* and again to get new status */
2769 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2770 if (ret_val)
2771 return ret_val;
2773 /* check for PCS lock */
2774 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2775 return 0;
2777 /* Issue PHY reset */
2778 e1000_phy_hw_reset(hw);
2779 mdelay(5);
2781 /* Disable GigE link negotiation */
2782 phy_ctrl = er32(PHY_CTRL);
2783 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2784 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2785 ew32(PHY_CTRL, phy_ctrl);
2788 * Call gig speed drop workaround on Gig disable before accessing
2789 * any PHY registers
2791 e1000e_gig_downshift_workaround_ich8lan(hw);
2793 /* unable to acquire PCS lock */
2794 return -E1000_ERR_PHY;
2798 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2799 * @hw: pointer to the HW structure
2800 * @state: boolean value used to set the current Kumeran workaround state
2802 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2803 * /disabled - FALSE).
2805 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2806 bool state)
2808 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2810 if (hw->mac.type != e1000_ich8lan) {
2811 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2812 return;
2815 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2819 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2820 * @hw: pointer to the HW structure
2822 * Workaround for 82566 power-down on D3 entry:
2823 * 1) disable gigabit link
2824 * 2) write VR power-down enable
2825 * 3) read it back
2826 * Continue if successful, else issue LCD reset and repeat
2828 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2830 u32 reg;
2831 u16 data;
2832 u8 retry = 0;
2834 if (hw->phy.type != e1000_phy_igp_3)
2835 return;
2837 /* Try the workaround twice (if needed) */
2838 do {
2839 /* Disable link */
2840 reg = er32(PHY_CTRL);
2841 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2842 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2843 ew32(PHY_CTRL, reg);
2846 * Call gig speed drop workaround on Gig disable before
2847 * accessing any PHY registers
2849 if (hw->mac.type == e1000_ich8lan)
2850 e1000e_gig_downshift_workaround_ich8lan(hw);
2852 /* Write VR power-down enable */
2853 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2854 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2855 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2857 /* Read it back and test */
2858 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2859 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2860 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2861 break;
2863 /* Issue PHY reset and repeat at most one more time */
2864 reg = er32(CTRL);
2865 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2866 retry++;
2867 } while (retry);
2871 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2872 * @hw: pointer to the HW structure
2874 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2875 * LPLU, Gig disable, MDIC PHY reset):
2876 * 1) Set Kumeran Near-end loopback
2877 * 2) Clear Kumeran Near-end loopback
2878 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2880 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2882 s32 ret_val;
2883 u16 reg_data;
2885 if ((hw->mac.type != e1000_ich8lan) ||
2886 (hw->phy.type != e1000_phy_igp_3))
2887 return;
2889 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2890 &reg_data);
2891 if (ret_val)
2892 return;
2893 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2894 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2895 reg_data);
2896 if (ret_val)
2897 return;
2898 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2899 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2900 reg_data);
2904 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2905 * @hw: pointer to the HW structure
2907 * During S0 to Sx transition, it is possible the link remains at gig
2908 * instead of negotiating to a lower speed. Before going to Sx, set
2909 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2910 * to a lower speed.
2912 * Should only be called for applicable parts.
2914 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2916 u32 phy_ctrl;
2918 switch (hw->mac.type) {
2919 case e1000_ich9lan:
2920 case e1000_ich10lan:
2921 case e1000_pchlan:
2922 phy_ctrl = er32(PHY_CTRL);
2923 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2924 E1000_PHY_CTRL_GBE_DISABLE;
2925 ew32(PHY_CTRL, phy_ctrl);
2927 if (hw->mac.type == e1000_pchlan)
2928 e1000_phy_hw_reset_ich8lan(hw);
2929 default:
2930 break;
2933 return;
2937 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2938 * @hw: pointer to the HW structure
2940 * Return the LED back to the default configuration.
2942 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2944 if (hw->phy.type == e1000_phy_ife)
2945 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2947 ew32(LEDCTL, hw->mac.ledctl_default);
2948 return 0;
2952 * e1000_led_on_ich8lan - Turn LEDs on
2953 * @hw: pointer to the HW structure
2955 * Turn on the LEDs.
2957 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2959 if (hw->phy.type == e1000_phy_ife)
2960 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2961 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2963 ew32(LEDCTL, hw->mac.ledctl_mode2);
2964 return 0;
2968 * e1000_led_off_ich8lan - Turn LEDs off
2969 * @hw: pointer to the HW structure
2971 * Turn off the LEDs.
2973 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2975 if (hw->phy.type == e1000_phy_ife)
2976 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2977 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2979 ew32(LEDCTL, hw->mac.ledctl_mode1);
2980 return 0;
2984 * e1000_setup_led_pchlan - Configures SW controllable LED
2985 * @hw: pointer to the HW structure
2987 * This prepares the SW controllable LED for use.
2989 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
2991 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2992 (u16)hw->mac.ledctl_mode1);
2996 * e1000_cleanup_led_pchlan - Restore the default LED operation
2997 * @hw: pointer to the HW structure
2999 * Return the LED back to the default configuration.
3001 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3003 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
3004 (u16)hw->mac.ledctl_default);
3008 * e1000_led_on_pchlan - Turn LEDs on
3009 * @hw: pointer to the HW structure
3011 * Turn on the LEDs.
3013 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3015 u16 data = (u16)hw->mac.ledctl_mode2;
3016 u32 i, led;
3019 * If no link, then turn LED on by setting the invert bit
3020 * for each LED that's mode is "link_up" in ledctl_mode2.
3022 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3023 for (i = 0; i < 3; i++) {
3024 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3025 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3026 E1000_LEDCTL_MODE_LINK_UP)
3027 continue;
3028 if (led & E1000_PHY_LED0_IVRT)
3029 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3030 else
3031 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3035 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3039 * e1000_led_off_pchlan - Turn LEDs off
3040 * @hw: pointer to the HW structure
3042 * Turn off the LEDs.
3044 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3046 u16 data = (u16)hw->mac.ledctl_mode1;
3047 u32 i, led;
3050 * If no link, then turn LED off by clearing the invert bit
3051 * for each LED that's mode is "link_up" in ledctl_mode1.
3053 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3054 for (i = 0; i < 3; i++) {
3055 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3056 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3057 E1000_LEDCTL_MODE_LINK_UP)
3058 continue;
3059 if (led & E1000_PHY_LED0_IVRT)
3060 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3061 else
3062 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3066 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3070 * e1000_get_cfg_done_ich8lan - Read config done bit
3071 * @hw: pointer to the HW structure
3073 * Read the management control register for the config done bit for
3074 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3075 * to read the config done bit, so an error is *ONLY* logged and returns
3076 * 0. If we were to return with error, EEPROM-less silicon
3077 * would not be able to be reset or change link.
3079 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3081 u32 bank = 0;
3083 if (hw->mac.type >= e1000_pchlan) {
3084 u32 status = er32(STATUS);
3086 if (status & E1000_STATUS_PHYRA)
3087 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3088 else
3089 hw_dbg(hw,
3090 "PHY Reset Asserted not set - needs delay\n");
3093 e1000e_get_cfg_done(hw);
3095 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3096 if ((hw->mac.type != e1000_ich10lan) &&
3097 (hw->mac.type != e1000_pchlan)) {
3098 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3099 (hw->phy.type == e1000_phy_igp_3)) {
3100 e1000e_phy_init_script_igp3(hw);
3102 } else {
3103 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3104 /* Maybe we should do a basic PHY config */
3105 hw_dbg(hw, "EEPROM not present\n");
3106 return -E1000_ERR_CONFIG;
3110 return 0;
3114 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3115 * @hw: pointer to the HW structure
3117 * Clears hardware counters specific to the silicon family and calls
3118 * clear_hw_cntrs_generic to clear all general purpose counters.
3120 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3122 u32 temp;
3123 u16 phy_data;
3125 e1000e_clear_hw_cntrs_base(hw);
3127 temp = er32(ALGNERRC);
3128 temp = er32(RXERRC);
3129 temp = er32(TNCRS);
3130 temp = er32(CEXTERR);
3131 temp = er32(TSCTC);
3132 temp = er32(TSCTFC);
3134 temp = er32(MGTPRC);
3135 temp = er32(MGTPDC);
3136 temp = er32(MGTPTC);
3138 temp = er32(IAC);
3139 temp = er32(ICRXOC);
3141 /* Clear PHY statistics registers */
3142 if ((hw->phy.type == e1000_phy_82578) ||
3143 (hw->phy.type == e1000_phy_82577)) {
3144 hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
3145 hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
3146 hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
3147 hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
3148 hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
3149 hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
3150 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
3151 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
3152 hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
3153 hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
3154 hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
3155 hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
3156 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
3157 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
3161 static struct e1000_mac_operations ich8_mac_ops = {
3162 .id_led_init = e1000e_id_led_init,
3163 .check_mng_mode = e1000_check_mng_mode_ich8lan,
3164 .check_for_link = e1000_check_for_copper_link_ich8lan,
3165 /* cleanup_led dependent on mac type */
3166 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3167 .get_bus_info = e1000_get_bus_info_ich8lan,
3168 .get_link_up_info = e1000_get_link_up_info_ich8lan,
3169 /* led_on dependent on mac type */
3170 /* led_off dependent on mac type */
3171 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
3172 .reset_hw = e1000_reset_hw_ich8lan,
3173 .init_hw = e1000_init_hw_ich8lan,
3174 .setup_link = e1000_setup_link_ich8lan,
3175 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3176 /* id_led_init dependent on mac type */
3179 static struct e1000_phy_operations ich8_phy_ops = {
3180 .acquire_phy = e1000_acquire_swflag_ich8lan,
3181 .check_reset_block = e1000_check_reset_block_ich8lan,
3182 .commit_phy = NULL,
3183 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
3184 .get_cfg_done = e1000_get_cfg_done_ich8lan,
3185 .get_cable_length = e1000e_get_cable_length_igp_2,
3186 .get_phy_info = e1000_get_phy_info_ich8lan,
3187 .read_phy_reg = e1000e_read_phy_reg_igp,
3188 .release_phy = e1000_release_swflag_ich8lan,
3189 .reset_phy = e1000_phy_hw_reset_ich8lan,
3190 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3191 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
3192 .write_phy_reg = e1000e_write_phy_reg_igp,
3195 static struct e1000_nvm_operations ich8_nvm_ops = {
3196 .acquire_nvm = e1000_acquire_nvm_ich8lan,
3197 .read_nvm = e1000_read_nvm_ich8lan,
3198 .release_nvm = e1000_release_nvm_ich8lan,
3199 .update_nvm = e1000_update_nvm_checksum_ich8lan,
3200 .valid_led_default = e1000_valid_led_default_ich8lan,
3201 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
3202 .write_nvm = e1000_write_nvm_ich8lan,
3205 struct e1000_info e1000_ich8_info = {
3206 .mac = e1000_ich8lan,
3207 .flags = FLAG_HAS_WOL
3208 | FLAG_IS_ICH
3209 | FLAG_RX_CSUM_ENABLED
3210 | FLAG_HAS_CTRLEXT_ON_LOAD
3211 | FLAG_HAS_AMT
3212 | FLAG_HAS_FLASH
3213 | FLAG_APME_IN_WUC,
3214 .pba = 8,
3215 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
3216 .get_variants = e1000_get_variants_ich8lan,
3217 .mac_ops = &ich8_mac_ops,
3218 .phy_ops = &ich8_phy_ops,
3219 .nvm_ops = &ich8_nvm_ops,
3222 struct e1000_info e1000_ich9_info = {
3223 .mac = e1000_ich9lan,
3224 .flags = FLAG_HAS_JUMBO_FRAMES
3225 | FLAG_IS_ICH
3226 | FLAG_HAS_WOL
3227 | FLAG_RX_CSUM_ENABLED
3228 | FLAG_HAS_CTRLEXT_ON_LOAD
3229 | FLAG_HAS_AMT
3230 | FLAG_HAS_ERT
3231 | FLAG_HAS_FLASH
3232 | FLAG_APME_IN_WUC,
3233 .pba = 10,
3234 .max_hw_frame_size = DEFAULT_JUMBO,
3235 .get_variants = e1000_get_variants_ich8lan,
3236 .mac_ops = &ich8_mac_ops,
3237 .phy_ops = &ich8_phy_ops,
3238 .nvm_ops = &ich8_nvm_ops,
3241 struct e1000_info e1000_ich10_info = {
3242 .mac = e1000_ich10lan,
3243 .flags = FLAG_HAS_JUMBO_FRAMES
3244 | FLAG_IS_ICH
3245 | FLAG_HAS_WOL
3246 | FLAG_RX_CSUM_ENABLED
3247 | FLAG_HAS_CTRLEXT_ON_LOAD
3248 | FLAG_HAS_AMT
3249 | FLAG_HAS_ERT
3250 | FLAG_HAS_FLASH
3251 | FLAG_APME_IN_WUC,
3252 .pba = 10,
3253 .max_hw_frame_size = DEFAULT_JUMBO,
3254 .get_variants = e1000_get_variants_ich8lan,
3255 .mac_ops = &ich8_mac_ops,
3256 .phy_ops = &ich8_phy_ops,
3257 .nvm_ops = &ich8_nvm_ops,
3260 struct e1000_info e1000_pch_info = {
3261 .mac = e1000_pchlan,
3262 .flags = FLAG_IS_ICH
3263 | FLAG_HAS_WOL
3264 | FLAG_RX_CSUM_ENABLED
3265 | FLAG_HAS_CTRLEXT_ON_LOAD
3266 | FLAG_HAS_AMT
3267 | FLAG_HAS_FLASH
3268 | FLAG_HAS_JUMBO_FRAMES
3269 | FLAG_APME_IN_WUC,
3270 .pba = 26,
3271 .max_hw_frame_size = 4096,
3272 .get_variants = e1000_get_variants_ich8lan,
3273 .mac_ops = &ich8_mac_ops,
3274 .phy_ops = &ich8_phy_ops,
3275 .nvm_ops = &ich8_nvm_ops,