[CRYPTO] tcrypt: Change the usage of the test vectors
[linux-2.6.git] / arch / sparc64 / kernel / smp.c
blob59f020d69d4c246c82c2a434eeb15b0d310a8c08
1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
25 #include <asm/head.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
31 #include <asm/hvtramp.h>
32 #include <asm/io.h>
33 #include <asm/timer.h>
35 #include <asm/irq.h>
36 #include <asm/irq_regs.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/oplib.h>
40 #include <asm/uaccess.h>
41 #include <asm/timer.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/sections.h>
45 #include <asm/prom.h>
46 #include <asm/mdesc.h>
47 #include <asm/ldc.h>
48 #include <asm/hypervisor.h>
50 int sparc64_multi_core __read_mostly;
52 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
53 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
54 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
55 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
56 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
58 EXPORT_SYMBOL(cpu_possible_map);
59 EXPORT_SYMBOL(cpu_online_map);
60 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
61 EXPORT_SYMBOL(cpu_core_map);
63 static cpumask_t smp_commenced_mask;
65 void smp_info(struct seq_file *m)
67 int i;
69 seq_printf(m, "State:\n");
70 for_each_online_cpu(i)
71 seq_printf(m, "CPU%d:\t\tonline\n", i);
74 void smp_bogo(struct seq_file *m)
76 int i;
78 for_each_online_cpu(i)
79 seq_printf(m,
80 "Cpu%dClkTck\t: %016lx\n",
81 i, cpu_data(i).clock_tick);
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
86 extern void setup_sparc64_timer(void);
88 static volatile unsigned long callin_flag = 0;
90 void __cpuinit smp_callin(void)
92 int cpuid = hard_smp_processor_id();
94 __local_per_cpu_offset = __per_cpu_offset(cpuid);
96 if (tlb_type == hypervisor)
97 sun4v_ktsb_register();
99 __flush_tlb_all();
101 setup_sparc64_timer();
103 if (cheetah_pcache_forced_on)
104 cheetah_enable_pcache();
106 local_irq_enable();
108 callin_flag = 1;
109 __asm__ __volatile__("membar #Sync\n\t"
110 "flush %%g6" : : : "memory");
112 /* Clear this or we will die instantly when we
113 * schedule back to this idler...
115 current_thread_info()->new_child = 0;
117 /* Attach to the address space of init_task. */
118 atomic_inc(&init_mm.mm_count);
119 current->active_mm = &init_mm;
121 while (!cpu_isset(cpuid, smp_commenced_mask))
122 rmb();
124 spin_lock(&call_lock);
125 cpu_set(cpuid, cpu_online_map);
126 spin_unlock(&call_lock);
128 /* idle thread is expected to have preempt disabled */
129 preempt_disable();
132 void cpu_panic(void)
134 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
135 panic("SMP bolixed\n");
138 /* This tick register synchronization scheme is taken entirely from
139 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
141 * The only change I've made is to rework it so that the master
142 * initiates the synchonization instead of the slave. -DaveM
145 #define MASTER 0
146 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
148 #define NUM_ROUNDS 64 /* magic value */
149 #define NUM_ITERS 5 /* likewise */
151 static DEFINE_SPINLOCK(itc_sync_lock);
152 static unsigned long go[SLAVE + 1];
154 #define DEBUG_TICK_SYNC 0
156 static inline long get_delta (long *rt, long *master)
158 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
159 unsigned long tcenter, t0, t1, tm;
160 unsigned long i;
162 for (i = 0; i < NUM_ITERS; i++) {
163 t0 = tick_ops->get_tick();
164 go[MASTER] = 1;
165 membar_storeload();
166 while (!(tm = go[SLAVE]))
167 rmb();
168 go[SLAVE] = 0;
169 wmb();
170 t1 = tick_ops->get_tick();
172 if (t1 - t0 < best_t1 - best_t0)
173 best_t0 = t0, best_t1 = t1, best_tm = tm;
176 *rt = best_t1 - best_t0;
177 *master = best_tm - best_t0;
179 /* average best_t0 and best_t1 without overflow: */
180 tcenter = (best_t0/2 + best_t1/2);
181 if (best_t0 % 2 + best_t1 % 2 == 2)
182 tcenter++;
183 return tcenter - best_tm;
186 void smp_synchronize_tick_client(void)
188 long i, delta, adj, adjust_latency = 0, done = 0;
189 unsigned long flags, rt, master_time_stamp, bound;
190 #if DEBUG_TICK_SYNC
191 struct {
192 long rt; /* roundtrip time */
193 long master; /* master's timestamp */
194 long diff; /* difference between midpoint and master's timestamp */
195 long lat; /* estimate of itc adjustment latency */
196 } t[NUM_ROUNDS];
197 #endif
199 go[MASTER] = 1;
201 while (go[MASTER])
202 rmb();
204 local_irq_save(flags);
206 for (i = 0; i < NUM_ROUNDS; i++) {
207 delta = get_delta(&rt, &master_time_stamp);
208 if (delta == 0) {
209 done = 1; /* let's lock on to this... */
210 bound = rt;
213 if (!done) {
214 if (i > 0) {
215 adjust_latency += -delta;
216 adj = -delta + adjust_latency/4;
217 } else
218 adj = -delta;
220 tick_ops->add_tick(adj);
222 #if DEBUG_TICK_SYNC
223 t[i].rt = rt;
224 t[i].master = master_time_stamp;
225 t[i].diff = delta;
226 t[i].lat = adjust_latency/4;
227 #endif
230 local_irq_restore(flags);
232 #if DEBUG_TICK_SYNC
233 for (i = 0; i < NUM_ROUNDS; i++)
234 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
235 t[i].rt, t[i].master, t[i].diff, t[i].lat);
236 #endif
238 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
239 "(last diff %ld cycles, maxerr %lu cycles)\n",
240 smp_processor_id(), delta, rt);
243 static void smp_start_sync_tick_client(int cpu);
245 static void smp_synchronize_one_tick(int cpu)
247 unsigned long flags, i;
249 go[MASTER] = 0;
251 smp_start_sync_tick_client(cpu);
253 /* wait for client to be ready */
254 while (!go[MASTER])
255 rmb();
257 /* now let the client proceed into his loop */
258 go[MASTER] = 0;
259 membar_storeload();
261 spin_lock_irqsave(&itc_sync_lock, flags);
263 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
264 while (!go[MASTER])
265 rmb();
266 go[MASTER] = 0;
267 wmb();
268 go[SLAVE] = tick_ops->get_tick();
269 membar_storeload();
272 spin_unlock_irqrestore(&itc_sync_lock, flags);
275 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
276 /* XXX Put this in some common place. XXX */
277 static unsigned long kimage_addr_to_ra(void *p)
279 unsigned long val = (unsigned long) p;
281 return kern_base + (val - KERNBASE);
284 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
286 extern unsigned long sparc64_ttable_tl0;
287 extern unsigned long kern_locked_tte_data;
288 struct hvtramp_descr *hdesc;
289 unsigned long trampoline_ra;
290 struct trap_per_cpu *tb;
291 u64 tte_vaddr, tte_data;
292 unsigned long hv_err;
293 int i;
295 hdesc = kzalloc(sizeof(*hdesc) +
296 (sizeof(struct hvtramp_mapping) *
297 num_kernel_image_mappings - 1),
298 GFP_KERNEL);
299 if (!hdesc) {
300 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
301 "hvtramp_descr.\n");
302 return;
305 hdesc->cpu = cpu;
306 hdesc->num_mappings = num_kernel_image_mappings;
308 tb = &trap_block[cpu];
309 tb->hdesc = hdesc;
311 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
312 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
314 hdesc->thread_reg = thread_reg;
316 tte_vaddr = (unsigned long) KERNBASE;
317 tte_data = kern_locked_tte_data;
319 for (i = 0; i < hdesc->num_mappings; i++) {
320 hdesc->maps[i].vaddr = tte_vaddr;
321 hdesc->maps[i].tte = tte_data;
322 tte_vaddr += 0x400000;
323 tte_data += 0x400000;
326 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
328 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
329 kimage_addr_to_ra(&sparc64_ttable_tl0),
330 __pa(hdesc));
331 if (hv_err)
332 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
333 "gives error %lu\n", hv_err);
335 #endif
337 extern unsigned long sparc64_cpu_startup;
339 /* The OBP cpu startup callback truncates the 3rd arg cookie to
340 * 32-bits (I think) so to be safe we have it read the pointer
341 * contained here so we work on >4GB machines. -DaveM
343 static struct thread_info *cpu_new_thread = NULL;
345 static int __devinit smp_boot_one_cpu(unsigned int cpu)
347 struct trap_per_cpu *tb = &trap_block[cpu];
348 unsigned long entry =
349 (unsigned long)(&sparc64_cpu_startup);
350 unsigned long cookie =
351 (unsigned long)(&cpu_new_thread);
352 struct task_struct *p;
353 int timeout, ret;
355 p = fork_idle(cpu);
356 if (IS_ERR(p))
357 return PTR_ERR(p);
358 callin_flag = 0;
359 cpu_new_thread = task_thread_info(p);
361 if (tlb_type == hypervisor) {
362 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
363 if (ldom_domaining_enabled)
364 ldom_startcpu_cpuid(cpu,
365 (unsigned long) cpu_new_thread);
366 else
367 #endif
368 prom_startcpu_cpuid(cpu, entry, cookie);
369 } else {
370 struct device_node *dp = of_find_node_by_cpuid(cpu);
372 prom_startcpu(dp->node, entry, cookie);
375 for (timeout = 0; timeout < 50000; timeout++) {
376 if (callin_flag)
377 break;
378 udelay(100);
381 if (callin_flag) {
382 ret = 0;
383 } else {
384 printk("Processor %d is stuck.\n", cpu);
385 ret = -ENODEV;
387 cpu_new_thread = NULL;
389 if (tb->hdesc) {
390 kfree(tb->hdesc);
391 tb->hdesc = NULL;
394 return ret;
397 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
399 u64 result, target;
400 int stuck, tmp;
402 if (this_is_starfire) {
403 /* map to real upaid */
404 cpu = (((cpu & 0x3c) << 1) |
405 ((cpu & 0x40) >> 4) |
406 (cpu & 0x3));
409 target = (cpu << 14) | 0x70;
410 again:
411 /* Ok, this is the real Spitfire Errata #54.
412 * One must read back from a UDB internal register
413 * after writes to the UDB interrupt dispatch, but
414 * before the membar Sync for that write.
415 * So we use the high UDB control register (ASI 0x7f,
416 * ADDR 0x20) for the dummy read. -DaveM
418 tmp = 0x40;
419 __asm__ __volatile__(
420 "wrpr %1, %2, %%pstate\n\t"
421 "stxa %4, [%0] %3\n\t"
422 "stxa %5, [%0+%8] %3\n\t"
423 "add %0, %8, %0\n\t"
424 "stxa %6, [%0+%8] %3\n\t"
425 "membar #Sync\n\t"
426 "stxa %%g0, [%7] %3\n\t"
427 "membar #Sync\n\t"
428 "mov 0x20, %%g1\n\t"
429 "ldxa [%%g1] 0x7f, %%g0\n\t"
430 "membar #Sync"
431 : "=r" (tmp)
432 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
433 "r" (data0), "r" (data1), "r" (data2), "r" (target),
434 "r" (0x10), "0" (tmp)
435 : "g1");
437 /* NOTE: PSTATE_IE is still clear. */
438 stuck = 100000;
439 do {
440 __asm__ __volatile__("ldxa [%%g0] %1, %0"
441 : "=r" (result)
442 : "i" (ASI_INTR_DISPATCH_STAT));
443 if (result == 0) {
444 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
445 : : "r" (pstate));
446 return;
448 stuck -= 1;
449 if (stuck == 0)
450 break;
451 } while (result & 0x1);
452 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
453 : : "r" (pstate));
454 if (stuck == 0) {
455 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
456 smp_processor_id(), result);
457 } else {
458 udelay(2);
459 goto again;
463 static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
465 u64 pstate;
466 int i;
468 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
469 for_each_cpu_mask(i, mask)
470 spitfire_xcall_helper(data0, data1, data2, pstate, i);
473 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
474 * packet, but we have no use for that. However we do take advantage of
475 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
477 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
479 u64 pstate, ver, busy_mask;
480 int nack_busy_id, is_jbus, need_more;
482 if (cpus_empty(mask))
483 return;
485 /* Unfortunately, someone at Sun had the brilliant idea to make the
486 * busy/nack fields hard-coded by ITID number for this Ultra-III
487 * derivative processor.
489 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
490 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
491 (ver >> 32) == __SERRANO_ID);
493 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
495 retry:
496 need_more = 0;
497 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
498 : : "r" (pstate), "i" (PSTATE_IE));
500 /* Setup the dispatch data registers. */
501 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
502 "stxa %1, [%4] %6\n\t"
503 "stxa %2, [%5] %6\n\t"
504 "membar #Sync\n\t"
505 : /* no outputs */
506 : "r" (data0), "r" (data1), "r" (data2),
507 "r" (0x40), "r" (0x50), "r" (0x60),
508 "i" (ASI_INTR_W));
510 nack_busy_id = 0;
511 busy_mask = 0;
513 int i;
515 for_each_cpu_mask(i, mask) {
516 u64 target = (i << 14) | 0x70;
518 if (is_jbus) {
519 busy_mask |= (0x1UL << (i * 2));
520 } else {
521 target |= (nack_busy_id << 24);
522 busy_mask |= (0x1UL <<
523 (nack_busy_id * 2));
525 __asm__ __volatile__(
526 "stxa %%g0, [%0] %1\n\t"
527 "membar #Sync\n\t"
528 : /* no outputs */
529 : "r" (target), "i" (ASI_INTR_W));
530 nack_busy_id++;
531 if (nack_busy_id == 32) {
532 need_more = 1;
533 break;
538 /* Now, poll for completion. */
540 u64 dispatch_stat, nack_mask;
541 long stuck;
543 stuck = 100000 * nack_busy_id;
544 nack_mask = busy_mask << 1;
545 do {
546 __asm__ __volatile__("ldxa [%%g0] %1, %0"
547 : "=r" (dispatch_stat)
548 : "i" (ASI_INTR_DISPATCH_STAT));
549 if (!(dispatch_stat & (busy_mask | nack_mask))) {
550 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
551 : : "r" (pstate));
552 if (unlikely(need_more)) {
553 int i, cnt = 0;
554 for_each_cpu_mask(i, mask) {
555 cpu_clear(i, mask);
556 cnt++;
557 if (cnt == 32)
558 break;
560 goto retry;
562 return;
564 if (!--stuck)
565 break;
566 } while (dispatch_stat & busy_mask);
568 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
569 : : "r" (pstate));
571 if (dispatch_stat & busy_mask) {
572 /* Busy bits will not clear, continue instead
573 * of freezing up on this cpu.
575 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
576 smp_processor_id(), dispatch_stat);
577 } else {
578 int i, this_busy_nack = 0;
580 /* Delay some random time with interrupts enabled
581 * to prevent deadlock.
583 udelay(2 * nack_busy_id);
585 /* Clear out the mask bits for cpus which did not
586 * NACK us.
588 for_each_cpu_mask(i, mask) {
589 u64 check_mask;
591 if (is_jbus)
592 check_mask = (0x2UL << (2*i));
593 else
594 check_mask = (0x2UL <<
595 this_busy_nack);
596 if ((dispatch_stat & check_mask) == 0)
597 cpu_clear(i, mask);
598 this_busy_nack += 2;
599 if (this_busy_nack == 64)
600 break;
603 goto retry;
608 /* Multi-cpu list version. */
609 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
611 struct trap_per_cpu *tb;
612 u16 *cpu_list;
613 u64 *mondo;
614 cpumask_t error_mask;
615 unsigned long flags, status;
616 int cnt, retries, this_cpu, prev_sent, i;
618 if (cpus_empty(mask))
619 return;
621 /* We have to do this whole thing with interrupts fully disabled.
622 * Otherwise if we send an xcall from interrupt context it will
623 * corrupt both our mondo block and cpu list state.
625 * One consequence of this is that we cannot use timeout mechanisms
626 * that depend upon interrupts being delivered locally. So, for
627 * example, we cannot sample jiffies and expect it to advance.
629 * Fortunately, udelay() uses %stick/%tick so we can use that.
631 local_irq_save(flags);
633 this_cpu = smp_processor_id();
634 tb = &trap_block[this_cpu];
636 mondo = __va(tb->cpu_mondo_block_pa);
637 mondo[0] = data0;
638 mondo[1] = data1;
639 mondo[2] = data2;
640 wmb();
642 cpu_list = __va(tb->cpu_list_pa);
644 /* Setup the initial cpu list. */
645 cnt = 0;
646 for_each_cpu_mask(i, mask)
647 cpu_list[cnt++] = i;
649 cpus_clear(error_mask);
650 retries = 0;
651 prev_sent = 0;
652 do {
653 int forward_progress, n_sent;
655 status = sun4v_cpu_mondo_send(cnt,
656 tb->cpu_list_pa,
657 tb->cpu_mondo_block_pa);
659 /* HV_EOK means all cpus received the xcall, we're done. */
660 if (likely(status == HV_EOK))
661 break;
663 /* First, see if we made any forward progress.
665 * The hypervisor indicates successful sends by setting
666 * cpu list entries to the value 0xffff.
668 n_sent = 0;
669 for (i = 0; i < cnt; i++) {
670 if (likely(cpu_list[i] == 0xffff))
671 n_sent++;
674 forward_progress = 0;
675 if (n_sent > prev_sent)
676 forward_progress = 1;
678 prev_sent = n_sent;
680 /* If we get a HV_ECPUERROR, then one or more of the cpus
681 * in the list are in error state. Use the cpu_state()
682 * hypervisor call to find out which cpus are in error state.
684 if (unlikely(status == HV_ECPUERROR)) {
685 for (i = 0; i < cnt; i++) {
686 long err;
687 u16 cpu;
689 cpu = cpu_list[i];
690 if (cpu == 0xffff)
691 continue;
693 err = sun4v_cpu_state(cpu);
694 if (err >= 0 &&
695 err == HV_CPU_STATE_ERROR) {
696 cpu_list[i] = 0xffff;
697 cpu_set(cpu, error_mask);
700 } else if (unlikely(status != HV_EWOULDBLOCK))
701 goto fatal_mondo_error;
703 /* Don't bother rewriting the CPU list, just leave the
704 * 0xffff and non-0xffff entries in there and the
705 * hypervisor will do the right thing.
707 * Only advance timeout state if we didn't make any
708 * forward progress.
710 if (unlikely(!forward_progress)) {
711 if (unlikely(++retries > 10000))
712 goto fatal_mondo_timeout;
714 /* Delay a little bit to let other cpus catch up
715 * on their cpu mondo queue work.
717 udelay(2 * cnt);
719 } while (1);
721 local_irq_restore(flags);
723 if (unlikely(!cpus_empty(error_mask)))
724 goto fatal_mondo_cpu_error;
726 return;
728 fatal_mondo_cpu_error:
729 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
730 "were in error state\n",
731 this_cpu);
732 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
733 for_each_cpu_mask(i, error_mask)
734 printk("%d ", i);
735 printk("]\n");
736 return;
738 fatal_mondo_timeout:
739 local_irq_restore(flags);
740 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
741 " progress after %d retries.\n",
742 this_cpu, retries);
743 goto dump_cpu_list_and_out;
745 fatal_mondo_error:
746 local_irq_restore(flags);
747 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
748 this_cpu, status);
749 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
750 "mondo_block_pa(%lx)\n",
751 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
753 dump_cpu_list_and_out:
754 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
755 for (i = 0; i < cnt; i++)
756 printk("%u ", cpu_list[i]);
757 printk("]\n");
760 /* Send cross call to all processors mentioned in MASK
761 * except self.
763 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
765 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
766 int this_cpu = get_cpu();
768 cpus_and(mask, mask, cpu_online_map);
769 cpu_clear(this_cpu, mask);
771 if (tlb_type == spitfire)
772 spitfire_xcall_deliver(data0, data1, data2, mask);
773 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
774 cheetah_xcall_deliver(data0, data1, data2, mask);
775 else
776 hypervisor_xcall_deliver(data0, data1, data2, mask);
777 /* NOTE: Caller runs local copy on master. */
779 put_cpu();
782 extern unsigned long xcall_sync_tick;
784 static void smp_start_sync_tick_client(int cpu)
786 cpumask_t mask = cpumask_of_cpu(cpu);
788 smp_cross_call_masked(&xcall_sync_tick,
789 0, 0, 0, mask);
792 /* Send cross call to all processors except self. */
793 #define smp_cross_call(func, ctx, data1, data2) \
794 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
796 struct call_data_struct {
797 void (*func) (void *info);
798 void *info;
799 atomic_t finished;
800 int wait;
803 static struct call_data_struct *call_data;
805 extern unsigned long xcall_call_function;
808 * smp_call_function(): Run a function on all other CPUs.
809 * @func: The function to run. This must be fast and non-blocking.
810 * @info: An arbitrary pointer to pass to the function.
811 * @nonatomic: currently unused.
812 * @wait: If true, wait (atomically) until function has completed on other CPUs.
814 * Returns 0 on success, else a negative status code. Does not return until
815 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
817 * You must not call this function with disabled interrupts or from a
818 * hardware interrupt handler or from a bottom half handler.
820 static int smp_call_function_mask(void (*func)(void *info), void *info,
821 int nonatomic, int wait, cpumask_t mask)
823 struct call_data_struct data;
824 int cpus;
826 /* Can deadlock when called with interrupts disabled */
827 WARN_ON(irqs_disabled());
829 data.func = func;
830 data.info = info;
831 atomic_set(&data.finished, 0);
832 data.wait = wait;
834 spin_lock(&call_lock);
836 cpu_clear(smp_processor_id(), mask);
837 cpus = cpus_weight(mask);
838 if (!cpus)
839 goto out_unlock;
841 call_data = &data;
842 mb();
844 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
846 /* Wait for response */
847 while (atomic_read(&data.finished) != cpus)
848 cpu_relax();
850 out_unlock:
851 spin_unlock(&call_lock);
853 return 0;
856 int smp_call_function(void (*func)(void *info), void *info,
857 int nonatomic, int wait)
859 return smp_call_function_mask(func, info, nonatomic, wait,
860 cpu_online_map);
863 void smp_call_function_client(int irq, struct pt_regs *regs)
865 void (*func) (void *info) = call_data->func;
866 void *info = call_data->info;
868 clear_softint(1 << irq);
869 if (call_data->wait) {
870 /* let initiator proceed only after completion */
871 func(info);
872 atomic_inc(&call_data->finished);
873 } else {
874 /* let initiator proceed after getting data */
875 atomic_inc(&call_data->finished);
876 func(info);
880 static void tsb_sync(void *info)
882 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
883 struct mm_struct *mm = info;
885 /* It is not valid to test "currrent->active_mm == mm" here.
887 * The value of "current" is not changed atomically with
888 * switch_mm(). But that's OK, we just need to check the
889 * current cpu's trap block PGD physical address.
891 if (tp->pgd_paddr == __pa(mm->pgd))
892 tsb_context_switch(mm);
895 void smp_tsb_sync(struct mm_struct *mm)
897 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
900 extern unsigned long xcall_flush_tlb_mm;
901 extern unsigned long xcall_flush_tlb_pending;
902 extern unsigned long xcall_flush_tlb_kernel_range;
903 extern unsigned long xcall_report_regs;
904 extern unsigned long xcall_receive_signal;
905 extern unsigned long xcall_new_mmu_context_version;
907 #ifdef DCACHE_ALIASING_POSSIBLE
908 extern unsigned long xcall_flush_dcache_page_cheetah;
909 #endif
910 extern unsigned long xcall_flush_dcache_page_spitfire;
912 #ifdef CONFIG_DEBUG_DCFLUSH
913 extern atomic_t dcpage_flushes;
914 extern atomic_t dcpage_flushes_xcall;
915 #endif
917 static inline void __local_flush_dcache_page(struct page *page)
919 #ifdef DCACHE_ALIASING_POSSIBLE
920 __flush_dcache_page(page_address(page),
921 ((tlb_type == spitfire) &&
922 page_mapping(page) != NULL));
923 #else
924 if (page_mapping(page) != NULL &&
925 tlb_type == spitfire)
926 __flush_icache_page(__pa(page_address(page)));
927 #endif
930 void smp_flush_dcache_page_impl(struct page *page, int cpu)
932 cpumask_t mask = cpumask_of_cpu(cpu);
933 int this_cpu;
935 if (tlb_type == hypervisor)
936 return;
938 #ifdef CONFIG_DEBUG_DCFLUSH
939 atomic_inc(&dcpage_flushes);
940 #endif
942 this_cpu = get_cpu();
944 if (cpu == this_cpu) {
945 __local_flush_dcache_page(page);
946 } else if (cpu_online(cpu)) {
947 void *pg_addr = page_address(page);
948 u64 data0;
950 if (tlb_type == spitfire) {
951 data0 =
952 ((u64)&xcall_flush_dcache_page_spitfire);
953 if (page_mapping(page) != NULL)
954 data0 |= ((u64)1 << 32);
955 spitfire_xcall_deliver(data0,
956 __pa(pg_addr),
957 (u64) pg_addr,
958 mask);
959 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
960 #ifdef DCACHE_ALIASING_POSSIBLE
961 data0 =
962 ((u64)&xcall_flush_dcache_page_cheetah);
963 cheetah_xcall_deliver(data0,
964 __pa(pg_addr),
965 0, mask);
966 #endif
968 #ifdef CONFIG_DEBUG_DCFLUSH
969 atomic_inc(&dcpage_flushes_xcall);
970 #endif
973 put_cpu();
976 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
978 void *pg_addr = page_address(page);
979 cpumask_t mask = cpu_online_map;
980 u64 data0;
981 int this_cpu;
983 if (tlb_type == hypervisor)
984 return;
986 this_cpu = get_cpu();
988 cpu_clear(this_cpu, mask);
990 #ifdef CONFIG_DEBUG_DCFLUSH
991 atomic_inc(&dcpage_flushes);
992 #endif
993 if (cpus_empty(mask))
994 goto flush_self;
995 if (tlb_type == spitfire) {
996 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
997 if (page_mapping(page) != NULL)
998 data0 |= ((u64)1 << 32);
999 spitfire_xcall_deliver(data0,
1000 __pa(pg_addr),
1001 (u64) pg_addr,
1002 mask);
1003 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1004 #ifdef DCACHE_ALIASING_POSSIBLE
1005 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1006 cheetah_xcall_deliver(data0,
1007 __pa(pg_addr),
1008 0, mask);
1009 #endif
1011 #ifdef CONFIG_DEBUG_DCFLUSH
1012 atomic_inc(&dcpage_flushes_xcall);
1013 #endif
1014 flush_self:
1015 __local_flush_dcache_page(page);
1017 put_cpu();
1020 static void __smp_receive_signal_mask(cpumask_t mask)
1022 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
1025 void smp_receive_signal(int cpu)
1027 cpumask_t mask = cpumask_of_cpu(cpu);
1029 if (cpu_online(cpu))
1030 __smp_receive_signal_mask(mask);
1033 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1035 clear_softint(1 << irq);
1038 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1040 struct mm_struct *mm;
1041 unsigned long flags;
1043 clear_softint(1 << irq);
1045 /* See if we need to allocate a new TLB context because
1046 * the version of the one we are using is now out of date.
1048 mm = current->active_mm;
1049 if (unlikely(!mm || (mm == &init_mm)))
1050 return;
1052 spin_lock_irqsave(&mm->context.lock, flags);
1054 if (unlikely(!CTX_VALID(mm->context)))
1055 get_new_mmu_context(mm);
1057 spin_unlock_irqrestore(&mm->context.lock, flags);
1059 load_secondary_context(mm);
1060 __flush_tlb_mm(CTX_HWBITS(mm->context),
1061 SECONDARY_CONTEXT);
1064 void smp_new_mmu_context_version(void)
1066 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1069 void smp_report_regs(void)
1071 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1074 /* We know that the window frames of the user have been flushed
1075 * to the stack before we get here because all callers of us
1076 * are flush_tlb_*() routines, and these run after flush_cache_*()
1077 * which performs the flushw.
1079 * The SMP TLB coherency scheme we use works as follows:
1081 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1082 * space has (potentially) executed on, this is the heuristic
1083 * we use to avoid doing cross calls.
1085 * Also, for flushing from kswapd and also for clones, we
1086 * use cpu_vm_mask as the list of cpus to make run the TLB.
1088 * 2) TLB context numbers are shared globally across all processors
1089 * in the system, this allows us to play several games to avoid
1090 * cross calls.
1092 * One invariant is that when a cpu switches to a process, and
1093 * that processes tsk->active_mm->cpu_vm_mask does not have the
1094 * current cpu's bit set, that tlb context is flushed locally.
1096 * If the address space is non-shared (ie. mm->count == 1) we avoid
1097 * cross calls when we want to flush the currently running process's
1098 * tlb state. This is done by clearing all cpu bits except the current
1099 * processor's in current->active_mm->cpu_vm_mask and performing the
1100 * flush locally only. This will force any subsequent cpus which run
1101 * this task to flush the context from the local tlb if the process
1102 * migrates to another cpu (again).
1104 * 3) For shared address spaces (threads) and swapping we bite the
1105 * bullet for most cases and perform the cross call (but only to
1106 * the cpus listed in cpu_vm_mask).
1108 * The performance gain from "optimizing" away the cross call for threads is
1109 * questionable (in theory the big win for threads is the massive sharing of
1110 * address space state across processors).
1113 /* This currently is only used by the hugetlb arch pre-fault
1114 * hook on UltraSPARC-III+ and later when changing the pagesize
1115 * bits of the context register for an address space.
1117 void smp_flush_tlb_mm(struct mm_struct *mm)
1119 u32 ctx = CTX_HWBITS(mm->context);
1120 int cpu = get_cpu();
1122 if (atomic_read(&mm->mm_users) == 1) {
1123 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1124 goto local_flush_and_out;
1127 smp_cross_call_masked(&xcall_flush_tlb_mm,
1128 ctx, 0, 0,
1129 mm->cpu_vm_mask);
1131 local_flush_and_out:
1132 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1134 put_cpu();
1137 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1139 u32 ctx = CTX_HWBITS(mm->context);
1140 int cpu = get_cpu();
1142 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1143 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1144 else
1145 smp_cross_call_masked(&xcall_flush_tlb_pending,
1146 ctx, nr, (unsigned long) vaddrs,
1147 mm->cpu_vm_mask);
1149 __flush_tlb_pending(ctx, nr, vaddrs);
1151 put_cpu();
1154 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1156 start &= PAGE_MASK;
1157 end = PAGE_ALIGN(end);
1158 if (start != end) {
1159 smp_cross_call(&xcall_flush_tlb_kernel_range,
1160 0, start, end);
1162 __flush_tlb_kernel_range(start, end);
1166 /* CPU capture. */
1167 /* #define CAPTURE_DEBUG */
1168 extern unsigned long xcall_capture;
1170 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1171 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1172 static unsigned long penguins_are_doing_time;
1174 void smp_capture(void)
1176 int result = atomic_add_ret(1, &smp_capture_depth);
1178 if (result == 1) {
1179 int ncpus = num_online_cpus();
1181 #ifdef CAPTURE_DEBUG
1182 printk("CPU[%d]: Sending penguins to jail...",
1183 smp_processor_id());
1184 #endif
1185 penguins_are_doing_time = 1;
1186 membar_storestore_loadstore();
1187 atomic_inc(&smp_capture_registry);
1188 smp_cross_call(&xcall_capture, 0, 0, 0);
1189 while (atomic_read(&smp_capture_registry) != ncpus)
1190 rmb();
1191 #ifdef CAPTURE_DEBUG
1192 printk("done\n");
1193 #endif
1197 void smp_release(void)
1199 if (atomic_dec_and_test(&smp_capture_depth)) {
1200 #ifdef CAPTURE_DEBUG
1201 printk("CPU[%d]: Giving pardon to "
1202 "imprisoned penguins\n",
1203 smp_processor_id());
1204 #endif
1205 penguins_are_doing_time = 0;
1206 membar_storeload_storestore();
1207 atomic_dec(&smp_capture_registry);
1211 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1212 * can service tlb flush xcalls...
1214 extern void prom_world(int);
1216 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1218 clear_softint(1 << irq);
1220 preempt_disable();
1222 __asm__ __volatile__("flushw");
1223 prom_world(1);
1224 atomic_inc(&smp_capture_registry);
1225 membar_storeload_storestore();
1226 while (penguins_are_doing_time)
1227 rmb();
1228 atomic_dec(&smp_capture_registry);
1229 prom_world(0);
1231 preempt_enable();
1234 /* /proc/profile writes can call this, don't __init it please. */
1235 int setup_profiling_timer(unsigned int multiplier)
1237 return -EINVAL;
1240 void __init smp_prepare_cpus(unsigned int max_cpus)
1244 void __devinit smp_prepare_boot_cpu(void)
1248 void __devinit smp_fill_in_sib_core_maps(void)
1250 unsigned int i;
1252 for_each_present_cpu(i) {
1253 unsigned int j;
1255 cpus_clear(cpu_core_map[i]);
1256 if (cpu_data(i).core_id == 0) {
1257 cpu_set(i, cpu_core_map[i]);
1258 continue;
1261 for_each_present_cpu(j) {
1262 if (cpu_data(i).core_id ==
1263 cpu_data(j).core_id)
1264 cpu_set(j, cpu_core_map[i]);
1268 for_each_present_cpu(i) {
1269 unsigned int j;
1271 cpus_clear(per_cpu(cpu_sibling_map, i));
1272 if (cpu_data(i).proc_id == -1) {
1273 cpu_set(i, per_cpu(cpu_sibling_map, i));
1274 continue;
1277 for_each_present_cpu(j) {
1278 if (cpu_data(i).proc_id ==
1279 cpu_data(j).proc_id)
1280 cpu_set(j, per_cpu(cpu_sibling_map, i));
1285 int __cpuinit __cpu_up(unsigned int cpu)
1287 int ret = smp_boot_one_cpu(cpu);
1289 if (!ret) {
1290 cpu_set(cpu, smp_commenced_mask);
1291 while (!cpu_isset(cpu, cpu_online_map))
1292 mb();
1293 if (!cpu_isset(cpu, cpu_online_map)) {
1294 ret = -ENODEV;
1295 } else {
1296 /* On SUN4V, writes to %tick and %stick are
1297 * not allowed.
1299 if (tlb_type != hypervisor)
1300 smp_synchronize_one_tick(cpu);
1303 return ret;
1306 #ifdef CONFIG_HOTPLUG_CPU
1307 void cpu_play_dead(void)
1309 int cpu = smp_processor_id();
1310 unsigned long pstate;
1312 idle_task_exit();
1314 if (tlb_type == hypervisor) {
1315 struct trap_per_cpu *tb = &trap_block[cpu];
1317 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1318 tb->cpu_mondo_pa, 0);
1319 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1320 tb->dev_mondo_pa, 0);
1321 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1322 tb->resum_mondo_pa, 0);
1323 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1324 tb->nonresum_mondo_pa, 0);
1327 cpu_clear(cpu, smp_commenced_mask);
1328 membar_safe("#Sync");
1330 local_irq_disable();
1332 __asm__ __volatile__(
1333 "rdpr %%pstate, %0\n\t"
1334 "wrpr %0, %1, %%pstate"
1335 : "=r" (pstate)
1336 : "i" (PSTATE_IE));
1338 while (1)
1339 barrier();
1342 int __cpu_disable(void)
1344 int cpu = smp_processor_id();
1345 cpuinfo_sparc *c;
1346 int i;
1348 for_each_cpu_mask(i, cpu_core_map[cpu])
1349 cpu_clear(cpu, cpu_core_map[i]);
1350 cpus_clear(cpu_core_map[cpu]);
1352 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1353 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1354 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1356 c = &cpu_data(cpu);
1358 c->core_id = 0;
1359 c->proc_id = -1;
1361 spin_lock(&call_lock);
1362 cpu_clear(cpu, cpu_online_map);
1363 spin_unlock(&call_lock);
1365 smp_wmb();
1367 /* Make sure no interrupts point to this cpu. */
1368 fixup_irqs();
1370 local_irq_enable();
1371 mdelay(1);
1372 local_irq_disable();
1374 return 0;
1377 void __cpu_die(unsigned int cpu)
1379 int i;
1381 for (i = 0; i < 100; i++) {
1382 smp_rmb();
1383 if (!cpu_isset(cpu, smp_commenced_mask))
1384 break;
1385 msleep(100);
1387 if (cpu_isset(cpu, smp_commenced_mask)) {
1388 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1389 } else {
1390 #if defined(CONFIG_SUN_LDOMS)
1391 unsigned long hv_err;
1392 int limit = 100;
1394 do {
1395 hv_err = sun4v_cpu_stop(cpu);
1396 if (hv_err == HV_EOK) {
1397 cpu_clear(cpu, cpu_present_map);
1398 break;
1400 } while (--limit > 0);
1401 if (limit <= 0) {
1402 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1403 hv_err);
1405 #endif
1408 #endif
1410 void __init smp_cpus_done(unsigned int max_cpus)
1414 void smp_send_reschedule(int cpu)
1416 smp_receive_signal(cpu);
1419 /* This is a nop because we capture all other cpus
1420 * anyways when making the PROM active.
1422 void smp_send_stop(void)
1426 unsigned long __per_cpu_base __read_mostly;
1427 unsigned long __per_cpu_shift __read_mostly;
1429 EXPORT_SYMBOL(__per_cpu_base);
1430 EXPORT_SYMBOL(__per_cpu_shift);
1432 void __init real_setup_per_cpu_areas(void)
1434 unsigned long goal, size, i;
1435 char *ptr;
1437 /* Copy section for each CPU (we discard the original) */
1438 goal = PERCPU_ENOUGH_ROOM;
1440 __per_cpu_shift = PAGE_SHIFT;
1441 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1442 __per_cpu_shift++;
1444 ptr = alloc_bootmem_pages(size * NR_CPUS);
1446 __per_cpu_base = ptr - __per_cpu_start;
1448 for (i = 0; i < NR_CPUS; i++, ptr += size)
1449 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1451 /* Setup %g5 for the boot cpu. */
1452 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());