mm: check rb_subtree_gap correctness
[linux-2.6.git] / mm / mmap.c
blobff93f6c8436c465bf9dd701c3d4dc5fb6e8ae176
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34 #include <linux/rbtree_augmented.h>
36 #include <asm/uaccess.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlb.h>
39 #include <asm/mmu_context.h>
41 #include "internal.h"
43 #ifndef arch_mmap_check
44 #define arch_mmap_check(addr, len, flags) (0)
45 #endif
47 #ifndef arch_rebalance_pgtables
48 #define arch_rebalance_pgtables(addr, len) (addr)
49 #endif
51 static void unmap_region(struct mm_struct *mm,
52 struct vm_area_struct *vma, struct vm_area_struct *prev,
53 unsigned long start, unsigned long end);
55 /* description of effects of mapping type and prot in current implementation.
56 * this is due to the limited x86 page protection hardware. The expected
57 * behavior is in parens:
59 * map_type prot
60 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
61 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
62 * w: (no) no w: (no) no w: (yes) yes w: (no) no
63 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
65 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (copy) copy w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
70 pgprot_t protection_map[16] = {
71 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
72 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
75 pgprot_t vm_get_page_prot(unsigned long vm_flags)
77 return __pgprot(pgprot_val(protection_map[vm_flags &
78 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
79 pgprot_val(arch_vm_get_page_prot(vm_flags)));
81 EXPORT_SYMBOL(vm_get_page_prot);
83 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
84 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
85 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87 * Make sure vm_committed_as in one cacheline and not cacheline shared with
88 * other variables. It can be updated by several CPUs frequently.
90 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
93 * Check that a process has enough memory to allocate a new virtual
94 * mapping. 0 means there is enough memory for the allocation to
95 * succeed and -ENOMEM implies there is not.
97 * We currently support three overcommit policies, which are set via the
98 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
100 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
101 * Additional code 2002 Jul 20 by Robert Love.
103 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
105 * Note this is a helper function intended to be used by LSMs which
106 * wish to use this logic.
108 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
110 unsigned long free, allowed;
112 vm_acct_memory(pages);
115 * Sometimes we want to use more memory than we have
117 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
118 return 0;
120 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
121 free = global_page_state(NR_FREE_PAGES);
122 free += global_page_state(NR_FILE_PAGES);
125 * shmem pages shouldn't be counted as free in this
126 * case, they can't be purged, only swapped out, and
127 * that won't affect the overall amount of available
128 * memory in the system.
130 free -= global_page_state(NR_SHMEM);
132 free += nr_swap_pages;
135 * Any slabs which are created with the
136 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
137 * which are reclaimable, under pressure. The dentry
138 * cache and most inode caches should fall into this
140 free += global_page_state(NR_SLAB_RECLAIMABLE);
143 * Leave reserved pages. The pages are not for anonymous pages.
145 if (free <= totalreserve_pages)
146 goto error;
147 else
148 free -= totalreserve_pages;
151 * Leave the last 3% for root
153 if (!cap_sys_admin)
154 free -= free / 32;
156 if (free > pages)
157 return 0;
159 goto error;
162 allowed = (totalram_pages - hugetlb_total_pages())
163 * sysctl_overcommit_ratio / 100;
165 * Leave the last 3% for root
167 if (!cap_sys_admin)
168 allowed -= allowed / 32;
169 allowed += total_swap_pages;
171 /* Don't let a single process grow too big:
172 leave 3% of the size of this process for other processes */
173 if (mm)
174 allowed -= mm->total_vm / 32;
176 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
177 return 0;
178 error:
179 vm_unacct_memory(pages);
181 return -ENOMEM;
185 * Requires inode->i_mapping->i_mmap_mutex
187 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
188 struct file *file, struct address_space *mapping)
190 if (vma->vm_flags & VM_DENYWRITE)
191 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
192 if (vma->vm_flags & VM_SHARED)
193 mapping->i_mmap_writable--;
195 flush_dcache_mmap_lock(mapping);
196 if (unlikely(vma->vm_flags & VM_NONLINEAR))
197 list_del_init(&vma->shared.nonlinear);
198 else
199 vma_interval_tree_remove(vma, &mapping->i_mmap);
200 flush_dcache_mmap_unlock(mapping);
204 * Unlink a file-based vm structure from its interval tree, to hide
205 * vma from rmap and vmtruncate before freeing its page tables.
207 void unlink_file_vma(struct vm_area_struct *vma)
209 struct file *file = vma->vm_file;
211 if (file) {
212 struct address_space *mapping = file->f_mapping;
213 mutex_lock(&mapping->i_mmap_mutex);
214 __remove_shared_vm_struct(vma, file, mapping);
215 mutex_unlock(&mapping->i_mmap_mutex);
220 * Close a vm structure and free it, returning the next.
222 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
224 struct vm_area_struct *next = vma->vm_next;
226 might_sleep();
227 if (vma->vm_ops && vma->vm_ops->close)
228 vma->vm_ops->close(vma);
229 if (vma->vm_file)
230 fput(vma->vm_file);
231 mpol_put(vma_policy(vma));
232 kmem_cache_free(vm_area_cachep, vma);
233 return next;
236 static unsigned long do_brk(unsigned long addr, unsigned long len);
238 SYSCALL_DEFINE1(brk, unsigned long, brk)
240 unsigned long rlim, retval;
241 unsigned long newbrk, oldbrk;
242 struct mm_struct *mm = current->mm;
243 unsigned long min_brk;
245 down_write(&mm->mmap_sem);
247 #ifdef CONFIG_COMPAT_BRK
249 * CONFIG_COMPAT_BRK can still be overridden by setting
250 * randomize_va_space to 2, which will still cause mm->start_brk
251 * to be arbitrarily shifted
253 if (current->brk_randomized)
254 min_brk = mm->start_brk;
255 else
256 min_brk = mm->end_data;
257 #else
258 min_brk = mm->start_brk;
259 #endif
260 if (brk < min_brk)
261 goto out;
264 * Check against rlimit here. If this check is done later after the test
265 * of oldbrk with newbrk then it can escape the test and let the data
266 * segment grow beyond its set limit the in case where the limit is
267 * not page aligned -Ram Gupta
269 rlim = rlimit(RLIMIT_DATA);
270 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
271 (mm->end_data - mm->start_data) > rlim)
272 goto out;
274 newbrk = PAGE_ALIGN(brk);
275 oldbrk = PAGE_ALIGN(mm->brk);
276 if (oldbrk == newbrk)
277 goto set_brk;
279 /* Always allow shrinking brk. */
280 if (brk <= mm->brk) {
281 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
282 goto set_brk;
283 goto out;
286 /* Check against existing mmap mappings. */
287 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
288 goto out;
290 /* Ok, looks good - let it rip. */
291 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
292 goto out;
293 set_brk:
294 mm->brk = brk;
295 out:
296 retval = mm->brk;
297 up_write(&mm->mmap_sem);
298 return retval;
301 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
303 unsigned long max, subtree_gap;
304 max = vma->vm_start;
305 if (vma->vm_prev)
306 max -= vma->vm_prev->vm_end;
307 if (vma->vm_rb.rb_left) {
308 subtree_gap = rb_entry(vma->vm_rb.rb_left,
309 struct vm_area_struct, vm_rb)->rb_subtree_gap;
310 if (subtree_gap > max)
311 max = subtree_gap;
313 if (vma->vm_rb.rb_right) {
314 subtree_gap = rb_entry(vma->vm_rb.rb_right,
315 struct vm_area_struct, vm_rb)->rb_subtree_gap;
316 if (subtree_gap > max)
317 max = subtree_gap;
319 return max;
322 #ifdef CONFIG_DEBUG_VM_RB
323 static int browse_rb(struct rb_root *root)
325 int i = 0, j, bug = 0;
326 struct rb_node *nd, *pn = NULL;
327 unsigned long prev = 0, pend = 0;
329 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
330 struct vm_area_struct *vma;
331 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
332 if (vma->vm_start < prev) {
333 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
334 bug = 1;
336 if (vma->vm_start < pend) {
337 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
338 bug = 1;
340 if (vma->vm_start > vma->vm_end) {
341 printk("vm_end %lx < vm_start %lx\n",
342 vma->vm_end, vma->vm_start);
343 bug = 1;
345 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
346 printk("free gap %lx, correct %lx\n",
347 vma->rb_subtree_gap,
348 vma_compute_subtree_gap(vma));
349 bug = 1;
351 i++;
352 pn = nd;
353 prev = vma->vm_start;
354 pend = vma->vm_end;
356 j = 0;
357 for (nd = pn; nd; nd = rb_prev(nd))
358 j++;
359 if (i != j) {
360 printk("backwards %d, forwards %d\n", j, i);
361 bug = 1;
363 return bug ? -1 : i;
366 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
368 struct rb_node *nd;
370 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
371 struct vm_area_struct *vma;
372 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
373 BUG_ON(vma != ignore &&
374 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
378 void validate_mm(struct mm_struct *mm)
380 int bug = 0;
381 int i = 0;
382 unsigned long highest_address = 0;
383 struct vm_area_struct *vma = mm->mmap;
384 while (vma) {
385 struct anon_vma_chain *avc;
386 vma_lock_anon_vma(vma);
387 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
388 anon_vma_interval_tree_verify(avc);
389 vma_unlock_anon_vma(vma);
390 highest_address = vma->vm_end;
391 vma = vma->vm_next;
392 i++;
394 if (i != mm->map_count) {
395 printk("map_count %d vm_next %d\n", mm->map_count, i);
396 bug = 1;
398 if (highest_address != mm->highest_vm_end) {
399 printk("mm->highest_vm_end %lx, found %lx\n",
400 mm->highest_vm_end, highest_address);
401 bug = 1;
403 i = browse_rb(&mm->mm_rb);
404 if (i != mm->map_count) {
405 printk("map_count %d rb %d\n", mm->map_count, i);
406 bug = 1;
408 BUG_ON(bug);
410 #else
411 #define validate_mm_rb(root, ignore) do { } while (0)
412 #define validate_mm(mm) do { } while (0)
413 #endif
415 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
416 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
419 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
420 * vma->vm_prev->vm_end values changed, without modifying the vma's position
421 * in the rbtree.
423 static void vma_gap_update(struct vm_area_struct *vma)
426 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
427 * function that does exacltly what we want.
429 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
432 static inline void vma_rb_insert(struct vm_area_struct *vma,
433 struct rb_root *root)
435 /* All rb_subtree_gap values must be consistent prior to insertion */
436 validate_mm_rb(root, NULL);
438 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
441 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
444 * All rb_subtree_gap values must be consistent prior to erase,
445 * with the possible exception of the vma being erased.
447 validate_mm_rb(root, vma);
450 * Note rb_erase_augmented is a fairly large inline function,
451 * so make sure we instantiate it only once with our desired
452 * augmented rbtree callbacks.
454 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
458 * vma has some anon_vma assigned, and is already inserted on that
459 * anon_vma's interval trees.
461 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
462 * vma must be removed from the anon_vma's interval trees using
463 * anon_vma_interval_tree_pre_update_vma().
465 * After the update, the vma will be reinserted using
466 * anon_vma_interval_tree_post_update_vma().
468 * The entire update must be protected by exclusive mmap_sem and by
469 * the root anon_vma's mutex.
471 static inline void
472 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
474 struct anon_vma_chain *avc;
476 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
477 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
480 static inline void
481 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
483 struct anon_vma_chain *avc;
485 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
486 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
489 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
490 unsigned long end, struct vm_area_struct **pprev,
491 struct rb_node ***rb_link, struct rb_node **rb_parent)
493 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
495 __rb_link = &mm->mm_rb.rb_node;
496 rb_prev = __rb_parent = NULL;
498 while (*__rb_link) {
499 struct vm_area_struct *vma_tmp;
501 __rb_parent = *__rb_link;
502 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
504 if (vma_tmp->vm_end > addr) {
505 /* Fail if an existing vma overlaps the area */
506 if (vma_tmp->vm_start < end)
507 return -ENOMEM;
508 __rb_link = &__rb_parent->rb_left;
509 } else {
510 rb_prev = __rb_parent;
511 __rb_link = &__rb_parent->rb_right;
515 *pprev = NULL;
516 if (rb_prev)
517 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
518 *rb_link = __rb_link;
519 *rb_parent = __rb_parent;
520 return 0;
523 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
524 struct rb_node **rb_link, struct rb_node *rb_parent)
526 /* Update tracking information for the gap following the new vma. */
527 if (vma->vm_next)
528 vma_gap_update(vma->vm_next);
529 else
530 mm->highest_vm_end = vma->vm_end;
533 * vma->vm_prev wasn't known when we followed the rbtree to find the
534 * correct insertion point for that vma. As a result, we could not
535 * update the vma vm_rb parents rb_subtree_gap values on the way down.
536 * So, we first insert the vma with a zero rb_subtree_gap value
537 * (to be consistent with what we did on the way down), and then
538 * immediately update the gap to the correct value. Finally we
539 * rebalance the rbtree after all augmented values have been set.
541 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
542 vma->rb_subtree_gap = 0;
543 vma_gap_update(vma);
544 vma_rb_insert(vma, &mm->mm_rb);
547 static void __vma_link_file(struct vm_area_struct *vma)
549 struct file *file;
551 file = vma->vm_file;
552 if (file) {
553 struct address_space *mapping = file->f_mapping;
555 if (vma->vm_flags & VM_DENYWRITE)
556 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
557 if (vma->vm_flags & VM_SHARED)
558 mapping->i_mmap_writable++;
560 flush_dcache_mmap_lock(mapping);
561 if (unlikely(vma->vm_flags & VM_NONLINEAR))
562 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
563 else
564 vma_interval_tree_insert(vma, &mapping->i_mmap);
565 flush_dcache_mmap_unlock(mapping);
569 static void
570 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
571 struct vm_area_struct *prev, struct rb_node **rb_link,
572 struct rb_node *rb_parent)
574 __vma_link_list(mm, vma, prev, rb_parent);
575 __vma_link_rb(mm, vma, rb_link, rb_parent);
578 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
579 struct vm_area_struct *prev, struct rb_node **rb_link,
580 struct rb_node *rb_parent)
582 struct address_space *mapping = NULL;
584 if (vma->vm_file)
585 mapping = vma->vm_file->f_mapping;
587 if (mapping)
588 mutex_lock(&mapping->i_mmap_mutex);
590 __vma_link(mm, vma, prev, rb_link, rb_parent);
591 __vma_link_file(vma);
593 if (mapping)
594 mutex_unlock(&mapping->i_mmap_mutex);
596 mm->map_count++;
597 validate_mm(mm);
601 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
602 * mm's list and rbtree. It has already been inserted into the interval tree.
604 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
606 struct vm_area_struct *prev;
607 struct rb_node **rb_link, *rb_parent;
609 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
610 &prev, &rb_link, &rb_parent))
611 BUG();
612 __vma_link(mm, vma, prev, rb_link, rb_parent);
613 mm->map_count++;
616 static inline void
617 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
618 struct vm_area_struct *prev)
620 struct vm_area_struct *next;
622 vma_rb_erase(vma, &mm->mm_rb);
623 prev->vm_next = next = vma->vm_next;
624 if (next)
625 next->vm_prev = prev;
626 if (mm->mmap_cache == vma)
627 mm->mmap_cache = prev;
631 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
632 * is already present in an i_mmap tree without adjusting the tree.
633 * The following helper function should be used when such adjustments
634 * are necessary. The "insert" vma (if any) is to be inserted
635 * before we drop the necessary locks.
637 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
638 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
640 struct mm_struct *mm = vma->vm_mm;
641 struct vm_area_struct *next = vma->vm_next;
642 struct vm_area_struct *importer = NULL;
643 struct address_space *mapping = NULL;
644 struct rb_root *root = NULL;
645 struct anon_vma *anon_vma = NULL;
646 struct file *file = vma->vm_file;
647 bool start_changed = false, end_changed = false;
648 long adjust_next = 0;
649 int remove_next = 0;
651 if (next && !insert) {
652 struct vm_area_struct *exporter = NULL;
654 if (end >= next->vm_end) {
656 * vma expands, overlapping all the next, and
657 * perhaps the one after too (mprotect case 6).
659 again: remove_next = 1 + (end > next->vm_end);
660 end = next->vm_end;
661 exporter = next;
662 importer = vma;
663 } else if (end > next->vm_start) {
665 * vma expands, overlapping part of the next:
666 * mprotect case 5 shifting the boundary up.
668 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
669 exporter = next;
670 importer = vma;
671 } else if (end < vma->vm_end) {
673 * vma shrinks, and !insert tells it's not
674 * split_vma inserting another: so it must be
675 * mprotect case 4 shifting the boundary down.
677 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
678 exporter = vma;
679 importer = next;
683 * Easily overlooked: when mprotect shifts the boundary,
684 * make sure the expanding vma has anon_vma set if the
685 * shrinking vma had, to cover any anon pages imported.
687 if (exporter && exporter->anon_vma && !importer->anon_vma) {
688 if (anon_vma_clone(importer, exporter))
689 return -ENOMEM;
690 importer->anon_vma = exporter->anon_vma;
694 if (file) {
695 mapping = file->f_mapping;
696 if (!(vma->vm_flags & VM_NONLINEAR)) {
697 root = &mapping->i_mmap;
698 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
700 if (adjust_next)
701 uprobe_munmap(next, next->vm_start,
702 next->vm_end);
705 mutex_lock(&mapping->i_mmap_mutex);
706 if (insert) {
708 * Put into interval tree now, so instantiated pages
709 * are visible to arm/parisc __flush_dcache_page
710 * throughout; but we cannot insert into address
711 * space until vma start or end is updated.
713 __vma_link_file(insert);
717 vma_adjust_trans_huge(vma, start, end, adjust_next);
719 anon_vma = vma->anon_vma;
720 if (!anon_vma && adjust_next)
721 anon_vma = next->anon_vma;
722 if (anon_vma) {
723 VM_BUG_ON(adjust_next && next->anon_vma &&
724 anon_vma != next->anon_vma);
725 anon_vma_lock(anon_vma);
726 anon_vma_interval_tree_pre_update_vma(vma);
727 if (adjust_next)
728 anon_vma_interval_tree_pre_update_vma(next);
731 if (root) {
732 flush_dcache_mmap_lock(mapping);
733 vma_interval_tree_remove(vma, root);
734 if (adjust_next)
735 vma_interval_tree_remove(next, root);
738 if (start != vma->vm_start) {
739 vma->vm_start = start;
740 start_changed = true;
742 if (end != vma->vm_end) {
743 vma->vm_end = end;
744 end_changed = true;
746 vma->vm_pgoff = pgoff;
747 if (adjust_next) {
748 next->vm_start += adjust_next << PAGE_SHIFT;
749 next->vm_pgoff += adjust_next;
752 if (root) {
753 if (adjust_next)
754 vma_interval_tree_insert(next, root);
755 vma_interval_tree_insert(vma, root);
756 flush_dcache_mmap_unlock(mapping);
759 if (remove_next) {
761 * vma_merge has merged next into vma, and needs
762 * us to remove next before dropping the locks.
764 __vma_unlink(mm, next, vma);
765 if (file)
766 __remove_shared_vm_struct(next, file, mapping);
767 } else if (insert) {
769 * split_vma has split insert from vma, and needs
770 * us to insert it before dropping the locks
771 * (it may either follow vma or precede it).
773 __insert_vm_struct(mm, insert);
774 } else {
775 if (start_changed)
776 vma_gap_update(vma);
777 if (end_changed) {
778 if (!next)
779 mm->highest_vm_end = end;
780 else if (!adjust_next)
781 vma_gap_update(next);
785 if (anon_vma) {
786 anon_vma_interval_tree_post_update_vma(vma);
787 if (adjust_next)
788 anon_vma_interval_tree_post_update_vma(next);
789 anon_vma_unlock(anon_vma);
791 if (mapping)
792 mutex_unlock(&mapping->i_mmap_mutex);
794 if (root) {
795 uprobe_mmap(vma);
797 if (adjust_next)
798 uprobe_mmap(next);
801 if (remove_next) {
802 if (file) {
803 uprobe_munmap(next, next->vm_start, next->vm_end);
804 fput(file);
806 if (next->anon_vma)
807 anon_vma_merge(vma, next);
808 mm->map_count--;
809 mpol_put(vma_policy(next));
810 kmem_cache_free(vm_area_cachep, next);
812 * In mprotect's case 6 (see comments on vma_merge),
813 * we must remove another next too. It would clutter
814 * up the code too much to do both in one go.
816 next = vma->vm_next;
817 if (remove_next == 2)
818 goto again;
819 else if (next)
820 vma_gap_update(next);
821 else
822 mm->highest_vm_end = end;
824 if (insert && file)
825 uprobe_mmap(insert);
827 validate_mm(mm);
829 return 0;
833 * If the vma has a ->close operation then the driver probably needs to release
834 * per-vma resources, so we don't attempt to merge those.
836 static inline int is_mergeable_vma(struct vm_area_struct *vma,
837 struct file *file, unsigned long vm_flags)
839 if (vma->vm_flags ^ vm_flags)
840 return 0;
841 if (vma->vm_file != file)
842 return 0;
843 if (vma->vm_ops && vma->vm_ops->close)
844 return 0;
845 return 1;
848 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
849 struct anon_vma *anon_vma2,
850 struct vm_area_struct *vma)
853 * The list_is_singular() test is to avoid merging VMA cloned from
854 * parents. This can improve scalability caused by anon_vma lock.
856 if ((!anon_vma1 || !anon_vma2) && (!vma ||
857 list_is_singular(&vma->anon_vma_chain)))
858 return 1;
859 return anon_vma1 == anon_vma2;
863 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
864 * in front of (at a lower virtual address and file offset than) the vma.
866 * We cannot merge two vmas if they have differently assigned (non-NULL)
867 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
869 * We don't check here for the merged mmap wrapping around the end of pagecache
870 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
871 * wrap, nor mmaps which cover the final page at index -1UL.
873 static int
874 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
875 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
877 if (is_mergeable_vma(vma, file, vm_flags) &&
878 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
879 if (vma->vm_pgoff == vm_pgoff)
880 return 1;
882 return 0;
886 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
887 * beyond (at a higher virtual address and file offset than) the vma.
889 * We cannot merge two vmas if they have differently assigned (non-NULL)
890 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
892 static int
893 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
894 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
896 if (is_mergeable_vma(vma, file, vm_flags) &&
897 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
898 pgoff_t vm_pglen;
899 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
900 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
901 return 1;
903 return 0;
907 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
908 * whether that can be merged with its predecessor or its successor.
909 * Or both (it neatly fills a hole).
911 * In most cases - when called for mmap, brk or mremap - [addr,end) is
912 * certain not to be mapped by the time vma_merge is called; but when
913 * called for mprotect, it is certain to be already mapped (either at
914 * an offset within prev, or at the start of next), and the flags of
915 * this area are about to be changed to vm_flags - and the no-change
916 * case has already been eliminated.
918 * The following mprotect cases have to be considered, where AAAA is
919 * the area passed down from mprotect_fixup, never extending beyond one
920 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
922 * AAAA AAAA AAAA AAAA
923 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
924 * cannot merge might become might become might become
925 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
926 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
927 * mremap move: PPPPNNNNNNNN 8
928 * AAAA
929 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
930 * might become case 1 below case 2 below case 3 below
932 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
933 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
935 struct vm_area_struct *vma_merge(struct mm_struct *mm,
936 struct vm_area_struct *prev, unsigned long addr,
937 unsigned long end, unsigned long vm_flags,
938 struct anon_vma *anon_vma, struct file *file,
939 pgoff_t pgoff, struct mempolicy *policy)
941 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
942 struct vm_area_struct *area, *next;
943 int err;
946 * We later require that vma->vm_flags == vm_flags,
947 * so this tests vma->vm_flags & VM_SPECIAL, too.
949 if (vm_flags & VM_SPECIAL)
950 return NULL;
952 if (prev)
953 next = prev->vm_next;
954 else
955 next = mm->mmap;
956 area = next;
957 if (next && next->vm_end == end) /* cases 6, 7, 8 */
958 next = next->vm_next;
961 * Can it merge with the predecessor?
963 if (prev && prev->vm_end == addr &&
964 mpol_equal(vma_policy(prev), policy) &&
965 can_vma_merge_after(prev, vm_flags,
966 anon_vma, file, pgoff)) {
968 * OK, it can. Can we now merge in the successor as well?
970 if (next && end == next->vm_start &&
971 mpol_equal(policy, vma_policy(next)) &&
972 can_vma_merge_before(next, vm_flags,
973 anon_vma, file, pgoff+pglen) &&
974 is_mergeable_anon_vma(prev->anon_vma,
975 next->anon_vma, NULL)) {
976 /* cases 1, 6 */
977 err = vma_adjust(prev, prev->vm_start,
978 next->vm_end, prev->vm_pgoff, NULL);
979 } else /* cases 2, 5, 7 */
980 err = vma_adjust(prev, prev->vm_start,
981 end, prev->vm_pgoff, NULL);
982 if (err)
983 return NULL;
984 khugepaged_enter_vma_merge(prev);
985 return prev;
989 * Can this new request be merged in front of next?
991 if (next && end == next->vm_start &&
992 mpol_equal(policy, vma_policy(next)) &&
993 can_vma_merge_before(next, vm_flags,
994 anon_vma, file, pgoff+pglen)) {
995 if (prev && addr < prev->vm_end) /* case 4 */
996 err = vma_adjust(prev, prev->vm_start,
997 addr, prev->vm_pgoff, NULL);
998 else /* cases 3, 8 */
999 err = vma_adjust(area, addr, next->vm_end,
1000 next->vm_pgoff - pglen, NULL);
1001 if (err)
1002 return NULL;
1003 khugepaged_enter_vma_merge(area);
1004 return area;
1007 return NULL;
1011 * Rough compatbility check to quickly see if it's even worth looking
1012 * at sharing an anon_vma.
1014 * They need to have the same vm_file, and the flags can only differ
1015 * in things that mprotect may change.
1017 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1018 * we can merge the two vma's. For example, we refuse to merge a vma if
1019 * there is a vm_ops->close() function, because that indicates that the
1020 * driver is doing some kind of reference counting. But that doesn't
1021 * really matter for the anon_vma sharing case.
1023 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1025 return a->vm_end == b->vm_start &&
1026 mpol_equal(vma_policy(a), vma_policy(b)) &&
1027 a->vm_file == b->vm_file &&
1028 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1029 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1033 * Do some basic sanity checking to see if we can re-use the anon_vma
1034 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1035 * the same as 'old', the other will be the new one that is trying
1036 * to share the anon_vma.
1038 * NOTE! This runs with mm_sem held for reading, so it is possible that
1039 * the anon_vma of 'old' is concurrently in the process of being set up
1040 * by another page fault trying to merge _that_. But that's ok: if it
1041 * is being set up, that automatically means that it will be a singleton
1042 * acceptable for merging, so we can do all of this optimistically. But
1043 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1045 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1046 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1047 * is to return an anon_vma that is "complex" due to having gone through
1048 * a fork).
1050 * We also make sure that the two vma's are compatible (adjacent,
1051 * and with the same memory policies). That's all stable, even with just
1052 * a read lock on the mm_sem.
1054 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1056 if (anon_vma_compatible(a, b)) {
1057 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1059 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1060 return anon_vma;
1062 return NULL;
1066 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1067 * neighbouring vmas for a suitable anon_vma, before it goes off
1068 * to allocate a new anon_vma. It checks because a repetitive
1069 * sequence of mprotects and faults may otherwise lead to distinct
1070 * anon_vmas being allocated, preventing vma merge in subsequent
1071 * mprotect.
1073 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1075 struct anon_vma *anon_vma;
1076 struct vm_area_struct *near;
1078 near = vma->vm_next;
1079 if (!near)
1080 goto try_prev;
1082 anon_vma = reusable_anon_vma(near, vma, near);
1083 if (anon_vma)
1084 return anon_vma;
1085 try_prev:
1086 near = vma->vm_prev;
1087 if (!near)
1088 goto none;
1090 anon_vma = reusable_anon_vma(near, near, vma);
1091 if (anon_vma)
1092 return anon_vma;
1093 none:
1095 * There's no absolute need to look only at touching neighbours:
1096 * we could search further afield for "compatible" anon_vmas.
1097 * But it would probably just be a waste of time searching,
1098 * or lead to too many vmas hanging off the same anon_vma.
1099 * We're trying to allow mprotect remerging later on,
1100 * not trying to minimize memory used for anon_vmas.
1102 return NULL;
1105 #ifdef CONFIG_PROC_FS
1106 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1107 struct file *file, long pages)
1109 const unsigned long stack_flags
1110 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1112 mm->total_vm += pages;
1114 if (file) {
1115 mm->shared_vm += pages;
1116 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1117 mm->exec_vm += pages;
1118 } else if (flags & stack_flags)
1119 mm->stack_vm += pages;
1121 #endif /* CONFIG_PROC_FS */
1124 * If a hint addr is less than mmap_min_addr change hint to be as
1125 * low as possible but still greater than mmap_min_addr
1127 static inline unsigned long round_hint_to_min(unsigned long hint)
1129 hint &= PAGE_MASK;
1130 if (((void *)hint != NULL) &&
1131 (hint < mmap_min_addr))
1132 return PAGE_ALIGN(mmap_min_addr);
1133 return hint;
1137 * The caller must hold down_write(&current->mm->mmap_sem).
1140 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1141 unsigned long len, unsigned long prot,
1142 unsigned long flags, unsigned long pgoff)
1144 struct mm_struct * mm = current->mm;
1145 struct inode *inode;
1146 vm_flags_t vm_flags;
1149 * Does the application expect PROT_READ to imply PROT_EXEC?
1151 * (the exception is when the underlying filesystem is noexec
1152 * mounted, in which case we dont add PROT_EXEC.)
1154 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1155 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1156 prot |= PROT_EXEC;
1158 if (!len)
1159 return -EINVAL;
1161 if (!(flags & MAP_FIXED))
1162 addr = round_hint_to_min(addr);
1164 /* Careful about overflows.. */
1165 len = PAGE_ALIGN(len);
1166 if (!len)
1167 return -ENOMEM;
1169 /* offset overflow? */
1170 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1171 return -EOVERFLOW;
1173 /* Too many mappings? */
1174 if (mm->map_count > sysctl_max_map_count)
1175 return -ENOMEM;
1177 /* Obtain the address to map to. we verify (or select) it and ensure
1178 * that it represents a valid section of the address space.
1180 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1181 if (addr & ~PAGE_MASK)
1182 return addr;
1184 /* Do simple checking here so the lower-level routines won't have
1185 * to. we assume access permissions have been handled by the open
1186 * of the memory object, so we don't do any here.
1188 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1189 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1191 if (flags & MAP_LOCKED)
1192 if (!can_do_mlock())
1193 return -EPERM;
1195 /* mlock MCL_FUTURE? */
1196 if (vm_flags & VM_LOCKED) {
1197 unsigned long locked, lock_limit;
1198 locked = len >> PAGE_SHIFT;
1199 locked += mm->locked_vm;
1200 lock_limit = rlimit(RLIMIT_MEMLOCK);
1201 lock_limit >>= PAGE_SHIFT;
1202 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1203 return -EAGAIN;
1206 inode = file ? file->f_path.dentry->d_inode : NULL;
1208 if (file) {
1209 switch (flags & MAP_TYPE) {
1210 case MAP_SHARED:
1211 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1212 return -EACCES;
1215 * Make sure we don't allow writing to an append-only
1216 * file..
1218 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1219 return -EACCES;
1222 * Make sure there are no mandatory locks on the file.
1224 if (locks_verify_locked(inode))
1225 return -EAGAIN;
1227 vm_flags |= VM_SHARED | VM_MAYSHARE;
1228 if (!(file->f_mode & FMODE_WRITE))
1229 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1231 /* fall through */
1232 case MAP_PRIVATE:
1233 if (!(file->f_mode & FMODE_READ))
1234 return -EACCES;
1235 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1236 if (vm_flags & VM_EXEC)
1237 return -EPERM;
1238 vm_flags &= ~VM_MAYEXEC;
1241 if (!file->f_op || !file->f_op->mmap)
1242 return -ENODEV;
1243 break;
1245 default:
1246 return -EINVAL;
1248 } else {
1249 switch (flags & MAP_TYPE) {
1250 case MAP_SHARED:
1252 * Ignore pgoff.
1254 pgoff = 0;
1255 vm_flags |= VM_SHARED | VM_MAYSHARE;
1256 break;
1257 case MAP_PRIVATE:
1259 * Set pgoff according to addr for anon_vma.
1261 pgoff = addr >> PAGE_SHIFT;
1262 break;
1263 default:
1264 return -EINVAL;
1268 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1271 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1272 unsigned long, prot, unsigned long, flags,
1273 unsigned long, fd, unsigned long, pgoff)
1275 struct file *file = NULL;
1276 unsigned long retval = -EBADF;
1278 if (!(flags & MAP_ANONYMOUS)) {
1279 audit_mmap_fd(fd, flags);
1280 if (unlikely(flags & MAP_HUGETLB))
1281 return -EINVAL;
1282 file = fget(fd);
1283 if (!file)
1284 goto out;
1285 } else if (flags & MAP_HUGETLB) {
1286 struct user_struct *user = NULL;
1288 * VM_NORESERVE is used because the reservations will be
1289 * taken when vm_ops->mmap() is called
1290 * A dummy user value is used because we are not locking
1291 * memory so no accounting is necessary
1293 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1294 VM_NORESERVE,
1295 &user, HUGETLB_ANONHUGE_INODE,
1296 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1297 if (IS_ERR(file))
1298 return PTR_ERR(file);
1301 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1303 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1304 if (file)
1305 fput(file);
1306 out:
1307 return retval;
1310 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1311 struct mmap_arg_struct {
1312 unsigned long addr;
1313 unsigned long len;
1314 unsigned long prot;
1315 unsigned long flags;
1316 unsigned long fd;
1317 unsigned long offset;
1320 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1322 struct mmap_arg_struct a;
1324 if (copy_from_user(&a, arg, sizeof(a)))
1325 return -EFAULT;
1326 if (a.offset & ~PAGE_MASK)
1327 return -EINVAL;
1329 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1330 a.offset >> PAGE_SHIFT);
1332 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1335 * Some shared mappigns will want the pages marked read-only
1336 * to track write events. If so, we'll downgrade vm_page_prot
1337 * to the private version (using protection_map[] without the
1338 * VM_SHARED bit).
1340 int vma_wants_writenotify(struct vm_area_struct *vma)
1342 vm_flags_t vm_flags = vma->vm_flags;
1344 /* If it was private or non-writable, the write bit is already clear */
1345 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1346 return 0;
1348 /* The backer wishes to know when pages are first written to? */
1349 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1350 return 1;
1352 /* The open routine did something to the protections already? */
1353 if (pgprot_val(vma->vm_page_prot) !=
1354 pgprot_val(vm_get_page_prot(vm_flags)))
1355 return 0;
1357 /* Specialty mapping? */
1358 if (vm_flags & VM_PFNMAP)
1359 return 0;
1361 /* Can the mapping track the dirty pages? */
1362 return vma->vm_file && vma->vm_file->f_mapping &&
1363 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1367 * We account for memory if it's a private writeable mapping,
1368 * not hugepages and VM_NORESERVE wasn't set.
1370 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1373 * hugetlb has its own accounting separate from the core VM
1374 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1376 if (file && is_file_hugepages(file))
1377 return 0;
1379 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1382 unsigned long mmap_region(struct file *file, unsigned long addr,
1383 unsigned long len, unsigned long flags,
1384 vm_flags_t vm_flags, unsigned long pgoff)
1386 struct mm_struct *mm = current->mm;
1387 struct vm_area_struct *vma, *prev;
1388 int correct_wcount = 0;
1389 int error;
1390 struct rb_node **rb_link, *rb_parent;
1391 unsigned long charged = 0;
1392 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1394 /* Clear old maps */
1395 error = -ENOMEM;
1396 munmap_back:
1397 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1398 if (do_munmap(mm, addr, len))
1399 return -ENOMEM;
1400 goto munmap_back;
1403 /* Check against address space limit. */
1404 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1405 return -ENOMEM;
1408 * Set 'VM_NORESERVE' if we should not account for the
1409 * memory use of this mapping.
1411 if ((flags & MAP_NORESERVE)) {
1412 /* We honor MAP_NORESERVE if allowed to overcommit */
1413 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1414 vm_flags |= VM_NORESERVE;
1416 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1417 if (file && is_file_hugepages(file))
1418 vm_flags |= VM_NORESERVE;
1422 * Private writable mapping: check memory availability
1424 if (accountable_mapping(file, vm_flags)) {
1425 charged = len >> PAGE_SHIFT;
1426 if (security_vm_enough_memory_mm(mm, charged))
1427 return -ENOMEM;
1428 vm_flags |= VM_ACCOUNT;
1432 * Can we just expand an old mapping?
1434 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1435 if (vma)
1436 goto out;
1439 * Determine the object being mapped and call the appropriate
1440 * specific mapper. the address has already been validated, but
1441 * not unmapped, but the maps are removed from the list.
1443 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1444 if (!vma) {
1445 error = -ENOMEM;
1446 goto unacct_error;
1449 vma->vm_mm = mm;
1450 vma->vm_start = addr;
1451 vma->vm_end = addr + len;
1452 vma->vm_flags = vm_flags;
1453 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1454 vma->vm_pgoff = pgoff;
1455 INIT_LIST_HEAD(&vma->anon_vma_chain);
1457 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1459 if (file) {
1460 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1461 goto free_vma;
1462 if (vm_flags & VM_DENYWRITE) {
1463 error = deny_write_access(file);
1464 if (error)
1465 goto free_vma;
1466 correct_wcount = 1;
1468 vma->vm_file = get_file(file);
1469 error = file->f_op->mmap(file, vma);
1470 if (error)
1471 goto unmap_and_free_vma;
1473 /* Can addr have changed??
1475 * Answer: Yes, several device drivers can do it in their
1476 * f_op->mmap method. -DaveM
1478 addr = vma->vm_start;
1479 pgoff = vma->vm_pgoff;
1480 vm_flags = vma->vm_flags;
1481 } else if (vm_flags & VM_SHARED) {
1482 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1483 goto free_vma;
1484 error = shmem_zero_setup(vma);
1485 if (error)
1486 goto free_vma;
1489 if (vma_wants_writenotify(vma)) {
1490 pgprot_t pprot = vma->vm_page_prot;
1492 /* Can vma->vm_page_prot have changed??
1494 * Answer: Yes, drivers may have changed it in their
1495 * f_op->mmap method.
1497 * Ensures that vmas marked as uncached stay that way.
1499 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1500 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1501 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1504 vma_link(mm, vma, prev, rb_link, rb_parent);
1505 file = vma->vm_file;
1507 /* Once vma denies write, undo our temporary denial count */
1508 if (correct_wcount)
1509 atomic_inc(&inode->i_writecount);
1510 out:
1511 perf_event_mmap(vma);
1513 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1514 if (vm_flags & VM_LOCKED) {
1515 if (!mlock_vma_pages_range(vma, addr, addr + len))
1516 mm->locked_vm += (len >> PAGE_SHIFT);
1517 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1518 make_pages_present(addr, addr + len);
1520 if (file)
1521 uprobe_mmap(vma);
1523 return addr;
1525 unmap_and_free_vma:
1526 if (correct_wcount)
1527 atomic_inc(&inode->i_writecount);
1528 vma->vm_file = NULL;
1529 fput(file);
1531 /* Undo any partial mapping done by a device driver. */
1532 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1533 charged = 0;
1534 free_vma:
1535 kmem_cache_free(vm_area_cachep, vma);
1536 unacct_error:
1537 if (charged)
1538 vm_unacct_memory(charged);
1539 return error;
1542 /* Get an address range which is currently unmapped.
1543 * For shmat() with addr=0.
1545 * Ugly calling convention alert:
1546 * Return value with the low bits set means error value,
1547 * ie
1548 * if (ret & ~PAGE_MASK)
1549 * error = ret;
1551 * This function "knows" that -ENOMEM has the bits set.
1553 #ifndef HAVE_ARCH_UNMAPPED_AREA
1554 unsigned long
1555 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1556 unsigned long len, unsigned long pgoff, unsigned long flags)
1558 struct mm_struct *mm = current->mm;
1559 struct vm_area_struct *vma;
1560 unsigned long start_addr;
1562 if (len > TASK_SIZE)
1563 return -ENOMEM;
1565 if (flags & MAP_FIXED)
1566 return addr;
1568 if (addr) {
1569 addr = PAGE_ALIGN(addr);
1570 vma = find_vma(mm, addr);
1571 if (TASK_SIZE - len >= addr &&
1572 (!vma || addr + len <= vma->vm_start))
1573 return addr;
1575 if (len > mm->cached_hole_size) {
1576 start_addr = addr = mm->free_area_cache;
1577 } else {
1578 start_addr = addr = TASK_UNMAPPED_BASE;
1579 mm->cached_hole_size = 0;
1582 full_search:
1583 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1584 /* At this point: (!vma || addr < vma->vm_end). */
1585 if (TASK_SIZE - len < addr) {
1587 * Start a new search - just in case we missed
1588 * some holes.
1590 if (start_addr != TASK_UNMAPPED_BASE) {
1591 addr = TASK_UNMAPPED_BASE;
1592 start_addr = addr;
1593 mm->cached_hole_size = 0;
1594 goto full_search;
1596 return -ENOMEM;
1598 if (!vma || addr + len <= vma->vm_start) {
1600 * Remember the place where we stopped the search:
1602 mm->free_area_cache = addr + len;
1603 return addr;
1605 if (addr + mm->cached_hole_size < vma->vm_start)
1606 mm->cached_hole_size = vma->vm_start - addr;
1607 addr = vma->vm_end;
1610 #endif
1612 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1615 * Is this a new hole at the lowest possible address?
1617 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1618 mm->free_area_cache = addr;
1622 * This mmap-allocator allocates new areas top-down from below the
1623 * stack's low limit (the base):
1625 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1626 unsigned long
1627 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1628 const unsigned long len, const unsigned long pgoff,
1629 const unsigned long flags)
1631 struct vm_area_struct *vma;
1632 struct mm_struct *mm = current->mm;
1633 unsigned long addr = addr0, start_addr;
1635 /* requested length too big for entire address space */
1636 if (len > TASK_SIZE)
1637 return -ENOMEM;
1639 if (flags & MAP_FIXED)
1640 return addr;
1642 /* requesting a specific address */
1643 if (addr) {
1644 addr = PAGE_ALIGN(addr);
1645 vma = find_vma(mm, addr);
1646 if (TASK_SIZE - len >= addr &&
1647 (!vma || addr + len <= vma->vm_start))
1648 return addr;
1651 /* check if free_area_cache is useful for us */
1652 if (len <= mm->cached_hole_size) {
1653 mm->cached_hole_size = 0;
1654 mm->free_area_cache = mm->mmap_base;
1657 try_again:
1658 /* either no address requested or can't fit in requested address hole */
1659 start_addr = addr = mm->free_area_cache;
1661 if (addr < len)
1662 goto fail;
1664 addr -= len;
1665 do {
1667 * Lookup failure means no vma is above this address,
1668 * else if new region fits below vma->vm_start,
1669 * return with success:
1671 vma = find_vma(mm, addr);
1672 if (!vma || addr+len <= vma->vm_start)
1673 /* remember the address as a hint for next time */
1674 return (mm->free_area_cache = addr);
1676 /* remember the largest hole we saw so far */
1677 if (addr + mm->cached_hole_size < vma->vm_start)
1678 mm->cached_hole_size = vma->vm_start - addr;
1680 /* try just below the current vma->vm_start */
1681 addr = vma->vm_start-len;
1682 } while (len < vma->vm_start);
1684 fail:
1686 * if hint left us with no space for the requested
1687 * mapping then try again:
1689 * Note: this is different with the case of bottomup
1690 * which does the fully line-search, but we use find_vma
1691 * here that causes some holes skipped.
1693 if (start_addr != mm->mmap_base) {
1694 mm->free_area_cache = mm->mmap_base;
1695 mm->cached_hole_size = 0;
1696 goto try_again;
1700 * A failed mmap() very likely causes application failure,
1701 * so fall back to the bottom-up function here. This scenario
1702 * can happen with large stack limits and large mmap()
1703 * allocations.
1705 mm->cached_hole_size = ~0UL;
1706 mm->free_area_cache = TASK_UNMAPPED_BASE;
1707 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1709 * Restore the topdown base:
1711 mm->free_area_cache = mm->mmap_base;
1712 mm->cached_hole_size = ~0UL;
1714 return addr;
1716 #endif
1718 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1721 * Is this a new hole at the highest possible address?
1723 if (addr > mm->free_area_cache)
1724 mm->free_area_cache = addr;
1726 /* dont allow allocations above current base */
1727 if (mm->free_area_cache > mm->mmap_base)
1728 mm->free_area_cache = mm->mmap_base;
1731 unsigned long
1732 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1733 unsigned long pgoff, unsigned long flags)
1735 unsigned long (*get_area)(struct file *, unsigned long,
1736 unsigned long, unsigned long, unsigned long);
1738 unsigned long error = arch_mmap_check(addr, len, flags);
1739 if (error)
1740 return error;
1742 /* Careful about overflows.. */
1743 if (len > TASK_SIZE)
1744 return -ENOMEM;
1746 get_area = current->mm->get_unmapped_area;
1747 if (file && file->f_op && file->f_op->get_unmapped_area)
1748 get_area = file->f_op->get_unmapped_area;
1749 addr = get_area(file, addr, len, pgoff, flags);
1750 if (IS_ERR_VALUE(addr))
1751 return addr;
1753 if (addr > TASK_SIZE - len)
1754 return -ENOMEM;
1755 if (addr & ~PAGE_MASK)
1756 return -EINVAL;
1758 addr = arch_rebalance_pgtables(addr, len);
1759 error = security_mmap_addr(addr);
1760 return error ? error : addr;
1763 EXPORT_SYMBOL(get_unmapped_area);
1765 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1766 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1768 struct vm_area_struct *vma = NULL;
1770 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */
1771 return NULL;
1773 /* Check the cache first. */
1774 /* (Cache hit rate is typically around 35%.) */
1775 vma = mm->mmap_cache;
1776 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1777 struct rb_node *rb_node;
1779 rb_node = mm->mm_rb.rb_node;
1780 vma = NULL;
1782 while (rb_node) {
1783 struct vm_area_struct *vma_tmp;
1785 vma_tmp = rb_entry(rb_node,
1786 struct vm_area_struct, vm_rb);
1788 if (vma_tmp->vm_end > addr) {
1789 vma = vma_tmp;
1790 if (vma_tmp->vm_start <= addr)
1791 break;
1792 rb_node = rb_node->rb_left;
1793 } else
1794 rb_node = rb_node->rb_right;
1796 if (vma)
1797 mm->mmap_cache = vma;
1799 return vma;
1802 EXPORT_SYMBOL(find_vma);
1805 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1807 struct vm_area_struct *
1808 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1809 struct vm_area_struct **pprev)
1811 struct vm_area_struct *vma;
1813 vma = find_vma(mm, addr);
1814 if (vma) {
1815 *pprev = vma->vm_prev;
1816 } else {
1817 struct rb_node *rb_node = mm->mm_rb.rb_node;
1818 *pprev = NULL;
1819 while (rb_node) {
1820 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1821 rb_node = rb_node->rb_right;
1824 return vma;
1828 * Verify that the stack growth is acceptable and
1829 * update accounting. This is shared with both the
1830 * grow-up and grow-down cases.
1832 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1834 struct mm_struct *mm = vma->vm_mm;
1835 struct rlimit *rlim = current->signal->rlim;
1836 unsigned long new_start;
1838 /* address space limit tests */
1839 if (!may_expand_vm(mm, grow))
1840 return -ENOMEM;
1842 /* Stack limit test */
1843 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1844 return -ENOMEM;
1846 /* mlock limit tests */
1847 if (vma->vm_flags & VM_LOCKED) {
1848 unsigned long locked;
1849 unsigned long limit;
1850 locked = mm->locked_vm + grow;
1851 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1852 limit >>= PAGE_SHIFT;
1853 if (locked > limit && !capable(CAP_IPC_LOCK))
1854 return -ENOMEM;
1857 /* Check to ensure the stack will not grow into a hugetlb-only region */
1858 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1859 vma->vm_end - size;
1860 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1861 return -EFAULT;
1864 * Overcommit.. This must be the final test, as it will
1865 * update security statistics.
1867 if (security_vm_enough_memory_mm(mm, grow))
1868 return -ENOMEM;
1870 /* Ok, everything looks good - let it rip */
1871 if (vma->vm_flags & VM_LOCKED)
1872 mm->locked_vm += grow;
1873 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1874 return 0;
1877 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1879 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1880 * vma is the last one with address > vma->vm_end. Have to extend vma.
1882 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1884 int error;
1886 if (!(vma->vm_flags & VM_GROWSUP))
1887 return -EFAULT;
1890 * We must make sure the anon_vma is allocated
1891 * so that the anon_vma locking is not a noop.
1893 if (unlikely(anon_vma_prepare(vma)))
1894 return -ENOMEM;
1895 vma_lock_anon_vma(vma);
1898 * vma->vm_start/vm_end cannot change under us because the caller
1899 * is required to hold the mmap_sem in read mode. We need the
1900 * anon_vma lock to serialize against concurrent expand_stacks.
1901 * Also guard against wrapping around to address 0.
1903 if (address < PAGE_ALIGN(address+4))
1904 address = PAGE_ALIGN(address+4);
1905 else {
1906 vma_unlock_anon_vma(vma);
1907 return -ENOMEM;
1909 error = 0;
1911 /* Somebody else might have raced and expanded it already */
1912 if (address > vma->vm_end) {
1913 unsigned long size, grow;
1915 size = address - vma->vm_start;
1916 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1918 error = -ENOMEM;
1919 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1920 error = acct_stack_growth(vma, size, grow);
1921 if (!error) {
1922 anon_vma_interval_tree_pre_update_vma(vma);
1923 vma->vm_end = address;
1924 anon_vma_interval_tree_post_update_vma(vma);
1925 if (vma->vm_next)
1926 vma_gap_update(vma->vm_next);
1927 else
1928 vma->vm_mm->highest_vm_end = address;
1929 perf_event_mmap(vma);
1933 vma_unlock_anon_vma(vma);
1934 khugepaged_enter_vma_merge(vma);
1935 validate_mm(vma->vm_mm);
1936 return error;
1938 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1941 * vma is the first one with address < vma->vm_start. Have to extend vma.
1943 int expand_downwards(struct vm_area_struct *vma,
1944 unsigned long address)
1946 int error;
1949 * We must make sure the anon_vma is allocated
1950 * so that the anon_vma locking is not a noop.
1952 if (unlikely(anon_vma_prepare(vma)))
1953 return -ENOMEM;
1955 address &= PAGE_MASK;
1956 error = security_mmap_addr(address);
1957 if (error)
1958 return error;
1960 vma_lock_anon_vma(vma);
1963 * vma->vm_start/vm_end cannot change under us because the caller
1964 * is required to hold the mmap_sem in read mode. We need the
1965 * anon_vma lock to serialize against concurrent expand_stacks.
1968 /* Somebody else might have raced and expanded it already */
1969 if (address < vma->vm_start) {
1970 unsigned long size, grow;
1972 size = vma->vm_end - address;
1973 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1975 error = -ENOMEM;
1976 if (grow <= vma->vm_pgoff) {
1977 error = acct_stack_growth(vma, size, grow);
1978 if (!error) {
1979 anon_vma_interval_tree_pre_update_vma(vma);
1980 vma->vm_start = address;
1981 vma->vm_pgoff -= grow;
1982 anon_vma_interval_tree_post_update_vma(vma);
1983 vma_gap_update(vma);
1984 perf_event_mmap(vma);
1988 vma_unlock_anon_vma(vma);
1989 khugepaged_enter_vma_merge(vma);
1990 validate_mm(vma->vm_mm);
1991 return error;
1994 #ifdef CONFIG_STACK_GROWSUP
1995 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1997 return expand_upwards(vma, address);
2000 struct vm_area_struct *
2001 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2003 struct vm_area_struct *vma, *prev;
2005 addr &= PAGE_MASK;
2006 vma = find_vma_prev(mm, addr, &prev);
2007 if (vma && (vma->vm_start <= addr))
2008 return vma;
2009 if (!prev || expand_stack(prev, addr))
2010 return NULL;
2011 if (prev->vm_flags & VM_LOCKED) {
2012 mlock_vma_pages_range(prev, addr, prev->vm_end);
2014 return prev;
2016 #else
2017 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2019 return expand_downwards(vma, address);
2022 struct vm_area_struct *
2023 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2025 struct vm_area_struct * vma;
2026 unsigned long start;
2028 addr &= PAGE_MASK;
2029 vma = find_vma(mm,addr);
2030 if (!vma)
2031 return NULL;
2032 if (vma->vm_start <= addr)
2033 return vma;
2034 if (!(vma->vm_flags & VM_GROWSDOWN))
2035 return NULL;
2036 start = vma->vm_start;
2037 if (expand_stack(vma, addr))
2038 return NULL;
2039 if (vma->vm_flags & VM_LOCKED) {
2040 mlock_vma_pages_range(vma, addr, start);
2042 return vma;
2044 #endif
2047 * Ok - we have the memory areas we should free on the vma list,
2048 * so release them, and do the vma updates.
2050 * Called with the mm semaphore held.
2052 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2054 unsigned long nr_accounted = 0;
2056 /* Update high watermark before we lower total_vm */
2057 update_hiwater_vm(mm);
2058 do {
2059 long nrpages = vma_pages(vma);
2061 if (vma->vm_flags & VM_ACCOUNT)
2062 nr_accounted += nrpages;
2063 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2064 vma = remove_vma(vma);
2065 } while (vma);
2066 vm_unacct_memory(nr_accounted);
2067 validate_mm(mm);
2071 * Get rid of page table information in the indicated region.
2073 * Called with the mm semaphore held.
2075 static void unmap_region(struct mm_struct *mm,
2076 struct vm_area_struct *vma, struct vm_area_struct *prev,
2077 unsigned long start, unsigned long end)
2079 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2080 struct mmu_gather tlb;
2082 lru_add_drain();
2083 tlb_gather_mmu(&tlb, mm, 0);
2084 update_hiwater_rss(mm);
2085 unmap_vmas(&tlb, vma, start, end);
2086 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2087 next ? next->vm_start : 0);
2088 tlb_finish_mmu(&tlb, start, end);
2092 * Create a list of vma's touched by the unmap, removing them from the mm's
2093 * vma list as we go..
2095 static void
2096 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2097 struct vm_area_struct *prev, unsigned long end)
2099 struct vm_area_struct **insertion_point;
2100 struct vm_area_struct *tail_vma = NULL;
2101 unsigned long addr;
2103 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2104 vma->vm_prev = NULL;
2105 do {
2106 vma_rb_erase(vma, &mm->mm_rb);
2107 mm->map_count--;
2108 tail_vma = vma;
2109 vma = vma->vm_next;
2110 } while (vma && vma->vm_start < end);
2111 *insertion_point = vma;
2112 if (vma) {
2113 vma->vm_prev = prev;
2114 vma_gap_update(vma);
2115 } else
2116 mm->highest_vm_end = prev ? prev->vm_end : 0;
2117 tail_vma->vm_next = NULL;
2118 if (mm->unmap_area == arch_unmap_area)
2119 addr = prev ? prev->vm_end : mm->mmap_base;
2120 else
2121 addr = vma ? vma->vm_start : mm->mmap_base;
2122 mm->unmap_area(mm, addr);
2123 mm->mmap_cache = NULL; /* Kill the cache. */
2127 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2128 * munmap path where it doesn't make sense to fail.
2130 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2131 unsigned long addr, int new_below)
2133 struct mempolicy *pol;
2134 struct vm_area_struct *new;
2135 int err = -ENOMEM;
2137 if (is_vm_hugetlb_page(vma) && (addr &
2138 ~(huge_page_mask(hstate_vma(vma)))))
2139 return -EINVAL;
2141 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2142 if (!new)
2143 goto out_err;
2145 /* most fields are the same, copy all, and then fixup */
2146 *new = *vma;
2148 INIT_LIST_HEAD(&new->anon_vma_chain);
2150 if (new_below)
2151 new->vm_end = addr;
2152 else {
2153 new->vm_start = addr;
2154 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2157 pol = mpol_dup(vma_policy(vma));
2158 if (IS_ERR(pol)) {
2159 err = PTR_ERR(pol);
2160 goto out_free_vma;
2162 vma_set_policy(new, pol);
2164 if (anon_vma_clone(new, vma))
2165 goto out_free_mpol;
2167 if (new->vm_file)
2168 get_file(new->vm_file);
2170 if (new->vm_ops && new->vm_ops->open)
2171 new->vm_ops->open(new);
2173 if (new_below)
2174 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2175 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2176 else
2177 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2179 /* Success. */
2180 if (!err)
2181 return 0;
2183 /* Clean everything up if vma_adjust failed. */
2184 if (new->vm_ops && new->vm_ops->close)
2185 new->vm_ops->close(new);
2186 if (new->vm_file)
2187 fput(new->vm_file);
2188 unlink_anon_vmas(new);
2189 out_free_mpol:
2190 mpol_put(pol);
2191 out_free_vma:
2192 kmem_cache_free(vm_area_cachep, new);
2193 out_err:
2194 return err;
2198 * Split a vma into two pieces at address 'addr', a new vma is allocated
2199 * either for the first part or the tail.
2201 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2202 unsigned long addr, int new_below)
2204 if (mm->map_count >= sysctl_max_map_count)
2205 return -ENOMEM;
2207 return __split_vma(mm, vma, addr, new_below);
2210 /* Munmap is split into 2 main parts -- this part which finds
2211 * what needs doing, and the areas themselves, which do the
2212 * work. This now handles partial unmappings.
2213 * Jeremy Fitzhardinge <jeremy@goop.org>
2215 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2217 unsigned long end;
2218 struct vm_area_struct *vma, *prev, *last;
2220 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2221 return -EINVAL;
2223 if ((len = PAGE_ALIGN(len)) == 0)
2224 return -EINVAL;
2226 /* Find the first overlapping VMA */
2227 vma = find_vma(mm, start);
2228 if (!vma)
2229 return 0;
2230 prev = vma->vm_prev;
2231 /* we have start < vma->vm_end */
2233 /* if it doesn't overlap, we have nothing.. */
2234 end = start + len;
2235 if (vma->vm_start >= end)
2236 return 0;
2239 * If we need to split any vma, do it now to save pain later.
2241 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2242 * unmapped vm_area_struct will remain in use: so lower split_vma
2243 * places tmp vma above, and higher split_vma places tmp vma below.
2245 if (start > vma->vm_start) {
2246 int error;
2249 * Make sure that map_count on return from munmap() will
2250 * not exceed its limit; but let map_count go just above
2251 * its limit temporarily, to help free resources as expected.
2253 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2254 return -ENOMEM;
2256 error = __split_vma(mm, vma, start, 0);
2257 if (error)
2258 return error;
2259 prev = vma;
2262 /* Does it split the last one? */
2263 last = find_vma(mm, end);
2264 if (last && end > last->vm_start) {
2265 int error = __split_vma(mm, last, end, 1);
2266 if (error)
2267 return error;
2269 vma = prev? prev->vm_next: mm->mmap;
2272 * unlock any mlock()ed ranges before detaching vmas
2274 if (mm->locked_vm) {
2275 struct vm_area_struct *tmp = vma;
2276 while (tmp && tmp->vm_start < end) {
2277 if (tmp->vm_flags & VM_LOCKED) {
2278 mm->locked_vm -= vma_pages(tmp);
2279 munlock_vma_pages_all(tmp);
2281 tmp = tmp->vm_next;
2286 * Remove the vma's, and unmap the actual pages
2288 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2289 unmap_region(mm, vma, prev, start, end);
2291 /* Fix up all other VM information */
2292 remove_vma_list(mm, vma);
2294 return 0;
2297 int vm_munmap(unsigned long start, size_t len)
2299 int ret;
2300 struct mm_struct *mm = current->mm;
2302 down_write(&mm->mmap_sem);
2303 ret = do_munmap(mm, start, len);
2304 up_write(&mm->mmap_sem);
2305 return ret;
2307 EXPORT_SYMBOL(vm_munmap);
2309 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2311 profile_munmap(addr);
2312 return vm_munmap(addr, len);
2315 static inline void verify_mm_writelocked(struct mm_struct *mm)
2317 #ifdef CONFIG_DEBUG_VM
2318 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2319 WARN_ON(1);
2320 up_read(&mm->mmap_sem);
2322 #endif
2326 * this is really a simplified "do_mmap". it only handles
2327 * anonymous maps. eventually we may be able to do some
2328 * brk-specific accounting here.
2330 static unsigned long do_brk(unsigned long addr, unsigned long len)
2332 struct mm_struct * mm = current->mm;
2333 struct vm_area_struct * vma, * prev;
2334 unsigned long flags;
2335 struct rb_node ** rb_link, * rb_parent;
2336 pgoff_t pgoff = addr >> PAGE_SHIFT;
2337 int error;
2339 len = PAGE_ALIGN(len);
2340 if (!len)
2341 return addr;
2343 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2345 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2346 if (error & ~PAGE_MASK)
2347 return error;
2350 * mlock MCL_FUTURE?
2352 if (mm->def_flags & VM_LOCKED) {
2353 unsigned long locked, lock_limit;
2354 locked = len >> PAGE_SHIFT;
2355 locked += mm->locked_vm;
2356 lock_limit = rlimit(RLIMIT_MEMLOCK);
2357 lock_limit >>= PAGE_SHIFT;
2358 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2359 return -EAGAIN;
2363 * mm->mmap_sem is required to protect against another thread
2364 * changing the mappings in case we sleep.
2366 verify_mm_writelocked(mm);
2369 * Clear old maps. this also does some error checking for us
2371 munmap_back:
2372 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2373 if (do_munmap(mm, addr, len))
2374 return -ENOMEM;
2375 goto munmap_back;
2378 /* Check against address space limits *after* clearing old maps... */
2379 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2380 return -ENOMEM;
2382 if (mm->map_count > sysctl_max_map_count)
2383 return -ENOMEM;
2385 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2386 return -ENOMEM;
2388 /* Can we just expand an old private anonymous mapping? */
2389 vma = vma_merge(mm, prev, addr, addr + len, flags,
2390 NULL, NULL, pgoff, NULL);
2391 if (vma)
2392 goto out;
2395 * create a vma struct for an anonymous mapping
2397 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2398 if (!vma) {
2399 vm_unacct_memory(len >> PAGE_SHIFT);
2400 return -ENOMEM;
2403 INIT_LIST_HEAD(&vma->anon_vma_chain);
2404 vma->vm_mm = mm;
2405 vma->vm_start = addr;
2406 vma->vm_end = addr + len;
2407 vma->vm_pgoff = pgoff;
2408 vma->vm_flags = flags;
2409 vma->vm_page_prot = vm_get_page_prot(flags);
2410 vma_link(mm, vma, prev, rb_link, rb_parent);
2411 out:
2412 perf_event_mmap(vma);
2413 mm->total_vm += len >> PAGE_SHIFT;
2414 if (flags & VM_LOCKED) {
2415 if (!mlock_vma_pages_range(vma, addr, addr + len))
2416 mm->locked_vm += (len >> PAGE_SHIFT);
2418 return addr;
2421 unsigned long vm_brk(unsigned long addr, unsigned long len)
2423 struct mm_struct *mm = current->mm;
2424 unsigned long ret;
2426 down_write(&mm->mmap_sem);
2427 ret = do_brk(addr, len);
2428 up_write(&mm->mmap_sem);
2429 return ret;
2431 EXPORT_SYMBOL(vm_brk);
2433 /* Release all mmaps. */
2434 void exit_mmap(struct mm_struct *mm)
2436 struct mmu_gather tlb;
2437 struct vm_area_struct *vma;
2438 unsigned long nr_accounted = 0;
2440 /* mm's last user has gone, and its about to be pulled down */
2441 mmu_notifier_release(mm);
2443 if (mm->locked_vm) {
2444 vma = mm->mmap;
2445 while (vma) {
2446 if (vma->vm_flags & VM_LOCKED)
2447 munlock_vma_pages_all(vma);
2448 vma = vma->vm_next;
2452 arch_exit_mmap(mm);
2454 vma = mm->mmap;
2455 if (!vma) /* Can happen if dup_mmap() received an OOM */
2456 return;
2458 lru_add_drain();
2459 flush_cache_mm(mm);
2460 tlb_gather_mmu(&tlb, mm, 1);
2461 /* update_hiwater_rss(mm) here? but nobody should be looking */
2462 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2463 unmap_vmas(&tlb, vma, 0, -1);
2465 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2466 tlb_finish_mmu(&tlb, 0, -1);
2469 * Walk the list again, actually closing and freeing it,
2470 * with preemption enabled, without holding any MM locks.
2472 while (vma) {
2473 if (vma->vm_flags & VM_ACCOUNT)
2474 nr_accounted += vma_pages(vma);
2475 vma = remove_vma(vma);
2477 vm_unacct_memory(nr_accounted);
2479 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2482 /* Insert vm structure into process list sorted by address
2483 * and into the inode's i_mmap tree. If vm_file is non-NULL
2484 * then i_mmap_mutex is taken here.
2486 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2488 struct vm_area_struct *prev;
2489 struct rb_node **rb_link, *rb_parent;
2492 * The vm_pgoff of a purely anonymous vma should be irrelevant
2493 * until its first write fault, when page's anon_vma and index
2494 * are set. But now set the vm_pgoff it will almost certainly
2495 * end up with (unless mremap moves it elsewhere before that
2496 * first wfault), so /proc/pid/maps tells a consistent story.
2498 * By setting it to reflect the virtual start address of the
2499 * vma, merges and splits can happen in a seamless way, just
2500 * using the existing file pgoff checks and manipulations.
2501 * Similarly in do_mmap_pgoff and in do_brk.
2503 if (!vma->vm_file) {
2504 BUG_ON(vma->anon_vma);
2505 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2507 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2508 &prev, &rb_link, &rb_parent))
2509 return -ENOMEM;
2510 if ((vma->vm_flags & VM_ACCOUNT) &&
2511 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2512 return -ENOMEM;
2514 vma_link(mm, vma, prev, rb_link, rb_parent);
2515 return 0;
2519 * Copy the vma structure to a new location in the same mm,
2520 * prior to moving page table entries, to effect an mremap move.
2522 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2523 unsigned long addr, unsigned long len, pgoff_t pgoff,
2524 bool *need_rmap_locks)
2526 struct vm_area_struct *vma = *vmap;
2527 unsigned long vma_start = vma->vm_start;
2528 struct mm_struct *mm = vma->vm_mm;
2529 struct vm_area_struct *new_vma, *prev;
2530 struct rb_node **rb_link, *rb_parent;
2531 struct mempolicy *pol;
2532 bool faulted_in_anon_vma = true;
2535 * If anonymous vma has not yet been faulted, update new pgoff
2536 * to match new location, to increase its chance of merging.
2538 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2539 pgoff = addr >> PAGE_SHIFT;
2540 faulted_in_anon_vma = false;
2543 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2544 return NULL; /* should never get here */
2545 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2546 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2547 if (new_vma) {
2549 * Source vma may have been merged into new_vma
2551 if (unlikely(vma_start >= new_vma->vm_start &&
2552 vma_start < new_vma->vm_end)) {
2554 * The only way we can get a vma_merge with
2555 * self during an mremap is if the vma hasn't
2556 * been faulted in yet and we were allowed to
2557 * reset the dst vma->vm_pgoff to the
2558 * destination address of the mremap to allow
2559 * the merge to happen. mremap must change the
2560 * vm_pgoff linearity between src and dst vmas
2561 * (in turn preventing a vma_merge) to be
2562 * safe. It is only safe to keep the vm_pgoff
2563 * linear if there are no pages mapped yet.
2565 VM_BUG_ON(faulted_in_anon_vma);
2566 *vmap = vma = new_vma;
2568 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2569 } else {
2570 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2571 if (new_vma) {
2572 *new_vma = *vma;
2573 new_vma->vm_start = addr;
2574 new_vma->vm_end = addr + len;
2575 new_vma->vm_pgoff = pgoff;
2576 pol = mpol_dup(vma_policy(vma));
2577 if (IS_ERR(pol))
2578 goto out_free_vma;
2579 vma_set_policy(new_vma, pol);
2580 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2581 if (anon_vma_clone(new_vma, vma))
2582 goto out_free_mempol;
2583 if (new_vma->vm_file)
2584 get_file(new_vma->vm_file);
2585 if (new_vma->vm_ops && new_vma->vm_ops->open)
2586 new_vma->vm_ops->open(new_vma);
2587 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2588 *need_rmap_locks = false;
2591 return new_vma;
2593 out_free_mempol:
2594 mpol_put(pol);
2595 out_free_vma:
2596 kmem_cache_free(vm_area_cachep, new_vma);
2597 return NULL;
2601 * Return true if the calling process may expand its vm space by the passed
2602 * number of pages
2604 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2606 unsigned long cur = mm->total_vm; /* pages */
2607 unsigned long lim;
2609 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2611 if (cur + npages > lim)
2612 return 0;
2613 return 1;
2617 static int special_mapping_fault(struct vm_area_struct *vma,
2618 struct vm_fault *vmf)
2620 pgoff_t pgoff;
2621 struct page **pages;
2624 * special mappings have no vm_file, and in that case, the mm
2625 * uses vm_pgoff internally. So we have to subtract it from here.
2626 * We are allowed to do this because we are the mm; do not copy
2627 * this code into drivers!
2629 pgoff = vmf->pgoff - vma->vm_pgoff;
2631 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2632 pgoff--;
2634 if (*pages) {
2635 struct page *page = *pages;
2636 get_page(page);
2637 vmf->page = page;
2638 return 0;
2641 return VM_FAULT_SIGBUS;
2645 * Having a close hook prevents vma merging regardless of flags.
2647 static void special_mapping_close(struct vm_area_struct *vma)
2651 static const struct vm_operations_struct special_mapping_vmops = {
2652 .close = special_mapping_close,
2653 .fault = special_mapping_fault,
2657 * Called with mm->mmap_sem held for writing.
2658 * Insert a new vma covering the given region, with the given flags.
2659 * Its pages are supplied by the given array of struct page *.
2660 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2661 * The region past the last page supplied will always produce SIGBUS.
2662 * The array pointer and the pages it points to are assumed to stay alive
2663 * for as long as this mapping might exist.
2665 int install_special_mapping(struct mm_struct *mm,
2666 unsigned long addr, unsigned long len,
2667 unsigned long vm_flags, struct page **pages)
2669 int ret;
2670 struct vm_area_struct *vma;
2672 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2673 if (unlikely(vma == NULL))
2674 return -ENOMEM;
2676 INIT_LIST_HEAD(&vma->anon_vma_chain);
2677 vma->vm_mm = mm;
2678 vma->vm_start = addr;
2679 vma->vm_end = addr + len;
2681 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2682 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2684 vma->vm_ops = &special_mapping_vmops;
2685 vma->vm_private_data = pages;
2687 ret = insert_vm_struct(mm, vma);
2688 if (ret)
2689 goto out;
2691 mm->total_vm += len >> PAGE_SHIFT;
2693 perf_event_mmap(vma);
2695 return 0;
2697 out:
2698 kmem_cache_free(vm_area_cachep, vma);
2699 return ret;
2702 static DEFINE_MUTEX(mm_all_locks_mutex);
2704 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2706 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2708 * The LSB of head.next can't change from under us
2709 * because we hold the mm_all_locks_mutex.
2711 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2713 * We can safely modify head.next after taking the
2714 * anon_vma->root->mutex. If some other vma in this mm shares
2715 * the same anon_vma we won't take it again.
2717 * No need of atomic instructions here, head.next
2718 * can't change from under us thanks to the
2719 * anon_vma->root->mutex.
2721 if (__test_and_set_bit(0, (unsigned long *)
2722 &anon_vma->root->rb_root.rb_node))
2723 BUG();
2727 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2729 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2731 * AS_MM_ALL_LOCKS can't change from under us because
2732 * we hold the mm_all_locks_mutex.
2734 * Operations on ->flags have to be atomic because
2735 * even if AS_MM_ALL_LOCKS is stable thanks to the
2736 * mm_all_locks_mutex, there may be other cpus
2737 * changing other bitflags in parallel to us.
2739 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2740 BUG();
2741 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2746 * This operation locks against the VM for all pte/vma/mm related
2747 * operations that could ever happen on a certain mm. This includes
2748 * vmtruncate, try_to_unmap, and all page faults.
2750 * The caller must take the mmap_sem in write mode before calling
2751 * mm_take_all_locks(). The caller isn't allowed to release the
2752 * mmap_sem until mm_drop_all_locks() returns.
2754 * mmap_sem in write mode is required in order to block all operations
2755 * that could modify pagetables and free pages without need of
2756 * altering the vma layout (for example populate_range() with
2757 * nonlinear vmas). It's also needed in write mode to avoid new
2758 * anon_vmas to be associated with existing vmas.
2760 * A single task can't take more than one mm_take_all_locks() in a row
2761 * or it would deadlock.
2763 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2764 * mapping->flags avoid to take the same lock twice, if more than one
2765 * vma in this mm is backed by the same anon_vma or address_space.
2767 * We can take all the locks in random order because the VM code
2768 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2769 * takes more than one of them in a row. Secondly we're protected
2770 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2772 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2773 * that may have to take thousand of locks.
2775 * mm_take_all_locks() can fail if it's interrupted by signals.
2777 int mm_take_all_locks(struct mm_struct *mm)
2779 struct vm_area_struct *vma;
2780 struct anon_vma_chain *avc;
2782 BUG_ON(down_read_trylock(&mm->mmap_sem));
2784 mutex_lock(&mm_all_locks_mutex);
2786 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2787 if (signal_pending(current))
2788 goto out_unlock;
2789 if (vma->vm_file && vma->vm_file->f_mapping)
2790 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2793 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2794 if (signal_pending(current))
2795 goto out_unlock;
2796 if (vma->anon_vma)
2797 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2798 vm_lock_anon_vma(mm, avc->anon_vma);
2801 return 0;
2803 out_unlock:
2804 mm_drop_all_locks(mm);
2805 return -EINTR;
2808 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2810 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2812 * The LSB of head.next can't change to 0 from under
2813 * us because we hold the mm_all_locks_mutex.
2815 * We must however clear the bitflag before unlocking
2816 * the vma so the users using the anon_vma->rb_root will
2817 * never see our bitflag.
2819 * No need of atomic instructions here, head.next
2820 * can't change from under us until we release the
2821 * anon_vma->root->mutex.
2823 if (!__test_and_clear_bit(0, (unsigned long *)
2824 &anon_vma->root->rb_root.rb_node))
2825 BUG();
2826 anon_vma_unlock(anon_vma);
2830 static void vm_unlock_mapping(struct address_space *mapping)
2832 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2834 * AS_MM_ALL_LOCKS can't change to 0 from under us
2835 * because we hold the mm_all_locks_mutex.
2837 mutex_unlock(&mapping->i_mmap_mutex);
2838 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2839 &mapping->flags))
2840 BUG();
2845 * The mmap_sem cannot be released by the caller until
2846 * mm_drop_all_locks() returns.
2848 void mm_drop_all_locks(struct mm_struct *mm)
2850 struct vm_area_struct *vma;
2851 struct anon_vma_chain *avc;
2853 BUG_ON(down_read_trylock(&mm->mmap_sem));
2854 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2856 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2857 if (vma->anon_vma)
2858 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2859 vm_unlock_anon_vma(avc->anon_vma);
2860 if (vma->vm_file && vma->vm_file->f_mapping)
2861 vm_unlock_mapping(vma->vm_file->f_mapping);
2864 mutex_unlock(&mm_all_locks_mutex);
2868 * initialise the VMA slab
2870 void __init mmap_init(void)
2872 int ret;
2874 ret = percpu_counter_init(&vm_committed_as, 0);
2875 VM_BUG_ON(ret);