ibm_emac: improved PHY support
[linux-2.6.git] / drivers / net / tsi108_eth.c
blob1aabc91f6458e3d5c3a2b880127002a05d45ee01
1 /*******************************************************************************
3 Copyright(c) 2006 Tundra Semiconductor Corporation.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 2 of the License, or (at your option)
8 any later version.
10 This program is distributed in the hope that it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc., 59
17 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *******************************************************************************/
21 /* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 * additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50 #include <linux/etherdevice.h>
52 #include <asm/system.h>
53 #include <asm/io.h>
54 #include <asm/tsi108.h>
56 #include "tsi108_eth.h"
58 #define MII_READ_DELAY 10000 /* max link wait time in msec */
60 #define TSI108_RXRING_LEN 256
62 /* NOTE: The driver currently does not support receiving packets
63 * larger than the buffer size, so don't decrease this (unless you
64 * want to add such support).
66 #define TSI108_RXBUF_SIZE 1536
68 #define TSI108_TXRING_LEN 256
70 #define TSI108_TX_INT_FREQ 64
72 /* Check the phy status every half a second. */
73 #define CHECK_PHY_INTERVAL (HZ/2)
75 static int tsi108_init_one(struct platform_device *pdev);
76 static int tsi108_ether_remove(struct platform_device *pdev);
78 struct tsi108_prv_data {
79 void __iomem *regs; /* Base of normal regs */
80 void __iomem *phyregs; /* Base of register bank used for PHY access */
82 unsigned int phy; /* Index of PHY for this interface */
83 unsigned int irq_num;
84 unsigned int id;
85 unsigned int phy_type;
87 struct timer_list timer;/* Timer that triggers the check phy function */
88 unsigned int rxtail; /* Next entry in rxring to read */
89 unsigned int rxhead; /* Next entry in rxring to give a new buffer */
90 unsigned int rxfree; /* Number of free, allocated RX buffers */
92 unsigned int rxpending; /* Non-zero if there are still descriptors
93 * to be processed from a previous descriptor
94 * interrupt condition that has been cleared */
96 unsigned int txtail; /* Next TX descriptor to check status on */
97 unsigned int txhead; /* Next TX descriptor to use */
99 /* Number of free TX descriptors. This could be calculated from
100 * rxhead and rxtail if one descriptor were left unused to disambiguate
101 * full and empty conditions, but it's simpler to just keep track
102 * explicitly. */
104 unsigned int txfree;
106 unsigned int phy_ok; /* The PHY is currently powered on. */
108 /* PHY status (duplex is 1 for half, 2 for full,
109 * so that the default 0 indicates that neither has
110 * yet been configured). */
112 unsigned int link_up;
113 unsigned int speed;
114 unsigned int duplex;
116 tx_desc *txring;
117 rx_desc *rxring;
118 struct sk_buff *txskbs[TSI108_TXRING_LEN];
119 struct sk_buff *rxskbs[TSI108_RXRING_LEN];
121 dma_addr_t txdma, rxdma;
123 /* txlock nests in misclock and phy_lock */
125 spinlock_t txlock, misclock;
127 /* stats is used to hold the upper bits of each hardware counter,
128 * and tmpstats is used to hold the full values for returning
129 * to the caller of get_stats(). They must be separate in case
130 * an overflow interrupt occurs before the stats are consumed.
133 struct net_device_stats stats;
134 struct net_device_stats tmpstats;
136 /* These stats are kept separate in hardware, thus require individual
137 * fields for handling carry. They are combined in get_stats.
140 unsigned long rx_fcs; /* Add to rx_frame_errors */
141 unsigned long rx_short_fcs; /* Add to rx_frame_errors */
142 unsigned long rx_long_fcs; /* Add to rx_frame_errors */
143 unsigned long rx_underruns; /* Add to rx_length_errors */
144 unsigned long rx_overruns; /* Add to rx_length_errors */
146 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */
147 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */
149 unsigned long mc_hash[16];
150 u32 msg_enable; /* debug message level */
151 struct mii_if_info mii_if;
152 unsigned int init_media;
155 /* Structure for a device driver */
157 static struct platform_driver tsi_eth_driver = {
158 .probe = tsi108_init_one,
159 .remove = tsi108_ether_remove,
160 .driver = {
161 .name = "tsi-ethernet",
165 static void tsi108_timed_checker(unsigned long dev_ptr);
167 static void dump_eth_one(struct net_device *dev)
169 struct tsi108_prv_data *data = netdev_priv(dev);
171 printk("Dumping %s...\n", dev->name);
172 printk("intstat %x intmask %x phy_ok %d"
173 " link %d speed %d duplex %d\n",
174 TSI_READ(TSI108_EC_INTSTAT),
175 TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
176 data->link_up, data->speed, data->duplex);
178 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
179 data->txhead, data->txtail, data->txfree,
180 TSI_READ(TSI108_EC_TXSTAT),
181 TSI_READ(TSI108_EC_TXESTAT),
182 TSI_READ(TSI108_EC_TXERR));
184 printk("RX: head %d, tail %d, free %d, stat %x,"
185 " estat %x, err %x, pending %d\n\n",
186 data->rxhead, data->rxtail, data->rxfree,
187 TSI_READ(TSI108_EC_RXSTAT),
188 TSI_READ(TSI108_EC_RXESTAT),
189 TSI_READ(TSI108_EC_RXERR), data->rxpending);
192 /* Synchronization is needed between the thread and up/down events.
193 * Note that the PHY is accessed through the same registers for both
194 * interfaces, so this can't be made interface-specific.
197 static DEFINE_SPINLOCK(phy_lock);
199 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
201 unsigned i;
203 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
204 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
205 (reg << TSI108_MAC_MII_ADDR_REG));
206 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
207 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
208 for (i = 0; i < 100; i++) {
209 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
210 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
211 break;
212 udelay(10);
215 if (i == 100)
216 return 0xffff;
217 else
218 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
221 static void tsi108_write_mii(struct tsi108_prv_data *data,
222 int reg, u16 val)
224 unsigned i = 100;
225 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
226 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
227 (reg << TSI108_MAC_MII_ADDR_REG));
228 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
229 while (i--) {
230 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
231 TSI108_MAC_MII_IND_BUSY))
232 break;
233 udelay(10);
237 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
239 struct tsi108_prv_data *data = netdev_priv(dev);
240 return tsi108_read_mii(data, reg);
243 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
245 struct tsi108_prv_data *data = netdev_priv(dev);
246 tsi108_write_mii(data, reg, val);
249 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
250 int reg, u16 val)
252 unsigned i = 1000;
253 TSI_WRITE(TSI108_MAC_MII_ADDR,
254 (0x1e << TSI108_MAC_MII_ADDR_PHY)
255 | (reg << TSI108_MAC_MII_ADDR_REG));
256 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
257 while(i--) {
258 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
259 return;
260 udelay(10);
262 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
265 static int mii_speed(struct mii_if_info *mii)
267 int advert, lpa, val, media;
268 int lpa2 = 0;
269 int speed;
271 if (!mii_link_ok(mii))
272 return 0;
274 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
275 if ((val & BMSR_ANEGCOMPLETE) == 0)
276 return 0;
278 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
279 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
280 media = mii_nway_result(advert & lpa);
282 if (mii->supports_gmii)
283 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
285 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
286 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
287 return speed;
290 static void tsi108_check_phy(struct net_device *dev)
292 struct tsi108_prv_data *data = netdev_priv(dev);
293 u32 mac_cfg2_reg, portctrl_reg;
294 u32 duplex;
295 u32 speed;
296 unsigned long flags;
298 /* Do a dummy read, as for some reason the first read
299 * after a link becomes up returns link down, even if
300 * it's been a while since the link came up.
303 spin_lock_irqsave(&phy_lock, flags);
305 if (!data->phy_ok)
306 goto out;
308 tsi108_read_mii(data, MII_BMSR);
310 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
311 data->init_media = 0;
313 if (netif_carrier_ok(dev)) {
315 speed = mii_speed(&data->mii_if);
317 if ((speed != data->speed) || duplex) {
319 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
320 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
322 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
324 if (speed == 1000) {
325 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
326 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
327 } else {
328 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
329 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
332 data->speed = speed;
334 if (data->mii_if.full_duplex) {
335 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
336 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
337 data->duplex = 2;
338 } else {
339 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
340 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
341 data->duplex = 1;
344 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
345 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
347 if (data->link_up == 0) {
348 /* The manual says it can take 3-4 usecs for the speed change
349 * to take effect.
351 udelay(5);
353 spin_lock(&data->txlock);
354 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
355 netif_wake_queue(dev);
357 data->link_up = 1;
358 spin_unlock(&data->txlock);
362 } else {
363 if (data->link_up == 1) {
364 netif_stop_queue(dev);
365 data->link_up = 0;
366 printk(KERN_NOTICE "%s : link is down\n", dev->name);
369 goto out;
373 out:
374 spin_unlock_irqrestore(&phy_lock, flags);
377 static inline void
378 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
379 unsigned long *upper)
381 if (carry & carry_bit)
382 *upper += carry_shift;
385 static void tsi108_stat_carry(struct net_device *dev)
387 struct tsi108_prv_data *data = netdev_priv(dev);
388 u32 carry1, carry2;
390 spin_lock_irq(&data->misclock);
392 carry1 = TSI_READ(TSI108_STAT_CARRY1);
393 carry2 = TSI_READ(TSI108_STAT_CARRY2);
395 TSI_WRITE(TSI108_STAT_CARRY1, carry1);
396 TSI_WRITE(TSI108_STAT_CARRY2, carry2);
398 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
399 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
401 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
402 TSI108_STAT_RXPKTS_CARRY,
403 &data->stats.rx_packets);
405 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
406 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
408 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
409 TSI108_STAT_RXMCAST_CARRY,
410 &data->stats.multicast);
412 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
413 TSI108_STAT_RXALIGN_CARRY,
414 &data->stats.rx_frame_errors);
416 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
417 TSI108_STAT_RXLENGTH_CARRY,
418 &data->stats.rx_length_errors);
420 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
421 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
423 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
424 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
426 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
427 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
429 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
430 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
432 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
433 TSI108_STAT_RXDROP_CARRY,
434 &data->stats.rx_missed_errors);
436 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
437 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
439 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
440 TSI108_STAT_TXPKTS_CARRY,
441 &data->stats.tx_packets);
443 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
444 TSI108_STAT_TXEXDEF_CARRY,
445 &data->stats.tx_aborted_errors);
447 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
448 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
450 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
451 TSI108_STAT_TXTCOL_CARRY,
452 &data->stats.collisions);
454 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
455 TSI108_STAT_TXPAUSEDROP_CARRY,
456 &data->tx_pause_drop);
458 spin_unlock_irq(&data->misclock);
461 /* Read a stat counter atomically with respect to carries.
462 * data->misclock must be held.
464 static inline unsigned long
465 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
466 int carry_shift, unsigned long *upper)
468 int carryreg;
469 unsigned long val;
471 if (reg < 0xb0)
472 carryreg = TSI108_STAT_CARRY1;
473 else
474 carryreg = TSI108_STAT_CARRY2;
476 again:
477 val = TSI_READ(reg) | *upper;
479 /* Check to see if it overflowed, but the interrupt hasn't
480 * been serviced yet. If so, handle the carry here, and
481 * try again.
484 if (unlikely(TSI_READ(carryreg) & carry_bit)) {
485 *upper += carry_shift;
486 TSI_WRITE(carryreg, carry_bit);
487 goto again;
490 return val;
493 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
495 unsigned long excol;
497 struct tsi108_prv_data *data = netdev_priv(dev);
498 spin_lock_irq(&data->misclock);
500 data->tmpstats.rx_packets =
501 tsi108_read_stat(data, TSI108_STAT_RXPKTS,
502 TSI108_STAT_CARRY1_RXPKTS,
503 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
505 data->tmpstats.tx_packets =
506 tsi108_read_stat(data, TSI108_STAT_TXPKTS,
507 TSI108_STAT_CARRY2_TXPKTS,
508 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
510 data->tmpstats.rx_bytes =
511 tsi108_read_stat(data, TSI108_STAT_RXBYTES,
512 TSI108_STAT_CARRY1_RXBYTES,
513 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
515 data->tmpstats.tx_bytes =
516 tsi108_read_stat(data, TSI108_STAT_TXBYTES,
517 TSI108_STAT_CARRY2_TXBYTES,
518 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
520 data->tmpstats.multicast =
521 tsi108_read_stat(data, TSI108_STAT_RXMCAST,
522 TSI108_STAT_CARRY1_RXMCAST,
523 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
525 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
526 TSI108_STAT_CARRY2_TXEXCOL,
527 TSI108_STAT_TXEXCOL_CARRY,
528 &data->tx_coll_abort);
530 data->tmpstats.collisions =
531 tsi108_read_stat(data, TSI108_STAT_TXTCOL,
532 TSI108_STAT_CARRY2_TXTCOL,
533 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
535 data->tmpstats.collisions += excol;
537 data->tmpstats.rx_length_errors =
538 tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
539 TSI108_STAT_CARRY1_RXLENGTH,
540 TSI108_STAT_RXLENGTH_CARRY,
541 &data->stats.rx_length_errors);
543 data->tmpstats.rx_length_errors +=
544 tsi108_read_stat(data, TSI108_STAT_RXRUNT,
545 TSI108_STAT_CARRY1_RXRUNT,
546 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
548 data->tmpstats.rx_length_errors +=
549 tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
550 TSI108_STAT_CARRY1_RXJUMBO,
551 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
553 data->tmpstats.rx_frame_errors =
554 tsi108_read_stat(data, TSI108_STAT_RXALIGN,
555 TSI108_STAT_CARRY1_RXALIGN,
556 TSI108_STAT_RXALIGN_CARRY,
557 &data->stats.rx_frame_errors);
559 data->tmpstats.rx_frame_errors +=
560 tsi108_read_stat(data, TSI108_STAT_RXFCS,
561 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
562 &data->rx_fcs);
564 data->tmpstats.rx_frame_errors +=
565 tsi108_read_stat(data, TSI108_STAT_RXFRAG,
566 TSI108_STAT_CARRY1_RXFRAG,
567 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
569 data->tmpstats.rx_missed_errors =
570 tsi108_read_stat(data, TSI108_STAT_RXDROP,
571 TSI108_STAT_CARRY1_RXDROP,
572 TSI108_STAT_RXDROP_CARRY,
573 &data->stats.rx_missed_errors);
575 /* These three are maintained by software. */
576 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
577 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
579 data->tmpstats.tx_aborted_errors =
580 tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
581 TSI108_STAT_CARRY2_TXEXDEF,
582 TSI108_STAT_TXEXDEF_CARRY,
583 &data->stats.tx_aborted_errors);
585 data->tmpstats.tx_aborted_errors +=
586 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
587 TSI108_STAT_CARRY2_TXPAUSE,
588 TSI108_STAT_TXPAUSEDROP_CARRY,
589 &data->tx_pause_drop);
591 data->tmpstats.tx_aborted_errors += excol;
593 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
594 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
595 data->tmpstats.rx_crc_errors +
596 data->tmpstats.rx_frame_errors +
597 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
599 spin_unlock_irq(&data->misclock);
600 return &data->tmpstats;
603 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
605 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
606 TSI108_EC_RXQ_PTRHIGH_VALID);
608 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
609 | TSI108_EC_RXCTRL_QUEUE0);
612 static void tsi108_restart_tx(struct tsi108_prv_data * data)
614 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
615 TSI108_EC_TXQ_PTRHIGH_VALID);
617 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
618 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
621 /* txlock must be held by caller, with IRQs disabled, and
622 * with permission to re-enable them when the lock is dropped.
624 static void tsi108_complete_tx(struct net_device *dev)
626 struct tsi108_prv_data *data = netdev_priv(dev);
627 int tx;
628 struct sk_buff *skb;
629 int release = 0;
631 while (!data->txfree || data->txhead != data->txtail) {
632 tx = data->txtail;
634 if (data->txring[tx].misc & TSI108_TX_OWN)
635 break;
637 skb = data->txskbs[tx];
639 if (!(data->txring[tx].misc & TSI108_TX_OK))
640 printk("%s: bad tx packet, misc %x\n",
641 dev->name, data->txring[tx].misc);
643 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
644 data->txfree++;
646 if (data->txring[tx].misc & TSI108_TX_EOF) {
647 dev_kfree_skb_any(skb);
648 release++;
652 if (release) {
653 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
654 netif_wake_queue(dev);
658 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
660 struct tsi108_prv_data *data = netdev_priv(dev);
661 int frags = skb_shinfo(skb)->nr_frags + 1;
662 int i;
664 if (!data->phy_ok && net_ratelimit())
665 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
667 if (!data->link_up) {
668 printk(KERN_ERR "%s: Transmit while link is down!\n",
669 dev->name);
670 netif_stop_queue(dev);
671 return NETDEV_TX_BUSY;
674 if (data->txfree < MAX_SKB_FRAGS + 1) {
675 netif_stop_queue(dev);
677 if (net_ratelimit())
678 printk(KERN_ERR "%s: Transmit with full tx ring!\n",
679 dev->name);
680 return NETDEV_TX_BUSY;
683 if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
684 netif_stop_queue(dev);
687 spin_lock_irq(&data->txlock);
689 for (i = 0; i < frags; i++) {
690 int misc = 0;
691 int tx = data->txhead;
693 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
694 * the interrupt bit. TX descriptor-complete interrupts are
695 * enabled when the queue fills up, and masked when there is
696 * still free space. This way, when saturating the outbound
697 * link, the tx interrupts are kept to a reasonable level.
698 * When the queue is not full, reclamation of skbs still occurs
699 * as new packets are transmitted, or on a queue-empty
700 * interrupt.
703 if ((tx % TSI108_TX_INT_FREQ == 0) &&
704 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
705 misc = TSI108_TX_INT;
707 data->txskbs[tx] = skb;
709 if (i == 0) {
710 data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
711 skb->len - skb->data_len, DMA_TO_DEVICE);
712 data->txring[tx].len = skb->len - skb->data_len;
713 misc |= TSI108_TX_SOF;
714 } else {
715 skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
717 data->txring[tx].buf0 =
718 dma_map_page(NULL, frag->page, frag->page_offset,
719 frag->size, DMA_TO_DEVICE);
720 data->txring[tx].len = frag->size;
723 if (i == frags - 1)
724 misc |= TSI108_TX_EOF;
726 if (netif_msg_pktdata(data)) {
727 int i;
728 printk("%s: Tx Frame contents (%d)\n", dev->name,
729 skb->len);
730 for (i = 0; i < skb->len; i++)
731 printk(" %2.2x", skb->data[i]);
732 printk(".\n");
734 data->txring[tx].misc = misc | TSI108_TX_OWN;
736 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
737 data->txfree--;
740 tsi108_complete_tx(dev);
742 /* This must be done after the check for completed tx descriptors,
743 * so that the tail pointer is correct.
746 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
747 tsi108_restart_tx(data);
749 spin_unlock_irq(&data->txlock);
750 return NETDEV_TX_OK;
753 static int tsi108_complete_rx(struct net_device *dev, int budget)
755 struct tsi108_prv_data *data = netdev_priv(dev);
756 int done = 0;
758 while (data->rxfree && done != budget) {
759 int rx = data->rxtail;
760 struct sk_buff *skb;
762 if (data->rxring[rx].misc & TSI108_RX_OWN)
763 break;
765 skb = data->rxskbs[rx];
766 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
767 data->rxfree--;
768 done++;
770 if (data->rxring[rx].misc & TSI108_RX_BAD) {
771 spin_lock_irq(&data->misclock);
773 if (data->rxring[rx].misc & TSI108_RX_CRC)
774 data->stats.rx_crc_errors++;
775 if (data->rxring[rx].misc & TSI108_RX_OVER)
776 data->stats.rx_fifo_errors++;
778 spin_unlock_irq(&data->misclock);
780 dev_kfree_skb_any(skb);
781 continue;
783 if (netif_msg_pktdata(data)) {
784 int i;
785 printk("%s: Rx Frame contents (%d)\n",
786 dev->name, data->rxring[rx].len);
787 for (i = 0; i < data->rxring[rx].len; i++)
788 printk(" %2.2x", skb->data[i]);
789 printk(".\n");
792 skb_put(skb, data->rxring[rx].len);
793 skb->protocol = eth_type_trans(skb, dev);
794 netif_receive_skb(skb);
795 dev->last_rx = jiffies;
798 return done;
801 static int tsi108_refill_rx(struct net_device *dev, int budget)
803 struct tsi108_prv_data *data = netdev_priv(dev);
804 int done = 0;
806 while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
807 int rx = data->rxhead;
808 struct sk_buff *skb;
810 data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2);
811 if (!skb)
812 break;
814 skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
816 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
817 TSI108_RX_SKB_SIZE,
818 DMA_FROM_DEVICE);
820 /* Sometimes the hardware sets blen to zero after packet
821 * reception, even though the manual says that it's only ever
822 * modified by the driver.
825 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
826 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
828 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
829 data->rxfree++;
830 done++;
833 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
834 TSI108_EC_RXSTAT_QUEUE0))
835 tsi108_restart_rx(data, dev);
837 return done;
840 static int tsi108_poll(struct net_device *dev, int *budget)
842 struct tsi108_prv_data *data = netdev_priv(dev);
843 u32 estat = TSI_READ(TSI108_EC_RXESTAT);
844 u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
845 int total_budget = min(*budget, dev->quota);
846 int num_received = 0, num_filled = 0, budget_used;
848 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
849 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
851 TSI_WRITE(TSI108_EC_RXESTAT, estat);
852 TSI_WRITE(TSI108_EC_INTSTAT, intstat);
854 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
855 num_received = tsi108_complete_rx(dev, total_budget);
857 /* This should normally fill no more slots than the number of
858 * packets received in tsi108_complete_rx(). The exception
859 * is when we previously ran out of memory for RX SKBs. In that
860 * case, it's helpful to obey the budget, not only so that the
861 * CPU isn't hogged, but so that memory (which may still be low)
862 * is not hogged by one device.
864 * A work unit is considered to be two SKBs to allow us to catch
865 * up when the ring has shrunk due to out-of-memory but we're
866 * still removing the full budget's worth of packets each time.
869 if (data->rxfree < TSI108_RXRING_LEN)
870 num_filled = tsi108_refill_rx(dev, total_budget * 2);
872 if (intstat & TSI108_INT_RXERROR) {
873 u32 err = TSI_READ(TSI108_EC_RXERR);
874 TSI_WRITE(TSI108_EC_RXERR, err);
876 if (err) {
877 if (net_ratelimit())
878 printk(KERN_DEBUG "%s: RX error %x\n",
879 dev->name, err);
881 if (!(TSI_READ(TSI108_EC_RXSTAT) &
882 TSI108_EC_RXSTAT_QUEUE0))
883 tsi108_restart_rx(data, dev);
887 if (intstat & TSI108_INT_RXOVERRUN) {
888 spin_lock_irq(&data->misclock);
889 data->stats.rx_fifo_errors++;
890 spin_unlock_irq(&data->misclock);
893 budget_used = max(num_received, num_filled / 2);
895 *budget -= budget_used;
896 dev->quota -= budget_used;
898 if (budget_used != total_budget) {
899 data->rxpending = 0;
900 netif_rx_complete(dev);
902 TSI_WRITE(TSI108_EC_INTMASK,
903 TSI_READ(TSI108_EC_INTMASK)
904 & ~(TSI108_INT_RXQUEUE0
905 | TSI108_INT_RXTHRESH |
906 TSI108_INT_RXOVERRUN |
907 TSI108_INT_RXERROR |
908 TSI108_INT_RXWAIT));
910 /* IRQs are level-triggered, so no need to re-check */
911 return 0;
912 } else {
913 data->rxpending = 1;
916 return 1;
919 static void tsi108_rx_int(struct net_device *dev)
921 struct tsi108_prv_data *data = netdev_priv(dev);
923 /* A race could cause dev to already be scheduled, so it's not an
924 * error if that happens (and interrupts shouldn't be re-masked,
925 * because that can cause harmful races, if poll has already
926 * unmasked them but not cleared LINK_STATE_SCHED).
928 * This can happen if this code races with tsi108_poll(), which masks
929 * the interrupts after tsi108_irq_one() read the mask, but before
930 * netif_rx_schedule is called. It could also happen due to calls
931 * from tsi108_check_rxring().
934 if (netif_rx_schedule_prep(dev)) {
935 /* Mask, rather than ack, the receive interrupts. The ack
936 * will happen in tsi108_poll().
939 TSI_WRITE(TSI108_EC_INTMASK,
940 TSI_READ(TSI108_EC_INTMASK) |
941 TSI108_INT_RXQUEUE0
942 | TSI108_INT_RXTHRESH |
943 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
944 TSI108_INT_RXWAIT);
945 __netif_rx_schedule(dev);
946 } else {
947 if (!netif_running(dev)) {
948 /* This can happen if an interrupt occurs while the
949 * interface is being brought down, as the START
950 * bit is cleared before the stop function is called.
952 * In this case, the interrupts must be masked, or
953 * they will continue indefinitely.
955 * There's a race here if the interface is brought down
956 * and then up in rapid succession, as the device could
957 * be made running after the above check and before
958 * the masking below. This will only happen if the IRQ
959 * thread has a lower priority than the task brining
960 * up the interface. Fixing this race would likely
961 * require changes in generic code.
964 TSI_WRITE(TSI108_EC_INTMASK,
965 TSI_READ
966 (TSI108_EC_INTMASK) |
967 TSI108_INT_RXQUEUE0 |
968 TSI108_INT_RXTHRESH |
969 TSI108_INT_RXOVERRUN |
970 TSI108_INT_RXERROR |
971 TSI108_INT_RXWAIT);
976 /* If the RX ring has run out of memory, try periodically
977 * to allocate some more, as otherwise poll would never
978 * get called (apart from the initial end-of-queue condition).
980 * This is called once per second (by default) from the thread.
983 static void tsi108_check_rxring(struct net_device *dev)
985 struct tsi108_prv_data *data = netdev_priv(dev);
987 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
988 * directly, so as to keep the receive path single-threaded
989 * (and thus not needing a lock).
992 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
993 tsi108_rx_int(dev);
996 static void tsi108_tx_int(struct net_device *dev)
998 struct tsi108_prv_data *data = netdev_priv(dev);
999 u32 estat = TSI_READ(TSI108_EC_TXESTAT);
1001 TSI_WRITE(TSI108_EC_TXESTAT, estat);
1002 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
1003 TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
1004 if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
1005 u32 err = TSI_READ(TSI108_EC_TXERR);
1006 TSI_WRITE(TSI108_EC_TXERR, err);
1008 if (err && net_ratelimit())
1009 printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
1012 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1013 spin_lock(&data->txlock);
1014 tsi108_complete_tx(dev);
1015 spin_unlock(&data->txlock);
1020 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1022 struct net_device *dev = dev_id;
1023 struct tsi108_prv_data *data = netdev_priv(dev);
1024 u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1026 if (!(stat & TSI108_INT_ANY))
1027 return IRQ_NONE; /* Not our interrupt */
1029 stat &= ~TSI_READ(TSI108_EC_INTMASK);
1031 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1032 TSI108_INT_TXERROR))
1033 tsi108_tx_int(dev);
1034 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1035 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1036 TSI108_INT_RXERROR))
1037 tsi108_rx_int(dev);
1039 if (stat & TSI108_INT_SFN) {
1040 if (net_ratelimit())
1041 printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1042 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1045 if (stat & TSI108_INT_STATCARRY) {
1046 tsi108_stat_carry(dev);
1047 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1050 return IRQ_HANDLED;
1053 static void tsi108_stop_ethernet(struct net_device *dev)
1055 struct tsi108_prv_data *data = netdev_priv(dev);
1056 int i = 1000;
1057 /* Disable all TX and RX queues ... */
1058 TSI_WRITE(TSI108_EC_TXCTRL, 0);
1059 TSI_WRITE(TSI108_EC_RXCTRL, 0);
1061 /* ...and wait for them to become idle */
1062 while(i--) {
1063 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1064 break;
1065 udelay(10);
1067 i = 1000;
1068 while(i--){
1069 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1070 return;
1071 udelay(10);
1073 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1076 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1078 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1079 udelay(100);
1080 TSI_WRITE(TSI108_MAC_CFG1, 0);
1082 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1083 udelay(100);
1084 TSI_WRITE(TSI108_EC_PORTCTRL,
1085 TSI_READ(TSI108_EC_PORTCTRL) &
1086 ~TSI108_EC_PORTCTRL_STATRST);
1088 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1089 udelay(100);
1090 TSI_WRITE(TSI108_EC_TXCFG,
1091 TSI_READ(TSI108_EC_TXCFG) &
1092 ~TSI108_EC_TXCFG_RST);
1094 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1095 udelay(100);
1096 TSI_WRITE(TSI108_EC_RXCFG,
1097 TSI_READ(TSI108_EC_RXCFG) &
1098 ~TSI108_EC_RXCFG_RST);
1100 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1101 TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1102 TSI108_MAC_MII_MGMT_RST);
1103 udelay(100);
1104 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1105 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1106 ~(TSI108_MAC_MII_MGMT_RST |
1107 TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1110 static int tsi108_get_mac(struct net_device *dev)
1112 struct tsi108_prv_data *data = netdev_priv(dev);
1113 u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1114 u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1116 /* Note that the octets are reversed from what the manual says,
1117 * producing an even weirder ordering...
1119 if (word2 == 0 && word1 == 0) {
1120 dev->dev_addr[0] = 0x00;
1121 dev->dev_addr[1] = 0x06;
1122 dev->dev_addr[2] = 0xd2;
1123 dev->dev_addr[3] = 0x00;
1124 dev->dev_addr[4] = 0x00;
1125 if (0x8 == data->phy)
1126 dev->dev_addr[5] = 0x01;
1127 else
1128 dev->dev_addr[5] = 0x02;
1130 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1132 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1133 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1135 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1136 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1137 } else {
1138 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1139 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1140 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1141 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1142 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1143 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1146 if (!is_valid_ether_addr(dev->dev_addr)) {
1147 printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2);
1148 return -EINVAL;
1151 return 0;
1154 static int tsi108_set_mac(struct net_device *dev, void *addr)
1156 struct tsi108_prv_data *data = netdev_priv(dev);
1157 u32 word1, word2;
1158 int i;
1160 if (!is_valid_ether_addr(addr))
1161 return -EINVAL;
1163 for (i = 0; i < 6; i++)
1164 /* +2 is for the offset of the HW addr type */
1165 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1167 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1169 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1170 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1172 spin_lock_irq(&data->misclock);
1173 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1174 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1175 spin_lock(&data->txlock);
1177 if (data->txfree && data->link_up)
1178 netif_wake_queue(dev);
1180 spin_unlock(&data->txlock);
1181 spin_unlock_irq(&data->misclock);
1182 return 0;
1185 /* Protected by dev->xmit_lock. */
1186 static void tsi108_set_rx_mode(struct net_device *dev)
1188 struct tsi108_prv_data *data = netdev_priv(dev);
1189 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1191 if (dev->flags & IFF_PROMISC) {
1192 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1193 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1194 goto out;
1197 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1199 if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
1200 int i;
1201 struct dev_mc_list *mc = dev->mc_list;
1202 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1204 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1206 while (mc) {
1207 u32 hash, crc;
1209 if (mc->dmi_addrlen == 6) {
1210 crc = ether_crc(6, mc->dmi_addr);
1211 hash = crc >> 23;
1213 __set_bit(hash, &data->mc_hash[0]);
1214 } else {
1215 printk(KERN_ERR
1216 "%s: got multicast address of length %d "
1217 "instead of 6.\n", dev->name,
1218 mc->dmi_addrlen);
1221 mc = mc->next;
1224 TSI_WRITE(TSI108_EC_HASHADDR,
1225 TSI108_EC_HASHADDR_AUTOINC |
1226 TSI108_EC_HASHADDR_MCAST);
1228 for (i = 0; i < 16; i++) {
1229 /* The manual says that the hardware may drop
1230 * back-to-back writes to the data register.
1232 udelay(1);
1233 TSI_WRITE(TSI108_EC_HASHDATA,
1234 data->mc_hash[i]);
1238 out:
1239 TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1242 static void tsi108_init_phy(struct net_device *dev)
1244 struct tsi108_prv_data *data = netdev_priv(dev);
1245 u32 i = 0;
1246 u16 phyval = 0;
1247 unsigned long flags;
1249 spin_lock_irqsave(&phy_lock, flags);
1251 tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1252 while (i--){
1253 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1254 break;
1255 udelay(10);
1257 if (i == 0)
1258 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1260 if (data->phy_type == TSI108_PHY_BCM54XX) {
1261 tsi108_write_mii(data, 0x09, 0x0300);
1262 tsi108_write_mii(data, 0x10, 0x1020);
1263 tsi108_write_mii(data, 0x1c, 0x8c00);
1266 tsi108_write_mii(data,
1267 MII_BMCR,
1268 BMCR_ANENABLE | BMCR_ANRESTART);
1269 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1270 cpu_relax();
1272 /* Set G/MII mode and receive clock select in TBI control #2. The
1273 * second port won't work if this isn't done, even though we don't
1274 * use TBI mode.
1277 tsi108_write_tbi(data, 0x11, 0x30);
1279 /* FIXME: It seems to take more than 2 back-to-back reads to the
1280 * PHY_STAT register before the link up status bit is set.
1283 data->link_up = 1;
1285 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1286 BMSR_LSTATUS)) {
1287 if (i++ > (MII_READ_DELAY / 10)) {
1288 data->link_up = 0;
1289 break;
1291 spin_unlock_irqrestore(&phy_lock, flags);
1292 msleep(10);
1293 spin_lock_irqsave(&phy_lock, flags);
1296 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1297 data->phy_ok = 1;
1298 data->init_media = 1;
1299 spin_unlock_irqrestore(&phy_lock, flags);
1302 static void tsi108_kill_phy(struct net_device *dev)
1304 struct tsi108_prv_data *data = netdev_priv(dev);
1305 unsigned long flags;
1307 spin_lock_irqsave(&phy_lock, flags);
1308 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1309 data->phy_ok = 0;
1310 spin_unlock_irqrestore(&phy_lock, flags);
1313 static int tsi108_open(struct net_device *dev)
1315 int i;
1316 struct tsi108_prv_data *data = netdev_priv(dev);
1317 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1318 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1320 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1321 if (i != 0) {
1322 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1323 data->id, data->irq_num);
1324 return i;
1325 } else {
1326 dev->irq = data->irq_num;
1327 printk(KERN_NOTICE
1328 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1329 data->id, dev->irq, dev->name);
1332 data->rxring = dma_alloc_coherent(NULL, rxring_size,
1333 &data->rxdma, GFP_KERNEL);
1335 if (!data->rxring) {
1336 printk(KERN_DEBUG
1337 "TSI108_ETH: failed to allocate memory for rxring!\n");
1338 return -ENOMEM;
1339 } else {
1340 memset(data->rxring, 0, rxring_size);
1343 data->txring = dma_alloc_coherent(NULL, txring_size,
1344 &data->txdma, GFP_KERNEL);
1346 if (!data->txring) {
1347 printk(KERN_DEBUG
1348 "TSI108_ETH: failed to allocate memory for txring!\n");
1349 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1350 return -ENOMEM;
1351 } else {
1352 memset(data->txring, 0, txring_size);
1355 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1356 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1357 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1358 data->rxring[i].vlan = 0;
1361 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1363 data->rxtail = 0;
1364 data->rxhead = 0;
1366 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1367 struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN);
1369 if (!skb) {
1370 /* Bah. No memory for now, but maybe we'll get
1371 * some more later.
1372 * For now, we'll live with the smaller ring.
1374 printk(KERN_WARNING
1375 "%s: Could only allocate %d receive skb(s).\n",
1376 dev->name, i);
1377 data->rxhead = i;
1378 break;
1381 data->rxskbs[i] = skb;
1382 /* Align the payload on a 4-byte boundary */
1383 skb_reserve(skb, 2);
1384 data->rxskbs[i] = skb;
1385 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1386 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1389 data->rxfree = i;
1390 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1392 for (i = 0; i < TSI108_TXRING_LEN; i++) {
1393 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1394 data->txring[i].misc = 0;
1397 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1398 data->txtail = 0;
1399 data->txhead = 0;
1400 data->txfree = TSI108_TXRING_LEN;
1401 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1402 tsi108_init_phy(dev);
1404 setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1405 mod_timer(&data->timer, jiffies + 1);
1407 tsi108_restart_rx(data, dev);
1409 TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1411 TSI_WRITE(TSI108_EC_INTMASK,
1412 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1413 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1414 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1415 TSI108_INT_SFN | TSI108_INT_STATCARRY));
1417 TSI_WRITE(TSI108_MAC_CFG1,
1418 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1419 netif_start_queue(dev);
1420 return 0;
1423 static int tsi108_close(struct net_device *dev)
1425 struct tsi108_prv_data *data = netdev_priv(dev);
1427 netif_stop_queue(dev);
1429 del_timer_sync(&data->timer);
1431 tsi108_stop_ethernet(dev);
1432 tsi108_kill_phy(dev);
1433 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1434 TSI_WRITE(TSI108_MAC_CFG1, 0);
1436 /* Check for any pending TX packets, and drop them. */
1438 while (!data->txfree || data->txhead != data->txtail) {
1439 int tx = data->txtail;
1440 struct sk_buff *skb;
1441 skb = data->txskbs[tx];
1442 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1443 data->txfree++;
1444 dev_kfree_skb(skb);
1447 synchronize_irq(data->irq_num);
1448 free_irq(data->irq_num, dev);
1450 /* Discard the RX ring. */
1452 while (data->rxfree) {
1453 int rx = data->rxtail;
1454 struct sk_buff *skb;
1456 skb = data->rxskbs[rx];
1457 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1458 data->rxfree--;
1459 dev_kfree_skb(skb);
1462 dma_free_coherent(0,
1463 TSI108_RXRING_LEN * sizeof(rx_desc),
1464 data->rxring, data->rxdma);
1465 dma_free_coherent(0,
1466 TSI108_TXRING_LEN * sizeof(tx_desc),
1467 data->txring, data->txdma);
1469 return 0;
1472 static void tsi108_init_mac(struct net_device *dev)
1474 struct tsi108_prv_data *data = netdev_priv(dev);
1476 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1477 TSI108_MAC_CFG2_PADCRC);
1479 TSI_WRITE(TSI108_EC_TXTHRESH,
1480 (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1481 (192 << TSI108_EC_TXTHRESH_STOPFILL));
1483 TSI_WRITE(TSI108_STAT_CARRYMASK1,
1484 ~(TSI108_STAT_CARRY1_RXBYTES |
1485 TSI108_STAT_CARRY1_RXPKTS |
1486 TSI108_STAT_CARRY1_RXFCS |
1487 TSI108_STAT_CARRY1_RXMCAST |
1488 TSI108_STAT_CARRY1_RXALIGN |
1489 TSI108_STAT_CARRY1_RXLENGTH |
1490 TSI108_STAT_CARRY1_RXRUNT |
1491 TSI108_STAT_CARRY1_RXJUMBO |
1492 TSI108_STAT_CARRY1_RXFRAG |
1493 TSI108_STAT_CARRY1_RXJABBER |
1494 TSI108_STAT_CARRY1_RXDROP));
1496 TSI_WRITE(TSI108_STAT_CARRYMASK2,
1497 ~(TSI108_STAT_CARRY2_TXBYTES |
1498 TSI108_STAT_CARRY2_TXPKTS |
1499 TSI108_STAT_CARRY2_TXEXDEF |
1500 TSI108_STAT_CARRY2_TXEXCOL |
1501 TSI108_STAT_CARRY2_TXTCOL |
1502 TSI108_STAT_CARRY2_TXPAUSE));
1504 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1505 TSI_WRITE(TSI108_MAC_CFG1, 0);
1507 TSI_WRITE(TSI108_EC_RXCFG,
1508 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1510 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1511 TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1512 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1513 TSI108_EC_TXQ_CFG_SFNPORT));
1515 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1516 TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1517 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1518 TSI108_EC_RXQ_CFG_SFNPORT));
1520 TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1521 TSI108_EC_TXQ_BUFCFG_BURST256 |
1522 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1523 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1525 TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1526 TSI108_EC_RXQ_BUFCFG_BURST256 |
1527 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1528 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1530 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1533 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1535 struct tsi108_prv_data *data = netdev_priv(dev);
1536 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1539 static int
1540 tsi108_init_one(struct platform_device *pdev)
1542 struct net_device *dev = NULL;
1543 struct tsi108_prv_data *data = NULL;
1544 hw_info *einfo;
1545 int err = 0;
1547 einfo = pdev->dev.platform_data;
1549 if (NULL == einfo) {
1550 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1551 pdev->id);
1552 return -ENODEV;
1555 /* Create an ethernet device instance */
1557 dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1558 if (!dev) {
1559 printk("tsi108_eth: Could not allocate a device structure\n");
1560 return -ENOMEM;
1563 printk("tsi108_eth%d: probe...\n", pdev->id);
1564 data = netdev_priv(dev);
1566 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1567 pdev->id, einfo->regs, einfo->phyregs,
1568 einfo->phy, einfo->irq_num);
1570 data->regs = ioremap(einfo->regs, 0x400);
1571 if (NULL == data->regs) {
1572 err = -ENOMEM;
1573 goto regs_fail;
1576 data->phyregs = ioremap(einfo->phyregs, 0x400);
1577 if (NULL == data->phyregs) {
1578 err = -ENOMEM;
1579 goto regs_fail;
1581 /* MII setup */
1582 data->mii_if.dev = dev;
1583 data->mii_if.mdio_read = tsi108_mdio_read;
1584 data->mii_if.mdio_write = tsi108_mdio_write;
1585 data->mii_if.phy_id = einfo->phy;
1586 data->mii_if.phy_id_mask = 0x1f;
1587 data->mii_if.reg_num_mask = 0x1f;
1588 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1590 data->phy = einfo->phy;
1591 data->phy_type = einfo->phy_type;
1592 data->irq_num = einfo->irq_num;
1593 data->id = pdev->id;
1594 dev->open = tsi108_open;
1595 dev->stop = tsi108_close;
1596 dev->hard_start_xmit = tsi108_send_packet;
1597 dev->set_mac_address = tsi108_set_mac;
1598 dev->set_multicast_list = tsi108_set_rx_mode;
1599 dev->get_stats = tsi108_get_stats;
1600 dev->poll = tsi108_poll;
1601 dev->do_ioctl = tsi108_do_ioctl;
1602 dev->weight = 64; /* 64 is more suitable for GigE interface - klai */
1604 /* Apparently, the Linux networking code won't use scatter-gather
1605 * if the hardware doesn't do checksums. However, it's faster
1606 * to checksum in place and use SG, as (among other reasons)
1607 * the cache won't be dirtied (which then has to be flushed
1608 * before DMA). The checksumming is done by the driver (via
1609 * a new function skb_csum_dev() in net/core/skbuff.c).
1612 dev->features = NETIF_F_HIGHDMA;
1613 SET_MODULE_OWNER(dev);
1615 spin_lock_init(&data->txlock);
1616 spin_lock_init(&data->misclock);
1618 tsi108_reset_ether(data);
1619 tsi108_kill_phy(dev);
1621 if ((err = tsi108_get_mac(dev)) != 0) {
1622 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n",
1623 dev->name);
1624 goto register_fail;
1627 tsi108_init_mac(dev);
1628 err = register_netdev(dev);
1629 if (err) {
1630 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1631 dev->name);
1632 goto register_fail;
1635 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: "
1636 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
1637 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1638 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1639 #ifdef DEBUG
1640 data->msg_enable = DEBUG;
1641 dump_eth_one(dev);
1642 #endif
1644 return 0;
1646 register_fail:
1647 iounmap(data->regs);
1648 iounmap(data->phyregs);
1650 regs_fail:
1651 free_netdev(dev);
1652 return err;
1655 /* There's no way to either get interrupts from the PHY when
1656 * something changes, or to have the Tsi108 automatically communicate
1657 * with the PHY to reconfigure itself.
1659 * Thus, we have to do it using a timer.
1662 static void tsi108_timed_checker(unsigned long dev_ptr)
1664 struct net_device *dev = (struct net_device *)dev_ptr;
1665 struct tsi108_prv_data *data = netdev_priv(dev);
1667 tsi108_check_phy(dev);
1668 tsi108_check_rxring(dev);
1669 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1672 static int tsi108_ether_init(void)
1674 int ret;
1675 ret = platform_driver_register (&tsi_eth_driver);
1676 if (ret < 0){
1677 printk("tsi108_ether_init: error initializing ethernet "
1678 "device\n");
1679 return ret;
1681 return 0;
1684 static int tsi108_ether_remove(struct platform_device *pdev)
1686 struct net_device *dev = platform_get_drvdata(pdev);
1687 struct tsi108_prv_data *priv = netdev_priv(dev);
1689 unregister_netdev(dev);
1690 tsi108_stop_ethernet(dev);
1691 platform_set_drvdata(pdev, NULL);
1692 iounmap(priv->regs);
1693 iounmap(priv->phyregs);
1694 free_netdev(dev);
1696 return 0;
1698 static void tsi108_ether_exit(void)
1700 platform_driver_unregister(&tsi_eth_driver);
1703 module_init(tsi108_ether_init);
1704 module_exit(tsi108_ether_exit);
1706 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1707 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1708 MODULE_LICENSE("GPL");