2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
24 #include <asm/irq_regs.h>
26 #include "tick-internal.h"
29 * Per cpu nohz control structure
31 static DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
36 static ktime_t last_jiffies_update
;
38 struct tick_sched
*tick_get_tick_sched(int cpu
)
40 return &per_cpu(tick_cpu_sched
, cpu
);
44 * Must be called with interrupts disabled !
46 static void tick_do_update_jiffies64(ktime_t now
)
48 unsigned long ticks
= 0;
52 * Do a quick check without holding xtime_lock:
54 delta
= ktime_sub(now
, last_jiffies_update
);
55 if (delta
.tv64
< tick_period
.tv64
)
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock
);
61 delta
= ktime_sub(now
, last_jiffies_update
);
62 if (delta
.tv64
>= tick_period
.tv64
) {
64 delta
= ktime_sub(delta
, tick_period
);
65 last_jiffies_update
= ktime_add(last_jiffies_update
,
68 /* Slow path for long timeouts */
69 if (unlikely(delta
.tv64
>= tick_period
.tv64
)) {
70 s64 incr
= ktime_to_ns(tick_period
);
72 ticks
= ktime_divns(delta
, incr
);
74 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
82 write_sequnlock(&xtime_lock
);
86 * Initialize and return retrieve the jiffies update.
88 static ktime_t
tick_init_jiffy_update(void)
92 write_seqlock(&xtime_lock
);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update
.tv64
== 0)
95 last_jiffies_update
= tick_next_period
;
96 period
= last_jiffies_update
;
97 write_sequnlock(&xtime_lock
);
102 * NOHZ - aka dynamic tick functionality
108 int tick_nohz_enabled __read_mostly
= 1;
111 * Enable / Disable tickless mode
113 static int __init
setup_tick_nohz(char *str
)
115 if (!strcmp(str
, "off"))
116 tick_nohz_enabled
= 0;
117 else if (!strcmp(str
, "on"))
118 tick_nohz_enabled
= 1;
124 __setup("nohz=", setup_tick_nohz
);
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129 * Called from interrupt entry when the CPU was idle
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
136 static void tick_nohz_update_jiffies(ktime_t now
)
138 int cpu
= smp_processor_id();
139 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
142 ts
->idle_waketime
= now
;
144 local_irq_save(flags
);
145 tick_do_update_jiffies64(now
);
146 local_irq_restore(flags
);
148 touch_softlockup_watchdog();
152 * Updates the per cpu time idle statistics counters
155 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
159 if (ts
->idle_active
) {
160 delta
= ktime_sub(now
, ts
->idle_entrytime
);
161 if (nr_iowait_cpu(cpu
) > 0)
162 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
164 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
165 ts
->idle_entrytime
= now
;
168 if (last_update_time
)
169 *last_update_time
= ktime_to_us(now
);
173 static void tick_nohz_stop_idle(int cpu
, ktime_t now
)
175 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
177 update_ts_time_stats(cpu
, ts
, now
, NULL
);
180 sched_clock_idle_wakeup_event(0);
183 static ktime_t
tick_nohz_start_idle(int cpu
, struct tick_sched
*ts
)
185 ktime_t now
= ktime_get();
187 ts
->idle_entrytime
= now
;
189 sched_clock_idle_sleep_event();
194 * get_cpu_idle_time_us - get the total idle time of a cpu
195 * @cpu: CPU number to query
196 * @last_update_time: variable to store update time in. Do not update
199 * Return the cummulative idle time (since boot) for a given
200 * CPU, in microseconds.
202 * This time is measured via accounting rather than sampling,
203 * and is as accurate as ktime_get() is.
205 * This function returns -1 if NOHZ is not enabled.
207 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
209 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
212 if (!tick_nohz_enabled
)
216 if (last_update_time
) {
217 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
218 idle
= ts
->idle_sleeptime
;
220 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
221 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
223 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
225 idle
= ts
->idle_sleeptime
;
229 return ktime_to_us(idle
);
232 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
235 * get_cpu_iowait_time_us - get the total iowait time of a cpu
236 * @cpu: CPU number to query
237 * @last_update_time: variable to store update time in. Do not update
240 * Return the cummulative iowait time (since boot) for a given
241 * CPU, in microseconds.
243 * This time is measured via accounting rather than sampling,
244 * and is as accurate as ktime_get() is.
246 * This function returns -1 if NOHZ is not enabled.
248 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
250 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
253 if (!tick_nohz_enabled
)
257 if (last_update_time
) {
258 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
259 iowait
= ts
->iowait_sleeptime
;
261 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
262 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
264 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
266 iowait
= ts
->iowait_sleeptime
;
270 return ktime_to_us(iowait
);
272 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
274 static ktime_t
tick_nohz_stop_sched_tick(struct tick_sched
*ts
,
275 ktime_t now
, int cpu
)
277 unsigned long seq
, last_jiffies
, next_jiffies
, delta_jiffies
;
278 ktime_t last_update
, expires
, ret
= { .tv64
= 0 };
279 unsigned long rcu_delta_jiffies
;
280 struct clock_event_device
*dev
= __get_cpu_var(tick_cpu_device
).evtdev
;
283 /* Read jiffies and the time when jiffies were updated last */
285 seq
= read_seqbegin(&xtime_lock
);
286 last_update
= last_jiffies_update
;
287 last_jiffies
= jiffies
;
288 time_delta
= timekeeping_max_deferment();
289 } while (read_seqretry(&xtime_lock
, seq
));
291 if (rcu_needs_cpu(cpu
, &rcu_delta_jiffies
) || printk_needs_cpu(cpu
) ||
292 arch_needs_cpu(cpu
)) {
293 next_jiffies
= last_jiffies
+ 1;
296 /* Get the next timer wheel timer */
297 next_jiffies
= get_next_timer_interrupt(last_jiffies
);
298 delta_jiffies
= next_jiffies
- last_jiffies
;
299 if (rcu_delta_jiffies
< delta_jiffies
) {
300 next_jiffies
= last_jiffies
+ rcu_delta_jiffies
;
301 delta_jiffies
= rcu_delta_jiffies
;
305 * Do not stop the tick, if we are only one off
306 * or if the cpu is required for rcu
308 if (!ts
->tick_stopped
&& delta_jiffies
== 1)
311 /* Schedule the tick, if we are at least one jiffie off */
312 if ((long)delta_jiffies
>= 1) {
315 * If this cpu is the one which updates jiffies, then
316 * give up the assignment and let it be taken by the
317 * cpu which runs the tick timer next, which might be
318 * this cpu as well. If we don't drop this here the
319 * jiffies might be stale and do_timer() never
320 * invoked. Keep track of the fact that it was the one
321 * which had the do_timer() duty last. If this cpu is
322 * the one which had the do_timer() duty last, we
323 * limit the sleep time to the timekeeping
324 * max_deferement value which we retrieved
325 * above. Otherwise we can sleep as long as we want.
327 if (cpu
== tick_do_timer_cpu
) {
328 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
329 ts
->do_timer_last
= 1;
330 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
331 time_delta
= KTIME_MAX
;
332 ts
->do_timer_last
= 0;
333 } else if (!ts
->do_timer_last
) {
334 time_delta
= KTIME_MAX
;
338 * calculate the expiry time for the next timer wheel
339 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
340 * that there is no timer pending or at least extremely
341 * far into the future (12 days for HZ=1000). In this
342 * case we set the expiry to the end of time.
344 if (likely(delta_jiffies
< NEXT_TIMER_MAX_DELTA
)) {
346 * Calculate the time delta for the next timer event.
347 * If the time delta exceeds the maximum time delta
348 * permitted by the current clocksource then adjust
349 * the time delta accordingly to ensure the
350 * clocksource does not wrap.
352 time_delta
= min_t(u64
, time_delta
,
353 tick_period
.tv64
* delta_jiffies
);
356 if (time_delta
< KTIME_MAX
)
357 expires
= ktime_add_ns(last_update
, time_delta
);
359 expires
.tv64
= KTIME_MAX
;
361 /* Skip reprogram of event if its not changed */
362 if (ts
->tick_stopped
&& ktime_equal(expires
, dev
->next_event
))
368 * nohz_stop_sched_tick can be called several times before
369 * the nohz_restart_sched_tick is called. This happens when
370 * interrupts arrive which do not cause a reschedule. In the
371 * first call we save the current tick time, so we can restart
372 * the scheduler tick in nohz_restart_sched_tick.
374 if (!ts
->tick_stopped
) {
375 select_nohz_load_balancer(1);
376 calc_load_enter_idle();
378 ts
->last_tick
= hrtimer_get_expires(&ts
->sched_timer
);
379 ts
->tick_stopped
= 1;
383 * If the expiration time == KTIME_MAX, then
384 * in this case we simply stop the tick timer.
386 if (unlikely(expires
.tv64
== KTIME_MAX
)) {
387 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
388 hrtimer_cancel(&ts
->sched_timer
);
392 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
393 hrtimer_start(&ts
->sched_timer
, expires
,
394 HRTIMER_MODE_ABS_PINNED
);
395 /* Check, if the timer was already in the past */
396 if (hrtimer_active(&ts
->sched_timer
))
398 } else if (!tick_program_event(expires
, 0))
401 * We are past the event already. So we crossed a
402 * jiffie boundary. Update jiffies and raise the
405 tick_do_update_jiffies64(ktime_get());
407 raise_softirq_irqoff(TIMER_SOFTIRQ
);
409 ts
->next_jiffies
= next_jiffies
;
410 ts
->last_jiffies
= last_jiffies
;
411 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
416 static bool can_stop_idle_tick(int cpu
, struct tick_sched
*ts
)
419 * If this cpu is offline and it is the one which updates
420 * jiffies, then give up the assignment and let it be taken by
421 * the cpu which runs the tick timer next. If we don't drop
422 * this here the jiffies might be stale and do_timer() never
425 if (unlikely(!cpu_online(cpu
))) {
426 if (cpu
== tick_do_timer_cpu
)
427 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
430 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
))
436 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
437 static int ratelimit
;
439 if (ratelimit
< 10) {
440 printk(KERN_ERR
"NOHZ: local_softirq_pending %02x\n",
441 (unsigned int) local_softirq_pending());
450 static void __tick_nohz_idle_enter(struct tick_sched
*ts
)
452 ktime_t now
, expires
;
453 int cpu
= smp_processor_id();
455 now
= tick_nohz_start_idle(cpu
, ts
);
457 if (can_stop_idle_tick(cpu
, ts
)) {
458 int was_stopped
= ts
->tick_stopped
;
462 expires
= tick_nohz_stop_sched_tick(ts
, now
, cpu
);
463 if (expires
.tv64
> 0LL) {
465 ts
->idle_expires
= expires
;
468 if (!was_stopped
&& ts
->tick_stopped
)
469 ts
->idle_jiffies
= ts
->last_jiffies
;
474 * tick_nohz_idle_enter - stop the idle tick from the idle task
476 * When the next event is more than a tick into the future, stop the idle tick
477 * Called when we start the idle loop.
479 * The arch is responsible of calling:
481 * - rcu_idle_enter() after its last use of RCU before the CPU is put
483 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
485 void tick_nohz_idle_enter(void)
487 struct tick_sched
*ts
;
489 WARN_ON_ONCE(irqs_disabled());
492 * Update the idle state in the scheduler domain hierarchy
493 * when tick_nohz_stop_sched_tick() is called from the idle loop.
494 * State will be updated to busy during the first busy tick after
497 set_cpu_sd_state_idle();
501 ts
= &__get_cpu_var(tick_cpu_sched
);
503 * set ts->inidle unconditionally. even if the system did not
504 * switch to nohz mode the cpu frequency governers rely on the
505 * update of the idle time accounting in tick_nohz_start_idle().
508 __tick_nohz_idle_enter(ts
);
514 * tick_nohz_irq_exit - update next tick event from interrupt exit
516 * When an interrupt fires while we are idle and it doesn't cause
517 * a reschedule, it may still add, modify or delete a timer, enqueue
518 * an RCU callback, etc...
519 * So we need to re-calculate and reprogram the next tick event.
521 void tick_nohz_irq_exit(void)
523 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
528 __tick_nohz_idle_enter(ts
);
532 * tick_nohz_get_sleep_length - return the length of the current sleep
534 * Called from power state control code with interrupts disabled
536 ktime_t
tick_nohz_get_sleep_length(void)
538 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
540 return ts
->sleep_length
;
543 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
545 hrtimer_cancel(&ts
->sched_timer
);
546 hrtimer_set_expires(&ts
->sched_timer
, ts
->last_tick
);
549 /* Forward the time to expire in the future */
550 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
552 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
553 hrtimer_start_expires(&ts
->sched_timer
,
554 HRTIMER_MODE_ABS_PINNED
);
555 /* Check, if the timer was already in the past */
556 if (hrtimer_active(&ts
->sched_timer
))
559 if (!tick_program_event(
560 hrtimer_get_expires(&ts
->sched_timer
), 0))
563 /* Reread time and update jiffies */
565 tick_do_update_jiffies64(now
);
569 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
)
571 /* Update jiffies first */
572 select_nohz_load_balancer(0);
573 tick_do_update_jiffies64(now
);
574 update_cpu_load_nohz();
576 touch_softlockup_watchdog();
578 * Cancel the scheduled timer and restore the tick
580 ts
->tick_stopped
= 0;
581 ts
->idle_exittime
= now
;
583 tick_nohz_restart(ts
, now
);
586 static void tick_nohz_account_idle_ticks(struct tick_sched
*ts
)
588 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
591 * We stopped the tick in idle. Update process times would miss the
592 * time we slept as update_process_times does only a 1 tick
593 * accounting. Enforce that this is accounted to idle !
595 ticks
= jiffies
- ts
->idle_jiffies
;
597 * We might be one off. Do not randomly account a huge number of ticks!
599 if (ticks
&& ticks
< LONG_MAX
)
600 account_idle_ticks(ticks
);
605 * tick_nohz_idle_exit - restart the idle tick from the idle task
607 * Restart the idle tick when the CPU is woken up from idle
608 * This also exit the RCU extended quiescent state. The CPU
609 * can use RCU again after this function is called.
611 void tick_nohz_idle_exit(void)
613 int cpu
= smp_processor_id();
614 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
619 WARN_ON_ONCE(!ts
->inidle
);
623 if (ts
->idle_active
|| ts
->tick_stopped
)
627 tick_nohz_stop_idle(cpu
, now
);
629 if (ts
->tick_stopped
) {
630 tick_nohz_restart_sched_tick(ts
, now
);
631 tick_nohz_account_idle_ticks(ts
);
637 static int tick_nohz_reprogram(struct tick_sched
*ts
, ktime_t now
)
639 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
640 return tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 0);
644 * The nohz low res interrupt handler
646 static void tick_nohz_handler(struct clock_event_device
*dev
)
648 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
649 struct pt_regs
*regs
= get_irq_regs();
650 int cpu
= smp_processor_id();
651 ktime_t now
= ktime_get();
653 dev
->next_event
.tv64
= KTIME_MAX
;
656 * Check if the do_timer duty was dropped. We don't care about
657 * concurrency: This happens only when the cpu in charge went
658 * into a long sleep. If two cpus happen to assign themself to
659 * this duty, then the jiffies update is still serialized by
662 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
))
663 tick_do_timer_cpu
= cpu
;
665 /* Check, if the jiffies need an update */
666 if (tick_do_timer_cpu
== cpu
)
667 tick_do_update_jiffies64(now
);
670 * When we are idle and the tick is stopped, we have to touch
671 * the watchdog as we might not schedule for a really long
672 * time. This happens on complete idle SMP systems while
673 * waiting on the login prompt. We also increment the "start
674 * of idle" jiffy stamp so the idle accounting adjustment we
675 * do when we go busy again does not account too much ticks.
677 if (ts
->tick_stopped
) {
678 touch_softlockup_watchdog();
682 update_process_times(user_mode(regs
));
683 profile_tick(CPU_PROFILING
);
685 while (tick_nohz_reprogram(ts
, now
)) {
687 tick_do_update_jiffies64(now
);
692 * tick_nohz_switch_to_nohz - switch to nohz mode
694 static void tick_nohz_switch_to_nohz(void)
696 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
699 if (!tick_nohz_enabled
)
703 if (tick_switch_to_oneshot(tick_nohz_handler
)) {
708 ts
->nohz_mode
= NOHZ_MODE_LOWRES
;
711 * Recycle the hrtimer in ts, so we can share the
712 * hrtimer_forward with the highres code.
714 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
715 /* Get the next period */
716 next
= tick_init_jiffy_update();
719 hrtimer_set_expires(&ts
->sched_timer
, next
);
720 if (!tick_program_event(next
, 0))
722 next
= ktime_add(next
, tick_period
);
728 * When NOHZ is enabled and the tick is stopped, we need to kick the
729 * tick timer from irq_enter() so that the jiffies update is kept
730 * alive during long running softirqs. That's ugly as hell, but
731 * correctness is key even if we need to fix the offending softirq in
734 * Note, this is different to tick_nohz_restart. We just kick the
735 * timer and do not touch the other magic bits which need to be done
738 static void tick_nohz_kick_tick(int cpu
, ktime_t now
)
741 /* Switch back to 2.6.27 behaviour */
743 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
747 * Do not touch the tick device, when the next expiry is either
748 * already reached or less/equal than the tick period.
750 delta
= ktime_sub(hrtimer_get_expires(&ts
->sched_timer
), now
);
751 if (delta
.tv64
<= tick_period
.tv64
)
754 tick_nohz_restart(ts
, now
);
758 static inline void tick_check_nohz(int cpu
)
760 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
763 if (!ts
->idle_active
&& !ts
->tick_stopped
)
767 tick_nohz_stop_idle(cpu
, now
);
768 if (ts
->tick_stopped
) {
769 tick_nohz_update_jiffies(now
);
770 tick_nohz_kick_tick(cpu
, now
);
776 static inline void tick_nohz_switch_to_nohz(void) { }
777 static inline void tick_check_nohz(int cpu
) { }
782 * Called from irq_enter to notify about the possible interruption of idle()
784 void tick_check_idle(int cpu
)
786 tick_check_oneshot_broadcast(cpu
);
787 tick_check_nohz(cpu
);
791 * High resolution timer specific code
793 #ifdef CONFIG_HIGH_RES_TIMERS
795 * We rearm the timer until we get disabled by the idle code.
796 * Called with interrupts disabled and timer->base->cpu_base->lock held.
798 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
800 struct tick_sched
*ts
=
801 container_of(timer
, struct tick_sched
, sched_timer
);
802 struct pt_regs
*regs
= get_irq_regs();
803 ktime_t now
= ktime_get();
804 int cpu
= smp_processor_id();
808 * Check if the do_timer duty was dropped. We don't care about
809 * concurrency: This happens only when the cpu in charge went
810 * into a long sleep. If two cpus happen to assign themself to
811 * this duty, then the jiffies update is still serialized by
814 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
))
815 tick_do_timer_cpu
= cpu
;
818 /* Check, if the jiffies need an update */
819 if (tick_do_timer_cpu
== cpu
)
820 tick_do_update_jiffies64(now
);
823 * Do not call, when we are not in irq context and have
824 * no valid regs pointer
828 * When we are idle and the tick is stopped, we have to touch
829 * the watchdog as we might not schedule for a really long
830 * time. This happens on complete idle SMP systems while
831 * waiting on the login prompt. We also increment the "start of
832 * idle" jiffy stamp so the idle accounting adjustment we do
833 * when we go busy again does not account too much ticks.
835 if (ts
->tick_stopped
) {
836 touch_softlockup_watchdog();
840 update_process_times(user_mode(regs
));
841 profile_tick(CPU_PROFILING
);
844 hrtimer_forward(timer
, now
, tick_period
);
846 return HRTIMER_RESTART
;
849 static int sched_skew_tick
;
851 static int __init
skew_tick(char *str
)
853 get_option(&str
, &sched_skew_tick
);
857 early_param("skew_tick", skew_tick
);
860 * tick_setup_sched_timer - setup the tick emulation timer
862 void tick_setup_sched_timer(void)
864 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
865 ktime_t now
= ktime_get();
868 * Emulate tick processing via per-CPU hrtimers:
870 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
871 ts
->sched_timer
.function
= tick_sched_timer
;
873 /* Get the next period (per cpu) */
874 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
876 /* Offset the tick to avert xtime_lock contention. */
877 if (sched_skew_tick
) {
878 u64 offset
= ktime_to_ns(tick_period
) >> 1;
879 do_div(offset
, num_possible_cpus());
880 offset
*= smp_processor_id();
881 hrtimer_add_expires_ns(&ts
->sched_timer
, offset
);
885 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
886 hrtimer_start_expires(&ts
->sched_timer
,
887 HRTIMER_MODE_ABS_PINNED
);
888 /* Check, if the timer was already in the past */
889 if (hrtimer_active(&ts
->sched_timer
))
895 if (tick_nohz_enabled
)
896 ts
->nohz_mode
= NOHZ_MODE_HIGHRES
;
899 #endif /* HIGH_RES_TIMERS */
901 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
902 void tick_cancel_sched_timer(int cpu
)
904 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
906 # ifdef CONFIG_HIGH_RES_TIMERS
907 if (ts
->sched_timer
.base
)
908 hrtimer_cancel(&ts
->sched_timer
);
911 ts
->nohz_mode
= NOHZ_MODE_INACTIVE
;
916 * Async notification about clocksource changes
918 void tick_clock_notify(void)
922 for_each_possible_cpu(cpu
)
923 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
927 * Async notification about clock event changes
929 void tick_oneshot_notify(void)
931 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
933 set_bit(0, &ts
->check_clocks
);
937 * Check, if a change happened, which makes oneshot possible.
939 * Called cyclic from the hrtimer softirq (driven by the timer
940 * softirq) allow_nohz signals, that we can switch into low-res nohz
941 * mode, because high resolution timers are disabled (either compile
944 int tick_check_oneshot_change(int allow_nohz
)
946 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
948 if (!test_and_clear_bit(0, &ts
->check_clocks
))
951 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
954 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
960 tick_nohz_switch_to_nohz();