1 /*******************************************************************************
3 Copyright(c) 2006 Tundra Semiconductor Corporation.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 2 of the License, or (at your option)
10 This program is distributed in the hope that it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc., 59
17 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *******************************************************************************/
21 /* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 * additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50 #include <linux/etherdevice.h>
52 #include <asm/system.h>
54 #include <asm/tsi108.h>
56 #include "tsi108_eth.h"
58 #define MII_READ_DELAY 10000 /* max link wait time in msec */
60 #define TSI108_RXRING_LEN 256
62 /* NOTE: The driver currently does not support receiving packets
63 * larger than the buffer size, so don't decrease this (unless you
64 * want to add such support).
66 #define TSI108_RXBUF_SIZE 1536
68 #define TSI108_TXRING_LEN 256
70 #define TSI108_TX_INT_FREQ 64
72 /* Check the phy status every half a second. */
73 #define CHECK_PHY_INTERVAL (HZ/2)
75 static int tsi108_init_one(struct platform_device
*pdev
);
76 static int tsi108_ether_remove(struct platform_device
*pdev
);
78 struct tsi108_prv_data
{
79 void __iomem
*regs
; /* Base of normal regs */
80 void __iomem
*phyregs
; /* Base of register bank used for PHY access */
82 unsigned int phy
; /* Index of PHY for this interface */
85 unsigned int phy_type
;
87 struct timer_list timer
;/* Timer that triggers the check phy function */
88 unsigned int rxtail
; /* Next entry in rxring to read */
89 unsigned int rxhead
; /* Next entry in rxring to give a new buffer */
90 unsigned int rxfree
; /* Number of free, allocated RX buffers */
92 unsigned int rxpending
; /* Non-zero if there are still descriptors
93 * to be processed from a previous descriptor
94 * interrupt condition that has been cleared */
96 unsigned int txtail
; /* Next TX descriptor to check status on */
97 unsigned int txhead
; /* Next TX descriptor to use */
99 /* Number of free TX descriptors. This could be calculated from
100 * rxhead and rxtail if one descriptor were left unused to disambiguate
101 * full and empty conditions, but it's simpler to just keep track
106 unsigned int phy_ok
; /* The PHY is currently powered on. */
108 /* PHY status (duplex is 1 for half, 2 for full,
109 * so that the default 0 indicates that neither has
110 * yet been configured). */
112 unsigned int link_up
;
118 struct sk_buff
*txskbs
[TSI108_TXRING_LEN
];
119 struct sk_buff
*rxskbs
[TSI108_RXRING_LEN
];
121 dma_addr_t txdma
, rxdma
;
123 /* txlock nests in misclock and phy_lock */
125 spinlock_t txlock
, misclock
;
127 /* stats is used to hold the upper bits of each hardware counter,
128 * and tmpstats is used to hold the full values for returning
129 * to the caller of get_stats(). They must be separate in case
130 * an overflow interrupt occurs before the stats are consumed.
133 struct net_device_stats stats
;
134 struct net_device_stats tmpstats
;
136 /* These stats are kept separate in hardware, thus require individual
137 * fields for handling carry. They are combined in get_stats.
140 unsigned long rx_fcs
; /* Add to rx_frame_errors */
141 unsigned long rx_short_fcs
; /* Add to rx_frame_errors */
142 unsigned long rx_long_fcs
; /* Add to rx_frame_errors */
143 unsigned long rx_underruns
; /* Add to rx_length_errors */
144 unsigned long rx_overruns
; /* Add to rx_length_errors */
146 unsigned long tx_coll_abort
; /* Add to tx_aborted_errors/collisions */
147 unsigned long tx_pause_drop
; /* Add to tx_aborted_errors */
149 unsigned long mc_hash
[16];
150 u32 msg_enable
; /* debug message level */
151 struct mii_if_info mii_if
;
152 unsigned int init_media
;
155 /* Structure for a device driver */
157 static struct platform_driver tsi_eth_driver
= {
158 .probe
= tsi108_init_one
,
159 .remove
= tsi108_ether_remove
,
161 .name
= "tsi-ethernet",
165 static void tsi108_timed_checker(unsigned long dev_ptr
);
167 static void dump_eth_one(struct net_device
*dev
)
169 struct tsi108_prv_data
*data
= netdev_priv(dev
);
171 printk("Dumping %s...\n", dev
->name
);
172 printk("intstat %x intmask %x phy_ok %d"
173 " link %d speed %d duplex %d\n",
174 TSI_READ(TSI108_EC_INTSTAT
),
175 TSI_READ(TSI108_EC_INTMASK
), data
->phy_ok
,
176 data
->link_up
, data
->speed
, data
->duplex
);
178 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
179 data
->txhead
, data
->txtail
, data
->txfree
,
180 TSI_READ(TSI108_EC_TXSTAT
),
181 TSI_READ(TSI108_EC_TXESTAT
),
182 TSI_READ(TSI108_EC_TXERR
));
184 printk("RX: head %d, tail %d, free %d, stat %x,"
185 " estat %x, err %x, pending %d\n\n",
186 data
->rxhead
, data
->rxtail
, data
->rxfree
,
187 TSI_READ(TSI108_EC_RXSTAT
),
188 TSI_READ(TSI108_EC_RXESTAT
),
189 TSI_READ(TSI108_EC_RXERR
), data
->rxpending
);
192 /* Synchronization is needed between the thread and up/down events.
193 * Note that the PHY is accessed through the same registers for both
194 * interfaces, so this can't be made interface-specific.
197 static DEFINE_SPINLOCK(phy_lock
);
199 static int tsi108_read_mii(struct tsi108_prv_data
*data
, int reg
)
203 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR
,
204 (data
->phy
<< TSI108_MAC_MII_ADDR_PHY
) |
205 (reg
<< TSI108_MAC_MII_ADDR_REG
));
206 TSI_WRITE_PHY(TSI108_MAC_MII_CMD
, 0);
207 TSI_WRITE_PHY(TSI108_MAC_MII_CMD
, TSI108_MAC_MII_CMD_READ
);
208 for (i
= 0; i
< 100; i
++) {
209 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND
) &
210 (TSI108_MAC_MII_IND_NOTVALID
| TSI108_MAC_MII_IND_BUSY
)))
218 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN
));
221 static void tsi108_write_mii(struct tsi108_prv_data
*data
,
225 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR
,
226 (data
->phy
<< TSI108_MAC_MII_ADDR_PHY
) |
227 (reg
<< TSI108_MAC_MII_ADDR_REG
));
228 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT
, val
);
230 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND
) &
231 TSI108_MAC_MII_IND_BUSY
))
237 static int tsi108_mdio_read(struct net_device
*dev
, int addr
, int reg
)
239 struct tsi108_prv_data
*data
= netdev_priv(dev
);
240 return tsi108_read_mii(data
, reg
);
243 static void tsi108_mdio_write(struct net_device
*dev
, int addr
, int reg
, int val
)
245 struct tsi108_prv_data
*data
= netdev_priv(dev
);
246 tsi108_write_mii(data
, reg
, val
);
249 static inline void tsi108_write_tbi(struct tsi108_prv_data
*data
,
253 TSI_WRITE(TSI108_MAC_MII_ADDR
,
254 (0x1e << TSI108_MAC_MII_ADDR_PHY
)
255 | (reg
<< TSI108_MAC_MII_ADDR_REG
));
256 TSI_WRITE(TSI108_MAC_MII_DATAOUT
, val
);
258 if(!(TSI_READ(TSI108_MAC_MII_IND
) & TSI108_MAC_MII_IND_BUSY
))
262 printk(KERN_ERR
"%s function time out \n", __FUNCTION__
);
265 static int mii_speed(struct mii_if_info
*mii
)
267 int advert
, lpa
, val
, media
;
271 if (!mii_link_ok(mii
))
274 val
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_BMSR
);
275 if ((val
& BMSR_ANEGCOMPLETE
) == 0)
278 advert
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_ADVERTISE
);
279 lpa
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_LPA
);
280 media
= mii_nway_result(advert
& lpa
);
282 if (mii
->supports_gmii
)
283 lpa2
= mii
->mdio_read(mii
->dev
, mii
->phy_id
, MII_STAT1000
);
285 speed
= lpa2
& (LPA_1000FULL
| LPA_1000HALF
) ? 1000 :
286 (media
& (ADVERTISE_100FULL
| ADVERTISE_100HALF
) ? 100 : 10);
290 static void tsi108_check_phy(struct net_device
*dev
)
292 struct tsi108_prv_data
*data
= netdev_priv(dev
);
293 u32 mac_cfg2_reg
, portctrl_reg
;
298 /* Do a dummy read, as for some reason the first read
299 * after a link becomes up returns link down, even if
300 * it's been a while since the link came up.
303 spin_lock_irqsave(&phy_lock
, flags
);
308 tsi108_read_mii(data
, MII_BMSR
);
310 duplex
= mii_check_media(&data
->mii_if
, netif_msg_link(data
), data
->init_media
);
311 data
->init_media
= 0;
313 if (netif_carrier_ok(dev
)) {
315 speed
= mii_speed(&data
->mii_if
);
317 if ((speed
!= data
->speed
) || duplex
) {
319 mac_cfg2_reg
= TSI_READ(TSI108_MAC_CFG2
);
320 portctrl_reg
= TSI_READ(TSI108_EC_PORTCTRL
);
322 mac_cfg2_reg
&= ~TSI108_MAC_CFG2_IFACE_MASK
;
325 mac_cfg2_reg
|= TSI108_MAC_CFG2_GIG
;
326 portctrl_reg
&= ~TSI108_EC_PORTCTRL_NOGIG
;
328 mac_cfg2_reg
|= TSI108_MAC_CFG2_NOGIG
;
329 portctrl_reg
|= TSI108_EC_PORTCTRL_NOGIG
;
334 if (data
->mii_if
.full_duplex
) {
335 mac_cfg2_reg
|= TSI108_MAC_CFG2_FULLDUPLEX
;
336 portctrl_reg
&= ~TSI108_EC_PORTCTRL_HALFDUPLEX
;
339 mac_cfg2_reg
&= ~TSI108_MAC_CFG2_FULLDUPLEX
;
340 portctrl_reg
|= TSI108_EC_PORTCTRL_HALFDUPLEX
;
344 TSI_WRITE(TSI108_MAC_CFG2
, mac_cfg2_reg
);
345 TSI_WRITE(TSI108_EC_PORTCTRL
, portctrl_reg
);
347 if (data
->link_up
== 0) {
348 /* The manual says it can take 3-4 usecs for the speed change
353 spin_lock(&data
->txlock
);
354 if (is_valid_ether_addr(dev
->dev_addr
) && data
->txfree
)
355 netif_wake_queue(dev
);
358 spin_unlock(&data
->txlock
);
363 if (data
->link_up
== 1) {
364 netif_stop_queue(dev
);
366 printk(KERN_NOTICE
"%s : link is down\n", dev
->name
);
374 spin_unlock_irqrestore(&phy_lock
, flags
);
378 tsi108_stat_carry_one(int carry
, int carry_bit
, int carry_shift
,
379 unsigned long *upper
)
381 if (carry
& carry_bit
)
382 *upper
+= carry_shift
;
385 static void tsi108_stat_carry(struct net_device
*dev
)
387 struct tsi108_prv_data
*data
= netdev_priv(dev
);
390 spin_lock_irq(&data
->misclock
);
392 carry1
= TSI_READ(TSI108_STAT_CARRY1
);
393 carry2
= TSI_READ(TSI108_STAT_CARRY2
);
395 TSI_WRITE(TSI108_STAT_CARRY1
, carry1
);
396 TSI_WRITE(TSI108_STAT_CARRY2
, carry2
);
398 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXBYTES
,
399 TSI108_STAT_RXBYTES_CARRY
, &data
->stats
.rx_bytes
);
401 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXPKTS
,
402 TSI108_STAT_RXPKTS_CARRY
,
403 &data
->stats
.rx_packets
);
405 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXFCS
,
406 TSI108_STAT_RXFCS_CARRY
, &data
->rx_fcs
);
408 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXMCAST
,
409 TSI108_STAT_RXMCAST_CARRY
,
410 &data
->stats
.multicast
);
412 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXALIGN
,
413 TSI108_STAT_RXALIGN_CARRY
,
414 &data
->stats
.rx_frame_errors
);
416 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXLENGTH
,
417 TSI108_STAT_RXLENGTH_CARRY
,
418 &data
->stats
.rx_length_errors
);
420 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXRUNT
,
421 TSI108_STAT_RXRUNT_CARRY
, &data
->rx_underruns
);
423 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXJUMBO
,
424 TSI108_STAT_RXJUMBO_CARRY
, &data
->rx_overruns
);
426 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXFRAG
,
427 TSI108_STAT_RXFRAG_CARRY
, &data
->rx_short_fcs
);
429 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXJABBER
,
430 TSI108_STAT_RXJABBER_CARRY
, &data
->rx_long_fcs
);
432 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXDROP
,
433 TSI108_STAT_RXDROP_CARRY
,
434 &data
->stats
.rx_missed_errors
);
436 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXBYTES
,
437 TSI108_STAT_TXBYTES_CARRY
, &data
->stats
.tx_bytes
);
439 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXPKTS
,
440 TSI108_STAT_TXPKTS_CARRY
,
441 &data
->stats
.tx_packets
);
443 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXEXDEF
,
444 TSI108_STAT_TXEXDEF_CARRY
,
445 &data
->stats
.tx_aborted_errors
);
447 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXEXCOL
,
448 TSI108_STAT_TXEXCOL_CARRY
, &data
->tx_coll_abort
);
450 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXTCOL
,
451 TSI108_STAT_TXTCOL_CARRY
,
452 &data
->stats
.collisions
);
454 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXPAUSE
,
455 TSI108_STAT_TXPAUSEDROP_CARRY
,
456 &data
->tx_pause_drop
);
458 spin_unlock_irq(&data
->misclock
);
461 /* Read a stat counter atomically with respect to carries.
462 * data->misclock must be held.
464 static inline unsigned long
465 tsi108_read_stat(struct tsi108_prv_data
* data
, int reg
, int carry_bit
,
466 int carry_shift
, unsigned long *upper
)
472 carryreg
= TSI108_STAT_CARRY1
;
474 carryreg
= TSI108_STAT_CARRY2
;
477 val
= TSI_READ(reg
) | *upper
;
479 /* Check to see if it overflowed, but the interrupt hasn't
480 * been serviced yet. If so, handle the carry here, and
484 if (unlikely(TSI_READ(carryreg
) & carry_bit
)) {
485 *upper
+= carry_shift
;
486 TSI_WRITE(carryreg
, carry_bit
);
493 static struct net_device_stats
*tsi108_get_stats(struct net_device
*dev
)
497 struct tsi108_prv_data
*data
= netdev_priv(dev
);
498 spin_lock_irq(&data
->misclock
);
500 data
->tmpstats
.rx_packets
=
501 tsi108_read_stat(data
, TSI108_STAT_RXPKTS
,
502 TSI108_STAT_CARRY1_RXPKTS
,
503 TSI108_STAT_RXPKTS_CARRY
, &data
->stats
.rx_packets
);
505 data
->tmpstats
.tx_packets
=
506 tsi108_read_stat(data
, TSI108_STAT_TXPKTS
,
507 TSI108_STAT_CARRY2_TXPKTS
,
508 TSI108_STAT_TXPKTS_CARRY
, &data
->stats
.tx_packets
);
510 data
->tmpstats
.rx_bytes
=
511 tsi108_read_stat(data
, TSI108_STAT_RXBYTES
,
512 TSI108_STAT_CARRY1_RXBYTES
,
513 TSI108_STAT_RXBYTES_CARRY
, &data
->stats
.rx_bytes
);
515 data
->tmpstats
.tx_bytes
=
516 tsi108_read_stat(data
, TSI108_STAT_TXBYTES
,
517 TSI108_STAT_CARRY2_TXBYTES
,
518 TSI108_STAT_TXBYTES_CARRY
, &data
->stats
.tx_bytes
);
520 data
->tmpstats
.multicast
=
521 tsi108_read_stat(data
, TSI108_STAT_RXMCAST
,
522 TSI108_STAT_CARRY1_RXMCAST
,
523 TSI108_STAT_RXMCAST_CARRY
, &data
->stats
.multicast
);
525 excol
= tsi108_read_stat(data
, TSI108_STAT_TXEXCOL
,
526 TSI108_STAT_CARRY2_TXEXCOL
,
527 TSI108_STAT_TXEXCOL_CARRY
,
528 &data
->tx_coll_abort
);
530 data
->tmpstats
.collisions
=
531 tsi108_read_stat(data
, TSI108_STAT_TXTCOL
,
532 TSI108_STAT_CARRY2_TXTCOL
,
533 TSI108_STAT_TXTCOL_CARRY
, &data
->stats
.collisions
);
535 data
->tmpstats
.collisions
+= excol
;
537 data
->tmpstats
.rx_length_errors
=
538 tsi108_read_stat(data
, TSI108_STAT_RXLENGTH
,
539 TSI108_STAT_CARRY1_RXLENGTH
,
540 TSI108_STAT_RXLENGTH_CARRY
,
541 &data
->stats
.rx_length_errors
);
543 data
->tmpstats
.rx_length_errors
+=
544 tsi108_read_stat(data
, TSI108_STAT_RXRUNT
,
545 TSI108_STAT_CARRY1_RXRUNT
,
546 TSI108_STAT_RXRUNT_CARRY
, &data
->rx_underruns
);
548 data
->tmpstats
.rx_length_errors
+=
549 tsi108_read_stat(data
, TSI108_STAT_RXJUMBO
,
550 TSI108_STAT_CARRY1_RXJUMBO
,
551 TSI108_STAT_RXJUMBO_CARRY
, &data
->rx_overruns
);
553 data
->tmpstats
.rx_frame_errors
=
554 tsi108_read_stat(data
, TSI108_STAT_RXALIGN
,
555 TSI108_STAT_CARRY1_RXALIGN
,
556 TSI108_STAT_RXALIGN_CARRY
,
557 &data
->stats
.rx_frame_errors
);
559 data
->tmpstats
.rx_frame_errors
+=
560 tsi108_read_stat(data
, TSI108_STAT_RXFCS
,
561 TSI108_STAT_CARRY1_RXFCS
, TSI108_STAT_RXFCS_CARRY
,
564 data
->tmpstats
.rx_frame_errors
+=
565 tsi108_read_stat(data
, TSI108_STAT_RXFRAG
,
566 TSI108_STAT_CARRY1_RXFRAG
,
567 TSI108_STAT_RXFRAG_CARRY
, &data
->rx_short_fcs
);
569 data
->tmpstats
.rx_missed_errors
=
570 tsi108_read_stat(data
, TSI108_STAT_RXDROP
,
571 TSI108_STAT_CARRY1_RXDROP
,
572 TSI108_STAT_RXDROP_CARRY
,
573 &data
->stats
.rx_missed_errors
);
575 /* These three are maintained by software. */
576 data
->tmpstats
.rx_fifo_errors
= data
->stats
.rx_fifo_errors
;
577 data
->tmpstats
.rx_crc_errors
= data
->stats
.rx_crc_errors
;
579 data
->tmpstats
.tx_aborted_errors
=
580 tsi108_read_stat(data
, TSI108_STAT_TXEXDEF
,
581 TSI108_STAT_CARRY2_TXEXDEF
,
582 TSI108_STAT_TXEXDEF_CARRY
,
583 &data
->stats
.tx_aborted_errors
);
585 data
->tmpstats
.tx_aborted_errors
+=
586 tsi108_read_stat(data
, TSI108_STAT_TXPAUSEDROP
,
587 TSI108_STAT_CARRY2_TXPAUSE
,
588 TSI108_STAT_TXPAUSEDROP_CARRY
,
589 &data
->tx_pause_drop
);
591 data
->tmpstats
.tx_aborted_errors
+= excol
;
593 data
->tmpstats
.tx_errors
= data
->tmpstats
.tx_aborted_errors
;
594 data
->tmpstats
.rx_errors
= data
->tmpstats
.rx_length_errors
+
595 data
->tmpstats
.rx_crc_errors
+
596 data
->tmpstats
.rx_frame_errors
+
597 data
->tmpstats
.rx_fifo_errors
+ data
->tmpstats
.rx_missed_errors
;
599 spin_unlock_irq(&data
->misclock
);
600 return &data
->tmpstats
;
603 static void tsi108_restart_rx(struct tsi108_prv_data
* data
, struct net_device
*dev
)
605 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH
,
606 TSI108_EC_RXQ_PTRHIGH_VALID
);
608 TSI_WRITE(TSI108_EC_RXCTRL
, TSI108_EC_RXCTRL_GO
609 | TSI108_EC_RXCTRL_QUEUE0
);
612 static void tsi108_restart_tx(struct tsi108_prv_data
* data
)
614 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH
,
615 TSI108_EC_TXQ_PTRHIGH_VALID
);
617 TSI_WRITE(TSI108_EC_TXCTRL
, TSI108_EC_TXCTRL_IDLEINT
|
618 TSI108_EC_TXCTRL_GO
| TSI108_EC_TXCTRL_QUEUE0
);
621 /* txlock must be held by caller, with IRQs disabled, and
622 * with permission to re-enable them when the lock is dropped.
624 static void tsi108_complete_tx(struct net_device
*dev
)
626 struct tsi108_prv_data
*data
= netdev_priv(dev
);
631 while (!data
->txfree
|| data
->txhead
!= data
->txtail
) {
634 if (data
->txring
[tx
].misc
& TSI108_TX_OWN
)
637 skb
= data
->txskbs
[tx
];
639 if (!(data
->txring
[tx
].misc
& TSI108_TX_OK
))
640 printk("%s: bad tx packet, misc %x\n",
641 dev
->name
, data
->txring
[tx
].misc
);
643 data
->txtail
= (data
->txtail
+ 1) % TSI108_TXRING_LEN
;
646 if (data
->txring
[tx
].misc
& TSI108_TX_EOF
) {
647 dev_kfree_skb_any(skb
);
653 if (is_valid_ether_addr(dev
->dev_addr
) && data
->link_up
)
654 netif_wake_queue(dev
);
658 static int tsi108_send_packet(struct sk_buff
* skb
, struct net_device
*dev
)
660 struct tsi108_prv_data
*data
= netdev_priv(dev
);
661 int frags
= skb_shinfo(skb
)->nr_frags
+ 1;
664 if (!data
->phy_ok
&& net_ratelimit())
665 printk(KERN_ERR
"%s: Transmit while PHY is down!\n", dev
->name
);
667 if (!data
->link_up
) {
668 printk(KERN_ERR
"%s: Transmit while link is down!\n",
670 netif_stop_queue(dev
);
671 return NETDEV_TX_BUSY
;
674 if (data
->txfree
< MAX_SKB_FRAGS
+ 1) {
675 netif_stop_queue(dev
);
678 printk(KERN_ERR
"%s: Transmit with full tx ring!\n",
680 return NETDEV_TX_BUSY
;
683 if (data
->txfree
- frags
< MAX_SKB_FRAGS
+ 1) {
684 netif_stop_queue(dev
);
687 spin_lock_irq(&data
->txlock
);
689 for (i
= 0; i
< frags
; i
++) {
691 int tx
= data
->txhead
;
693 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
694 * the interrupt bit. TX descriptor-complete interrupts are
695 * enabled when the queue fills up, and masked when there is
696 * still free space. This way, when saturating the outbound
697 * link, the tx interrupts are kept to a reasonable level.
698 * When the queue is not full, reclamation of skbs still occurs
699 * as new packets are transmitted, or on a queue-empty
703 if ((tx
% TSI108_TX_INT_FREQ
== 0) &&
704 ((TSI108_TXRING_LEN
- data
->txfree
) >= TSI108_TX_INT_FREQ
))
705 misc
= TSI108_TX_INT
;
707 data
->txskbs
[tx
] = skb
;
710 data
->txring
[tx
].buf0
= dma_map_single(NULL
, skb
->data
,
711 skb
->len
- skb
->data_len
, DMA_TO_DEVICE
);
712 data
->txring
[tx
].len
= skb
->len
- skb
->data_len
;
713 misc
|= TSI108_TX_SOF
;
715 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
717 data
->txring
[tx
].buf0
=
718 dma_map_page(NULL
, frag
->page
, frag
->page_offset
,
719 frag
->size
, DMA_TO_DEVICE
);
720 data
->txring
[tx
].len
= frag
->size
;
724 misc
|= TSI108_TX_EOF
;
726 if (netif_msg_pktdata(data
)) {
728 printk("%s: Tx Frame contents (%d)\n", dev
->name
,
730 for (i
= 0; i
< skb
->len
; i
++)
731 printk(" %2.2x", skb
->data
[i
]);
734 data
->txring
[tx
].misc
= misc
| TSI108_TX_OWN
;
736 data
->txhead
= (data
->txhead
+ 1) % TSI108_TXRING_LEN
;
740 tsi108_complete_tx(dev
);
742 /* This must be done after the check for completed tx descriptors,
743 * so that the tail pointer is correct.
746 if (!(TSI_READ(TSI108_EC_TXSTAT
) & TSI108_EC_TXSTAT_QUEUE0
))
747 tsi108_restart_tx(data
);
749 spin_unlock_irq(&data
->txlock
);
753 static int tsi108_complete_rx(struct net_device
*dev
, int budget
)
755 struct tsi108_prv_data
*data
= netdev_priv(dev
);
758 while (data
->rxfree
&& done
!= budget
) {
759 int rx
= data
->rxtail
;
762 if (data
->rxring
[rx
].misc
& TSI108_RX_OWN
)
765 skb
= data
->rxskbs
[rx
];
766 data
->rxtail
= (data
->rxtail
+ 1) % TSI108_RXRING_LEN
;
770 if (data
->rxring
[rx
].misc
& TSI108_RX_BAD
) {
771 spin_lock_irq(&data
->misclock
);
773 if (data
->rxring
[rx
].misc
& TSI108_RX_CRC
)
774 data
->stats
.rx_crc_errors
++;
775 if (data
->rxring
[rx
].misc
& TSI108_RX_OVER
)
776 data
->stats
.rx_fifo_errors
++;
778 spin_unlock_irq(&data
->misclock
);
780 dev_kfree_skb_any(skb
);
783 if (netif_msg_pktdata(data
)) {
785 printk("%s: Rx Frame contents (%d)\n",
786 dev
->name
, data
->rxring
[rx
].len
);
787 for (i
= 0; i
< data
->rxring
[rx
].len
; i
++)
788 printk(" %2.2x", skb
->data
[i
]);
792 skb_put(skb
, data
->rxring
[rx
].len
);
793 skb
->protocol
= eth_type_trans(skb
, dev
);
794 netif_receive_skb(skb
);
795 dev
->last_rx
= jiffies
;
801 static int tsi108_refill_rx(struct net_device
*dev
, int budget
)
803 struct tsi108_prv_data
*data
= netdev_priv(dev
);
806 while (data
->rxfree
!= TSI108_RXRING_LEN
&& done
!= budget
) {
807 int rx
= data
->rxhead
;
810 data
->rxskbs
[rx
] = skb
= dev_alloc_skb(TSI108_RXBUF_SIZE
+ 2);
814 skb_reserve(skb
, 2); /* Align the data on a 4-byte boundary. */
816 data
->rxring
[rx
].buf0
= dma_map_single(NULL
, skb
->data
,
820 /* Sometimes the hardware sets blen to zero after packet
821 * reception, even though the manual says that it's only ever
822 * modified by the driver.
825 data
->rxring
[rx
].blen
= TSI108_RX_SKB_SIZE
;
826 data
->rxring
[rx
].misc
= TSI108_RX_OWN
| TSI108_RX_INT
;
828 data
->rxhead
= (data
->rxhead
+ 1) % TSI108_RXRING_LEN
;
833 if (done
!= 0 && !(TSI_READ(TSI108_EC_RXSTAT
) &
834 TSI108_EC_RXSTAT_QUEUE0
))
835 tsi108_restart_rx(data
, dev
);
840 static int tsi108_poll(struct net_device
*dev
, int *budget
)
842 struct tsi108_prv_data
*data
= netdev_priv(dev
);
843 u32 estat
= TSI_READ(TSI108_EC_RXESTAT
);
844 u32 intstat
= TSI_READ(TSI108_EC_INTSTAT
);
845 int total_budget
= min(*budget
, dev
->quota
);
846 int num_received
= 0, num_filled
= 0, budget_used
;
848 intstat
&= TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH
|
849 TSI108_INT_RXOVERRUN
| TSI108_INT_RXERROR
| TSI108_INT_RXWAIT
;
851 TSI_WRITE(TSI108_EC_RXESTAT
, estat
);
852 TSI_WRITE(TSI108_EC_INTSTAT
, intstat
);
854 if (data
->rxpending
|| (estat
& TSI108_EC_RXESTAT_Q0_DESCINT
))
855 num_received
= tsi108_complete_rx(dev
, total_budget
);
857 /* This should normally fill no more slots than the number of
858 * packets received in tsi108_complete_rx(). The exception
859 * is when we previously ran out of memory for RX SKBs. In that
860 * case, it's helpful to obey the budget, not only so that the
861 * CPU isn't hogged, but so that memory (which may still be low)
862 * is not hogged by one device.
864 * A work unit is considered to be two SKBs to allow us to catch
865 * up when the ring has shrunk due to out-of-memory but we're
866 * still removing the full budget's worth of packets each time.
869 if (data
->rxfree
< TSI108_RXRING_LEN
)
870 num_filled
= tsi108_refill_rx(dev
, total_budget
* 2);
872 if (intstat
& TSI108_INT_RXERROR
) {
873 u32 err
= TSI_READ(TSI108_EC_RXERR
);
874 TSI_WRITE(TSI108_EC_RXERR
, err
);
878 printk(KERN_DEBUG
"%s: RX error %x\n",
881 if (!(TSI_READ(TSI108_EC_RXSTAT
) &
882 TSI108_EC_RXSTAT_QUEUE0
))
883 tsi108_restart_rx(data
, dev
);
887 if (intstat
& TSI108_INT_RXOVERRUN
) {
888 spin_lock_irq(&data
->misclock
);
889 data
->stats
.rx_fifo_errors
++;
890 spin_unlock_irq(&data
->misclock
);
893 budget_used
= max(num_received
, num_filled
/ 2);
895 *budget
-= budget_used
;
896 dev
->quota
-= budget_used
;
898 if (budget_used
!= total_budget
) {
900 netif_rx_complete(dev
);
902 TSI_WRITE(TSI108_EC_INTMASK
,
903 TSI_READ(TSI108_EC_INTMASK
)
904 & ~(TSI108_INT_RXQUEUE0
905 | TSI108_INT_RXTHRESH
|
906 TSI108_INT_RXOVERRUN
|
910 /* IRQs are level-triggered, so no need to re-check */
919 static void tsi108_rx_int(struct net_device
*dev
)
921 struct tsi108_prv_data
*data
= netdev_priv(dev
);
923 /* A race could cause dev to already be scheduled, so it's not an
924 * error if that happens (and interrupts shouldn't be re-masked,
925 * because that can cause harmful races, if poll has already
926 * unmasked them but not cleared LINK_STATE_SCHED).
928 * This can happen if this code races with tsi108_poll(), which masks
929 * the interrupts after tsi108_irq_one() read the mask, but before
930 * netif_rx_schedule is called. It could also happen due to calls
931 * from tsi108_check_rxring().
934 if (netif_rx_schedule_prep(dev
)) {
935 /* Mask, rather than ack, the receive interrupts. The ack
936 * will happen in tsi108_poll().
939 TSI_WRITE(TSI108_EC_INTMASK
,
940 TSI_READ(TSI108_EC_INTMASK
) |
942 | TSI108_INT_RXTHRESH
|
943 TSI108_INT_RXOVERRUN
| TSI108_INT_RXERROR
|
945 __netif_rx_schedule(dev
);
947 if (!netif_running(dev
)) {
948 /* This can happen if an interrupt occurs while the
949 * interface is being brought down, as the START
950 * bit is cleared before the stop function is called.
952 * In this case, the interrupts must be masked, or
953 * they will continue indefinitely.
955 * There's a race here if the interface is brought down
956 * and then up in rapid succession, as the device could
957 * be made running after the above check and before
958 * the masking below. This will only happen if the IRQ
959 * thread has a lower priority than the task brining
960 * up the interface. Fixing this race would likely
961 * require changes in generic code.
964 TSI_WRITE(TSI108_EC_INTMASK
,
966 (TSI108_EC_INTMASK
) |
967 TSI108_INT_RXQUEUE0
|
968 TSI108_INT_RXTHRESH
|
969 TSI108_INT_RXOVERRUN
|
976 /* If the RX ring has run out of memory, try periodically
977 * to allocate some more, as otherwise poll would never
978 * get called (apart from the initial end-of-queue condition).
980 * This is called once per second (by default) from the thread.
983 static void tsi108_check_rxring(struct net_device
*dev
)
985 struct tsi108_prv_data
*data
= netdev_priv(dev
);
987 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
988 * directly, so as to keep the receive path single-threaded
989 * (and thus not needing a lock).
992 if (netif_running(dev
) && data
->rxfree
< TSI108_RXRING_LEN
/ 4)
996 static void tsi108_tx_int(struct net_device
*dev
)
998 struct tsi108_prv_data
*data
= netdev_priv(dev
);
999 u32 estat
= TSI_READ(TSI108_EC_TXESTAT
);
1001 TSI_WRITE(TSI108_EC_TXESTAT
, estat
);
1002 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_TXQUEUE0
|
1003 TSI108_INT_TXIDLE
| TSI108_INT_TXERROR
);
1004 if (estat
& TSI108_EC_TXESTAT_Q0_ERR
) {
1005 u32 err
= TSI_READ(TSI108_EC_TXERR
);
1006 TSI_WRITE(TSI108_EC_TXERR
, err
);
1008 if (err
&& net_ratelimit())
1009 printk(KERN_ERR
"%s: TX error %x\n", dev
->name
, err
);
1012 if (estat
& (TSI108_EC_TXESTAT_Q0_DESCINT
| TSI108_EC_TXESTAT_Q0_EOQ
)) {
1013 spin_lock(&data
->txlock
);
1014 tsi108_complete_tx(dev
);
1015 spin_unlock(&data
->txlock
);
1020 static irqreturn_t
tsi108_irq(int irq
, void *dev_id
)
1022 struct net_device
*dev
= dev_id
;
1023 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1024 u32 stat
= TSI_READ(TSI108_EC_INTSTAT
);
1026 if (!(stat
& TSI108_INT_ANY
))
1027 return IRQ_NONE
; /* Not our interrupt */
1029 stat
&= ~TSI_READ(TSI108_EC_INTMASK
);
1031 if (stat
& (TSI108_INT_TXQUEUE0
| TSI108_INT_TXIDLE
|
1032 TSI108_INT_TXERROR
))
1034 if (stat
& (TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH
|
1035 TSI108_INT_RXWAIT
| TSI108_INT_RXOVERRUN
|
1036 TSI108_INT_RXERROR
))
1039 if (stat
& TSI108_INT_SFN
) {
1040 if (net_ratelimit())
1041 printk(KERN_DEBUG
"%s: SFN error\n", dev
->name
);
1042 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_SFN
);
1045 if (stat
& TSI108_INT_STATCARRY
) {
1046 tsi108_stat_carry(dev
);
1047 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_STATCARRY
);
1053 static void tsi108_stop_ethernet(struct net_device
*dev
)
1055 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1057 /* Disable all TX and RX queues ... */
1058 TSI_WRITE(TSI108_EC_TXCTRL
, 0);
1059 TSI_WRITE(TSI108_EC_RXCTRL
, 0);
1061 /* ...and wait for them to become idle */
1063 if(!(TSI_READ(TSI108_EC_TXSTAT
) & TSI108_EC_TXSTAT_ACTIVE
))
1069 if(!(TSI_READ(TSI108_EC_RXSTAT
) & TSI108_EC_RXSTAT_ACTIVE
))
1073 printk(KERN_ERR
"%s function time out \n", __FUNCTION__
);
1076 static void tsi108_reset_ether(struct tsi108_prv_data
* data
)
1078 TSI_WRITE(TSI108_MAC_CFG1
, TSI108_MAC_CFG1_SOFTRST
);
1080 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1082 TSI_WRITE(TSI108_EC_PORTCTRL
, TSI108_EC_PORTCTRL_STATRST
);
1084 TSI_WRITE(TSI108_EC_PORTCTRL
,
1085 TSI_READ(TSI108_EC_PORTCTRL
) &
1086 ~TSI108_EC_PORTCTRL_STATRST
);
1088 TSI_WRITE(TSI108_EC_TXCFG
, TSI108_EC_TXCFG_RST
);
1090 TSI_WRITE(TSI108_EC_TXCFG
,
1091 TSI_READ(TSI108_EC_TXCFG
) &
1092 ~TSI108_EC_TXCFG_RST
);
1094 TSI_WRITE(TSI108_EC_RXCFG
, TSI108_EC_RXCFG_RST
);
1096 TSI_WRITE(TSI108_EC_RXCFG
,
1097 TSI_READ(TSI108_EC_RXCFG
) &
1098 ~TSI108_EC_RXCFG_RST
);
1100 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG
,
1101 TSI_READ(TSI108_MAC_MII_MGMT_CFG
) |
1102 TSI108_MAC_MII_MGMT_RST
);
1104 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG
,
1105 (TSI_READ(TSI108_MAC_MII_MGMT_CFG
) &
1106 ~(TSI108_MAC_MII_MGMT_RST
|
1107 TSI108_MAC_MII_MGMT_CLK
)) | 0x07);
1110 static int tsi108_get_mac(struct net_device
*dev
)
1112 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1113 u32 word1
= TSI_READ(TSI108_MAC_ADDR1
);
1114 u32 word2
= TSI_READ(TSI108_MAC_ADDR2
);
1116 /* Note that the octets are reversed from what the manual says,
1117 * producing an even weirder ordering...
1119 if (word2
== 0 && word1
== 0) {
1120 dev
->dev_addr
[0] = 0x00;
1121 dev
->dev_addr
[1] = 0x06;
1122 dev
->dev_addr
[2] = 0xd2;
1123 dev
->dev_addr
[3] = 0x00;
1124 dev
->dev_addr
[4] = 0x00;
1125 if (0x8 == data
->phy
)
1126 dev
->dev_addr
[5] = 0x01;
1128 dev
->dev_addr
[5] = 0x02;
1130 word2
= (dev
->dev_addr
[0] << 16) | (dev
->dev_addr
[1] << 24);
1132 word1
= (dev
->dev_addr
[2] << 0) | (dev
->dev_addr
[3] << 8) |
1133 (dev
->dev_addr
[4] << 16) | (dev
->dev_addr
[5] << 24);
1135 TSI_WRITE(TSI108_MAC_ADDR1
, word1
);
1136 TSI_WRITE(TSI108_MAC_ADDR2
, word2
);
1138 dev
->dev_addr
[0] = (word2
>> 16) & 0xff;
1139 dev
->dev_addr
[1] = (word2
>> 24) & 0xff;
1140 dev
->dev_addr
[2] = (word1
>> 0) & 0xff;
1141 dev
->dev_addr
[3] = (word1
>> 8) & 0xff;
1142 dev
->dev_addr
[4] = (word1
>> 16) & 0xff;
1143 dev
->dev_addr
[5] = (word1
>> 24) & 0xff;
1146 if (!is_valid_ether_addr(dev
->dev_addr
)) {
1147 printk("KERN_ERR: word1: %08x, word2: %08x\n", word1
, word2
);
1154 static int tsi108_set_mac(struct net_device
*dev
, void *addr
)
1156 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1160 if (!is_valid_ether_addr(addr
))
1163 for (i
= 0; i
< 6; i
++)
1164 /* +2 is for the offset of the HW addr type */
1165 dev
->dev_addr
[i
] = ((unsigned char *)addr
)[i
+ 2];
1167 word2
= (dev
->dev_addr
[0] << 16) | (dev
->dev_addr
[1] << 24);
1169 word1
= (dev
->dev_addr
[2] << 0) | (dev
->dev_addr
[3] << 8) |
1170 (dev
->dev_addr
[4] << 16) | (dev
->dev_addr
[5] << 24);
1172 spin_lock_irq(&data
->misclock
);
1173 TSI_WRITE(TSI108_MAC_ADDR1
, word1
);
1174 TSI_WRITE(TSI108_MAC_ADDR2
, word2
);
1175 spin_lock(&data
->txlock
);
1177 if (data
->txfree
&& data
->link_up
)
1178 netif_wake_queue(dev
);
1180 spin_unlock(&data
->txlock
);
1181 spin_unlock_irq(&data
->misclock
);
1185 /* Protected by dev->xmit_lock. */
1186 static void tsi108_set_rx_mode(struct net_device
*dev
)
1188 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1189 u32 rxcfg
= TSI_READ(TSI108_EC_RXCFG
);
1191 if (dev
->flags
& IFF_PROMISC
) {
1192 rxcfg
&= ~(TSI108_EC_RXCFG_UC_HASH
| TSI108_EC_RXCFG_MC_HASH
);
1193 rxcfg
|= TSI108_EC_RXCFG_UFE
| TSI108_EC_RXCFG_MFE
;
1197 rxcfg
&= ~(TSI108_EC_RXCFG_UFE
| TSI108_EC_RXCFG_MFE
);
1199 if (dev
->flags
& IFF_ALLMULTI
|| dev
->mc_count
) {
1201 struct dev_mc_list
*mc
= dev
->mc_list
;
1202 rxcfg
|= TSI108_EC_RXCFG_MFE
| TSI108_EC_RXCFG_MC_HASH
;
1204 memset(data
->mc_hash
, 0, sizeof(data
->mc_hash
));
1209 if (mc
->dmi_addrlen
== 6) {
1210 crc
= ether_crc(6, mc
->dmi_addr
);
1213 __set_bit(hash
, &data
->mc_hash
[0]);
1216 "%s: got multicast address of length %d "
1217 "instead of 6.\n", dev
->name
,
1224 TSI_WRITE(TSI108_EC_HASHADDR
,
1225 TSI108_EC_HASHADDR_AUTOINC
|
1226 TSI108_EC_HASHADDR_MCAST
);
1228 for (i
= 0; i
< 16; i
++) {
1229 /* The manual says that the hardware may drop
1230 * back-to-back writes to the data register.
1233 TSI_WRITE(TSI108_EC_HASHDATA
,
1239 TSI_WRITE(TSI108_EC_RXCFG
, rxcfg
);
1242 static void tsi108_init_phy(struct net_device
*dev
)
1244 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1247 unsigned long flags
;
1249 spin_lock_irqsave(&phy_lock
, flags
);
1251 tsi108_write_mii(data
, MII_BMCR
, BMCR_RESET
);
1253 if(!(tsi108_read_mii(data
, MII_BMCR
) & BMCR_RESET
))
1258 printk(KERN_ERR
"%s function time out \n", __FUNCTION__
);
1260 if (data
->phy_type
== TSI108_PHY_BCM54XX
) {
1261 tsi108_write_mii(data
, 0x09, 0x0300);
1262 tsi108_write_mii(data
, 0x10, 0x1020);
1263 tsi108_write_mii(data
, 0x1c, 0x8c00);
1266 tsi108_write_mii(data
,
1268 BMCR_ANENABLE
| BMCR_ANRESTART
);
1269 while (tsi108_read_mii(data
, MII_BMCR
) & BMCR_ANRESTART
)
1272 /* Set G/MII mode and receive clock select in TBI control #2. The
1273 * second port won't work if this isn't done, even though we don't
1277 tsi108_write_tbi(data
, 0x11, 0x30);
1279 /* FIXME: It seems to take more than 2 back-to-back reads to the
1280 * PHY_STAT register before the link up status bit is set.
1285 while (!((phyval
= tsi108_read_mii(data
, MII_BMSR
)) &
1287 if (i
++ > (MII_READ_DELAY
/ 10)) {
1291 spin_unlock_irqrestore(&phy_lock
, flags
);
1293 spin_lock_irqsave(&phy_lock
, flags
);
1296 printk(KERN_DEBUG
"PHY_STAT reg contains %08x\n", phyval
);
1298 data
->init_media
= 1;
1299 spin_unlock_irqrestore(&phy_lock
, flags
);
1302 static void tsi108_kill_phy(struct net_device
*dev
)
1304 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1305 unsigned long flags
;
1307 spin_lock_irqsave(&phy_lock
, flags
);
1308 tsi108_write_mii(data
, MII_BMCR
, BMCR_PDOWN
);
1310 spin_unlock_irqrestore(&phy_lock
, flags
);
1313 static int tsi108_open(struct net_device
*dev
)
1316 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1317 unsigned int rxring_size
= TSI108_RXRING_LEN
* sizeof(rx_desc
);
1318 unsigned int txring_size
= TSI108_TXRING_LEN
* sizeof(tx_desc
);
1320 i
= request_irq(data
->irq_num
, tsi108_irq
, 0, dev
->name
, dev
);
1322 printk(KERN_ERR
"tsi108_eth%d: Could not allocate IRQ%d.\n",
1323 data
->id
, data
->irq_num
);
1326 dev
->irq
= data
->irq_num
;
1328 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1329 data
->id
, dev
->irq
, dev
->name
);
1332 data
->rxring
= dma_alloc_coherent(NULL
, rxring_size
,
1333 &data
->rxdma
, GFP_KERNEL
);
1335 if (!data
->rxring
) {
1337 "TSI108_ETH: failed to allocate memory for rxring!\n");
1340 memset(data
->rxring
, 0, rxring_size
);
1343 data
->txring
= dma_alloc_coherent(NULL
, txring_size
,
1344 &data
->txdma
, GFP_KERNEL
);
1346 if (!data
->txring
) {
1348 "TSI108_ETH: failed to allocate memory for txring!\n");
1349 pci_free_consistent(0, rxring_size
, data
->rxring
, data
->rxdma
);
1352 memset(data
->txring
, 0, txring_size
);
1355 for (i
= 0; i
< TSI108_RXRING_LEN
; i
++) {
1356 data
->rxring
[i
].next0
= data
->rxdma
+ (i
+ 1) * sizeof(rx_desc
);
1357 data
->rxring
[i
].blen
= TSI108_RXBUF_SIZE
;
1358 data
->rxring
[i
].vlan
= 0;
1361 data
->rxring
[TSI108_RXRING_LEN
- 1].next0
= data
->rxdma
;
1366 for (i
= 0; i
< TSI108_RXRING_LEN
; i
++) {
1367 struct sk_buff
*skb
= dev_alloc_skb(TSI108_RXBUF_SIZE
+ NET_IP_ALIGN
);
1370 /* Bah. No memory for now, but maybe we'll get
1372 * For now, we'll live with the smaller ring.
1375 "%s: Could only allocate %d receive skb(s).\n",
1381 data
->rxskbs
[i
] = skb
;
1382 /* Align the payload on a 4-byte boundary */
1383 skb_reserve(skb
, 2);
1384 data
->rxskbs
[i
] = skb
;
1385 data
->rxring
[i
].buf0
= virt_to_phys(data
->rxskbs
[i
]->data
);
1386 data
->rxring
[i
].misc
= TSI108_RX_OWN
| TSI108_RX_INT
;
1390 TSI_WRITE(TSI108_EC_RXQ_PTRLOW
, data
->rxdma
);
1392 for (i
= 0; i
< TSI108_TXRING_LEN
; i
++) {
1393 data
->txring
[i
].next0
= data
->txdma
+ (i
+ 1) * sizeof(tx_desc
);
1394 data
->txring
[i
].misc
= 0;
1397 data
->txring
[TSI108_TXRING_LEN
- 1].next0
= data
->txdma
;
1400 data
->txfree
= TSI108_TXRING_LEN
;
1401 TSI_WRITE(TSI108_EC_TXQ_PTRLOW
, data
->txdma
);
1402 tsi108_init_phy(dev
);
1404 setup_timer(&data
->timer
, tsi108_timed_checker
, (unsigned long)dev
);
1405 mod_timer(&data
->timer
, jiffies
+ 1);
1407 tsi108_restart_rx(data
, dev
);
1409 TSI_WRITE(TSI108_EC_INTSTAT
, ~0);
1411 TSI_WRITE(TSI108_EC_INTMASK
,
1412 ~(TSI108_INT_TXQUEUE0
| TSI108_INT_RXERROR
|
1413 TSI108_INT_RXTHRESH
| TSI108_INT_RXQUEUE0
|
1414 TSI108_INT_RXOVERRUN
| TSI108_INT_RXWAIT
|
1415 TSI108_INT_SFN
| TSI108_INT_STATCARRY
));
1417 TSI_WRITE(TSI108_MAC_CFG1
,
1418 TSI108_MAC_CFG1_RXEN
| TSI108_MAC_CFG1_TXEN
);
1419 netif_start_queue(dev
);
1423 static int tsi108_close(struct net_device
*dev
)
1425 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1427 netif_stop_queue(dev
);
1429 del_timer_sync(&data
->timer
);
1431 tsi108_stop_ethernet(dev
);
1432 tsi108_kill_phy(dev
);
1433 TSI_WRITE(TSI108_EC_INTMASK
, ~0);
1434 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1436 /* Check for any pending TX packets, and drop them. */
1438 while (!data
->txfree
|| data
->txhead
!= data
->txtail
) {
1439 int tx
= data
->txtail
;
1440 struct sk_buff
*skb
;
1441 skb
= data
->txskbs
[tx
];
1442 data
->txtail
= (data
->txtail
+ 1) % TSI108_TXRING_LEN
;
1447 synchronize_irq(data
->irq_num
);
1448 free_irq(data
->irq_num
, dev
);
1450 /* Discard the RX ring. */
1452 while (data
->rxfree
) {
1453 int rx
= data
->rxtail
;
1454 struct sk_buff
*skb
;
1456 skb
= data
->rxskbs
[rx
];
1457 data
->rxtail
= (data
->rxtail
+ 1) % TSI108_RXRING_LEN
;
1462 dma_free_coherent(0,
1463 TSI108_RXRING_LEN
* sizeof(rx_desc
),
1464 data
->rxring
, data
->rxdma
);
1465 dma_free_coherent(0,
1466 TSI108_TXRING_LEN
* sizeof(tx_desc
),
1467 data
->txring
, data
->txdma
);
1472 static void tsi108_init_mac(struct net_device
*dev
)
1474 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1476 TSI_WRITE(TSI108_MAC_CFG2
, TSI108_MAC_CFG2_DFLT_PREAMBLE
|
1477 TSI108_MAC_CFG2_PADCRC
);
1479 TSI_WRITE(TSI108_EC_TXTHRESH
,
1480 (192 << TSI108_EC_TXTHRESH_STARTFILL
) |
1481 (192 << TSI108_EC_TXTHRESH_STOPFILL
));
1483 TSI_WRITE(TSI108_STAT_CARRYMASK1
,
1484 ~(TSI108_STAT_CARRY1_RXBYTES
|
1485 TSI108_STAT_CARRY1_RXPKTS
|
1486 TSI108_STAT_CARRY1_RXFCS
|
1487 TSI108_STAT_CARRY1_RXMCAST
|
1488 TSI108_STAT_CARRY1_RXALIGN
|
1489 TSI108_STAT_CARRY1_RXLENGTH
|
1490 TSI108_STAT_CARRY1_RXRUNT
|
1491 TSI108_STAT_CARRY1_RXJUMBO
|
1492 TSI108_STAT_CARRY1_RXFRAG
|
1493 TSI108_STAT_CARRY1_RXJABBER
|
1494 TSI108_STAT_CARRY1_RXDROP
));
1496 TSI_WRITE(TSI108_STAT_CARRYMASK2
,
1497 ~(TSI108_STAT_CARRY2_TXBYTES
|
1498 TSI108_STAT_CARRY2_TXPKTS
|
1499 TSI108_STAT_CARRY2_TXEXDEF
|
1500 TSI108_STAT_CARRY2_TXEXCOL
|
1501 TSI108_STAT_CARRY2_TXTCOL
|
1502 TSI108_STAT_CARRY2_TXPAUSE
));
1504 TSI_WRITE(TSI108_EC_PORTCTRL
, TSI108_EC_PORTCTRL_STATEN
);
1505 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1507 TSI_WRITE(TSI108_EC_RXCFG
,
1508 TSI108_EC_RXCFG_SE
| TSI108_EC_RXCFG_BFE
);
1510 TSI_WRITE(TSI108_EC_TXQ_CFG
, TSI108_EC_TXQ_CFG_DESC_INT
|
1511 TSI108_EC_TXQ_CFG_EOQ_OWN_INT
|
1512 TSI108_EC_TXQ_CFG_WSWP
| (TSI108_PBM_PORT
<<
1513 TSI108_EC_TXQ_CFG_SFNPORT
));
1515 TSI_WRITE(TSI108_EC_RXQ_CFG
, TSI108_EC_RXQ_CFG_DESC_INT
|
1516 TSI108_EC_RXQ_CFG_EOQ_OWN_INT
|
1517 TSI108_EC_RXQ_CFG_WSWP
| (TSI108_PBM_PORT
<<
1518 TSI108_EC_RXQ_CFG_SFNPORT
));
1520 TSI_WRITE(TSI108_EC_TXQ_BUFCFG
,
1521 TSI108_EC_TXQ_BUFCFG_BURST256
|
1522 TSI108_EC_TXQ_BUFCFG_BSWP
| (TSI108_PBM_PORT
<<
1523 TSI108_EC_TXQ_BUFCFG_SFNPORT
));
1525 TSI_WRITE(TSI108_EC_RXQ_BUFCFG
,
1526 TSI108_EC_RXQ_BUFCFG_BURST256
|
1527 TSI108_EC_RXQ_BUFCFG_BSWP
| (TSI108_PBM_PORT
<<
1528 TSI108_EC_RXQ_BUFCFG_SFNPORT
));
1530 TSI_WRITE(TSI108_EC_INTMASK
, ~0);
1533 static int tsi108_do_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1535 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1536 return generic_mii_ioctl(&data
->mii_if
, if_mii(rq
), cmd
, NULL
);
1540 tsi108_init_one(struct platform_device
*pdev
)
1542 struct net_device
*dev
= NULL
;
1543 struct tsi108_prv_data
*data
= NULL
;
1547 einfo
= pdev
->dev
.platform_data
;
1549 if (NULL
== einfo
) {
1550 printk(KERN_ERR
"tsi-eth %d: Missing additional data!\n",
1555 /* Create an ethernet device instance */
1557 dev
= alloc_etherdev(sizeof(struct tsi108_prv_data
));
1559 printk("tsi108_eth: Could not allocate a device structure\n");
1563 printk("tsi108_eth%d: probe...\n", pdev
->id
);
1564 data
= netdev_priv(dev
);
1566 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1567 pdev
->id
, einfo
->regs
, einfo
->phyregs
,
1568 einfo
->phy
, einfo
->irq_num
);
1570 data
->regs
= ioremap(einfo
->regs
, 0x400);
1571 if (NULL
== data
->regs
) {
1576 data
->phyregs
= ioremap(einfo
->phyregs
, 0x400);
1577 if (NULL
== data
->phyregs
) {
1582 data
->mii_if
.dev
= dev
;
1583 data
->mii_if
.mdio_read
= tsi108_mdio_read
;
1584 data
->mii_if
.mdio_write
= tsi108_mdio_write
;
1585 data
->mii_if
.phy_id
= einfo
->phy
;
1586 data
->mii_if
.phy_id_mask
= 0x1f;
1587 data
->mii_if
.reg_num_mask
= 0x1f;
1588 data
->mii_if
.supports_gmii
= mii_check_gmii_support(&data
->mii_if
);
1590 data
->phy
= einfo
->phy
;
1591 data
->phy_type
= einfo
->phy_type
;
1592 data
->irq_num
= einfo
->irq_num
;
1593 data
->id
= pdev
->id
;
1594 dev
->open
= tsi108_open
;
1595 dev
->stop
= tsi108_close
;
1596 dev
->hard_start_xmit
= tsi108_send_packet
;
1597 dev
->set_mac_address
= tsi108_set_mac
;
1598 dev
->set_multicast_list
= tsi108_set_rx_mode
;
1599 dev
->get_stats
= tsi108_get_stats
;
1600 dev
->poll
= tsi108_poll
;
1601 dev
->do_ioctl
= tsi108_do_ioctl
;
1602 dev
->weight
= 64; /* 64 is more suitable for GigE interface - klai */
1604 /* Apparently, the Linux networking code won't use scatter-gather
1605 * if the hardware doesn't do checksums. However, it's faster
1606 * to checksum in place and use SG, as (among other reasons)
1607 * the cache won't be dirtied (which then has to be flushed
1608 * before DMA). The checksumming is done by the driver (via
1609 * a new function skb_csum_dev() in net/core/skbuff.c).
1612 dev
->features
= NETIF_F_HIGHDMA
;
1613 SET_MODULE_OWNER(dev
);
1615 spin_lock_init(&data
->txlock
);
1616 spin_lock_init(&data
->misclock
);
1618 tsi108_reset_ether(data
);
1619 tsi108_kill_phy(dev
);
1621 if ((err
= tsi108_get_mac(dev
)) != 0) {
1622 printk(KERN_ERR
"%s: Invalid MAC address. Please correct.\n",
1627 tsi108_init_mac(dev
);
1628 err
= register_netdev(dev
);
1630 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
1635 printk(KERN_INFO
"%s: Tsi108 Gigabit Ethernet, MAC: "
1636 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev
->name
,
1637 dev
->dev_addr
[0], dev
->dev_addr
[1], dev
->dev_addr
[2],
1638 dev
->dev_addr
[3], dev
->dev_addr
[4], dev
->dev_addr
[5]);
1640 data
->msg_enable
= DEBUG
;
1647 iounmap(data
->regs
);
1648 iounmap(data
->phyregs
);
1655 /* There's no way to either get interrupts from the PHY when
1656 * something changes, or to have the Tsi108 automatically communicate
1657 * with the PHY to reconfigure itself.
1659 * Thus, we have to do it using a timer.
1662 static void tsi108_timed_checker(unsigned long dev_ptr
)
1664 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
1665 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1667 tsi108_check_phy(dev
);
1668 tsi108_check_rxring(dev
);
1669 mod_timer(&data
->timer
, jiffies
+ CHECK_PHY_INTERVAL
);
1672 static int tsi108_ether_init(void)
1675 ret
= platform_driver_register (&tsi_eth_driver
);
1677 printk("tsi108_ether_init: error initializing ethernet "
1684 static int tsi108_ether_remove(struct platform_device
*pdev
)
1686 struct net_device
*dev
= platform_get_drvdata(pdev
);
1687 struct tsi108_prv_data
*priv
= netdev_priv(dev
);
1689 unregister_netdev(dev
);
1690 tsi108_stop_ethernet(dev
);
1691 platform_set_drvdata(pdev
, NULL
);
1692 iounmap(priv
->regs
);
1693 iounmap(priv
->phyregs
);
1698 static void tsi108_ether_exit(void)
1700 platform_driver_unregister(&tsi_eth_driver
);
1703 module_init(tsi108_ether_init
);
1704 module_exit(tsi108_ether_exit
);
1706 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1707 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1708 MODULE_LICENSE("GPL");