2 * Copyright (c) 2007-2011 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
36 #include <linux/ipv6.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
44 #include <net/ndisc.h>
46 static struct kmem_cache
*flow_cache
;
48 static int check_header(struct sk_buff
*skb
, int len
)
50 if (unlikely(skb
->len
< len
))
52 if (unlikely(!pskb_may_pull(skb
, len
)))
57 static bool arphdr_ok(struct sk_buff
*skb
)
59 return pskb_may_pull(skb
, skb_network_offset(skb
) +
60 sizeof(struct arp_eth_header
));
63 static int check_iphdr(struct sk_buff
*skb
)
65 unsigned int nh_ofs
= skb_network_offset(skb
);
69 err
= check_header(skb
, nh_ofs
+ sizeof(struct iphdr
));
73 ip_len
= ip_hdrlen(skb
);
74 if (unlikely(ip_len
< sizeof(struct iphdr
) ||
75 skb
->len
< nh_ofs
+ ip_len
))
78 skb_set_transport_header(skb
, nh_ofs
+ ip_len
);
82 static bool tcphdr_ok(struct sk_buff
*skb
)
84 int th_ofs
= skb_transport_offset(skb
);
87 if (unlikely(!pskb_may_pull(skb
, th_ofs
+ sizeof(struct tcphdr
))))
90 tcp_len
= tcp_hdrlen(skb
);
91 if (unlikely(tcp_len
< sizeof(struct tcphdr
) ||
92 skb
->len
< th_ofs
+ tcp_len
))
98 static bool udphdr_ok(struct sk_buff
*skb
)
100 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
101 sizeof(struct udphdr
));
104 static bool icmphdr_ok(struct sk_buff
*skb
)
106 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
107 sizeof(struct icmphdr
));
110 u64
ovs_flow_used_time(unsigned long flow_jiffies
)
112 struct timespec cur_ts
;
115 ktime_get_ts(&cur_ts
);
116 idle_ms
= jiffies_to_msecs(jiffies
- flow_jiffies
);
117 cur_ms
= (u64
)cur_ts
.tv_sec
* MSEC_PER_SEC
+
118 cur_ts
.tv_nsec
/ NSEC_PER_MSEC
;
120 return cur_ms
- idle_ms
;
123 #define SW_FLOW_KEY_OFFSET(field) \
124 (offsetof(struct sw_flow_key, field) + \
125 FIELD_SIZEOF(struct sw_flow_key, field))
127 static int parse_ipv6hdr(struct sk_buff
*skb
, struct sw_flow_key
*key
,
130 unsigned int nh_ofs
= skb_network_offset(skb
);
138 *key_lenp
= SW_FLOW_KEY_OFFSET(ipv6
.label
);
140 err
= check_header(skb
, nh_ofs
+ sizeof(*nh
));
145 nexthdr
= nh
->nexthdr
;
146 payload_ofs
= (u8
*)(nh
+ 1) - skb
->data
;
148 key
->ip
.proto
= NEXTHDR_NONE
;
149 key
->ip
.tos
= ipv6_get_dsfield(nh
);
150 key
->ip
.ttl
= nh
->hop_limit
;
151 key
->ipv6
.label
= *(__be32
*)nh
& htonl(IPV6_FLOWINFO_FLOWLABEL
);
152 key
->ipv6
.addr
.src
= nh
->saddr
;
153 key
->ipv6
.addr
.dst
= nh
->daddr
;
155 payload_ofs
= ipv6_skip_exthdr(skb
, payload_ofs
, &nexthdr
, &frag_off
);
156 if (unlikely(payload_ofs
< 0))
160 if (frag_off
& htons(~0x7))
161 key
->ip
.frag
= OVS_FRAG_TYPE_LATER
;
163 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
166 nh_len
= payload_ofs
- nh_ofs
;
167 skb_set_transport_header(skb
, nh_ofs
+ nh_len
);
168 key
->ip
.proto
= nexthdr
;
172 static bool icmp6hdr_ok(struct sk_buff
*skb
)
174 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
175 sizeof(struct icmp6hdr
));
178 #define TCP_FLAGS_OFFSET 13
179 #define TCP_FLAG_MASK 0x3f
181 void ovs_flow_used(struct sw_flow
*flow
, struct sk_buff
*skb
)
185 if ((flow
->key
.eth
.type
== htons(ETH_P_IP
) ||
186 flow
->key
.eth
.type
== htons(ETH_P_IPV6
)) &&
187 flow
->key
.ip
.proto
== IPPROTO_TCP
&&
188 likely(skb
->len
>= skb_transport_offset(skb
) + sizeof(struct tcphdr
))) {
189 u8
*tcp
= (u8
*)tcp_hdr(skb
);
190 tcp_flags
= *(tcp
+ TCP_FLAGS_OFFSET
) & TCP_FLAG_MASK
;
193 spin_lock(&flow
->lock
);
194 flow
->used
= jiffies
;
195 flow
->packet_count
++;
196 flow
->byte_count
+= skb
->len
;
197 flow
->tcp_flags
|= tcp_flags
;
198 spin_unlock(&flow
->lock
);
201 struct sw_flow_actions
*ovs_flow_actions_alloc(const struct nlattr
*actions
)
203 int actions_len
= nla_len(actions
);
204 struct sw_flow_actions
*sfa
;
206 if (actions_len
> MAX_ACTIONS_BUFSIZE
)
207 return ERR_PTR(-EINVAL
);
209 sfa
= kmalloc(sizeof(*sfa
) + actions_len
, GFP_KERNEL
);
211 return ERR_PTR(-ENOMEM
);
213 sfa
->actions_len
= actions_len
;
214 memcpy(sfa
->actions
, nla_data(actions
), actions_len
);
218 struct sw_flow
*ovs_flow_alloc(void)
220 struct sw_flow
*flow
;
222 flow
= kmem_cache_alloc(flow_cache
, GFP_KERNEL
);
224 return ERR_PTR(-ENOMEM
);
226 spin_lock_init(&flow
->lock
);
227 flow
->sf_acts
= NULL
;
232 static struct hlist_head
*find_bucket(struct flow_table
*table
, u32 hash
)
234 hash
= jhash_1word(hash
, table
->hash_seed
);
235 return flex_array_get(table
->buckets
,
236 (hash
& (table
->n_buckets
- 1)));
239 static struct flex_array
*alloc_buckets(unsigned int n_buckets
)
241 struct flex_array
*buckets
;
244 buckets
= flex_array_alloc(sizeof(struct hlist_head
*),
245 n_buckets
, GFP_KERNEL
);
249 err
= flex_array_prealloc(buckets
, 0, n_buckets
, GFP_KERNEL
);
251 flex_array_free(buckets
);
255 for (i
= 0; i
< n_buckets
; i
++)
256 INIT_HLIST_HEAD((struct hlist_head
*)
257 flex_array_get(buckets
, i
));
262 static void free_buckets(struct flex_array
*buckets
)
264 flex_array_free(buckets
);
267 struct flow_table
*ovs_flow_tbl_alloc(int new_size
)
269 struct flow_table
*table
= kmalloc(sizeof(*table
), GFP_KERNEL
);
274 table
->buckets
= alloc_buckets(new_size
);
276 if (!table
->buckets
) {
280 table
->n_buckets
= new_size
;
283 table
->keep_flows
= false;
284 get_random_bytes(&table
->hash_seed
, sizeof(u32
));
289 void ovs_flow_tbl_destroy(struct flow_table
*table
)
296 if (table
->keep_flows
)
299 for (i
= 0; i
< table
->n_buckets
; i
++) {
300 struct sw_flow
*flow
;
301 struct hlist_head
*head
= flex_array_get(table
->buckets
, i
);
302 struct hlist_node
*node
, *n
;
303 int ver
= table
->node_ver
;
305 hlist_for_each_entry_safe(flow
, node
, n
, head
, hash_node
[ver
]) {
306 hlist_del_rcu(&flow
->hash_node
[ver
]);
312 free_buckets(table
->buckets
);
316 static void flow_tbl_destroy_rcu_cb(struct rcu_head
*rcu
)
318 struct flow_table
*table
= container_of(rcu
, struct flow_table
, rcu
);
320 ovs_flow_tbl_destroy(table
);
323 void ovs_flow_tbl_deferred_destroy(struct flow_table
*table
)
328 call_rcu(&table
->rcu
, flow_tbl_destroy_rcu_cb
);
331 struct sw_flow
*ovs_flow_tbl_next(struct flow_table
*table
, u32
*bucket
, u32
*last
)
333 struct sw_flow
*flow
;
334 struct hlist_head
*head
;
335 struct hlist_node
*n
;
339 ver
= table
->node_ver
;
340 while (*bucket
< table
->n_buckets
) {
342 head
= flex_array_get(table
->buckets
, *bucket
);
343 hlist_for_each_entry_rcu(flow
, n
, head
, hash_node
[ver
]) {
358 static void flow_table_copy_flows(struct flow_table
*old
, struct flow_table
*new)
363 old_ver
= old
->node_ver
;
364 new->node_ver
= !old_ver
;
366 /* Insert in new table. */
367 for (i
= 0; i
< old
->n_buckets
; i
++) {
368 struct sw_flow
*flow
;
369 struct hlist_head
*head
;
370 struct hlist_node
*n
;
372 head
= flex_array_get(old
->buckets
, i
);
374 hlist_for_each_entry(flow
, n
, head
, hash_node
[old_ver
])
375 ovs_flow_tbl_insert(new, flow
);
377 old
->keep_flows
= true;
380 static struct flow_table
*__flow_tbl_rehash(struct flow_table
*table
, int n_buckets
)
382 struct flow_table
*new_table
;
384 new_table
= ovs_flow_tbl_alloc(n_buckets
);
386 return ERR_PTR(-ENOMEM
);
388 flow_table_copy_flows(table
, new_table
);
393 struct flow_table
*ovs_flow_tbl_rehash(struct flow_table
*table
)
395 return __flow_tbl_rehash(table
, table
->n_buckets
);
398 struct flow_table
*ovs_flow_tbl_expand(struct flow_table
*table
)
400 return __flow_tbl_rehash(table
, table
->n_buckets
* 2);
403 void ovs_flow_free(struct sw_flow
*flow
)
408 kfree((struct sf_flow_acts __force
*)flow
->sf_acts
);
409 kmem_cache_free(flow_cache
, flow
);
412 /* RCU callback used by ovs_flow_deferred_free. */
413 static void rcu_free_flow_callback(struct rcu_head
*rcu
)
415 struct sw_flow
*flow
= container_of(rcu
, struct sw_flow
, rcu
);
420 /* Schedules 'flow' to be freed after the next RCU grace period.
421 * The caller must hold rcu_read_lock for this to be sensible. */
422 void ovs_flow_deferred_free(struct sw_flow
*flow
)
424 call_rcu(&flow
->rcu
, rcu_free_flow_callback
);
427 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
428 * The caller must hold rcu_read_lock for this to be sensible. */
429 void ovs_flow_deferred_free_acts(struct sw_flow_actions
*sf_acts
)
431 kfree_rcu(sf_acts
, rcu
);
434 static int parse_vlan(struct sk_buff
*skb
, struct sw_flow_key
*key
)
437 __be16 eth_type
; /* ETH_P_8021Q */
440 struct qtag_prefix
*qp
;
442 if (unlikely(skb
->len
< sizeof(struct qtag_prefix
) + sizeof(__be16
)))
445 if (unlikely(!pskb_may_pull(skb
, sizeof(struct qtag_prefix
) +
449 qp
= (struct qtag_prefix
*) skb
->data
;
450 key
->eth
.tci
= qp
->tci
| htons(VLAN_TAG_PRESENT
);
451 __skb_pull(skb
, sizeof(struct qtag_prefix
));
456 static __be16
parse_ethertype(struct sk_buff
*skb
)
458 struct llc_snap_hdr
{
459 u8 dsap
; /* Always 0xAA */
460 u8 ssap
; /* Always 0xAA */
465 struct llc_snap_hdr
*llc
;
468 proto
= *(__be16
*) skb
->data
;
469 __skb_pull(skb
, sizeof(__be16
));
471 if (ntohs(proto
) >= 1536)
474 if (skb
->len
< sizeof(struct llc_snap_hdr
))
475 return htons(ETH_P_802_2
);
477 if (unlikely(!pskb_may_pull(skb
, sizeof(struct llc_snap_hdr
))))
480 llc
= (struct llc_snap_hdr
*) skb
->data
;
481 if (llc
->dsap
!= LLC_SAP_SNAP
||
482 llc
->ssap
!= LLC_SAP_SNAP
||
483 (llc
->oui
[0] | llc
->oui
[1] | llc
->oui
[2]) != 0)
484 return htons(ETH_P_802_2
);
486 __skb_pull(skb
, sizeof(struct llc_snap_hdr
));
487 return llc
->ethertype
;
490 static int parse_icmpv6(struct sk_buff
*skb
, struct sw_flow_key
*key
,
491 int *key_lenp
, int nh_len
)
493 struct icmp6hdr
*icmp
= icmp6_hdr(skb
);
497 /* The ICMPv6 type and code fields use the 16-bit transport port
498 * fields, so we need to store them in 16-bit network byte order.
500 key
->ipv6
.tp
.src
= htons(icmp
->icmp6_type
);
501 key
->ipv6
.tp
.dst
= htons(icmp
->icmp6_code
);
502 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
504 if (icmp
->icmp6_code
== 0 &&
505 (icmp
->icmp6_type
== NDISC_NEIGHBOUR_SOLICITATION
||
506 icmp
->icmp6_type
== NDISC_NEIGHBOUR_ADVERTISEMENT
)) {
507 int icmp_len
= skb
->len
- skb_transport_offset(skb
);
511 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.nd
);
513 /* In order to process neighbor discovery options, we need the
516 if (unlikely(icmp_len
< sizeof(*nd
)))
518 if (unlikely(skb_linearize(skb
))) {
523 nd
= (struct nd_msg
*)skb_transport_header(skb
);
524 key
->ipv6
.nd
.target
= nd
->target
;
525 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.nd
);
527 icmp_len
-= sizeof(*nd
);
529 while (icmp_len
>= 8) {
530 struct nd_opt_hdr
*nd_opt
=
531 (struct nd_opt_hdr
*)(nd
->opt
+ offset
);
532 int opt_len
= nd_opt
->nd_opt_len
* 8;
534 if (unlikely(!opt_len
|| opt_len
> icmp_len
))
537 /* Store the link layer address if the appropriate
538 * option is provided. It is considered an error if
539 * the same link layer option is specified twice.
541 if (nd_opt
->nd_opt_type
== ND_OPT_SOURCE_LL_ADDR
543 if (unlikely(!is_zero_ether_addr(key
->ipv6
.nd
.sll
)))
545 memcpy(key
->ipv6
.nd
.sll
,
546 &nd
->opt
[offset
+sizeof(*nd_opt
)], ETH_ALEN
);
547 } else if (nd_opt
->nd_opt_type
== ND_OPT_TARGET_LL_ADDR
549 if (unlikely(!is_zero_ether_addr(key
->ipv6
.nd
.tll
)))
551 memcpy(key
->ipv6
.nd
.tll
,
552 &nd
->opt
[offset
+sizeof(*nd_opt
)], ETH_ALEN
);
563 memset(&key
->ipv6
.nd
.target
, 0, sizeof(key
->ipv6
.nd
.target
));
564 memset(key
->ipv6
.nd
.sll
, 0, sizeof(key
->ipv6
.nd
.sll
));
565 memset(key
->ipv6
.nd
.tll
, 0, sizeof(key
->ipv6
.nd
.tll
));
573 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
574 * @skb: sk_buff that contains the frame, with skb->data pointing to the
576 * @in_port: port number on which @skb was received.
577 * @key: output flow key
578 * @key_lenp: length of output flow key
580 * The caller must ensure that skb->len >= ETH_HLEN.
582 * Returns 0 if successful, otherwise a negative errno value.
584 * Initializes @skb header pointers as follows:
586 * - skb->mac_header: the Ethernet header.
588 * - skb->network_header: just past the Ethernet header, or just past the
589 * VLAN header, to the first byte of the Ethernet payload.
591 * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
592 * on output, then just past the IP header, if one is present and
593 * of a correct length, otherwise the same as skb->network_header.
594 * For other key->dl_type values it is left untouched.
596 int ovs_flow_extract(struct sk_buff
*skb
, u16 in_port
, struct sw_flow_key
*key
,
600 int key_len
= SW_FLOW_KEY_OFFSET(eth
);
603 memset(key
, 0, sizeof(*key
));
605 key
->phy
.priority
= skb
->priority
;
606 key
->phy
.in_port
= in_port
;
608 skb_reset_mac_header(skb
);
610 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
611 * header in the linear data area.
614 memcpy(key
->eth
.src
, eth
->h_source
, ETH_ALEN
);
615 memcpy(key
->eth
.dst
, eth
->h_dest
, ETH_ALEN
);
617 __skb_pull(skb
, 2 * ETH_ALEN
);
619 if (vlan_tx_tag_present(skb
))
620 key
->eth
.tci
= htons(skb
->vlan_tci
);
621 else if (eth
->h_proto
== htons(ETH_P_8021Q
))
622 if (unlikely(parse_vlan(skb
, key
)))
625 key
->eth
.type
= parse_ethertype(skb
);
626 if (unlikely(key
->eth
.type
== htons(0)))
629 skb_reset_network_header(skb
);
630 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
633 if (key
->eth
.type
== htons(ETH_P_IP
)) {
637 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.addr
);
639 error
= check_iphdr(skb
);
640 if (unlikely(error
)) {
641 if (error
== -EINVAL
) {
642 skb
->transport_header
= skb
->network_header
;
649 key
->ipv4
.addr
.src
= nh
->saddr
;
650 key
->ipv4
.addr
.dst
= nh
->daddr
;
652 key
->ip
.proto
= nh
->protocol
;
653 key
->ip
.tos
= nh
->tos
;
654 key
->ip
.ttl
= nh
->ttl
;
656 offset
= nh
->frag_off
& htons(IP_OFFSET
);
658 key
->ip
.frag
= OVS_FRAG_TYPE_LATER
;
661 if (nh
->frag_off
& htons(IP_MF
) ||
662 skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP
)
663 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
665 /* Transport layer. */
666 if (key
->ip
.proto
== IPPROTO_TCP
) {
667 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
668 if (tcphdr_ok(skb
)) {
669 struct tcphdr
*tcp
= tcp_hdr(skb
);
670 key
->ipv4
.tp
.src
= tcp
->source
;
671 key
->ipv4
.tp
.dst
= tcp
->dest
;
673 } else if (key
->ip
.proto
== IPPROTO_UDP
) {
674 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
675 if (udphdr_ok(skb
)) {
676 struct udphdr
*udp
= udp_hdr(skb
);
677 key
->ipv4
.tp
.src
= udp
->source
;
678 key
->ipv4
.tp
.dst
= udp
->dest
;
680 } else if (key
->ip
.proto
== IPPROTO_ICMP
) {
681 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
682 if (icmphdr_ok(skb
)) {
683 struct icmphdr
*icmp
= icmp_hdr(skb
);
684 /* The ICMP type and code fields use the 16-bit
685 * transport port fields, so we need to store
686 * them in 16-bit network byte order. */
687 key
->ipv4
.tp
.src
= htons(icmp
->type
);
688 key
->ipv4
.tp
.dst
= htons(icmp
->code
);
692 } else if (key
->eth
.type
== htons(ETH_P_ARP
) && arphdr_ok(skb
)) {
693 struct arp_eth_header
*arp
;
695 arp
= (struct arp_eth_header
*)skb_network_header(skb
);
697 if (arp
->ar_hrd
== htons(ARPHRD_ETHER
)
698 && arp
->ar_pro
== htons(ETH_P_IP
)
699 && arp
->ar_hln
== ETH_ALEN
700 && arp
->ar_pln
== 4) {
702 /* We only match on the lower 8 bits of the opcode. */
703 if (ntohs(arp
->ar_op
) <= 0xff)
704 key
->ip
.proto
= ntohs(arp
->ar_op
);
705 memcpy(&key
->ipv4
.addr
.src
, arp
->ar_sip
, sizeof(key
->ipv4
.addr
.src
));
706 memcpy(&key
->ipv4
.addr
.dst
, arp
->ar_tip
, sizeof(key
->ipv4
.addr
.dst
));
707 memcpy(key
->ipv4
.arp
.sha
, arp
->ar_sha
, ETH_ALEN
);
708 memcpy(key
->ipv4
.arp
.tha
, arp
->ar_tha
, ETH_ALEN
);
709 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.arp
);
711 } else if (key
->eth
.type
== htons(ETH_P_IPV6
)) {
712 int nh_len
; /* IPv6 Header + Extensions */
714 nh_len
= parse_ipv6hdr(skb
, key
, &key_len
);
715 if (unlikely(nh_len
< 0)) {
716 if (nh_len
== -EINVAL
)
717 skb
->transport_header
= skb
->network_header
;
723 if (key
->ip
.frag
== OVS_FRAG_TYPE_LATER
)
725 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP
)
726 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
728 /* Transport layer. */
729 if (key
->ip
.proto
== NEXTHDR_TCP
) {
730 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
731 if (tcphdr_ok(skb
)) {
732 struct tcphdr
*tcp
= tcp_hdr(skb
);
733 key
->ipv6
.tp
.src
= tcp
->source
;
734 key
->ipv6
.tp
.dst
= tcp
->dest
;
736 } else if (key
->ip
.proto
== NEXTHDR_UDP
) {
737 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
738 if (udphdr_ok(skb
)) {
739 struct udphdr
*udp
= udp_hdr(skb
);
740 key
->ipv6
.tp
.src
= udp
->source
;
741 key
->ipv6
.tp
.dst
= udp
->dest
;
743 } else if (key
->ip
.proto
== NEXTHDR_ICMP
) {
744 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
745 if (icmp6hdr_ok(skb
)) {
746 error
= parse_icmpv6(skb
, key
, &key_len
, nh_len
);
758 u32
ovs_flow_hash(const struct sw_flow_key
*key
, int key_len
)
760 return jhash2((u32
*)key
, DIV_ROUND_UP(key_len
, sizeof(u32
)), 0);
763 struct sw_flow
*ovs_flow_tbl_lookup(struct flow_table
*table
,
764 struct sw_flow_key
*key
, int key_len
)
766 struct sw_flow
*flow
;
767 struct hlist_node
*n
;
768 struct hlist_head
*head
;
771 hash
= ovs_flow_hash(key
, key_len
);
773 head
= find_bucket(table
, hash
);
774 hlist_for_each_entry_rcu(flow
, n
, head
, hash_node
[table
->node_ver
]) {
776 if (flow
->hash
== hash
&&
777 !memcmp(&flow
->key
, key
, key_len
)) {
784 void ovs_flow_tbl_insert(struct flow_table
*table
, struct sw_flow
*flow
)
786 struct hlist_head
*head
;
788 head
= find_bucket(table
, flow
->hash
);
789 hlist_add_head_rcu(&flow
->hash_node
[table
->node_ver
], head
);
793 void ovs_flow_tbl_remove(struct flow_table
*table
, struct sw_flow
*flow
)
795 hlist_del_rcu(&flow
->hash_node
[table
->node_ver
]);
797 BUG_ON(table
->count
< 0);
800 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
801 const int ovs_key_lens
[OVS_KEY_ATTR_MAX
+ 1] = {
802 [OVS_KEY_ATTR_ENCAP
] = -1,
803 [OVS_KEY_ATTR_PRIORITY
] = sizeof(u32
),
804 [OVS_KEY_ATTR_IN_PORT
] = sizeof(u32
),
805 [OVS_KEY_ATTR_ETHERNET
] = sizeof(struct ovs_key_ethernet
),
806 [OVS_KEY_ATTR_VLAN
] = sizeof(__be16
),
807 [OVS_KEY_ATTR_ETHERTYPE
] = sizeof(__be16
),
808 [OVS_KEY_ATTR_IPV4
] = sizeof(struct ovs_key_ipv4
),
809 [OVS_KEY_ATTR_IPV6
] = sizeof(struct ovs_key_ipv6
),
810 [OVS_KEY_ATTR_TCP
] = sizeof(struct ovs_key_tcp
),
811 [OVS_KEY_ATTR_UDP
] = sizeof(struct ovs_key_udp
),
812 [OVS_KEY_ATTR_ICMP
] = sizeof(struct ovs_key_icmp
),
813 [OVS_KEY_ATTR_ICMPV6
] = sizeof(struct ovs_key_icmpv6
),
814 [OVS_KEY_ATTR_ARP
] = sizeof(struct ovs_key_arp
),
815 [OVS_KEY_ATTR_ND
] = sizeof(struct ovs_key_nd
),
818 static int ipv4_flow_from_nlattrs(struct sw_flow_key
*swkey
, int *key_len
,
819 const struct nlattr
*a
[], u32
*attrs
)
821 const struct ovs_key_icmp
*icmp_key
;
822 const struct ovs_key_tcp
*tcp_key
;
823 const struct ovs_key_udp
*udp_key
;
825 switch (swkey
->ip
.proto
) {
827 if (!(*attrs
& (1 << OVS_KEY_ATTR_TCP
)))
829 *attrs
&= ~(1 << OVS_KEY_ATTR_TCP
);
831 *key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
832 tcp_key
= nla_data(a
[OVS_KEY_ATTR_TCP
]);
833 swkey
->ipv4
.tp
.src
= tcp_key
->tcp_src
;
834 swkey
->ipv4
.tp
.dst
= tcp_key
->tcp_dst
;
838 if (!(*attrs
& (1 << OVS_KEY_ATTR_UDP
)))
840 *attrs
&= ~(1 << OVS_KEY_ATTR_UDP
);
842 *key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
843 udp_key
= nla_data(a
[OVS_KEY_ATTR_UDP
]);
844 swkey
->ipv4
.tp
.src
= udp_key
->udp_src
;
845 swkey
->ipv4
.tp
.dst
= udp_key
->udp_dst
;
849 if (!(*attrs
& (1 << OVS_KEY_ATTR_ICMP
)))
851 *attrs
&= ~(1 << OVS_KEY_ATTR_ICMP
);
853 *key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
854 icmp_key
= nla_data(a
[OVS_KEY_ATTR_ICMP
]);
855 swkey
->ipv4
.tp
.src
= htons(icmp_key
->icmp_type
);
856 swkey
->ipv4
.tp
.dst
= htons(icmp_key
->icmp_code
);
863 static int ipv6_flow_from_nlattrs(struct sw_flow_key
*swkey
, int *key_len
,
864 const struct nlattr
*a
[], u32
*attrs
)
866 const struct ovs_key_icmpv6
*icmpv6_key
;
867 const struct ovs_key_tcp
*tcp_key
;
868 const struct ovs_key_udp
*udp_key
;
870 switch (swkey
->ip
.proto
) {
872 if (!(*attrs
& (1 << OVS_KEY_ATTR_TCP
)))
874 *attrs
&= ~(1 << OVS_KEY_ATTR_TCP
);
876 *key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
877 tcp_key
= nla_data(a
[OVS_KEY_ATTR_TCP
]);
878 swkey
->ipv6
.tp
.src
= tcp_key
->tcp_src
;
879 swkey
->ipv6
.tp
.dst
= tcp_key
->tcp_dst
;
883 if (!(*attrs
& (1 << OVS_KEY_ATTR_UDP
)))
885 *attrs
&= ~(1 << OVS_KEY_ATTR_UDP
);
887 *key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
888 udp_key
= nla_data(a
[OVS_KEY_ATTR_UDP
]);
889 swkey
->ipv6
.tp
.src
= udp_key
->udp_src
;
890 swkey
->ipv6
.tp
.dst
= udp_key
->udp_dst
;
894 if (!(*attrs
& (1 << OVS_KEY_ATTR_ICMPV6
)))
896 *attrs
&= ~(1 << OVS_KEY_ATTR_ICMPV6
);
898 *key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
899 icmpv6_key
= nla_data(a
[OVS_KEY_ATTR_ICMPV6
]);
900 swkey
->ipv6
.tp
.src
= htons(icmpv6_key
->icmpv6_type
);
901 swkey
->ipv6
.tp
.dst
= htons(icmpv6_key
->icmpv6_code
);
903 if (swkey
->ipv6
.tp
.src
== htons(NDISC_NEIGHBOUR_SOLICITATION
) ||
904 swkey
->ipv6
.tp
.src
== htons(NDISC_NEIGHBOUR_ADVERTISEMENT
)) {
905 const struct ovs_key_nd
*nd_key
;
907 if (!(*attrs
& (1 << OVS_KEY_ATTR_ND
)))
909 *attrs
&= ~(1 << OVS_KEY_ATTR_ND
);
911 *key_len
= SW_FLOW_KEY_OFFSET(ipv6
.nd
);
912 nd_key
= nla_data(a
[OVS_KEY_ATTR_ND
]);
913 memcpy(&swkey
->ipv6
.nd
.target
, nd_key
->nd_target
,
914 sizeof(swkey
->ipv6
.nd
.target
));
915 memcpy(swkey
->ipv6
.nd
.sll
, nd_key
->nd_sll
, ETH_ALEN
);
916 memcpy(swkey
->ipv6
.nd
.tll
, nd_key
->nd_tll
, ETH_ALEN
);
924 static int parse_flow_nlattrs(const struct nlattr
*attr
,
925 const struct nlattr
*a
[], u32
*attrsp
)
927 const struct nlattr
*nla
;
932 nla_for_each_nested(nla
, attr
, rem
) {
933 u16 type
= nla_type(nla
);
936 if (type
> OVS_KEY_ATTR_MAX
|| attrs
& (1 << type
))
939 expected_len
= ovs_key_lens
[type
];
940 if (nla_len(nla
) != expected_len
&& expected_len
!= -1)
954 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
955 * @swkey: receives the extracted flow key.
956 * @key_lenp: number of bytes used in @swkey.
957 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
960 int ovs_flow_from_nlattrs(struct sw_flow_key
*swkey
, int *key_lenp
,
961 const struct nlattr
*attr
)
963 const struct nlattr
*a
[OVS_KEY_ATTR_MAX
+ 1];
964 const struct ovs_key_ethernet
*eth_key
;
969 memset(swkey
, 0, sizeof(struct sw_flow_key
));
970 key_len
= SW_FLOW_KEY_OFFSET(eth
);
972 err
= parse_flow_nlattrs(attr
, a
, &attrs
);
976 /* Metadata attributes. */
977 if (attrs
& (1 << OVS_KEY_ATTR_PRIORITY
)) {
978 swkey
->phy
.priority
= nla_get_u32(a
[OVS_KEY_ATTR_PRIORITY
]);
979 attrs
&= ~(1 << OVS_KEY_ATTR_PRIORITY
);
981 if (attrs
& (1 << OVS_KEY_ATTR_IN_PORT
)) {
982 u32 in_port
= nla_get_u32(a
[OVS_KEY_ATTR_IN_PORT
]);
983 if (in_port
>= DP_MAX_PORTS
)
985 swkey
->phy
.in_port
= in_port
;
986 attrs
&= ~(1 << OVS_KEY_ATTR_IN_PORT
);
988 swkey
->phy
.in_port
= DP_MAX_PORTS
;
991 /* Data attributes. */
992 if (!(attrs
& (1 << OVS_KEY_ATTR_ETHERNET
)))
994 attrs
&= ~(1 << OVS_KEY_ATTR_ETHERNET
);
996 eth_key
= nla_data(a
[OVS_KEY_ATTR_ETHERNET
]);
997 memcpy(swkey
->eth
.src
, eth_key
->eth_src
, ETH_ALEN
);
998 memcpy(swkey
->eth
.dst
, eth_key
->eth_dst
, ETH_ALEN
);
1000 if (attrs
& (1u << OVS_KEY_ATTR_ETHERTYPE
) &&
1001 nla_get_be16(a
[OVS_KEY_ATTR_ETHERTYPE
]) == htons(ETH_P_8021Q
)) {
1002 const struct nlattr
*encap
;
1005 if (attrs
!= ((1 << OVS_KEY_ATTR_VLAN
) |
1006 (1 << OVS_KEY_ATTR_ETHERTYPE
) |
1007 (1 << OVS_KEY_ATTR_ENCAP
)))
1010 encap
= a
[OVS_KEY_ATTR_ENCAP
];
1011 tci
= nla_get_be16(a
[OVS_KEY_ATTR_VLAN
]);
1012 if (tci
& htons(VLAN_TAG_PRESENT
)) {
1013 swkey
->eth
.tci
= tci
;
1015 err
= parse_flow_nlattrs(encap
, a
, &attrs
);
1019 /* Corner case for truncated 802.1Q header. */
1023 swkey
->eth
.type
= htons(ETH_P_8021Q
);
1024 *key_lenp
= key_len
;
1031 if (attrs
& (1 << OVS_KEY_ATTR_ETHERTYPE
)) {
1032 swkey
->eth
.type
= nla_get_be16(a
[OVS_KEY_ATTR_ETHERTYPE
]);
1033 if (ntohs(swkey
->eth
.type
) < 1536)
1035 attrs
&= ~(1 << OVS_KEY_ATTR_ETHERTYPE
);
1037 swkey
->eth
.type
= htons(ETH_P_802_2
);
1040 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1041 const struct ovs_key_ipv4
*ipv4_key
;
1043 if (!(attrs
& (1 << OVS_KEY_ATTR_IPV4
)))
1045 attrs
&= ~(1 << OVS_KEY_ATTR_IPV4
);
1047 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.addr
);
1048 ipv4_key
= nla_data(a
[OVS_KEY_ATTR_IPV4
]);
1049 if (ipv4_key
->ipv4_frag
> OVS_FRAG_TYPE_MAX
)
1051 swkey
->ip
.proto
= ipv4_key
->ipv4_proto
;
1052 swkey
->ip
.tos
= ipv4_key
->ipv4_tos
;
1053 swkey
->ip
.ttl
= ipv4_key
->ipv4_ttl
;
1054 swkey
->ip
.frag
= ipv4_key
->ipv4_frag
;
1055 swkey
->ipv4
.addr
.src
= ipv4_key
->ipv4_src
;
1056 swkey
->ipv4
.addr
.dst
= ipv4_key
->ipv4_dst
;
1058 if (swkey
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
1059 err
= ipv4_flow_from_nlattrs(swkey
, &key_len
, a
, &attrs
);
1063 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1064 const struct ovs_key_ipv6
*ipv6_key
;
1066 if (!(attrs
& (1 << OVS_KEY_ATTR_IPV6
)))
1068 attrs
&= ~(1 << OVS_KEY_ATTR_IPV6
);
1070 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.label
);
1071 ipv6_key
= nla_data(a
[OVS_KEY_ATTR_IPV6
]);
1072 if (ipv6_key
->ipv6_frag
> OVS_FRAG_TYPE_MAX
)
1074 swkey
->ipv6
.label
= ipv6_key
->ipv6_label
;
1075 swkey
->ip
.proto
= ipv6_key
->ipv6_proto
;
1076 swkey
->ip
.tos
= ipv6_key
->ipv6_tclass
;
1077 swkey
->ip
.ttl
= ipv6_key
->ipv6_hlimit
;
1078 swkey
->ip
.frag
= ipv6_key
->ipv6_frag
;
1079 memcpy(&swkey
->ipv6
.addr
.src
, ipv6_key
->ipv6_src
,
1080 sizeof(swkey
->ipv6
.addr
.src
));
1081 memcpy(&swkey
->ipv6
.addr
.dst
, ipv6_key
->ipv6_dst
,
1082 sizeof(swkey
->ipv6
.addr
.dst
));
1084 if (swkey
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
1085 err
= ipv6_flow_from_nlattrs(swkey
, &key_len
, a
, &attrs
);
1089 } else if (swkey
->eth
.type
== htons(ETH_P_ARP
)) {
1090 const struct ovs_key_arp
*arp_key
;
1092 if (!(attrs
& (1 << OVS_KEY_ATTR_ARP
)))
1094 attrs
&= ~(1 << OVS_KEY_ATTR_ARP
);
1096 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.arp
);
1097 arp_key
= nla_data(a
[OVS_KEY_ATTR_ARP
]);
1098 swkey
->ipv4
.addr
.src
= arp_key
->arp_sip
;
1099 swkey
->ipv4
.addr
.dst
= arp_key
->arp_tip
;
1100 if (arp_key
->arp_op
& htons(0xff00))
1102 swkey
->ip
.proto
= ntohs(arp_key
->arp_op
);
1103 memcpy(swkey
->ipv4
.arp
.sha
, arp_key
->arp_sha
, ETH_ALEN
);
1104 memcpy(swkey
->ipv4
.arp
.tha
, arp_key
->arp_tha
, ETH_ALEN
);
1109 *key_lenp
= key_len
;
1115 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1116 * @in_port: receives the extracted input port.
1117 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1120 * This parses a series of Netlink attributes that form a flow key, which must
1121 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1122 * get the metadata, that is, the parts of the flow key that cannot be
1123 * extracted from the packet itself.
1125 int ovs_flow_metadata_from_nlattrs(u32
*priority
, u16
*in_port
,
1126 const struct nlattr
*attr
)
1128 const struct nlattr
*nla
;
1131 *in_port
= DP_MAX_PORTS
;
1134 nla_for_each_nested(nla
, attr
, rem
) {
1135 int type
= nla_type(nla
);
1137 if (type
<= OVS_KEY_ATTR_MAX
&& ovs_key_lens
[type
] > 0) {
1138 if (nla_len(nla
) != ovs_key_lens
[type
])
1142 case OVS_KEY_ATTR_PRIORITY
:
1143 *priority
= nla_get_u32(nla
);
1146 case OVS_KEY_ATTR_IN_PORT
:
1147 if (nla_get_u32(nla
) >= DP_MAX_PORTS
)
1149 *in_port
= nla_get_u32(nla
);
1159 int ovs_flow_to_nlattrs(const struct sw_flow_key
*swkey
, struct sk_buff
*skb
)
1161 struct ovs_key_ethernet
*eth_key
;
1162 struct nlattr
*nla
, *encap
;
1164 if (swkey
->phy
.priority
&&
1165 nla_put_u32(skb
, OVS_KEY_ATTR_PRIORITY
, swkey
->phy
.priority
))
1166 goto nla_put_failure
;
1168 if (swkey
->phy
.in_port
!= DP_MAX_PORTS
&&
1169 nla_put_u32(skb
, OVS_KEY_ATTR_IN_PORT
, swkey
->phy
.in_port
))
1170 goto nla_put_failure
;
1172 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ETHERNET
, sizeof(*eth_key
));
1174 goto nla_put_failure
;
1175 eth_key
= nla_data(nla
);
1176 memcpy(eth_key
->eth_src
, swkey
->eth
.src
, ETH_ALEN
);
1177 memcpy(eth_key
->eth_dst
, swkey
->eth
.dst
, ETH_ALEN
);
1179 if (swkey
->eth
.tci
|| swkey
->eth
.type
== htons(ETH_P_8021Q
)) {
1180 if (nla_put_be16(skb
, OVS_KEY_ATTR_ETHERTYPE
, htons(ETH_P_8021Q
)) ||
1181 nla_put_be16(skb
, OVS_KEY_ATTR_VLAN
, swkey
->eth
.tci
))
1182 goto nla_put_failure
;
1183 encap
= nla_nest_start(skb
, OVS_KEY_ATTR_ENCAP
);
1184 if (!swkey
->eth
.tci
)
1190 if (swkey
->eth
.type
== htons(ETH_P_802_2
))
1193 if (nla_put_be16(skb
, OVS_KEY_ATTR_ETHERTYPE
, swkey
->eth
.type
))
1194 goto nla_put_failure
;
1196 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1197 struct ovs_key_ipv4
*ipv4_key
;
1199 nla
= nla_reserve(skb
, OVS_KEY_ATTR_IPV4
, sizeof(*ipv4_key
));
1201 goto nla_put_failure
;
1202 ipv4_key
= nla_data(nla
);
1203 ipv4_key
->ipv4_src
= swkey
->ipv4
.addr
.src
;
1204 ipv4_key
->ipv4_dst
= swkey
->ipv4
.addr
.dst
;
1205 ipv4_key
->ipv4_proto
= swkey
->ip
.proto
;
1206 ipv4_key
->ipv4_tos
= swkey
->ip
.tos
;
1207 ipv4_key
->ipv4_ttl
= swkey
->ip
.ttl
;
1208 ipv4_key
->ipv4_frag
= swkey
->ip
.frag
;
1209 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1210 struct ovs_key_ipv6
*ipv6_key
;
1212 nla
= nla_reserve(skb
, OVS_KEY_ATTR_IPV6
, sizeof(*ipv6_key
));
1214 goto nla_put_failure
;
1215 ipv6_key
= nla_data(nla
);
1216 memcpy(ipv6_key
->ipv6_src
, &swkey
->ipv6
.addr
.src
,
1217 sizeof(ipv6_key
->ipv6_src
));
1218 memcpy(ipv6_key
->ipv6_dst
, &swkey
->ipv6
.addr
.dst
,
1219 sizeof(ipv6_key
->ipv6_dst
));
1220 ipv6_key
->ipv6_label
= swkey
->ipv6
.label
;
1221 ipv6_key
->ipv6_proto
= swkey
->ip
.proto
;
1222 ipv6_key
->ipv6_tclass
= swkey
->ip
.tos
;
1223 ipv6_key
->ipv6_hlimit
= swkey
->ip
.ttl
;
1224 ipv6_key
->ipv6_frag
= swkey
->ip
.frag
;
1225 } else if (swkey
->eth
.type
== htons(ETH_P_ARP
)) {
1226 struct ovs_key_arp
*arp_key
;
1228 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ARP
, sizeof(*arp_key
));
1230 goto nla_put_failure
;
1231 arp_key
= nla_data(nla
);
1232 memset(arp_key
, 0, sizeof(struct ovs_key_arp
));
1233 arp_key
->arp_sip
= swkey
->ipv4
.addr
.src
;
1234 arp_key
->arp_tip
= swkey
->ipv4
.addr
.dst
;
1235 arp_key
->arp_op
= htons(swkey
->ip
.proto
);
1236 memcpy(arp_key
->arp_sha
, swkey
->ipv4
.arp
.sha
, ETH_ALEN
);
1237 memcpy(arp_key
->arp_tha
, swkey
->ipv4
.arp
.tha
, ETH_ALEN
);
1240 if ((swkey
->eth
.type
== htons(ETH_P_IP
) ||
1241 swkey
->eth
.type
== htons(ETH_P_IPV6
)) &&
1242 swkey
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
1244 if (swkey
->ip
.proto
== IPPROTO_TCP
) {
1245 struct ovs_key_tcp
*tcp_key
;
1247 nla
= nla_reserve(skb
, OVS_KEY_ATTR_TCP
, sizeof(*tcp_key
));
1249 goto nla_put_failure
;
1250 tcp_key
= nla_data(nla
);
1251 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1252 tcp_key
->tcp_src
= swkey
->ipv4
.tp
.src
;
1253 tcp_key
->tcp_dst
= swkey
->ipv4
.tp
.dst
;
1254 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1255 tcp_key
->tcp_src
= swkey
->ipv6
.tp
.src
;
1256 tcp_key
->tcp_dst
= swkey
->ipv6
.tp
.dst
;
1258 } else if (swkey
->ip
.proto
== IPPROTO_UDP
) {
1259 struct ovs_key_udp
*udp_key
;
1261 nla
= nla_reserve(skb
, OVS_KEY_ATTR_UDP
, sizeof(*udp_key
));
1263 goto nla_put_failure
;
1264 udp_key
= nla_data(nla
);
1265 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1266 udp_key
->udp_src
= swkey
->ipv4
.tp
.src
;
1267 udp_key
->udp_dst
= swkey
->ipv4
.tp
.dst
;
1268 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1269 udp_key
->udp_src
= swkey
->ipv6
.tp
.src
;
1270 udp_key
->udp_dst
= swkey
->ipv6
.tp
.dst
;
1272 } else if (swkey
->eth
.type
== htons(ETH_P_IP
) &&
1273 swkey
->ip
.proto
== IPPROTO_ICMP
) {
1274 struct ovs_key_icmp
*icmp_key
;
1276 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ICMP
, sizeof(*icmp_key
));
1278 goto nla_put_failure
;
1279 icmp_key
= nla_data(nla
);
1280 icmp_key
->icmp_type
= ntohs(swkey
->ipv4
.tp
.src
);
1281 icmp_key
->icmp_code
= ntohs(swkey
->ipv4
.tp
.dst
);
1282 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
) &&
1283 swkey
->ip
.proto
== IPPROTO_ICMPV6
) {
1284 struct ovs_key_icmpv6
*icmpv6_key
;
1286 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ICMPV6
,
1287 sizeof(*icmpv6_key
));
1289 goto nla_put_failure
;
1290 icmpv6_key
= nla_data(nla
);
1291 icmpv6_key
->icmpv6_type
= ntohs(swkey
->ipv6
.tp
.src
);
1292 icmpv6_key
->icmpv6_code
= ntohs(swkey
->ipv6
.tp
.dst
);
1294 if (icmpv6_key
->icmpv6_type
== NDISC_NEIGHBOUR_SOLICITATION
||
1295 icmpv6_key
->icmpv6_type
== NDISC_NEIGHBOUR_ADVERTISEMENT
) {
1296 struct ovs_key_nd
*nd_key
;
1298 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ND
, sizeof(*nd_key
));
1300 goto nla_put_failure
;
1301 nd_key
= nla_data(nla
);
1302 memcpy(nd_key
->nd_target
, &swkey
->ipv6
.nd
.target
,
1303 sizeof(nd_key
->nd_target
));
1304 memcpy(nd_key
->nd_sll
, swkey
->ipv6
.nd
.sll
, ETH_ALEN
);
1305 memcpy(nd_key
->nd_tll
, swkey
->ipv6
.nd
.tll
, ETH_ALEN
);
1312 nla_nest_end(skb
, encap
);
1320 /* Initializes the flow module.
1321 * Returns zero if successful or a negative error code. */
1322 int ovs_flow_init(void)
1324 flow_cache
= kmem_cache_create("sw_flow", sizeof(struct sw_flow
), 0,
1326 if (flow_cache
== NULL
)
1332 /* Uninitializes the flow module. */
1333 void ovs_flow_exit(void)
1335 kmem_cache_destroy(flow_cache
);