2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
64 #include <net/protocol.h>
67 #include <net/checksum.h>
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
74 struct kmem_cache
*skbuff_head_cache __read_mostly
;
75 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
77 static void sock_pipe_buf_release(struct pipe_inode_info
*pipe
,
78 struct pipe_buffer
*buf
)
83 static void sock_pipe_buf_get(struct pipe_inode_info
*pipe
,
84 struct pipe_buffer
*buf
)
89 static int sock_pipe_buf_steal(struct pipe_inode_info
*pipe
,
90 struct pipe_buffer
*buf
)
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops
= {
99 .map
= generic_pipe_buf_map
,
100 .unmap
= generic_pipe_buf_unmap
,
101 .confirm
= generic_pipe_buf_confirm
,
102 .release
= sock_pipe_buf_release
,
103 .steal
= sock_pipe_buf_steal
,
104 .get
= sock_pipe_buf_get
,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
114 * skb_over_panic - private function
119 * Out of line support code for skb_put(). Not user callable.
121 static void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
123 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124 __func__
, here
, skb
->len
, sz
, skb
->head
, skb
->data
,
125 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
126 skb
->dev
? skb
->dev
->name
: "<NULL>");
131 * skb_under_panic - private function
136 * Out of line support code for skb_push(). Not user callable.
139 static void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
141 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
142 __func__
, here
, skb
->len
, sz
, skb
->head
, skb
->data
,
143 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
144 skb
->dev
? skb
->dev
->name
: "<NULL>");
150 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
151 * the caller if emergency pfmemalloc reserves are being used. If it is and
152 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
153 * may be used. Otherwise, the packet data may be discarded until enough
156 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
157 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
158 void *__kmalloc_reserve(size_t size
, gfp_t flags
, int node
, unsigned long ip
,
162 bool ret_pfmemalloc
= false;
165 * Try a regular allocation, when that fails and we're not entitled
166 * to the reserves, fail.
168 obj
= kmalloc_node_track_caller(size
,
169 flags
| __GFP_NOMEMALLOC
| __GFP_NOWARN
,
171 if (obj
|| !(gfp_pfmemalloc_allowed(flags
)))
174 /* Try again but now we are using pfmemalloc reserves */
175 ret_pfmemalloc
= true;
176 obj
= kmalloc_node_track_caller(size
, flags
, node
);
180 *pfmemalloc
= ret_pfmemalloc
;
185 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
186 * 'private' fields and also do memory statistics to find all the
192 * __alloc_skb - allocate a network buffer
193 * @size: size to allocate
194 * @gfp_mask: allocation mask
195 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
196 * instead of head cache and allocate a cloned (child) skb.
197 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
198 * allocations in case the data is required for writeback
199 * @node: numa node to allocate memory on
201 * Allocate a new &sk_buff. The returned buffer has no headroom and a
202 * tail room of at least size bytes. The object has a reference count
203 * of one. The return is the buffer. On a failure the return is %NULL.
205 * Buffers may only be allocated from interrupts using a @gfp_mask of
208 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
211 struct kmem_cache
*cache
;
212 struct skb_shared_info
*shinfo
;
217 cache
= (flags
& SKB_ALLOC_FCLONE
)
218 ? skbuff_fclone_cache
: skbuff_head_cache
;
220 if (sk_memalloc_socks() && (flags
& SKB_ALLOC_RX
))
221 gfp_mask
|= __GFP_MEMALLOC
;
224 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
229 /* We do our best to align skb_shared_info on a separate cache
230 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
231 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
232 * Both skb->head and skb_shared_info are cache line aligned.
234 size
= SKB_DATA_ALIGN(size
);
235 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
236 data
= kmalloc_reserve(size
, gfp_mask
, node
, &pfmemalloc
);
239 /* kmalloc(size) might give us more room than requested.
240 * Put skb_shared_info exactly at the end of allocated zone,
241 * to allow max possible filling before reallocation.
243 size
= SKB_WITH_OVERHEAD(ksize(data
));
244 prefetchw(data
+ size
);
247 * Only clear those fields we need to clear, not those that we will
248 * actually initialise below. Hence, don't put any more fields after
249 * the tail pointer in struct sk_buff!
251 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
252 /* Account for allocated memory : skb + skb->head */
253 skb
->truesize
= SKB_TRUESIZE(size
);
254 skb
->pfmemalloc
= pfmemalloc
;
255 atomic_set(&skb
->users
, 1);
258 skb_reset_tail_pointer(skb
);
259 skb
->end
= skb
->tail
+ size
;
260 #ifdef NET_SKBUFF_DATA_USES_OFFSET
261 skb
->mac_header
= ~0U;
264 /* make sure we initialize shinfo sequentially */
265 shinfo
= skb_shinfo(skb
);
266 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
267 atomic_set(&shinfo
->dataref
, 1);
268 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
270 if (flags
& SKB_ALLOC_FCLONE
) {
271 struct sk_buff
*child
= skb
+ 1;
272 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
274 kmemcheck_annotate_bitfield(child
, flags1
);
275 kmemcheck_annotate_bitfield(child
, flags2
);
276 skb
->fclone
= SKB_FCLONE_ORIG
;
277 atomic_set(fclone_ref
, 1);
279 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
280 child
->pfmemalloc
= pfmemalloc
;
285 kmem_cache_free(cache
, skb
);
289 EXPORT_SYMBOL(__alloc_skb
);
292 * build_skb - build a network buffer
293 * @data: data buffer provided by caller
294 * @frag_size: size of fragment, or 0 if head was kmalloced
296 * Allocate a new &sk_buff. Caller provides space holding head and
297 * skb_shared_info. @data must have been allocated by kmalloc()
298 * The return is the new skb buffer.
299 * On a failure the return is %NULL, and @data is not freed.
301 * Before IO, driver allocates only data buffer where NIC put incoming frame
302 * Driver should add room at head (NET_SKB_PAD) and
303 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
304 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
305 * before giving packet to stack.
306 * RX rings only contains data buffers, not full skbs.
308 struct sk_buff
*build_skb(void *data
, unsigned int frag_size
)
310 struct skb_shared_info
*shinfo
;
312 unsigned int size
= frag_size
? : ksize(data
);
314 skb
= kmem_cache_alloc(skbuff_head_cache
, GFP_ATOMIC
);
318 size
-= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
320 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
321 skb
->truesize
= SKB_TRUESIZE(size
);
322 skb
->head_frag
= frag_size
!= 0;
323 atomic_set(&skb
->users
, 1);
326 skb_reset_tail_pointer(skb
);
327 skb
->end
= skb
->tail
+ size
;
328 #ifdef NET_SKBUFF_DATA_USES_OFFSET
329 skb
->mac_header
= ~0U;
332 /* make sure we initialize shinfo sequentially */
333 shinfo
= skb_shinfo(skb
);
334 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
335 atomic_set(&shinfo
->dataref
, 1);
336 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
340 EXPORT_SYMBOL(build_skb
);
342 struct netdev_alloc_cache
{
343 struct page_frag frag
;
344 /* we maintain a pagecount bias, so that we dont dirty cache line
345 * containing page->_count every time we allocate a fragment.
347 unsigned int pagecnt_bias
;
349 static DEFINE_PER_CPU(struct netdev_alloc_cache
, netdev_alloc_cache
);
351 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
352 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
353 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
355 static void *__netdev_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
357 struct netdev_alloc_cache
*nc
;
362 local_irq_save(flags
);
363 nc
= &__get_cpu_var(netdev_alloc_cache
);
364 if (unlikely(!nc
->frag
.page
)) {
366 for (order
= NETDEV_FRAG_PAGE_MAX_ORDER
; ;) {
367 gfp_t gfp
= gfp_mask
;
370 gfp
|= __GFP_COMP
| __GFP_NOWARN
;
371 nc
->frag
.page
= alloc_pages(gfp
, order
);
372 if (likely(nc
->frag
.page
))
377 nc
->frag
.size
= PAGE_SIZE
<< order
;
379 atomic_set(&nc
->frag
.page
->_count
, NETDEV_PAGECNT_MAX_BIAS
);
380 nc
->pagecnt_bias
= NETDEV_PAGECNT_MAX_BIAS
;
384 if (nc
->frag
.offset
+ fragsz
> nc
->frag
.size
) {
385 /* avoid unnecessary locked operations if possible */
386 if ((atomic_read(&nc
->frag
.page
->_count
) == nc
->pagecnt_bias
) ||
387 atomic_sub_and_test(nc
->pagecnt_bias
, &nc
->frag
.page
->_count
))
392 data
= page_address(nc
->frag
.page
) + nc
->frag
.offset
;
393 nc
->frag
.offset
+= fragsz
;
396 local_irq_restore(flags
);
401 * netdev_alloc_frag - allocate a page fragment
402 * @fragsz: fragment size
404 * Allocates a frag from a page for receive buffer.
405 * Uses GFP_ATOMIC allocations.
407 void *netdev_alloc_frag(unsigned int fragsz
)
409 return __netdev_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
411 EXPORT_SYMBOL(netdev_alloc_frag
);
414 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
415 * @dev: network device to receive on
416 * @length: length to allocate
417 * @gfp_mask: get_free_pages mask, passed to alloc_skb
419 * Allocate a new &sk_buff and assign it a usage count of one. The
420 * buffer has unspecified headroom built in. Users should allocate
421 * the headroom they think they need without accounting for the
422 * built in space. The built in space is used for optimisations.
424 * %NULL is returned if there is no free memory.
426 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
427 unsigned int length
, gfp_t gfp_mask
)
429 struct sk_buff
*skb
= NULL
;
430 unsigned int fragsz
= SKB_DATA_ALIGN(length
+ NET_SKB_PAD
) +
431 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
433 if (fragsz
<= PAGE_SIZE
&& !(gfp_mask
& (__GFP_WAIT
| GFP_DMA
))) {
436 if (sk_memalloc_socks())
437 gfp_mask
|= __GFP_MEMALLOC
;
439 data
= __netdev_alloc_frag(fragsz
, gfp_mask
);
442 skb
= build_skb(data
, fragsz
);
444 put_page(virt_to_head_page(data
));
447 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
,
448 SKB_ALLOC_RX
, NUMA_NO_NODE
);
451 skb_reserve(skb
, NET_SKB_PAD
);
456 EXPORT_SYMBOL(__netdev_alloc_skb
);
458 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
459 int size
, unsigned int truesize
)
461 skb_fill_page_desc(skb
, i
, page
, off
, size
);
463 skb
->data_len
+= size
;
464 skb
->truesize
+= truesize
;
466 EXPORT_SYMBOL(skb_add_rx_frag
);
468 static void skb_drop_list(struct sk_buff
**listp
)
470 struct sk_buff
*list
= *listp
;
475 struct sk_buff
*this = list
;
481 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
483 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
486 static void skb_clone_fraglist(struct sk_buff
*skb
)
488 struct sk_buff
*list
;
490 skb_walk_frags(skb
, list
)
494 static void skb_free_head(struct sk_buff
*skb
)
497 put_page(virt_to_head_page(skb
->head
));
502 static void skb_release_data(struct sk_buff
*skb
)
505 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
506 &skb_shinfo(skb
)->dataref
)) {
507 if (skb_shinfo(skb
)->nr_frags
) {
509 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
510 skb_frag_unref(skb
, i
);
514 * If skb buf is from userspace, we need to notify the caller
515 * the lower device DMA has done;
517 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
518 struct ubuf_info
*uarg
;
520 uarg
= skb_shinfo(skb
)->destructor_arg
;
522 uarg
->callback(uarg
);
525 if (skb_has_frag_list(skb
))
526 skb_drop_fraglist(skb
);
533 * Free an skbuff by memory without cleaning the state.
535 static void kfree_skbmem(struct sk_buff
*skb
)
537 struct sk_buff
*other
;
538 atomic_t
*fclone_ref
;
540 switch (skb
->fclone
) {
541 case SKB_FCLONE_UNAVAILABLE
:
542 kmem_cache_free(skbuff_head_cache
, skb
);
545 case SKB_FCLONE_ORIG
:
546 fclone_ref
= (atomic_t
*) (skb
+ 2);
547 if (atomic_dec_and_test(fclone_ref
))
548 kmem_cache_free(skbuff_fclone_cache
, skb
);
551 case SKB_FCLONE_CLONE
:
552 fclone_ref
= (atomic_t
*) (skb
+ 1);
555 /* The clone portion is available for
556 * fast-cloning again.
558 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
560 if (atomic_dec_and_test(fclone_ref
))
561 kmem_cache_free(skbuff_fclone_cache
, other
);
566 static void skb_release_head_state(struct sk_buff
*skb
)
570 secpath_put(skb
->sp
);
572 if (skb
->destructor
) {
574 skb
->destructor(skb
);
576 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
577 nf_conntrack_put(skb
->nfct
);
579 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
580 nf_conntrack_put_reasm(skb
->nfct_reasm
);
582 #ifdef CONFIG_BRIDGE_NETFILTER
583 nf_bridge_put(skb
->nf_bridge
);
585 /* XXX: IS this still necessary? - JHS */
586 #ifdef CONFIG_NET_SCHED
588 #ifdef CONFIG_NET_CLS_ACT
594 /* Free everything but the sk_buff shell. */
595 static void skb_release_all(struct sk_buff
*skb
)
597 skb_release_head_state(skb
);
598 skb_release_data(skb
);
602 * __kfree_skb - private function
605 * Free an sk_buff. Release anything attached to the buffer.
606 * Clean the state. This is an internal helper function. Users should
607 * always call kfree_skb
610 void __kfree_skb(struct sk_buff
*skb
)
612 skb_release_all(skb
);
615 EXPORT_SYMBOL(__kfree_skb
);
618 * kfree_skb - free an sk_buff
619 * @skb: buffer to free
621 * Drop a reference to the buffer and free it if the usage count has
624 void kfree_skb(struct sk_buff
*skb
)
628 if (likely(atomic_read(&skb
->users
) == 1))
630 else if (likely(!atomic_dec_and_test(&skb
->users
)))
632 trace_kfree_skb(skb
, __builtin_return_address(0));
635 EXPORT_SYMBOL(kfree_skb
);
638 * consume_skb - free an skbuff
639 * @skb: buffer to free
641 * Drop a ref to the buffer and free it if the usage count has hit zero
642 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
643 * is being dropped after a failure and notes that
645 void consume_skb(struct sk_buff
*skb
)
649 if (likely(atomic_read(&skb
->users
) == 1))
651 else if (likely(!atomic_dec_and_test(&skb
->users
)))
653 trace_consume_skb(skb
);
656 EXPORT_SYMBOL(consume_skb
);
658 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
660 new->tstamp
= old
->tstamp
;
662 new->transport_header
= old
->transport_header
;
663 new->network_header
= old
->network_header
;
664 new->mac_header
= old
->mac_header
;
665 skb_dst_copy(new, old
);
666 new->rxhash
= old
->rxhash
;
667 new->ooo_okay
= old
->ooo_okay
;
668 new->l4_rxhash
= old
->l4_rxhash
;
669 new->no_fcs
= old
->no_fcs
;
671 new->sp
= secpath_get(old
->sp
);
673 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
674 new->csum
= old
->csum
;
675 new->local_df
= old
->local_df
;
676 new->pkt_type
= old
->pkt_type
;
677 new->ip_summed
= old
->ip_summed
;
678 skb_copy_queue_mapping(new, old
);
679 new->priority
= old
->priority
;
680 #if IS_ENABLED(CONFIG_IP_VS)
681 new->ipvs_property
= old
->ipvs_property
;
683 new->pfmemalloc
= old
->pfmemalloc
;
684 new->protocol
= old
->protocol
;
685 new->mark
= old
->mark
;
686 new->skb_iif
= old
->skb_iif
;
688 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
689 new->nf_trace
= old
->nf_trace
;
691 #ifdef CONFIG_NET_SCHED
692 new->tc_index
= old
->tc_index
;
693 #ifdef CONFIG_NET_CLS_ACT
694 new->tc_verd
= old
->tc_verd
;
697 new->vlan_tci
= old
->vlan_tci
;
699 skb_copy_secmark(new, old
);
703 * You should not add any new code to this function. Add it to
704 * __copy_skb_header above instead.
706 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
708 #define C(x) n->x = skb->x
710 n
->next
= n
->prev
= NULL
;
712 __copy_skb_header(n
, skb
);
717 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
720 n
->destructor
= NULL
;
727 atomic_set(&n
->users
, 1);
729 atomic_inc(&(skb_shinfo(skb
)->dataref
));
737 * skb_morph - morph one skb into another
738 * @dst: the skb to receive the contents
739 * @src: the skb to supply the contents
741 * This is identical to skb_clone except that the target skb is
742 * supplied by the user.
744 * The target skb is returned upon exit.
746 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
748 skb_release_all(dst
);
749 return __skb_clone(dst
, src
);
751 EXPORT_SYMBOL_GPL(skb_morph
);
754 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
755 * @skb: the skb to modify
756 * @gfp_mask: allocation priority
758 * This must be called on SKBTX_DEV_ZEROCOPY skb.
759 * It will copy all frags into kernel and drop the reference
760 * to userspace pages.
762 * If this function is called from an interrupt gfp_mask() must be
765 * Returns 0 on success or a negative error code on failure
766 * to allocate kernel memory to copy to.
768 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
771 int num_frags
= skb_shinfo(skb
)->nr_frags
;
772 struct page
*page
, *head
= NULL
;
773 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
775 for (i
= 0; i
< num_frags
; i
++) {
777 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
779 page
= alloc_page(gfp_mask
);
782 struct page
*next
= (struct page
*)head
->private;
788 vaddr
= kmap_atomic(skb_frag_page(f
));
789 memcpy(page_address(page
),
790 vaddr
+ f
->page_offset
, skb_frag_size(f
));
791 kunmap_atomic(vaddr
);
792 page
->private = (unsigned long)head
;
796 /* skb frags release userspace buffers */
797 for (i
= 0; i
< num_frags
; i
++)
798 skb_frag_unref(skb
, i
);
800 uarg
->callback(uarg
);
802 /* skb frags point to kernel buffers */
803 for (i
= num_frags
- 1; i
>= 0; i
--) {
804 __skb_fill_page_desc(skb
, i
, head
, 0,
805 skb_shinfo(skb
)->frags
[i
].size
);
806 head
= (struct page
*)head
->private;
809 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
812 EXPORT_SYMBOL_GPL(skb_copy_ubufs
);
815 * skb_clone - duplicate an sk_buff
816 * @skb: buffer to clone
817 * @gfp_mask: allocation priority
819 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
820 * copies share the same packet data but not structure. The new
821 * buffer has a reference count of 1. If the allocation fails the
822 * function returns %NULL otherwise the new buffer is returned.
824 * If this function is called from an interrupt gfp_mask() must be
828 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
832 if (skb_orphan_frags(skb
, gfp_mask
))
836 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
837 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
838 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
839 n
->fclone
= SKB_FCLONE_CLONE
;
840 atomic_inc(fclone_ref
);
842 if (skb_pfmemalloc(skb
))
843 gfp_mask
|= __GFP_MEMALLOC
;
845 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
849 kmemcheck_annotate_bitfield(n
, flags1
);
850 kmemcheck_annotate_bitfield(n
, flags2
);
851 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
854 return __skb_clone(n
, skb
);
856 EXPORT_SYMBOL(skb_clone
);
858 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
860 #ifndef NET_SKBUFF_DATA_USES_OFFSET
862 * Shift between the two data areas in bytes
864 unsigned long offset
= new->data
- old
->data
;
867 __copy_skb_header(new, old
);
869 #ifndef NET_SKBUFF_DATA_USES_OFFSET
870 /* {transport,network,mac}_header are relative to skb->head */
871 new->transport_header
+= offset
;
872 new->network_header
+= offset
;
873 if (skb_mac_header_was_set(new))
874 new->mac_header
+= offset
;
876 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
877 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
878 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
881 static inline int skb_alloc_rx_flag(const struct sk_buff
*skb
)
883 if (skb_pfmemalloc(skb
))
889 * skb_copy - create private copy of an sk_buff
890 * @skb: buffer to copy
891 * @gfp_mask: allocation priority
893 * Make a copy of both an &sk_buff and its data. This is used when the
894 * caller wishes to modify the data and needs a private copy of the
895 * data to alter. Returns %NULL on failure or the pointer to the buffer
896 * on success. The returned buffer has a reference count of 1.
898 * As by-product this function converts non-linear &sk_buff to linear
899 * one, so that &sk_buff becomes completely private and caller is allowed
900 * to modify all the data of returned buffer. This means that this
901 * function is not recommended for use in circumstances when only
902 * header is going to be modified. Use pskb_copy() instead.
905 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
907 int headerlen
= skb_headroom(skb
);
908 unsigned int size
= skb_end_offset(skb
) + skb
->data_len
;
909 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
910 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
915 /* Set the data pointer */
916 skb_reserve(n
, headerlen
);
917 /* Set the tail pointer and length */
918 skb_put(n
, skb
->len
);
920 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
923 copy_skb_header(n
, skb
);
926 EXPORT_SYMBOL(skb_copy
);
929 * __pskb_copy - create copy of an sk_buff with private head.
930 * @skb: buffer to copy
931 * @headroom: headroom of new skb
932 * @gfp_mask: allocation priority
934 * Make a copy of both an &sk_buff and part of its data, located
935 * in header. Fragmented data remain shared. This is used when
936 * the caller wishes to modify only header of &sk_buff and needs
937 * private copy of the header to alter. Returns %NULL on failure
938 * or the pointer to the buffer on success.
939 * The returned buffer has a reference count of 1.
942 struct sk_buff
*__pskb_copy(struct sk_buff
*skb
, int headroom
, gfp_t gfp_mask
)
944 unsigned int size
= skb_headlen(skb
) + headroom
;
945 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
946 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
951 /* Set the data pointer */
952 skb_reserve(n
, headroom
);
953 /* Set the tail pointer and length */
954 skb_put(n
, skb_headlen(skb
));
956 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
958 n
->truesize
+= skb
->data_len
;
959 n
->data_len
= skb
->data_len
;
962 if (skb_shinfo(skb
)->nr_frags
) {
965 if (skb_orphan_frags(skb
, gfp_mask
)) {
970 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
971 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
972 skb_frag_ref(skb
, i
);
974 skb_shinfo(n
)->nr_frags
= i
;
977 if (skb_has_frag_list(skb
)) {
978 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
979 skb_clone_fraglist(n
);
982 copy_skb_header(n
, skb
);
986 EXPORT_SYMBOL(__pskb_copy
);
989 * pskb_expand_head - reallocate header of &sk_buff
990 * @skb: buffer to reallocate
991 * @nhead: room to add at head
992 * @ntail: room to add at tail
993 * @gfp_mask: allocation priority
995 * Expands (or creates identical copy, if &nhead and &ntail are zero)
996 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
997 * reference count of 1. Returns zero in the case of success or error,
998 * if expansion failed. In the last case, &sk_buff is not changed.
1000 * All the pointers pointing into skb header may change and must be
1001 * reloaded after call to this function.
1004 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
1009 int size
= nhead
+ skb_end_offset(skb
) + ntail
;
1014 if (skb_shared(skb
))
1017 size
= SKB_DATA_ALIGN(size
);
1019 if (skb_pfmemalloc(skb
))
1020 gfp_mask
|= __GFP_MEMALLOC
;
1021 data
= kmalloc_reserve(size
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
1022 gfp_mask
, NUMA_NO_NODE
, NULL
);
1025 size
= SKB_WITH_OVERHEAD(ksize(data
));
1027 /* Copy only real data... and, alas, header. This should be
1028 * optimized for the cases when header is void.
1030 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
1032 memcpy((struct skb_shared_info
*)(data
+ size
),
1034 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
1037 * if shinfo is shared we must drop the old head gracefully, but if it
1038 * is not we can just drop the old head and let the existing refcount
1039 * be since all we did is relocate the values
1041 if (skb_cloned(skb
)) {
1042 /* copy this zero copy skb frags */
1043 if (skb_orphan_frags(skb
, gfp_mask
))
1045 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1046 skb_frag_ref(skb
, i
);
1048 if (skb_has_frag_list(skb
))
1049 skb_clone_fraglist(skb
);
1051 skb_release_data(skb
);
1055 off
= (data
+ nhead
) - skb
->head
;
1060 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1064 skb
->end
= skb
->head
+ size
;
1066 /* {transport,network,mac}_header and tail are relative to skb->head */
1068 skb
->transport_header
+= off
;
1069 skb
->network_header
+= off
;
1070 if (skb_mac_header_was_set(skb
))
1071 skb
->mac_header
+= off
;
1072 /* Only adjust this if it actually is csum_start rather than csum */
1073 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1074 skb
->csum_start
+= nhead
;
1078 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
1086 EXPORT_SYMBOL(pskb_expand_head
);
1088 /* Make private copy of skb with writable head and some headroom */
1090 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
1092 struct sk_buff
*skb2
;
1093 int delta
= headroom
- skb_headroom(skb
);
1096 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
1098 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1099 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
1107 EXPORT_SYMBOL(skb_realloc_headroom
);
1110 * skb_copy_expand - copy and expand sk_buff
1111 * @skb: buffer to copy
1112 * @newheadroom: new free bytes at head
1113 * @newtailroom: new free bytes at tail
1114 * @gfp_mask: allocation priority
1116 * Make a copy of both an &sk_buff and its data and while doing so
1117 * allocate additional space.
1119 * This is used when the caller wishes to modify the data and needs a
1120 * private copy of the data to alter as well as more space for new fields.
1121 * Returns %NULL on failure or the pointer to the buffer
1122 * on success. The returned buffer has a reference count of 1.
1124 * You must pass %GFP_ATOMIC as the allocation priority if this function
1125 * is called from an interrupt.
1127 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1128 int newheadroom
, int newtailroom
,
1132 * Allocate the copy buffer
1134 struct sk_buff
*n
= __alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1135 gfp_mask
, skb_alloc_rx_flag(skb
),
1137 int oldheadroom
= skb_headroom(skb
);
1138 int head_copy_len
, head_copy_off
;
1144 skb_reserve(n
, newheadroom
);
1146 /* Set the tail pointer and length */
1147 skb_put(n
, skb
->len
);
1149 head_copy_len
= oldheadroom
;
1151 if (newheadroom
<= head_copy_len
)
1152 head_copy_len
= newheadroom
;
1154 head_copy_off
= newheadroom
- head_copy_len
;
1156 /* Copy the linear header and data. */
1157 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1158 skb
->len
+ head_copy_len
))
1161 copy_skb_header(n
, skb
);
1163 off
= newheadroom
- oldheadroom
;
1164 if (n
->ip_summed
== CHECKSUM_PARTIAL
)
1165 n
->csum_start
+= off
;
1166 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1167 n
->transport_header
+= off
;
1168 n
->network_header
+= off
;
1169 if (skb_mac_header_was_set(skb
))
1170 n
->mac_header
+= off
;
1175 EXPORT_SYMBOL(skb_copy_expand
);
1178 * skb_pad - zero pad the tail of an skb
1179 * @skb: buffer to pad
1180 * @pad: space to pad
1182 * Ensure that a buffer is followed by a padding area that is zero
1183 * filled. Used by network drivers which may DMA or transfer data
1184 * beyond the buffer end onto the wire.
1186 * May return error in out of memory cases. The skb is freed on error.
1189 int skb_pad(struct sk_buff
*skb
, int pad
)
1194 /* If the skbuff is non linear tailroom is always zero.. */
1195 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1196 memset(skb
->data
+skb
->len
, 0, pad
);
1200 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1201 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1202 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1207 /* FIXME: The use of this function with non-linear skb's really needs
1210 err
= skb_linearize(skb
);
1214 memset(skb
->data
+ skb
->len
, 0, pad
);
1221 EXPORT_SYMBOL(skb_pad
);
1224 * skb_put - add data to a buffer
1225 * @skb: buffer to use
1226 * @len: amount of data to add
1228 * This function extends the used data area of the buffer. If this would
1229 * exceed the total buffer size the kernel will panic. A pointer to the
1230 * first byte of the extra data is returned.
1232 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1234 unsigned char *tmp
= skb_tail_pointer(skb
);
1235 SKB_LINEAR_ASSERT(skb
);
1238 if (unlikely(skb
->tail
> skb
->end
))
1239 skb_over_panic(skb
, len
, __builtin_return_address(0));
1242 EXPORT_SYMBOL(skb_put
);
1245 * skb_push - add data to the start of a buffer
1246 * @skb: buffer to use
1247 * @len: amount of data to add
1249 * This function extends the used data area of the buffer at the buffer
1250 * start. If this would exceed the total buffer headroom the kernel will
1251 * panic. A pointer to the first byte of the extra data is returned.
1253 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1257 if (unlikely(skb
->data
<skb
->head
))
1258 skb_under_panic(skb
, len
, __builtin_return_address(0));
1261 EXPORT_SYMBOL(skb_push
);
1264 * skb_pull - remove data from the start of a buffer
1265 * @skb: buffer to use
1266 * @len: amount of data to remove
1268 * This function removes data from the start of a buffer, returning
1269 * the memory to the headroom. A pointer to the next data in the buffer
1270 * is returned. Once the data has been pulled future pushes will overwrite
1273 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1275 return skb_pull_inline(skb
, len
);
1277 EXPORT_SYMBOL(skb_pull
);
1280 * skb_trim - remove end from a buffer
1281 * @skb: buffer to alter
1284 * Cut the length of a buffer down by removing data from the tail. If
1285 * the buffer is already under the length specified it is not modified.
1286 * The skb must be linear.
1288 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1291 __skb_trim(skb
, len
);
1293 EXPORT_SYMBOL(skb_trim
);
1295 /* Trims skb to length len. It can change skb pointers.
1298 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1300 struct sk_buff
**fragp
;
1301 struct sk_buff
*frag
;
1302 int offset
= skb_headlen(skb
);
1303 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1307 if (skb_cloned(skb
) &&
1308 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1315 for (; i
< nfrags
; i
++) {
1316 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1323 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1326 skb_shinfo(skb
)->nr_frags
= i
;
1328 for (; i
< nfrags
; i
++)
1329 skb_frag_unref(skb
, i
);
1331 if (skb_has_frag_list(skb
))
1332 skb_drop_fraglist(skb
);
1336 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1337 fragp
= &frag
->next
) {
1338 int end
= offset
+ frag
->len
;
1340 if (skb_shared(frag
)) {
1341 struct sk_buff
*nfrag
;
1343 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1344 if (unlikely(!nfrag
))
1347 nfrag
->next
= frag
->next
;
1359 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1363 skb_drop_list(&frag
->next
);
1368 if (len
> skb_headlen(skb
)) {
1369 skb
->data_len
-= skb
->len
- len
;
1374 skb_set_tail_pointer(skb
, len
);
1379 EXPORT_SYMBOL(___pskb_trim
);
1382 * __pskb_pull_tail - advance tail of skb header
1383 * @skb: buffer to reallocate
1384 * @delta: number of bytes to advance tail
1386 * The function makes a sense only on a fragmented &sk_buff,
1387 * it expands header moving its tail forward and copying necessary
1388 * data from fragmented part.
1390 * &sk_buff MUST have reference count of 1.
1392 * Returns %NULL (and &sk_buff does not change) if pull failed
1393 * or value of new tail of skb in the case of success.
1395 * All the pointers pointing into skb header may change and must be
1396 * reloaded after call to this function.
1399 /* Moves tail of skb head forward, copying data from fragmented part,
1400 * when it is necessary.
1401 * 1. It may fail due to malloc failure.
1402 * 2. It may change skb pointers.
1404 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1406 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1408 /* If skb has not enough free space at tail, get new one
1409 * plus 128 bytes for future expansions. If we have enough
1410 * room at tail, reallocate without expansion only if skb is cloned.
1412 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1414 if (eat
> 0 || skb_cloned(skb
)) {
1415 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1420 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1423 /* Optimization: no fragments, no reasons to preestimate
1424 * size of pulled pages. Superb.
1426 if (!skb_has_frag_list(skb
))
1429 /* Estimate size of pulled pages. */
1431 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1432 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1439 /* If we need update frag list, we are in troubles.
1440 * Certainly, it possible to add an offset to skb data,
1441 * but taking into account that pulling is expected to
1442 * be very rare operation, it is worth to fight against
1443 * further bloating skb head and crucify ourselves here instead.
1444 * Pure masohism, indeed. 8)8)
1447 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1448 struct sk_buff
*clone
= NULL
;
1449 struct sk_buff
*insp
= NULL
;
1454 if (list
->len
<= eat
) {
1455 /* Eaten as whole. */
1460 /* Eaten partially. */
1462 if (skb_shared(list
)) {
1463 /* Sucks! We need to fork list. :-( */
1464 clone
= skb_clone(list
, GFP_ATOMIC
);
1470 /* This may be pulled without
1474 if (!pskb_pull(list
, eat
)) {
1482 /* Free pulled out fragments. */
1483 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1484 skb_shinfo(skb
)->frag_list
= list
->next
;
1487 /* And insert new clone at head. */
1490 skb_shinfo(skb
)->frag_list
= clone
;
1493 /* Success! Now we may commit changes to skb data. */
1498 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1499 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1502 skb_frag_unref(skb
, i
);
1505 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1507 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1508 skb_frag_size_sub(&skb_shinfo(skb
)->frags
[k
], eat
);
1514 skb_shinfo(skb
)->nr_frags
= k
;
1517 skb
->data_len
-= delta
;
1519 return skb_tail_pointer(skb
);
1521 EXPORT_SYMBOL(__pskb_pull_tail
);
1524 * skb_copy_bits - copy bits from skb to kernel buffer
1526 * @offset: offset in source
1527 * @to: destination buffer
1528 * @len: number of bytes to copy
1530 * Copy the specified number of bytes from the source skb to the
1531 * destination buffer.
1534 * If its prototype is ever changed,
1535 * check arch/{*}/net/{*}.S files,
1536 * since it is called from BPF assembly code.
1538 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1540 int start
= skb_headlen(skb
);
1541 struct sk_buff
*frag_iter
;
1544 if (offset
> (int)skb
->len
- len
)
1548 if ((copy
= start
- offset
) > 0) {
1551 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1552 if ((len
-= copy
) == 0)
1558 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1560 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
1562 WARN_ON(start
> offset
+ len
);
1564 end
= start
+ skb_frag_size(f
);
1565 if ((copy
= end
- offset
) > 0) {
1571 vaddr
= kmap_atomic(skb_frag_page(f
));
1573 vaddr
+ f
->page_offset
+ offset
- start
,
1575 kunmap_atomic(vaddr
);
1577 if ((len
-= copy
) == 0)
1585 skb_walk_frags(skb
, frag_iter
) {
1588 WARN_ON(start
> offset
+ len
);
1590 end
= start
+ frag_iter
->len
;
1591 if ((copy
= end
- offset
) > 0) {
1594 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1596 if ((len
-= copy
) == 0)
1610 EXPORT_SYMBOL(skb_copy_bits
);
1613 * Callback from splice_to_pipe(), if we need to release some pages
1614 * at the end of the spd in case we error'ed out in filling the pipe.
1616 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1618 put_page(spd
->pages
[i
]);
1621 static struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1622 unsigned int *offset
,
1623 struct sk_buff
*skb
, struct sock
*sk
)
1625 struct page_frag
*pfrag
= sk_page_frag(sk
);
1627 if (!sk_page_frag_refill(sk
, pfrag
))
1630 *len
= min_t(unsigned int, *len
, pfrag
->size
- pfrag
->offset
);
1632 memcpy(page_address(pfrag
->page
) + pfrag
->offset
,
1633 page_address(page
) + *offset
, *len
);
1634 *offset
= pfrag
->offset
;
1635 pfrag
->offset
+= *len
;
1640 static bool spd_can_coalesce(const struct splice_pipe_desc
*spd
,
1642 unsigned int offset
)
1644 return spd
->nr_pages
&&
1645 spd
->pages
[spd
->nr_pages
- 1] == page
&&
1646 (spd
->partial
[spd
->nr_pages
- 1].offset
+
1647 spd
->partial
[spd
->nr_pages
- 1].len
== offset
);
1651 * Fill page/offset/length into spd, if it can hold more pages.
1653 static bool spd_fill_page(struct splice_pipe_desc
*spd
,
1654 struct pipe_inode_info
*pipe
, struct page
*page
,
1655 unsigned int *len
, unsigned int offset
,
1656 struct sk_buff
*skb
, bool linear
,
1659 if (unlikely(spd
->nr_pages
== MAX_SKB_FRAGS
))
1663 page
= linear_to_page(page
, len
, &offset
, skb
, sk
);
1667 if (spd_can_coalesce(spd
, page
, offset
)) {
1668 spd
->partial
[spd
->nr_pages
- 1].len
+= *len
;
1672 spd
->pages
[spd
->nr_pages
] = page
;
1673 spd
->partial
[spd
->nr_pages
].len
= *len
;
1674 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1680 static inline void __segment_seek(struct page
**page
, unsigned int *poff
,
1681 unsigned int *plen
, unsigned int off
)
1686 n
= *poff
/ PAGE_SIZE
;
1688 *page
= nth_page(*page
, n
);
1690 *poff
= *poff
% PAGE_SIZE
;
1694 static bool __splice_segment(struct page
*page
, unsigned int poff
,
1695 unsigned int plen
, unsigned int *off
,
1696 unsigned int *len
, struct sk_buff
*skb
,
1697 struct splice_pipe_desc
*spd
, bool linear
,
1699 struct pipe_inode_info
*pipe
)
1704 /* skip this segment if already processed */
1710 /* ignore any bits we already processed */
1712 __segment_seek(&page
, &poff
, &plen
, *off
);
1717 unsigned int flen
= min(*len
, plen
);
1719 /* the linear region may spread across several pages */
1720 flen
= min_t(unsigned int, flen
, PAGE_SIZE
- poff
);
1722 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
, skb
, linear
, sk
))
1725 __segment_seek(&page
, &poff
, &plen
, flen
);
1728 } while (*len
&& plen
);
1734 * Map linear and fragment data from the skb to spd. It reports true if the
1735 * pipe is full or if we already spliced the requested length.
1737 static bool __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1738 unsigned int *offset
, unsigned int *len
,
1739 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1743 /* map the linear part :
1744 * If skb->head_frag is set, this 'linear' part is backed by a
1745 * fragment, and if the head is not shared with any clones then
1746 * we can avoid a copy since we own the head portion of this page.
1748 if (__splice_segment(virt_to_page(skb
->data
),
1749 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1751 offset
, len
, skb
, spd
,
1752 skb_head_is_locked(skb
),
1757 * then map the fragments
1759 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1760 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1762 if (__splice_segment(skb_frag_page(f
),
1763 f
->page_offset
, skb_frag_size(f
),
1764 offset
, len
, skb
, spd
, false, sk
, pipe
))
1772 * Map data from the skb to a pipe. Should handle both the linear part,
1773 * the fragments, and the frag list. It does NOT handle frag lists within
1774 * the frag list, if such a thing exists. We'd probably need to recurse to
1775 * handle that cleanly.
1777 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1778 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1781 struct partial_page partial
[MAX_SKB_FRAGS
];
1782 struct page
*pages
[MAX_SKB_FRAGS
];
1783 struct splice_pipe_desc spd
= {
1786 .nr_pages_max
= MAX_SKB_FRAGS
,
1788 .ops
= &sock_pipe_buf_ops
,
1789 .spd_release
= sock_spd_release
,
1791 struct sk_buff
*frag_iter
;
1792 struct sock
*sk
= skb
->sk
;
1796 * __skb_splice_bits() only fails if the output has no room left,
1797 * so no point in going over the frag_list for the error case.
1799 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1805 * now see if we have a frag_list to map
1807 skb_walk_frags(skb
, frag_iter
) {
1810 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1817 * Drop the socket lock, otherwise we have reverse
1818 * locking dependencies between sk_lock and i_mutex
1819 * here as compared to sendfile(). We enter here
1820 * with the socket lock held, and splice_to_pipe() will
1821 * grab the pipe inode lock. For sendfile() emulation,
1822 * we call into ->sendpage() with the i_mutex lock held
1823 * and networking will grab the socket lock.
1826 ret
= splice_to_pipe(pipe
, &spd
);
1834 * skb_store_bits - store bits from kernel buffer to skb
1835 * @skb: destination buffer
1836 * @offset: offset in destination
1837 * @from: source buffer
1838 * @len: number of bytes to copy
1840 * Copy the specified number of bytes from the source buffer to the
1841 * destination skb. This function handles all the messy bits of
1842 * traversing fragment lists and such.
1845 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1847 int start
= skb_headlen(skb
);
1848 struct sk_buff
*frag_iter
;
1851 if (offset
> (int)skb
->len
- len
)
1854 if ((copy
= start
- offset
) > 0) {
1857 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1858 if ((len
-= copy
) == 0)
1864 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1865 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1868 WARN_ON(start
> offset
+ len
);
1870 end
= start
+ skb_frag_size(frag
);
1871 if ((copy
= end
- offset
) > 0) {
1877 vaddr
= kmap_atomic(skb_frag_page(frag
));
1878 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1880 kunmap_atomic(vaddr
);
1882 if ((len
-= copy
) == 0)
1890 skb_walk_frags(skb
, frag_iter
) {
1893 WARN_ON(start
> offset
+ len
);
1895 end
= start
+ frag_iter
->len
;
1896 if ((copy
= end
- offset
) > 0) {
1899 if (skb_store_bits(frag_iter
, offset
- start
,
1902 if ((len
-= copy
) == 0)
1915 EXPORT_SYMBOL(skb_store_bits
);
1917 /* Checksum skb data. */
1919 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1920 int len
, __wsum csum
)
1922 int start
= skb_headlen(skb
);
1923 int i
, copy
= start
- offset
;
1924 struct sk_buff
*frag_iter
;
1927 /* Checksum header. */
1931 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1932 if ((len
-= copy
) == 0)
1938 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1940 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1942 WARN_ON(start
> offset
+ len
);
1944 end
= start
+ skb_frag_size(frag
);
1945 if ((copy
= end
- offset
) > 0) {
1951 vaddr
= kmap_atomic(skb_frag_page(frag
));
1952 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1953 offset
- start
, copy
, 0);
1954 kunmap_atomic(vaddr
);
1955 csum
= csum_block_add(csum
, csum2
, pos
);
1964 skb_walk_frags(skb
, frag_iter
) {
1967 WARN_ON(start
> offset
+ len
);
1969 end
= start
+ frag_iter
->len
;
1970 if ((copy
= end
- offset
) > 0) {
1974 csum2
= skb_checksum(frag_iter
, offset
- start
,
1976 csum
= csum_block_add(csum
, csum2
, pos
);
1977 if ((len
-= copy
) == 0)
1988 EXPORT_SYMBOL(skb_checksum
);
1990 /* Both of above in one bottle. */
1992 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1993 u8
*to
, int len
, __wsum csum
)
1995 int start
= skb_headlen(skb
);
1996 int i
, copy
= start
- offset
;
1997 struct sk_buff
*frag_iter
;
2004 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
2006 if ((len
-= copy
) == 0)
2013 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2016 WARN_ON(start
> offset
+ len
);
2018 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2019 if ((copy
= end
- offset
) > 0) {
2022 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2026 vaddr
= kmap_atomic(skb_frag_page(frag
));
2027 csum2
= csum_partial_copy_nocheck(vaddr
+
2031 kunmap_atomic(vaddr
);
2032 csum
= csum_block_add(csum
, csum2
, pos
);
2042 skb_walk_frags(skb
, frag_iter
) {
2046 WARN_ON(start
> offset
+ len
);
2048 end
= start
+ frag_iter
->len
;
2049 if ((copy
= end
- offset
) > 0) {
2052 csum2
= skb_copy_and_csum_bits(frag_iter
,
2055 csum
= csum_block_add(csum
, csum2
, pos
);
2056 if ((len
-= copy
) == 0)
2067 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2069 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
2074 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2075 csstart
= skb_checksum_start_offset(skb
);
2077 csstart
= skb_headlen(skb
);
2079 BUG_ON(csstart
> skb_headlen(skb
));
2081 skb_copy_from_linear_data(skb
, to
, csstart
);
2084 if (csstart
!= skb
->len
)
2085 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
2086 skb
->len
- csstart
, 0);
2088 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2089 long csstuff
= csstart
+ skb
->csum_offset
;
2091 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
2094 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2097 * skb_dequeue - remove from the head of the queue
2098 * @list: list to dequeue from
2100 * Remove the head of the list. The list lock is taken so the function
2101 * may be used safely with other locking list functions. The head item is
2102 * returned or %NULL if the list is empty.
2105 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
2107 unsigned long flags
;
2108 struct sk_buff
*result
;
2110 spin_lock_irqsave(&list
->lock
, flags
);
2111 result
= __skb_dequeue(list
);
2112 spin_unlock_irqrestore(&list
->lock
, flags
);
2115 EXPORT_SYMBOL(skb_dequeue
);
2118 * skb_dequeue_tail - remove from the tail of the queue
2119 * @list: list to dequeue from
2121 * Remove the tail of the list. The list lock is taken so the function
2122 * may be used safely with other locking list functions. The tail item is
2123 * returned or %NULL if the list is empty.
2125 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
2127 unsigned long flags
;
2128 struct sk_buff
*result
;
2130 spin_lock_irqsave(&list
->lock
, flags
);
2131 result
= __skb_dequeue_tail(list
);
2132 spin_unlock_irqrestore(&list
->lock
, flags
);
2135 EXPORT_SYMBOL(skb_dequeue_tail
);
2138 * skb_queue_purge - empty a list
2139 * @list: list to empty
2141 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2142 * the list and one reference dropped. This function takes the list
2143 * lock and is atomic with respect to other list locking functions.
2145 void skb_queue_purge(struct sk_buff_head
*list
)
2147 struct sk_buff
*skb
;
2148 while ((skb
= skb_dequeue(list
)) != NULL
)
2151 EXPORT_SYMBOL(skb_queue_purge
);
2154 * skb_queue_head - queue a buffer at the list head
2155 * @list: list to use
2156 * @newsk: buffer to queue
2158 * Queue a buffer at the start of the list. This function takes the
2159 * list lock and can be used safely with other locking &sk_buff functions
2162 * A buffer cannot be placed on two lists at the same time.
2164 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2166 unsigned long flags
;
2168 spin_lock_irqsave(&list
->lock
, flags
);
2169 __skb_queue_head(list
, newsk
);
2170 spin_unlock_irqrestore(&list
->lock
, flags
);
2172 EXPORT_SYMBOL(skb_queue_head
);
2175 * skb_queue_tail - queue a buffer at the list tail
2176 * @list: list to use
2177 * @newsk: buffer to queue
2179 * Queue a buffer at the tail of the list. This function takes the
2180 * list lock and can be used safely with other locking &sk_buff functions
2183 * A buffer cannot be placed on two lists at the same time.
2185 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2187 unsigned long flags
;
2189 spin_lock_irqsave(&list
->lock
, flags
);
2190 __skb_queue_tail(list
, newsk
);
2191 spin_unlock_irqrestore(&list
->lock
, flags
);
2193 EXPORT_SYMBOL(skb_queue_tail
);
2196 * skb_unlink - remove a buffer from a list
2197 * @skb: buffer to remove
2198 * @list: list to use
2200 * Remove a packet from a list. The list locks are taken and this
2201 * function is atomic with respect to other list locked calls
2203 * You must know what list the SKB is on.
2205 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2207 unsigned long flags
;
2209 spin_lock_irqsave(&list
->lock
, flags
);
2210 __skb_unlink(skb
, list
);
2211 spin_unlock_irqrestore(&list
->lock
, flags
);
2213 EXPORT_SYMBOL(skb_unlink
);
2216 * skb_append - append a buffer
2217 * @old: buffer to insert after
2218 * @newsk: buffer to insert
2219 * @list: list to use
2221 * Place a packet after a given packet in a list. The list locks are taken
2222 * and this function is atomic with respect to other list locked calls.
2223 * A buffer cannot be placed on two lists at the same time.
2225 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2227 unsigned long flags
;
2229 spin_lock_irqsave(&list
->lock
, flags
);
2230 __skb_queue_after(list
, old
, newsk
);
2231 spin_unlock_irqrestore(&list
->lock
, flags
);
2233 EXPORT_SYMBOL(skb_append
);
2236 * skb_insert - insert a buffer
2237 * @old: buffer to insert before
2238 * @newsk: buffer to insert
2239 * @list: list to use
2241 * Place a packet before a given packet in a list. The list locks are
2242 * taken and this function is atomic with respect to other list locked
2245 * A buffer cannot be placed on two lists at the same time.
2247 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2249 unsigned long flags
;
2251 spin_lock_irqsave(&list
->lock
, flags
);
2252 __skb_insert(newsk
, old
->prev
, old
, list
);
2253 spin_unlock_irqrestore(&list
->lock
, flags
);
2255 EXPORT_SYMBOL(skb_insert
);
2257 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2258 struct sk_buff
* skb1
,
2259 const u32 len
, const int pos
)
2263 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2265 /* And move data appendix as is. */
2266 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2267 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2269 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2270 skb_shinfo(skb
)->nr_frags
= 0;
2271 skb1
->data_len
= skb
->data_len
;
2272 skb1
->len
+= skb1
->data_len
;
2275 skb_set_tail_pointer(skb
, len
);
2278 static inline void skb_split_no_header(struct sk_buff
*skb
,
2279 struct sk_buff
* skb1
,
2280 const u32 len
, int pos
)
2283 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2285 skb_shinfo(skb
)->nr_frags
= 0;
2286 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2288 skb
->data_len
= len
- pos
;
2290 for (i
= 0; i
< nfrags
; i
++) {
2291 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2293 if (pos
+ size
> len
) {
2294 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2298 * We have two variants in this case:
2299 * 1. Move all the frag to the second
2300 * part, if it is possible. F.e.
2301 * this approach is mandatory for TUX,
2302 * where splitting is expensive.
2303 * 2. Split is accurately. We make this.
2305 skb_frag_ref(skb
, i
);
2306 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2307 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
2308 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
2309 skb_shinfo(skb
)->nr_frags
++;
2313 skb_shinfo(skb
)->nr_frags
++;
2316 skb_shinfo(skb1
)->nr_frags
= k
;
2320 * skb_split - Split fragmented skb to two parts at length len.
2321 * @skb: the buffer to split
2322 * @skb1: the buffer to receive the second part
2323 * @len: new length for skb
2325 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2327 int pos
= skb_headlen(skb
);
2329 if (len
< pos
) /* Split line is inside header. */
2330 skb_split_inside_header(skb
, skb1
, len
, pos
);
2331 else /* Second chunk has no header, nothing to copy. */
2332 skb_split_no_header(skb
, skb1
, len
, pos
);
2334 EXPORT_SYMBOL(skb_split
);
2336 /* Shifting from/to a cloned skb is a no-go.
2338 * Caller cannot keep skb_shinfo related pointers past calling here!
2340 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2342 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2346 * skb_shift - Shifts paged data partially from skb to another
2347 * @tgt: buffer into which tail data gets added
2348 * @skb: buffer from which the paged data comes from
2349 * @shiftlen: shift up to this many bytes
2351 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2352 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2353 * It's up to caller to free skb if everything was shifted.
2355 * If @tgt runs out of frags, the whole operation is aborted.
2357 * Skb cannot include anything else but paged data while tgt is allowed
2358 * to have non-paged data as well.
2360 * TODO: full sized shift could be optimized but that would need
2361 * specialized skb free'er to handle frags without up-to-date nr_frags.
2363 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2365 int from
, to
, merge
, todo
;
2366 struct skb_frag_struct
*fragfrom
, *fragto
;
2368 BUG_ON(shiftlen
> skb
->len
);
2369 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2373 to
= skb_shinfo(tgt
)->nr_frags
;
2374 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2376 /* Actual merge is delayed until the point when we know we can
2377 * commit all, so that we don't have to undo partial changes
2380 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2381 fragfrom
->page_offset
)) {
2386 todo
-= skb_frag_size(fragfrom
);
2388 if (skb_prepare_for_shift(skb
) ||
2389 skb_prepare_for_shift(tgt
))
2392 /* All previous frag pointers might be stale! */
2393 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2394 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2396 skb_frag_size_add(fragto
, shiftlen
);
2397 skb_frag_size_sub(fragfrom
, shiftlen
);
2398 fragfrom
->page_offset
+= shiftlen
;
2406 /* Skip full, not-fitting skb to avoid expensive operations */
2407 if ((shiftlen
== skb
->len
) &&
2408 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2411 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2414 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2415 if (to
== MAX_SKB_FRAGS
)
2418 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2419 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2421 if (todo
>= skb_frag_size(fragfrom
)) {
2422 *fragto
= *fragfrom
;
2423 todo
-= skb_frag_size(fragfrom
);
2428 __skb_frag_ref(fragfrom
);
2429 fragto
->page
= fragfrom
->page
;
2430 fragto
->page_offset
= fragfrom
->page_offset
;
2431 skb_frag_size_set(fragto
, todo
);
2433 fragfrom
->page_offset
+= todo
;
2434 skb_frag_size_sub(fragfrom
, todo
);
2442 /* Ready to "commit" this state change to tgt */
2443 skb_shinfo(tgt
)->nr_frags
= to
;
2446 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2447 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2449 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
2450 __skb_frag_unref(fragfrom
);
2453 /* Reposition in the original skb */
2455 while (from
< skb_shinfo(skb
)->nr_frags
)
2456 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2457 skb_shinfo(skb
)->nr_frags
= to
;
2459 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2462 /* Most likely the tgt won't ever need its checksum anymore, skb on
2463 * the other hand might need it if it needs to be resent
2465 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2466 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2468 /* Yak, is it really working this way? Some helper please? */
2469 skb
->len
-= shiftlen
;
2470 skb
->data_len
-= shiftlen
;
2471 skb
->truesize
-= shiftlen
;
2472 tgt
->len
+= shiftlen
;
2473 tgt
->data_len
+= shiftlen
;
2474 tgt
->truesize
+= shiftlen
;
2480 * skb_prepare_seq_read - Prepare a sequential read of skb data
2481 * @skb: the buffer to read
2482 * @from: lower offset of data to be read
2483 * @to: upper offset of data to be read
2484 * @st: state variable
2486 * Initializes the specified state variable. Must be called before
2487 * invoking skb_seq_read() for the first time.
2489 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2490 unsigned int to
, struct skb_seq_state
*st
)
2492 st
->lower_offset
= from
;
2493 st
->upper_offset
= to
;
2494 st
->root_skb
= st
->cur_skb
= skb
;
2495 st
->frag_idx
= st
->stepped_offset
= 0;
2496 st
->frag_data
= NULL
;
2498 EXPORT_SYMBOL(skb_prepare_seq_read
);
2501 * skb_seq_read - Sequentially read skb data
2502 * @consumed: number of bytes consumed by the caller so far
2503 * @data: destination pointer for data to be returned
2504 * @st: state variable
2506 * Reads a block of skb data at &consumed relative to the
2507 * lower offset specified to skb_prepare_seq_read(). Assigns
2508 * the head of the data block to &data and returns the length
2509 * of the block or 0 if the end of the skb data or the upper
2510 * offset has been reached.
2512 * The caller is not required to consume all of the data
2513 * returned, i.e. &consumed is typically set to the number
2514 * of bytes already consumed and the next call to
2515 * skb_seq_read() will return the remaining part of the block.
2517 * Note 1: The size of each block of data returned can be arbitrary,
2518 * this limitation is the cost for zerocopy seqeuental
2519 * reads of potentially non linear data.
2521 * Note 2: Fragment lists within fragments are not implemented
2522 * at the moment, state->root_skb could be replaced with
2523 * a stack for this purpose.
2525 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2526 struct skb_seq_state
*st
)
2528 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2531 if (unlikely(abs_offset
>= st
->upper_offset
))
2535 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2537 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2538 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2539 return block_limit
- abs_offset
;
2542 if (st
->frag_idx
== 0 && !st
->frag_data
)
2543 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2545 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2546 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2547 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
2549 if (abs_offset
< block_limit
) {
2551 st
->frag_data
= kmap_atomic(skb_frag_page(frag
));
2553 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2554 (abs_offset
- st
->stepped_offset
);
2556 return block_limit
- abs_offset
;
2559 if (st
->frag_data
) {
2560 kunmap_atomic(st
->frag_data
);
2561 st
->frag_data
= NULL
;
2565 st
->stepped_offset
+= skb_frag_size(frag
);
2568 if (st
->frag_data
) {
2569 kunmap_atomic(st
->frag_data
);
2570 st
->frag_data
= NULL
;
2573 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2574 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2577 } else if (st
->cur_skb
->next
) {
2578 st
->cur_skb
= st
->cur_skb
->next
;
2585 EXPORT_SYMBOL(skb_seq_read
);
2588 * skb_abort_seq_read - Abort a sequential read of skb data
2589 * @st: state variable
2591 * Must be called if skb_seq_read() was not called until it
2594 void skb_abort_seq_read(struct skb_seq_state
*st
)
2597 kunmap_atomic(st
->frag_data
);
2599 EXPORT_SYMBOL(skb_abort_seq_read
);
2601 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2603 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2604 struct ts_config
*conf
,
2605 struct ts_state
*state
)
2607 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2610 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2612 skb_abort_seq_read(TS_SKB_CB(state
));
2616 * skb_find_text - Find a text pattern in skb data
2617 * @skb: the buffer to look in
2618 * @from: search offset
2620 * @config: textsearch configuration
2621 * @state: uninitialized textsearch state variable
2623 * Finds a pattern in the skb data according to the specified
2624 * textsearch configuration. Use textsearch_next() to retrieve
2625 * subsequent occurrences of the pattern. Returns the offset
2626 * to the first occurrence or UINT_MAX if no match was found.
2628 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2629 unsigned int to
, struct ts_config
*config
,
2630 struct ts_state
*state
)
2634 config
->get_next_block
= skb_ts_get_next_block
;
2635 config
->finish
= skb_ts_finish
;
2637 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2639 ret
= textsearch_find(config
, state
);
2640 return (ret
<= to
- from
? ret
: UINT_MAX
);
2642 EXPORT_SYMBOL(skb_find_text
);
2645 * skb_append_datato_frags - append the user data to a skb
2646 * @sk: sock structure
2647 * @skb: skb structure to be appened with user data.
2648 * @getfrag: call back function to be used for getting the user data
2649 * @from: pointer to user message iov
2650 * @length: length of the iov message
2652 * Description: This procedure append the user data in the fragment part
2653 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2655 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2656 int (*getfrag
)(void *from
, char *to
, int offset
,
2657 int len
, int odd
, struct sk_buff
*skb
),
2658 void *from
, int length
)
2661 skb_frag_t
*frag
= NULL
;
2662 struct page
*page
= NULL
;
2668 /* Return error if we don't have space for new frag */
2669 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2670 if (frg_cnt
>= MAX_SKB_FRAGS
)
2673 /* allocate a new page for next frag */
2674 page
= alloc_pages(sk
->sk_allocation
, 0);
2676 /* If alloc_page fails just return failure and caller will
2677 * free previous allocated pages by doing kfree_skb()
2682 /* initialize the next frag */
2683 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
2684 skb
->truesize
+= PAGE_SIZE
;
2685 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
2687 /* get the new initialized frag */
2688 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2689 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
2691 /* copy the user data to page */
2692 left
= PAGE_SIZE
- frag
->page_offset
;
2693 copy
= (length
> left
)? left
: length
;
2695 ret
= getfrag(from
, skb_frag_address(frag
) + skb_frag_size(frag
),
2696 offset
, copy
, 0, skb
);
2700 /* copy was successful so update the size parameters */
2701 skb_frag_size_add(frag
, copy
);
2703 skb
->data_len
+= copy
;
2707 } while (length
> 0);
2711 EXPORT_SYMBOL(skb_append_datato_frags
);
2714 * skb_pull_rcsum - pull skb and update receive checksum
2715 * @skb: buffer to update
2716 * @len: length of data pulled
2718 * This function performs an skb_pull on the packet and updates
2719 * the CHECKSUM_COMPLETE checksum. It should be used on
2720 * receive path processing instead of skb_pull unless you know
2721 * that the checksum difference is zero (e.g., a valid IP header)
2722 * or you are setting ip_summed to CHECKSUM_NONE.
2724 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2726 BUG_ON(len
> skb
->len
);
2728 BUG_ON(skb
->len
< skb
->data_len
);
2729 skb_postpull_rcsum(skb
, skb
->data
, len
);
2730 return skb
->data
+= len
;
2732 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2735 * skb_segment - Perform protocol segmentation on skb.
2736 * @skb: buffer to segment
2737 * @features: features for the output path (see dev->features)
2739 * This function performs segmentation on the given skb. It returns
2740 * a pointer to the first in a list of new skbs for the segments.
2741 * In case of error it returns ERR_PTR(err).
2743 struct sk_buff
*skb_segment(struct sk_buff
*skb
, netdev_features_t features
)
2745 struct sk_buff
*segs
= NULL
;
2746 struct sk_buff
*tail
= NULL
;
2747 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2748 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2749 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2750 unsigned int offset
= doffset
;
2751 unsigned int headroom
;
2753 int sg
= !!(features
& NETIF_F_SG
);
2754 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2759 __skb_push(skb
, doffset
);
2760 headroom
= skb_headroom(skb
);
2761 pos
= skb_headlen(skb
);
2764 struct sk_buff
*nskb
;
2769 len
= skb
->len
- offset
;
2773 hsize
= skb_headlen(skb
) - offset
;
2776 if (hsize
> len
|| !sg
)
2779 if (!hsize
&& i
>= nfrags
) {
2780 BUG_ON(fskb
->len
!= len
);
2783 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2786 if (unlikely(!nskb
))
2789 hsize
= skb_end_offset(nskb
);
2790 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2795 nskb
->truesize
+= skb_end_offset(nskb
) - hsize
;
2796 skb_release_head_state(nskb
);
2797 __skb_push(nskb
, doffset
);
2799 nskb
= __alloc_skb(hsize
+ doffset
+ headroom
,
2800 GFP_ATOMIC
, skb_alloc_rx_flag(skb
),
2803 if (unlikely(!nskb
))
2806 skb_reserve(nskb
, headroom
);
2807 __skb_put(nskb
, doffset
);
2816 __copy_skb_header(nskb
, skb
);
2817 nskb
->mac_len
= skb
->mac_len
;
2819 /* nskb and skb might have different headroom */
2820 if (nskb
->ip_summed
== CHECKSUM_PARTIAL
)
2821 nskb
->csum_start
+= skb_headroom(nskb
) - headroom
;
2823 skb_reset_mac_header(nskb
);
2824 skb_set_network_header(nskb
, skb
->mac_len
);
2825 nskb
->transport_header
= (nskb
->network_header
+
2826 skb_network_header_len(skb
));
2827 skb_copy_from_linear_data(skb
, nskb
->data
, doffset
);
2829 if (fskb
!= skb_shinfo(skb
)->frag_list
)
2833 nskb
->ip_summed
= CHECKSUM_NONE
;
2834 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2840 frag
= skb_shinfo(nskb
)->frags
;
2842 skb_copy_from_linear_data_offset(skb
, offset
,
2843 skb_put(nskb
, hsize
), hsize
);
2845 while (pos
< offset
+ len
&& i
< nfrags
) {
2846 *frag
= skb_shinfo(skb
)->frags
[i
];
2847 __skb_frag_ref(frag
);
2848 size
= skb_frag_size(frag
);
2851 frag
->page_offset
+= offset
- pos
;
2852 skb_frag_size_sub(frag
, offset
- pos
);
2855 skb_shinfo(nskb
)->nr_frags
++;
2857 if (pos
+ size
<= offset
+ len
) {
2861 skb_frag_size_sub(frag
, pos
+ size
- (offset
+ len
));
2868 if (pos
< offset
+ len
) {
2869 struct sk_buff
*fskb2
= fskb
;
2871 BUG_ON(pos
+ fskb
->len
!= offset
+ len
);
2877 fskb2
= skb_clone(fskb2
, GFP_ATOMIC
);
2883 SKB_FRAG_ASSERT(nskb
);
2884 skb_shinfo(nskb
)->frag_list
= fskb2
;
2888 nskb
->data_len
= len
- hsize
;
2889 nskb
->len
+= nskb
->data_len
;
2890 nskb
->truesize
+= nskb
->data_len
;
2891 } while ((offset
+= len
) < skb
->len
);
2896 while ((skb
= segs
)) {
2900 return ERR_PTR(err
);
2902 EXPORT_SYMBOL_GPL(skb_segment
);
2904 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2906 struct sk_buff
*p
= *head
;
2907 struct sk_buff
*nskb
;
2908 struct skb_shared_info
*skbinfo
= skb_shinfo(skb
);
2909 struct skb_shared_info
*pinfo
= skb_shinfo(p
);
2910 unsigned int headroom
;
2911 unsigned int len
= skb_gro_len(skb
);
2912 unsigned int offset
= skb_gro_offset(skb
);
2913 unsigned int headlen
= skb_headlen(skb
);
2914 unsigned int delta_truesize
;
2916 if (p
->len
+ len
>= 65536)
2919 if (pinfo
->frag_list
)
2921 else if (headlen
<= offset
) {
2924 int i
= skbinfo
->nr_frags
;
2925 int nr_frags
= pinfo
->nr_frags
+ i
;
2929 if (nr_frags
> MAX_SKB_FRAGS
)
2932 pinfo
->nr_frags
= nr_frags
;
2933 skbinfo
->nr_frags
= 0;
2935 frag
= pinfo
->frags
+ nr_frags
;
2936 frag2
= skbinfo
->frags
+ i
;
2941 frag
->page_offset
+= offset
;
2942 skb_frag_size_sub(frag
, offset
);
2944 /* all fragments truesize : remove (head size + sk_buff) */
2945 delta_truesize
= skb
->truesize
-
2946 SKB_TRUESIZE(skb_end_offset(skb
));
2948 skb
->truesize
-= skb
->data_len
;
2949 skb
->len
-= skb
->data_len
;
2952 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE
;
2954 } else if (skb
->head_frag
) {
2955 int nr_frags
= pinfo
->nr_frags
;
2956 skb_frag_t
*frag
= pinfo
->frags
+ nr_frags
;
2957 struct page
*page
= virt_to_head_page(skb
->head
);
2958 unsigned int first_size
= headlen
- offset
;
2959 unsigned int first_offset
;
2961 if (nr_frags
+ 1 + skbinfo
->nr_frags
> MAX_SKB_FRAGS
)
2964 first_offset
= skb
->data
-
2965 (unsigned char *)page_address(page
) +
2968 pinfo
->nr_frags
= nr_frags
+ 1 + skbinfo
->nr_frags
;
2970 frag
->page
.p
= page
;
2971 frag
->page_offset
= first_offset
;
2972 skb_frag_size_set(frag
, first_size
);
2974 memcpy(frag
+ 1, skbinfo
->frags
, sizeof(*frag
) * skbinfo
->nr_frags
);
2975 /* We dont need to clear skbinfo->nr_frags here */
2977 delta_truesize
= skb
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
2978 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE_STOLEN_HEAD
;
2980 } else if (skb_gro_len(p
) != pinfo
->gso_size
)
2983 headroom
= skb_headroom(p
);
2984 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
2985 if (unlikely(!nskb
))
2988 __copy_skb_header(nskb
, p
);
2989 nskb
->mac_len
= p
->mac_len
;
2991 skb_reserve(nskb
, headroom
);
2992 __skb_put(nskb
, skb_gro_offset(p
));
2994 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
2995 skb_set_network_header(nskb
, skb_network_offset(p
));
2996 skb_set_transport_header(nskb
, skb_transport_offset(p
));
2998 __skb_pull(p
, skb_gro_offset(p
));
2999 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
3000 p
->data
- skb_mac_header(p
));
3002 *NAPI_GRO_CB(nskb
) = *NAPI_GRO_CB(p
);
3003 skb_shinfo(nskb
)->frag_list
= p
;
3004 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
3005 pinfo
->gso_size
= 0;
3006 skb_header_release(p
);
3007 NAPI_GRO_CB(nskb
)->last
= p
;
3009 nskb
->data_len
+= p
->len
;
3010 nskb
->truesize
+= p
->truesize
;
3011 nskb
->len
+= p
->len
;
3014 nskb
->next
= p
->next
;
3020 delta_truesize
= skb
->truesize
;
3021 if (offset
> headlen
) {
3022 unsigned int eat
= offset
- headlen
;
3024 skbinfo
->frags
[0].page_offset
+= eat
;
3025 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
3026 skb
->data_len
-= eat
;
3031 __skb_pull(skb
, offset
);
3033 NAPI_GRO_CB(p
)->last
->next
= skb
;
3034 NAPI_GRO_CB(p
)->last
= skb
;
3035 skb_header_release(skb
);
3038 NAPI_GRO_CB(p
)->count
++;
3040 p
->truesize
+= delta_truesize
;
3043 NAPI_GRO_CB(skb
)->same_flow
= 1;
3046 EXPORT_SYMBOL_GPL(skb_gro_receive
);
3048 void __init
skb_init(void)
3050 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
3051 sizeof(struct sk_buff
),
3053 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3055 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
3056 (2*sizeof(struct sk_buff
)) +
3059 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3064 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3065 * @skb: Socket buffer containing the buffers to be mapped
3066 * @sg: The scatter-gather list to map into
3067 * @offset: The offset into the buffer's contents to start mapping
3068 * @len: Length of buffer space to be mapped
3070 * Fill the specified scatter-gather list with mappings/pointers into a
3071 * region of the buffer space attached to a socket buffer.
3074 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3076 int start
= skb_headlen(skb
);
3077 int i
, copy
= start
- offset
;
3078 struct sk_buff
*frag_iter
;
3084 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
3086 if ((len
-= copy
) == 0)
3091 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3094 WARN_ON(start
> offset
+ len
);
3096 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
3097 if ((copy
= end
- offset
) > 0) {
3098 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3102 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
3103 frag
->page_offset
+offset
-start
);
3112 skb_walk_frags(skb
, frag_iter
) {
3115 WARN_ON(start
> offset
+ len
);
3117 end
= start
+ frag_iter
->len
;
3118 if ((copy
= end
- offset
) > 0) {
3121 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
3123 if ((len
-= copy
) == 0)
3133 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3135 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
3137 sg_mark_end(&sg
[nsg
- 1]);
3141 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
3144 * skb_cow_data - Check that a socket buffer's data buffers are writable
3145 * @skb: The socket buffer to check.
3146 * @tailbits: Amount of trailing space to be added
3147 * @trailer: Returned pointer to the skb where the @tailbits space begins
3149 * Make sure that the data buffers attached to a socket buffer are
3150 * writable. If they are not, private copies are made of the data buffers
3151 * and the socket buffer is set to use these instead.
3153 * If @tailbits is given, make sure that there is space to write @tailbits
3154 * bytes of data beyond current end of socket buffer. @trailer will be
3155 * set to point to the skb in which this space begins.
3157 * The number of scatterlist elements required to completely map the
3158 * COW'd and extended socket buffer will be returned.
3160 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
3164 struct sk_buff
*skb1
, **skb_p
;
3166 /* If skb is cloned or its head is paged, reallocate
3167 * head pulling out all the pages (pages are considered not writable
3168 * at the moment even if they are anonymous).
3170 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3171 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3174 /* Easy case. Most of packets will go this way. */
3175 if (!skb_has_frag_list(skb
)) {
3176 /* A little of trouble, not enough of space for trailer.
3177 * This should not happen, when stack is tuned to generate
3178 * good frames. OK, on miss we reallocate and reserve even more
3179 * space, 128 bytes is fair. */
3181 if (skb_tailroom(skb
) < tailbits
&&
3182 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3190 /* Misery. We are in troubles, going to mincer fragments... */
3193 skb_p
= &skb_shinfo(skb
)->frag_list
;
3196 while ((skb1
= *skb_p
) != NULL
) {
3199 /* The fragment is partially pulled by someone,
3200 * this can happen on input. Copy it and everything
3203 if (skb_shared(skb1
))
3206 /* If the skb is the last, worry about trailer. */
3208 if (skb1
->next
== NULL
&& tailbits
) {
3209 if (skb_shinfo(skb1
)->nr_frags
||
3210 skb_has_frag_list(skb1
) ||
3211 skb_tailroom(skb1
) < tailbits
)
3212 ntail
= tailbits
+ 128;
3218 skb_shinfo(skb1
)->nr_frags
||
3219 skb_has_frag_list(skb1
)) {
3220 struct sk_buff
*skb2
;
3222 /* Fuck, we are miserable poor guys... */
3224 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3226 skb2
= skb_copy_expand(skb1
,
3230 if (unlikely(skb2
== NULL
))
3234 skb_set_owner_w(skb2
, skb1
->sk
);
3236 /* Looking around. Are we still alive?
3237 * OK, link new skb, drop old one */
3239 skb2
->next
= skb1
->next
;
3246 skb_p
= &skb1
->next
;
3251 EXPORT_SYMBOL_GPL(skb_cow_data
);
3253 static void sock_rmem_free(struct sk_buff
*skb
)
3255 struct sock
*sk
= skb
->sk
;
3257 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3261 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3263 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3267 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3268 (unsigned int)sk
->sk_rcvbuf
)
3273 skb
->destructor
= sock_rmem_free
;
3274 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3276 /* before exiting rcu section, make sure dst is refcounted */
3279 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3280 if (!sock_flag(sk
, SOCK_DEAD
))
3281 sk
->sk_data_ready(sk
, len
);
3284 EXPORT_SYMBOL(sock_queue_err_skb
);
3286 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3287 struct skb_shared_hwtstamps
*hwtstamps
)
3289 struct sock
*sk
= orig_skb
->sk
;
3290 struct sock_exterr_skb
*serr
;
3291 struct sk_buff
*skb
;
3297 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3302 *skb_hwtstamps(skb
) =
3306 * no hardware time stamps available,
3307 * so keep the shared tx_flags and only
3308 * store software time stamp
3310 skb
->tstamp
= ktime_get_real();
3313 serr
= SKB_EXT_ERR(skb
);
3314 memset(serr
, 0, sizeof(*serr
));
3315 serr
->ee
.ee_errno
= ENOMSG
;
3316 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3318 err
= sock_queue_err_skb(sk
, skb
);
3323 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3325 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
)
3327 struct sock
*sk
= skb
->sk
;
3328 struct sock_exterr_skb
*serr
;
3331 skb
->wifi_acked_valid
= 1;
3332 skb
->wifi_acked
= acked
;
3334 serr
= SKB_EXT_ERR(skb
);
3335 memset(serr
, 0, sizeof(*serr
));
3336 serr
->ee
.ee_errno
= ENOMSG
;
3337 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TXSTATUS
;
3339 err
= sock_queue_err_skb(sk
, skb
);
3343 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack
);
3347 * skb_partial_csum_set - set up and verify partial csum values for packet
3348 * @skb: the skb to set
3349 * @start: the number of bytes after skb->data to start checksumming.
3350 * @off: the offset from start to place the checksum.
3352 * For untrusted partially-checksummed packets, we need to make sure the values
3353 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3355 * This function checks and sets those values and skb->ip_summed: if this
3356 * returns false you should drop the packet.
3358 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3360 if (unlikely(start
> skb_headlen(skb
)) ||
3361 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3362 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3363 start
, off
, skb_headlen(skb
));
3366 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3367 skb
->csum_start
= skb_headroom(skb
) + start
;
3368 skb
->csum_offset
= off
;
3371 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3373 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3375 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3378 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);
3380 void kfree_skb_partial(struct sk_buff
*skb
, bool head_stolen
)
3383 skb_release_head_state(skb
);
3384 kmem_cache_free(skbuff_head_cache
, skb
);
3389 EXPORT_SYMBOL(kfree_skb_partial
);
3392 * skb_try_coalesce - try to merge skb to prior one
3394 * @from: buffer to add
3395 * @fragstolen: pointer to boolean
3396 * @delta_truesize: how much more was allocated than was requested
3398 bool skb_try_coalesce(struct sk_buff
*to
, struct sk_buff
*from
,
3399 bool *fragstolen
, int *delta_truesize
)
3401 int i
, delta
, len
= from
->len
;
3403 *fragstolen
= false;
3408 if (len
<= skb_tailroom(to
)) {
3409 BUG_ON(skb_copy_bits(from
, 0, skb_put(to
, len
), len
));
3410 *delta_truesize
= 0;
3414 if (skb_has_frag_list(to
) || skb_has_frag_list(from
))
3417 if (skb_headlen(from
) != 0) {
3419 unsigned int offset
;
3421 if (skb_shinfo(to
)->nr_frags
+
3422 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
3425 if (skb_head_is_locked(from
))
3428 delta
= from
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
3430 page
= virt_to_head_page(from
->head
);
3431 offset
= from
->data
- (unsigned char *)page_address(page
);
3433 skb_fill_page_desc(to
, skb_shinfo(to
)->nr_frags
,
3434 page
, offset
, skb_headlen(from
));
3437 if (skb_shinfo(to
)->nr_frags
+
3438 skb_shinfo(from
)->nr_frags
> MAX_SKB_FRAGS
)
3441 delta
= from
->truesize
- SKB_TRUESIZE(skb_end_offset(from
));
3444 WARN_ON_ONCE(delta
< len
);
3446 memcpy(skb_shinfo(to
)->frags
+ skb_shinfo(to
)->nr_frags
,
3447 skb_shinfo(from
)->frags
,
3448 skb_shinfo(from
)->nr_frags
* sizeof(skb_frag_t
));
3449 skb_shinfo(to
)->nr_frags
+= skb_shinfo(from
)->nr_frags
;
3451 if (!skb_cloned(from
))
3452 skb_shinfo(from
)->nr_frags
= 0;
3454 /* if the skb is not cloned this does nothing
3455 * since we set nr_frags to 0.
3457 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++)
3458 skb_frag_ref(from
, i
);
3460 to
->truesize
+= delta
;
3462 to
->data_len
+= len
;
3464 *delta_truesize
= delta
;
3467 EXPORT_SYMBOL(skb_try_coalesce
);