6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
37 #include <asm/mmu_context.h>
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags) (0)
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len) (addr)
49 static void unmap_region(struct mm_struct
*mm
,
50 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
51 unsigned long start
, unsigned long end
);
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 pgprot_t protection_map
[16] = {
75 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
76 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
79 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
81 return __pgprot(pgprot_val(protection_map
[vm_flags
&
82 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
85 EXPORT_SYMBOL(vm_get_page_prot
);
87 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
88 int sysctl_overcommit_ratio
= 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
90 struct percpu_counter vm_committed_as
;
93 * Check that a process has enough memory to allocate a new virtual
94 * mapping. 0 means there is enough memory for the allocation to
95 * succeed and -ENOMEM implies there is not.
97 * We currently support three overcommit policies, which are set via the
98 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
100 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
101 * Additional code 2002 Jul 20 by Robert Love.
103 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
105 * Note this is a helper function intended to be used by LSMs which
106 * wish to use this logic.
108 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
110 unsigned long free
, allowed
;
112 vm_acct_memory(pages
);
115 * Sometimes we want to use more memory than we have
117 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
120 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
123 free
= global_page_state(NR_FILE_PAGES
);
124 free
+= nr_swap_pages
;
127 * Any slabs which are created with the
128 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
129 * which are reclaimable, under pressure. The dentry
130 * cache and most inode caches should fall into this
132 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
135 * Leave the last 3% for root
144 * nr_free_pages() is very expensive on large systems,
145 * only call if we're about to fail.
150 * Leave reserved pages. The pages are not for anonymous pages.
152 if (n
<= totalreserve_pages
)
155 n
-= totalreserve_pages
;
158 * Leave the last 3% for root
170 allowed
= (totalram_pages
- hugetlb_total_pages())
171 * sysctl_overcommit_ratio
/ 100;
173 * Leave the last 3% for root
176 allowed
-= allowed
/ 32;
177 allowed
+= total_swap_pages
;
179 /* Don't let a single process grow too big:
180 leave 3% of the size of this process for other processes */
182 allowed
-= mm
->total_vm
/ 32;
184 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
187 vm_unacct_memory(pages
);
193 * Requires inode->i_mapping->i_mmap_lock
195 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
196 struct file
*file
, struct address_space
*mapping
)
198 if (vma
->vm_flags
& VM_DENYWRITE
)
199 atomic_inc(&file
->f_path
.dentry
->d_inode
->i_writecount
);
200 if (vma
->vm_flags
& VM_SHARED
)
201 mapping
->i_mmap_writable
--;
203 flush_dcache_mmap_lock(mapping
);
204 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
205 list_del_init(&vma
->shared
.vm_set
.list
);
207 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
208 flush_dcache_mmap_unlock(mapping
);
212 * Unlink a file-based vm structure from its prio_tree, to hide
213 * vma from rmap and vmtruncate before freeing its page tables.
215 void unlink_file_vma(struct vm_area_struct
*vma
)
217 struct file
*file
= vma
->vm_file
;
220 struct address_space
*mapping
= file
->f_mapping
;
221 spin_lock(&mapping
->i_mmap_lock
);
222 __remove_shared_vm_struct(vma
, file
, mapping
);
223 spin_unlock(&mapping
->i_mmap_lock
);
228 * Close a vm structure and free it, returning the next.
230 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
232 struct vm_area_struct
*next
= vma
->vm_next
;
235 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
236 vma
->vm_ops
->close(vma
);
239 if (vma
->vm_flags
& VM_EXECUTABLE
)
240 removed_exe_file_vma(vma
->vm_mm
);
242 mpol_put(vma_policy(vma
));
243 kmem_cache_free(vm_area_cachep
, vma
);
247 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
249 unsigned long rlim
, retval
;
250 unsigned long newbrk
, oldbrk
;
251 struct mm_struct
*mm
= current
->mm
;
252 unsigned long min_brk
;
254 down_write(&mm
->mmap_sem
);
256 #ifdef CONFIG_COMPAT_BRK
258 * CONFIG_COMPAT_BRK can still be overridden by setting
259 * randomize_va_space to 2, which will still cause mm->start_brk
260 * to be arbitrarily shifted
262 if (mm
->start_brk
> PAGE_ALIGN(mm
->end_data
))
263 min_brk
= mm
->start_brk
;
265 min_brk
= mm
->end_data
;
267 min_brk
= mm
->start_brk
;
273 * Check against rlimit here. If this check is done later after the test
274 * of oldbrk with newbrk then it can escape the test and let the data
275 * segment grow beyond its set limit the in case where the limit is
276 * not page aligned -Ram Gupta
278 rlim
= rlimit(RLIMIT_DATA
);
279 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
280 (mm
->end_data
- mm
->start_data
) > rlim
)
283 newbrk
= PAGE_ALIGN(brk
);
284 oldbrk
= PAGE_ALIGN(mm
->brk
);
285 if (oldbrk
== newbrk
)
288 /* Always allow shrinking brk. */
289 if (brk
<= mm
->brk
) {
290 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
295 /* Check against existing mmap mappings. */
296 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
299 /* Ok, looks good - let it rip. */
300 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
306 up_write(&mm
->mmap_sem
);
311 static int browse_rb(struct rb_root
*root
)
314 struct rb_node
*nd
, *pn
= NULL
;
315 unsigned long prev
= 0, pend
= 0;
317 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
318 struct vm_area_struct
*vma
;
319 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
320 if (vma
->vm_start
< prev
)
321 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
322 if (vma
->vm_start
< pend
)
323 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
324 if (vma
->vm_start
> vma
->vm_end
)
325 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
328 prev
= vma
->vm_start
;
332 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
336 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
340 void validate_mm(struct mm_struct
*mm
)
344 struct vm_area_struct
*tmp
= mm
->mmap
;
349 if (i
!= mm
->map_count
)
350 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
351 i
= browse_rb(&mm
->mm_rb
);
352 if (i
!= mm
->map_count
)
353 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
357 #define validate_mm(mm) do { } while (0)
360 static struct vm_area_struct
*
361 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
362 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
363 struct rb_node
** rb_parent
)
365 struct vm_area_struct
* vma
;
366 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
368 __rb_link
= &mm
->mm_rb
.rb_node
;
369 rb_prev
= __rb_parent
= NULL
;
373 struct vm_area_struct
*vma_tmp
;
375 __rb_parent
= *__rb_link
;
376 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
378 if (vma_tmp
->vm_end
> addr
) {
380 if (vma_tmp
->vm_start
<= addr
)
382 __rb_link
= &__rb_parent
->rb_left
;
384 rb_prev
= __rb_parent
;
385 __rb_link
= &__rb_parent
->rb_right
;
391 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
392 *rb_link
= __rb_link
;
393 *rb_parent
= __rb_parent
;
398 __vma_link_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
399 struct vm_area_struct
*prev
, struct rb_node
*rb_parent
)
401 struct vm_area_struct
*next
;
405 next
= prev
->vm_next
;
410 next
= rb_entry(rb_parent
,
411 struct vm_area_struct
, vm_rb
);
420 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
421 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
423 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
424 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
427 static void __vma_link_file(struct vm_area_struct
*vma
)
433 struct address_space
*mapping
= file
->f_mapping
;
435 if (vma
->vm_flags
& VM_DENYWRITE
)
436 atomic_dec(&file
->f_path
.dentry
->d_inode
->i_writecount
);
437 if (vma
->vm_flags
& VM_SHARED
)
438 mapping
->i_mmap_writable
++;
440 flush_dcache_mmap_lock(mapping
);
441 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
442 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
444 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
445 flush_dcache_mmap_unlock(mapping
);
450 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
451 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
452 struct rb_node
*rb_parent
)
454 __vma_link_list(mm
, vma
, prev
, rb_parent
);
455 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
458 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
459 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
460 struct rb_node
*rb_parent
)
462 struct address_space
*mapping
= NULL
;
465 mapping
= vma
->vm_file
->f_mapping
;
468 spin_lock(&mapping
->i_mmap_lock
);
469 vma
->vm_truncate_count
= mapping
->truncate_count
;
472 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
473 __vma_link_file(vma
);
476 spin_unlock(&mapping
->i_mmap_lock
);
483 * Helper for vma_adjust in the split_vma insert case:
484 * insert vm structure into list and rbtree and anon_vma,
485 * but it has already been inserted into prio_tree earlier.
487 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
489 struct vm_area_struct
*__vma
, *prev
;
490 struct rb_node
**rb_link
, *rb_parent
;
492 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
493 BUG_ON(__vma
&& __vma
->vm_start
< vma
->vm_end
);
494 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
499 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
500 struct vm_area_struct
*prev
)
502 struct vm_area_struct
*next
= vma
->vm_next
;
504 prev
->vm_next
= next
;
506 next
->vm_prev
= prev
;
507 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
508 if (mm
->mmap_cache
== vma
)
509 mm
->mmap_cache
= prev
;
513 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
514 * is already present in an i_mmap tree without adjusting the tree.
515 * The following helper function should be used when such adjustments
516 * are necessary. The "insert" vma (if any) is to be inserted
517 * before we drop the necessary locks.
519 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
520 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
522 struct mm_struct
*mm
= vma
->vm_mm
;
523 struct vm_area_struct
*next
= vma
->vm_next
;
524 struct vm_area_struct
*importer
= NULL
;
525 struct address_space
*mapping
= NULL
;
526 struct prio_tree_root
*root
= NULL
;
527 struct anon_vma
*anon_vma
= NULL
;
528 struct file
*file
= vma
->vm_file
;
529 long adjust_next
= 0;
532 if (next
&& !insert
) {
533 struct vm_area_struct
*exporter
= NULL
;
535 if (end
>= next
->vm_end
) {
537 * vma expands, overlapping all the next, and
538 * perhaps the one after too (mprotect case 6).
540 again
: remove_next
= 1 + (end
> next
->vm_end
);
544 } else if (end
> next
->vm_start
) {
546 * vma expands, overlapping part of the next:
547 * mprotect case 5 shifting the boundary up.
549 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
552 } else if (end
< vma
->vm_end
) {
554 * vma shrinks, and !insert tells it's not
555 * split_vma inserting another: so it must be
556 * mprotect case 4 shifting the boundary down.
558 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
564 * Easily overlooked: when mprotect shifts the boundary,
565 * make sure the expanding vma has anon_vma set if the
566 * shrinking vma had, to cover any anon pages imported.
568 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
569 if (anon_vma_clone(importer
, exporter
))
571 importer
->anon_vma
= exporter
->anon_vma
;
576 mapping
= file
->f_mapping
;
577 if (!(vma
->vm_flags
& VM_NONLINEAR
))
578 root
= &mapping
->i_mmap
;
579 spin_lock(&mapping
->i_mmap_lock
);
581 vma
->vm_truncate_count
!= next
->vm_truncate_count
) {
583 * unmap_mapping_range might be in progress:
584 * ensure that the expanding vma is rescanned.
586 importer
->vm_truncate_count
= 0;
589 insert
->vm_truncate_count
= vma
->vm_truncate_count
;
591 * Put into prio_tree now, so instantiated pages
592 * are visible to arm/parisc __flush_dcache_page
593 * throughout; but we cannot insert into address
594 * space until vma start or end is updated.
596 __vma_link_file(insert
);
600 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
603 * When changing only vma->vm_end, we don't really need anon_vma
604 * lock. This is a fairly rare case by itself, but the anon_vma
605 * lock may be shared between many sibling processes. Skipping
606 * the lock for brk adjustments makes a difference sometimes.
608 if (vma
->anon_vma
&& (insert
|| importer
|| start
!= vma
->vm_start
)) {
609 anon_vma
= vma
->anon_vma
;
610 anon_vma_lock(anon_vma
);
614 flush_dcache_mmap_lock(mapping
);
615 vma_prio_tree_remove(vma
, root
);
617 vma_prio_tree_remove(next
, root
);
620 vma
->vm_start
= start
;
622 vma
->vm_pgoff
= pgoff
;
624 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
625 next
->vm_pgoff
+= adjust_next
;
630 vma_prio_tree_insert(next
, root
);
631 vma_prio_tree_insert(vma
, root
);
632 flush_dcache_mmap_unlock(mapping
);
637 * vma_merge has merged next into vma, and needs
638 * us to remove next before dropping the locks.
640 __vma_unlink(mm
, next
, vma
);
642 __remove_shared_vm_struct(next
, file
, mapping
);
645 * split_vma has split insert from vma, and needs
646 * us to insert it before dropping the locks
647 * (it may either follow vma or precede it).
649 __insert_vm_struct(mm
, insert
);
653 anon_vma_unlock(anon_vma
);
655 spin_unlock(&mapping
->i_mmap_lock
);
660 if (next
->vm_flags
& VM_EXECUTABLE
)
661 removed_exe_file_vma(mm
);
664 anon_vma_merge(vma
, next
);
666 mpol_put(vma_policy(next
));
667 kmem_cache_free(vm_area_cachep
, next
);
669 * In mprotect's case 6 (see comments on vma_merge),
670 * we must remove another next too. It would clutter
671 * up the code too much to do both in one go.
673 if (remove_next
== 2) {
685 * If the vma has a ->close operation then the driver probably needs to release
686 * per-vma resources, so we don't attempt to merge those.
688 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
689 struct file
*file
, unsigned long vm_flags
)
691 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
692 if ((vma
->vm_flags
^ vm_flags
) & ~VM_CAN_NONLINEAR
)
694 if (vma
->vm_file
!= file
)
696 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
701 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
702 struct anon_vma
*anon_vma2
)
704 return !anon_vma1
|| !anon_vma2
|| (anon_vma1
== anon_vma2
);
708 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
709 * in front of (at a lower virtual address and file offset than) the vma.
711 * We cannot merge two vmas if they have differently assigned (non-NULL)
712 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
714 * We don't check here for the merged mmap wrapping around the end of pagecache
715 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
716 * wrap, nor mmaps which cover the final page at index -1UL.
719 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
720 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
722 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
723 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
724 if (vma
->vm_pgoff
== vm_pgoff
)
731 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
732 * beyond (at a higher virtual address and file offset than) the vma.
734 * We cannot merge two vmas if they have differently assigned (non-NULL)
735 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
738 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
739 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
741 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
742 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
744 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
745 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
752 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
753 * whether that can be merged with its predecessor or its successor.
754 * Or both (it neatly fills a hole).
756 * In most cases - when called for mmap, brk or mremap - [addr,end) is
757 * certain not to be mapped by the time vma_merge is called; but when
758 * called for mprotect, it is certain to be already mapped (either at
759 * an offset within prev, or at the start of next), and the flags of
760 * this area are about to be changed to vm_flags - and the no-change
761 * case has already been eliminated.
763 * The following mprotect cases have to be considered, where AAAA is
764 * the area passed down from mprotect_fixup, never extending beyond one
765 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
767 * AAAA AAAA AAAA AAAA
768 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
769 * cannot merge might become might become might become
770 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
771 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
772 * mremap move: PPPPNNNNNNNN 8
774 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
775 * might become case 1 below case 2 below case 3 below
777 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
778 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
780 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
781 struct vm_area_struct
*prev
, unsigned long addr
,
782 unsigned long end
, unsigned long vm_flags
,
783 struct anon_vma
*anon_vma
, struct file
*file
,
784 pgoff_t pgoff
, struct mempolicy
*policy
)
786 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
787 struct vm_area_struct
*area
, *next
;
791 * We later require that vma->vm_flags == vm_flags,
792 * so this tests vma->vm_flags & VM_SPECIAL, too.
794 if (vm_flags
& VM_SPECIAL
)
798 next
= prev
->vm_next
;
802 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
803 next
= next
->vm_next
;
806 * Can it merge with the predecessor?
808 if (prev
&& prev
->vm_end
== addr
&&
809 mpol_equal(vma_policy(prev
), policy
) &&
810 can_vma_merge_after(prev
, vm_flags
,
811 anon_vma
, file
, pgoff
)) {
813 * OK, it can. Can we now merge in the successor as well?
815 if (next
&& end
== next
->vm_start
&&
816 mpol_equal(policy
, vma_policy(next
)) &&
817 can_vma_merge_before(next
, vm_flags
,
818 anon_vma
, file
, pgoff
+pglen
) &&
819 is_mergeable_anon_vma(prev
->anon_vma
,
822 err
= vma_adjust(prev
, prev
->vm_start
,
823 next
->vm_end
, prev
->vm_pgoff
, NULL
);
824 } else /* cases 2, 5, 7 */
825 err
= vma_adjust(prev
, prev
->vm_start
,
826 end
, prev
->vm_pgoff
, NULL
);
829 khugepaged_enter_vma_merge(prev
);
834 * Can this new request be merged in front of next?
836 if (next
&& end
== next
->vm_start
&&
837 mpol_equal(policy
, vma_policy(next
)) &&
838 can_vma_merge_before(next
, vm_flags
,
839 anon_vma
, file
, pgoff
+pglen
)) {
840 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
841 err
= vma_adjust(prev
, prev
->vm_start
,
842 addr
, prev
->vm_pgoff
, NULL
);
843 else /* cases 3, 8 */
844 err
= vma_adjust(area
, addr
, next
->vm_end
,
845 next
->vm_pgoff
- pglen
, NULL
);
848 khugepaged_enter_vma_merge(area
);
856 * Rough compatbility check to quickly see if it's even worth looking
857 * at sharing an anon_vma.
859 * They need to have the same vm_file, and the flags can only differ
860 * in things that mprotect may change.
862 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
863 * we can merge the two vma's. For example, we refuse to merge a vma if
864 * there is a vm_ops->close() function, because that indicates that the
865 * driver is doing some kind of reference counting. But that doesn't
866 * really matter for the anon_vma sharing case.
868 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
870 return a
->vm_end
== b
->vm_start
&&
871 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
872 a
->vm_file
== b
->vm_file
&&
873 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
)) &&
874 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
878 * Do some basic sanity checking to see if we can re-use the anon_vma
879 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
880 * the same as 'old', the other will be the new one that is trying
881 * to share the anon_vma.
883 * NOTE! This runs with mm_sem held for reading, so it is possible that
884 * the anon_vma of 'old' is concurrently in the process of being set up
885 * by another page fault trying to merge _that_. But that's ok: if it
886 * is being set up, that automatically means that it will be a singleton
887 * acceptable for merging, so we can do all of this optimistically. But
888 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
890 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
891 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
892 * is to return an anon_vma that is "complex" due to having gone through
895 * We also make sure that the two vma's are compatible (adjacent,
896 * and with the same memory policies). That's all stable, even with just
897 * a read lock on the mm_sem.
899 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
901 if (anon_vma_compatible(a
, b
)) {
902 struct anon_vma
*anon_vma
= ACCESS_ONCE(old
->anon_vma
);
904 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
911 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
912 * neighbouring vmas for a suitable anon_vma, before it goes off
913 * to allocate a new anon_vma. It checks because a repetitive
914 * sequence of mprotects and faults may otherwise lead to distinct
915 * anon_vmas being allocated, preventing vma merge in subsequent
918 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
920 struct anon_vma
*anon_vma
;
921 struct vm_area_struct
*near
;
927 anon_vma
= reusable_anon_vma(near
, vma
, near
);
932 * It is potentially slow to have to call find_vma_prev here.
933 * But it's only on the first write fault on the vma, not
934 * every time, and we could devise a way to avoid it later
935 * (e.g. stash info in next's anon_vma_node when assigning
936 * an anon_vma, or when trying vma_merge). Another time.
938 BUG_ON(find_vma_prev(vma
->vm_mm
, vma
->vm_start
, &near
) != vma
);
942 anon_vma
= reusable_anon_vma(near
, near
, vma
);
947 * There's no absolute need to look only at touching neighbours:
948 * we could search further afield for "compatible" anon_vmas.
949 * But it would probably just be a waste of time searching,
950 * or lead to too many vmas hanging off the same anon_vma.
951 * We're trying to allow mprotect remerging later on,
952 * not trying to minimize memory used for anon_vmas.
957 #ifdef CONFIG_PROC_FS
958 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
959 struct file
*file
, long pages
)
961 const unsigned long stack_flags
962 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
965 mm
->shared_vm
+= pages
;
966 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
967 mm
->exec_vm
+= pages
;
968 } else if (flags
& stack_flags
)
969 mm
->stack_vm
+= pages
;
970 if (flags
& (VM_RESERVED
|VM_IO
))
971 mm
->reserved_vm
+= pages
;
973 #endif /* CONFIG_PROC_FS */
976 * The caller must hold down_write(¤t->mm->mmap_sem).
979 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
980 unsigned long len
, unsigned long prot
,
981 unsigned long flags
, unsigned long pgoff
)
983 struct mm_struct
* mm
= current
->mm
;
985 unsigned int vm_flags
;
987 unsigned long reqprot
= prot
;
990 * Does the application expect PROT_READ to imply PROT_EXEC?
992 * (the exception is when the underlying filesystem is noexec
993 * mounted, in which case we dont add PROT_EXEC.)
995 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
996 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
1002 if (!(flags
& MAP_FIXED
))
1003 addr
= round_hint_to_min(addr
);
1005 /* Careful about overflows.. */
1006 len
= PAGE_ALIGN(len
);
1010 /* offset overflow? */
1011 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1014 /* Too many mappings? */
1015 if (mm
->map_count
> sysctl_max_map_count
)
1018 /* Obtain the address to map to. we verify (or select) it and ensure
1019 * that it represents a valid section of the address space.
1021 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1022 if (addr
& ~PAGE_MASK
)
1025 /* Do simple checking here so the lower-level routines won't have
1026 * to. we assume access permissions have been handled by the open
1027 * of the memory object, so we don't do any here.
1029 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
1030 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1032 if (flags
& MAP_LOCKED
)
1033 if (!can_do_mlock())
1036 /* mlock MCL_FUTURE? */
1037 if (vm_flags
& VM_LOCKED
) {
1038 unsigned long locked
, lock_limit
;
1039 locked
= len
>> PAGE_SHIFT
;
1040 locked
+= mm
->locked_vm
;
1041 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1042 lock_limit
>>= PAGE_SHIFT
;
1043 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1047 inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1050 switch (flags
& MAP_TYPE
) {
1052 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1056 * Make sure we don't allow writing to an append-only
1059 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1063 * Make sure there are no mandatory locks on the file.
1065 if (locks_verify_locked(inode
))
1068 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1069 if (!(file
->f_mode
& FMODE_WRITE
))
1070 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1074 if (!(file
->f_mode
& FMODE_READ
))
1076 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1077 if (vm_flags
& VM_EXEC
)
1079 vm_flags
&= ~VM_MAYEXEC
;
1082 if (!file
->f_op
|| !file
->f_op
->mmap
)
1090 switch (flags
& MAP_TYPE
) {
1096 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1100 * Set pgoff according to addr for anon_vma.
1102 pgoff
= addr
>> PAGE_SHIFT
;
1109 error
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1113 return mmap_region(file
, addr
, len
, flags
, vm_flags
, pgoff
);
1115 EXPORT_SYMBOL(do_mmap_pgoff
);
1117 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1118 unsigned long, prot
, unsigned long, flags
,
1119 unsigned long, fd
, unsigned long, pgoff
)
1121 struct file
*file
= NULL
;
1122 unsigned long retval
= -EBADF
;
1124 if (!(flags
& MAP_ANONYMOUS
)) {
1125 audit_mmap_fd(fd
, flags
);
1126 if (unlikely(flags
& MAP_HUGETLB
))
1131 } else if (flags
& MAP_HUGETLB
) {
1132 struct user_struct
*user
= NULL
;
1134 * VM_NORESERVE is used because the reservations will be
1135 * taken when vm_ops->mmap() is called
1136 * A dummy user value is used because we are not locking
1137 * memory so no accounting is necessary
1139 len
= ALIGN(len
, huge_page_size(&default_hstate
));
1140 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
, VM_NORESERVE
,
1141 &user
, HUGETLB_ANONHUGE_INODE
);
1143 return PTR_ERR(file
);
1146 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1148 down_write(¤t
->mm
->mmap_sem
);
1149 retval
= do_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1150 up_write(¤t
->mm
->mmap_sem
);
1158 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1159 struct mmap_arg_struct
{
1163 unsigned long flags
;
1165 unsigned long offset
;
1168 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1170 struct mmap_arg_struct a
;
1172 if (copy_from_user(&a
, arg
, sizeof(a
)))
1174 if (a
.offset
& ~PAGE_MASK
)
1177 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1178 a
.offset
>> PAGE_SHIFT
);
1180 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1183 * Some shared mappigns will want the pages marked read-only
1184 * to track write events. If so, we'll downgrade vm_page_prot
1185 * to the private version (using protection_map[] without the
1188 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1190 unsigned int vm_flags
= vma
->vm_flags
;
1192 /* If it was private or non-writable, the write bit is already clear */
1193 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1196 /* The backer wishes to know when pages are first written to? */
1197 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1200 /* The open routine did something to the protections already? */
1201 if (pgprot_val(vma
->vm_page_prot
) !=
1202 pgprot_val(vm_get_page_prot(vm_flags
)))
1205 /* Specialty mapping? */
1206 if (vm_flags
& (VM_PFNMAP
|VM_INSERTPAGE
))
1209 /* Can the mapping track the dirty pages? */
1210 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1211 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1215 * We account for memory if it's a private writeable mapping,
1216 * not hugepages and VM_NORESERVE wasn't set.
1218 static inline int accountable_mapping(struct file
*file
, unsigned int vm_flags
)
1221 * hugetlb has its own accounting separate from the core VM
1222 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1224 if (file
&& is_file_hugepages(file
))
1227 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1230 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1231 unsigned long len
, unsigned long flags
,
1232 unsigned int vm_flags
, unsigned long pgoff
)
1234 struct mm_struct
*mm
= current
->mm
;
1235 struct vm_area_struct
*vma
, *prev
;
1236 int correct_wcount
= 0;
1238 struct rb_node
**rb_link
, *rb_parent
;
1239 unsigned long charged
= 0;
1240 struct inode
*inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1242 /* Clear old maps */
1245 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1246 if (vma
&& vma
->vm_start
< addr
+ len
) {
1247 if (do_munmap(mm
, addr
, len
))
1252 /* Check against address space limit. */
1253 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1257 * Set 'VM_NORESERVE' if we should not account for the
1258 * memory use of this mapping.
1260 if ((flags
& MAP_NORESERVE
)) {
1261 /* We honor MAP_NORESERVE if allowed to overcommit */
1262 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1263 vm_flags
|= VM_NORESERVE
;
1265 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1266 if (file
&& is_file_hugepages(file
))
1267 vm_flags
|= VM_NORESERVE
;
1271 * Private writable mapping: check memory availability
1273 if (accountable_mapping(file
, vm_flags
)) {
1274 charged
= len
>> PAGE_SHIFT
;
1275 if (security_vm_enough_memory(charged
))
1277 vm_flags
|= VM_ACCOUNT
;
1281 * Can we just expand an old mapping?
1283 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1288 * Determine the object being mapped and call the appropriate
1289 * specific mapper. the address has already been validated, but
1290 * not unmapped, but the maps are removed from the list.
1292 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1299 vma
->vm_start
= addr
;
1300 vma
->vm_end
= addr
+ len
;
1301 vma
->vm_flags
= vm_flags
;
1302 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1303 vma
->vm_pgoff
= pgoff
;
1304 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1308 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1310 if (vm_flags
& VM_DENYWRITE
) {
1311 error
= deny_write_access(file
);
1316 vma
->vm_file
= file
;
1318 error
= file
->f_op
->mmap(file
, vma
);
1320 goto unmap_and_free_vma
;
1321 if (vm_flags
& VM_EXECUTABLE
)
1322 added_exe_file_vma(mm
);
1324 /* Can addr have changed??
1326 * Answer: Yes, several device drivers can do it in their
1327 * f_op->mmap method. -DaveM
1329 addr
= vma
->vm_start
;
1330 pgoff
= vma
->vm_pgoff
;
1331 vm_flags
= vma
->vm_flags
;
1332 } else if (vm_flags
& VM_SHARED
) {
1333 error
= shmem_zero_setup(vma
);
1338 if (vma_wants_writenotify(vma
)) {
1339 pgprot_t pprot
= vma
->vm_page_prot
;
1341 /* Can vma->vm_page_prot have changed??
1343 * Answer: Yes, drivers may have changed it in their
1344 * f_op->mmap method.
1346 * Ensures that vmas marked as uncached stay that way.
1348 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1349 if (pgprot_val(pprot
) == pgprot_val(pgprot_noncached(pprot
)))
1350 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1353 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1354 file
= vma
->vm_file
;
1356 /* Once vma denies write, undo our temporary denial count */
1358 atomic_inc(&inode
->i_writecount
);
1360 perf_event_mmap(vma
);
1362 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1363 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1364 if (vm_flags
& VM_LOCKED
) {
1365 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
1366 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1367 } else if ((flags
& MAP_POPULATE
) && !(flags
& MAP_NONBLOCK
))
1368 make_pages_present(addr
, addr
+ len
);
1373 atomic_inc(&inode
->i_writecount
);
1374 vma
->vm_file
= NULL
;
1377 /* Undo any partial mapping done by a device driver. */
1378 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1381 kmem_cache_free(vm_area_cachep
, vma
);
1384 vm_unacct_memory(charged
);
1388 /* Get an address range which is currently unmapped.
1389 * For shmat() with addr=0.
1391 * Ugly calling convention alert:
1392 * Return value with the low bits set means error value,
1394 * if (ret & ~PAGE_MASK)
1397 * This function "knows" that -ENOMEM has the bits set.
1399 #ifndef HAVE_ARCH_UNMAPPED_AREA
1401 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1402 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1404 struct mm_struct
*mm
= current
->mm
;
1405 struct vm_area_struct
*vma
;
1406 unsigned long start_addr
;
1408 if (len
> TASK_SIZE
)
1411 if (flags
& MAP_FIXED
)
1415 addr
= PAGE_ALIGN(addr
);
1416 vma
= find_vma(mm
, addr
);
1417 if (TASK_SIZE
- len
>= addr
&&
1418 (!vma
|| addr
+ len
<= vma
->vm_start
))
1421 if (len
> mm
->cached_hole_size
) {
1422 start_addr
= addr
= mm
->free_area_cache
;
1424 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1425 mm
->cached_hole_size
= 0;
1429 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1430 /* At this point: (!vma || addr < vma->vm_end). */
1431 if (TASK_SIZE
- len
< addr
) {
1433 * Start a new search - just in case we missed
1436 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1437 addr
= TASK_UNMAPPED_BASE
;
1439 mm
->cached_hole_size
= 0;
1444 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1446 * Remember the place where we stopped the search:
1448 mm
->free_area_cache
= addr
+ len
;
1451 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1452 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1458 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1461 * Is this a new hole at the lowest possible address?
1463 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
) {
1464 mm
->free_area_cache
= addr
;
1465 mm
->cached_hole_size
= ~0UL;
1470 * This mmap-allocator allocates new areas top-down from below the
1471 * stack's low limit (the base):
1473 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1475 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1476 const unsigned long len
, const unsigned long pgoff
,
1477 const unsigned long flags
)
1479 struct vm_area_struct
*vma
;
1480 struct mm_struct
*mm
= current
->mm
;
1481 unsigned long addr
= addr0
;
1483 /* requested length too big for entire address space */
1484 if (len
> TASK_SIZE
)
1487 if (flags
& MAP_FIXED
)
1490 /* requesting a specific address */
1492 addr
= PAGE_ALIGN(addr
);
1493 vma
= find_vma(mm
, addr
);
1494 if (TASK_SIZE
- len
>= addr
&&
1495 (!vma
|| addr
+ len
<= vma
->vm_start
))
1499 /* check if free_area_cache is useful for us */
1500 if (len
<= mm
->cached_hole_size
) {
1501 mm
->cached_hole_size
= 0;
1502 mm
->free_area_cache
= mm
->mmap_base
;
1505 /* either no address requested or can't fit in requested address hole */
1506 addr
= mm
->free_area_cache
;
1508 /* make sure it can fit in the remaining address space */
1510 vma
= find_vma(mm
, addr
-len
);
1511 if (!vma
|| addr
<= vma
->vm_start
)
1512 /* remember the address as a hint for next time */
1513 return (mm
->free_area_cache
= addr
-len
);
1516 if (mm
->mmap_base
< len
)
1519 addr
= mm
->mmap_base
-len
;
1523 * Lookup failure means no vma is above this address,
1524 * else if new region fits below vma->vm_start,
1525 * return with success:
1527 vma
= find_vma(mm
, addr
);
1528 if (!vma
|| addr
+len
<= vma
->vm_start
)
1529 /* remember the address as a hint for next time */
1530 return (mm
->free_area_cache
= addr
);
1532 /* remember the largest hole we saw so far */
1533 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1534 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1536 /* try just below the current vma->vm_start */
1537 addr
= vma
->vm_start
-len
;
1538 } while (len
< vma
->vm_start
);
1542 * A failed mmap() very likely causes application failure,
1543 * so fall back to the bottom-up function here. This scenario
1544 * can happen with large stack limits and large mmap()
1547 mm
->cached_hole_size
= ~0UL;
1548 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1549 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1551 * Restore the topdown base:
1553 mm
->free_area_cache
= mm
->mmap_base
;
1554 mm
->cached_hole_size
= ~0UL;
1560 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1563 * Is this a new hole at the highest possible address?
1565 if (addr
> mm
->free_area_cache
)
1566 mm
->free_area_cache
= addr
;
1568 /* dont allow allocations above current base */
1569 if (mm
->free_area_cache
> mm
->mmap_base
)
1570 mm
->free_area_cache
= mm
->mmap_base
;
1574 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1575 unsigned long pgoff
, unsigned long flags
)
1577 unsigned long (*get_area
)(struct file
*, unsigned long,
1578 unsigned long, unsigned long, unsigned long);
1580 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1584 /* Careful about overflows.. */
1585 if (len
> TASK_SIZE
)
1588 get_area
= current
->mm
->get_unmapped_area
;
1589 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1590 get_area
= file
->f_op
->get_unmapped_area
;
1591 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1592 if (IS_ERR_VALUE(addr
))
1595 if (addr
> TASK_SIZE
- len
)
1597 if (addr
& ~PAGE_MASK
)
1600 return arch_rebalance_pgtables(addr
, len
);
1603 EXPORT_SYMBOL(get_unmapped_area
);
1605 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1606 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1608 struct vm_area_struct
*vma
= NULL
;
1611 /* Check the cache first. */
1612 /* (Cache hit rate is typically around 35%.) */
1613 vma
= mm
->mmap_cache
;
1614 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1615 struct rb_node
* rb_node
;
1617 rb_node
= mm
->mm_rb
.rb_node
;
1621 struct vm_area_struct
* vma_tmp
;
1623 vma_tmp
= rb_entry(rb_node
,
1624 struct vm_area_struct
, vm_rb
);
1626 if (vma_tmp
->vm_end
> addr
) {
1628 if (vma_tmp
->vm_start
<= addr
)
1630 rb_node
= rb_node
->rb_left
;
1632 rb_node
= rb_node
->rb_right
;
1635 mm
->mmap_cache
= vma
;
1641 EXPORT_SYMBOL(find_vma
);
1643 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1644 struct vm_area_struct
*
1645 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1646 struct vm_area_struct
**pprev
)
1648 struct vm_area_struct
*vma
= NULL
, *prev
= NULL
;
1649 struct rb_node
*rb_node
;
1653 /* Guard against addr being lower than the first VMA */
1656 /* Go through the RB tree quickly. */
1657 rb_node
= mm
->mm_rb
.rb_node
;
1660 struct vm_area_struct
*vma_tmp
;
1661 vma_tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1663 if (addr
< vma_tmp
->vm_end
) {
1664 rb_node
= rb_node
->rb_left
;
1667 if (!prev
->vm_next
|| (addr
< prev
->vm_next
->vm_end
))
1669 rb_node
= rb_node
->rb_right
;
1675 return prev
? prev
->vm_next
: vma
;
1679 * Verify that the stack growth is acceptable and
1680 * update accounting. This is shared with both the
1681 * grow-up and grow-down cases.
1683 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1685 struct mm_struct
*mm
= vma
->vm_mm
;
1686 struct rlimit
*rlim
= current
->signal
->rlim
;
1687 unsigned long new_start
;
1689 /* address space limit tests */
1690 if (!may_expand_vm(mm
, grow
))
1693 /* Stack limit test */
1694 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
1697 /* mlock limit tests */
1698 if (vma
->vm_flags
& VM_LOCKED
) {
1699 unsigned long locked
;
1700 unsigned long limit
;
1701 locked
= mm
->locked_vm
+ grow
;
1702 limit
= ACCESS_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
1703 limit
>>= PAGE_SHIFT
;
1704 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
1708 /* Check to ensure the stack will not grow into a hugetlb-only region */
1709 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
1711 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
1715 * Overcommit.. This must be the final test, as it will
1716 * update security statistics.
1718 if (security_vm_enough_memory_mm(mm
, grow
))
1721 /* Ok, everything looks good - let it rip */
1722 mm
->total_vm
+= grow
;
1723 if (vma
->vm_flags
& VM_LOCKED
)
1724 mm
->locked_vm
+= grow
;
1725 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1729 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1731 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1732 * vma is the last one with address > vma->vm_end. Have to extend vma.
1734 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
1738 if (!(vma
->vm_flags
& VM_GROWSUP
))
1742 * We must make sure the anon_vma is allocated
1743 * so that the anon_vma locking is not a noop.
1745 if (unlikely(anon_vma_prepare(vma
)))
1747 vma_lock_anon_vma(vma
);
1750 * vma->vm_start/vm_end cannot change under us because the caller
1751 * is required to hold the mmap_sem in read mode. We need the
1752 * anon_vma lock to serialize against concurrent expand_stacks.
1753 * Also guard against wrapping around to address 0.
1755 if (address
< PAGE_ALIGN(address
+4))
1756 address
= PAGE_ALIGN(address
+4);
1758 vma_unlock_anon_vma(vma
);
1763 /* Somebody else might have raced and expanded it already */
1764 if (address
> vma
->vm_end
) {
1765 unsigned long size
, grow
;
1767 size
= address
- vma
->vm_start
;
1768 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1770 error
= acct_stack_growth(vma
, size
, grow
);
1772 vma
->vm_end
= address
;
1773 perf_event_mmap(vma
);
1776 vma_unlock_anon_vma(vma
);
1777 khugepaged_enter_vma_merge(vma
);
1780 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1783 * vma is the first one with address < vma->vm_start. Have to extend vma.
1785 static int expand_downwards(struct vm_area_struct
*vma
,
1786 unsigned long address
)
1791 * We must make sure the anon_vma is allocated
1792 * so that the anon_vma locking is not a noop.
1794 if (unlikely(anon_vma_prepare(vma
)))
1797 address
&= PAGE_MASK
;
1798 error
= security_file_mmap(NULL
, 0, 0, 0, address
, 1);
1802 vma_lock_anon_vma(vma
);
1805 * vma->vm_start/vm_end cannot change under us because the caller
1806 * is required to hold the mmap_sem in read mode. We need the
1807 * anon_vma lock to serialize against concurrent expand_stacks.
1810 /* Somebody else might have raced and expanded it already */
1811 if (address
< vma
->vm_start
) {
1812 unsigned long size
, grow
;
1814 size
= vma
->vm_end
- address
;
1815 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1817 error
= acct_stack_growth(vma
, size
, grow
);
1819 vma
->vm_start
= address
;
1820 vma
->vm_pgoff
-= grow
;
1821 perf_event_mmap(vma
);
1824 vma_unlock_anon_vma(vma
);
1825 khugepaged_enter_vma_merge(vma
);
1829 int expand_stack_downwards(struct vm_area_struct
*vma
, unsigned long address
)
1831 return expand_downwards(vma
, address
);
1834 #ifdef CONFIG_STACK_GROWSUP
1835 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1837 return expand_upwards(vma
, address
);
1840 struct vm_area_struct
*
1841 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1843 struct vm_area_struct
*vma
, *prev
;
1846 vma
= find_vma_prev(mm
, addr
, &prev
);
1847 if (vma
&& (vma
->vm_start
<= addr
))
1849 if (!prev
|| expand_stack(prev
, addr
))
1851 if (prev
->vm_flags
& VM_LOCKED
) {
1852 mlock_vma_pages_range(prev
, addr
, prev
->vm_end
);
1857 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1859 return expand_downwards(vma
, address
);
1862 struct vm_area_struct
*
1863 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1865 struct vm_area_struct
* vma
;
1866 unsigned long start
;
1869 vma
= find_vma(mm
,addr
);
1872 if (vma
->vm_start
<= addr
)
1874 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1876 start
= vma
->vm_start
;
1877 if (expand_stack(vma
, addr
))
1879 if (vma
->vm_flags
& VM_LOCKED
) {
1880 mlock_vma_pages_range(vma
, addr
, start
);
1887 * Ok - we have the memory areas we should free on the vma list,
1888 * so release them, and do the vma updates.
1890 * Called with the mm semaphore held.
1892 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
1894 /* Update high watermark before we lower total_vm */
1895 update_hiwater_vm(mm
);
1897 long nrpages
= vma_pages(vma
);
1899 mm
->total_vm
-= nrpages
;
1900 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
1901 vma
= remove_vma(vma
);
1907 * Get rid of page table information in the indicated region.
1909 * Called with the mm semaphore held.
1911 static void unmap_region(struct mm_struct
*mm
,
1912 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
1913 unsigned long start
, unsigned long end
)
1915 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
1916 struct mmu_gather
*tlb
;
1917 unsigned long nr_accounted
= 0;
1920 tlb
= tlb_gather_mmu(mm
, 0);
1921 update_hiwater_rss(mm
);
1922 unmap_vmas(&tlb
, vma
, start
, end
, &nr_accounted
, NULL
);
1923 vm_unacct_memory(nr_accounted
);
1924 free_pgtables(tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
1925 next
? next
->vm_start
: 0);
1926 tlb_finish_mmu(tlb
, start
, end
);
1930 * Create a list of vma's touched by the unmap, removing them from the mm's
1931 * vma list as we go..
1934 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1935 struct vm_area_struct
*prev
, unsigned long end
)
1937 struct vm_area_struct
**insertion_point
;
1938 struct vm_area_struct
*tail_vma
= NULL
;
1941 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1942 vma
->vm_prev
= NULL
;
1944 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1948 } while (vma
&& vma
->vm_start
< end
);
1949 *insertion_point
= vma
;
1951 vma
->vm_prev
= prev
;
1952 tail_vma
->vm_next
= NULL
;
1953 if (mm
->unmap_area
== arch_unmap_area
)
1954 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
1956 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
1957 mm
->unmap_area(mm
, addr
);
1958 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1962 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1963 * munmap path where it doesn't make sense to fail.
1965 static int __split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1966 unsigned long addr
, int new_below
)
1968 struct mempolicy
*pol
;
1969 struct vm_area_struct
*new;
1972 if (is_vm_hugetlb_page(vma
) && (addr
&
1973 ~(huge_page_mask(hstate_vma(vma
)))))
1976 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1980 /* most fields are the same, copy all, and then fixup */
1983 INIT_LIST_HEAD(&new->anon_vma_chain
);
1988 new->vm_start
= addr
;
1989 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1992 pol
= mpol_dup(vma_policy(vma
));
1997 vma_set_policy(new, pol
);
1999 if (anon_vma_clone(new, vma
))
2003 get_file(new->vm_file
);
2004 if (vma
->vm_flags
& VM_EXECUTABLE
)
2005 added_exe_file_vma(mm
);
2008 if (new->vm_ops
&& new->vm_ops
->open
)
2009 new->vm_ops
->open(new);
2012 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2013 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2015 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2021 /* Clean everything up if vma_adjust failed. */
2022 if (new->vm_ops
&& new->vm_ops
->close
)
2023 new->vm_ops
->close(new);
2025 if (vma
->vm_flags
& VM_EXECUTABLE
)
2026 removed_exe_file_vma(mm
);
2029 unlink_anon_vmas(new);
2033 kmem_cache_free(vm_area_cachep
, new);
2039 * Split a vma into two pieces at address 'addr', a new vma is allocated
2040 * either for the first part or the tail.
2042 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2043 unsigned long addr
, int new_below
)
2045 if (mm
->map_count
>= sysctl_max_map_count
)
2048 return __split_vma(mm
, vma
, addr
, new_below
);
2051 /* Munmap is split into 2 main parts -- this part which finds
2052 * what needs doing, and the areas themselves, which do the
2053 * work. This now handles partial unmappings.
2054 * Jeremy Fitzhardinge <jeremy@goop.org>
2056 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2059 struct vm_area_struct
*vma
, *prev
, *last
;
2061 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2064 if ((len
= PAGE_ALIGN(len
)) == 0)
2067 /* Find the first overlapping VMA */
2068 vma
= find_vma_prev(mm
, start
, &prev
);
2071 /* we have start < vma->vm_end */
2073 /* if it doesn't overlap, we have nothing.. */
2075 if (vma
->vm_start
>= end
)
2079 * If we need to split any vma, do it now to save pain later.
2081 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2082 * unmapped vm_area_struct will remain in use: so lower split_vma
2083 * places tmp vma above, and higher split_vma places tmp vma below.
2085 if (start
> vma
->vm_start
) {
2089 * Make sure that map_count on return from munmap() will
2090 * not exceed its limit; but let map_count go just above
2091 * its limit temporarily, to help free resources as expected.
2093 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2096 error
= __split_vma(mm
, vma
, start
, 0);
2102 /* Does it split the last one? */
2103 last
= find_vma(mm
, end
);
2104 if (last
&& end
> last
->vm_start
) {
2105 int error
= __split_vma(mm
, last
, end
, 1);
2109 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2112 * unlock any mlock()ed ranges before detaching vmas
2114 if (mm
->locked_vm
) {
2115 struct vm_area_struct
*tmp
= vma
;
2116 while (tmp
&& tmp
->vm_start
< end
) {
2117 if (tmp
->vm_flags
& VM_LOCKED
) {
2118 mm
->locked_vm
-= vma_pages(tmp
);
2119 munlock_vma_pages_all(tmp
);
2126 * Remove the vma's, and unmap the actual pages
2128 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2129 unmap_region(mm
, vma
, prev
, start
, end
);
2131 /* Fix up all other VM information */
2132 remove_vma_list(mm
, vma
);
2137 EXPORT_SYMBOL(do_munmap
);
2139 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2142 struct mm_struct
*mm
= current
->mm
;
2144 profile_munmap(addr
);
2146 down_write(&mm
->mmap_sem
);
2147 ret
= do_munmap(mm
, addr
, len
);
2148 up_write(&mm
->mmap_sem
);
2152 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2154 #ifdef CONFIG_DEBUG_VM
2155 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2157 up_read(&mm
->mmap_sem
);
2163 * this is really a simplified "do_mmap". it only handles
2164 * anonymous maps. eventually we may be able to do some
2165 * brk-specific accounting here.
2167 unsigned long do_brk(unsigned long addr
, unsigned long len
)
2169 struct mm_struct
* mm
= current
->mm
;
2170 struct vm_area_struct
* vma
, * prev
;
2171 unsigned long flags
;
2172 struct rb_node
** rb_link
, * rb_parent
;
2173 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2176 len
= PAGE_ALIGN(len
);
2180 error
= security_file_mmap(NULL
, 0, 0, 0, addr
, 1);
2184 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2186 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2187 if (error
& ~PAGE_MASK
)
2193 if (mm
->def_flags
& VM_LOCKED
) {
2194 unsigned long locked
, lock_limit
;
2195 locked
= len
>> PAGE_SHIFT
;
2196 locked
+= mm
->locked_vm
;
2197 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
2198 lock_limit
>>= PAGE_SHIFT
;
2199 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
2204 * mm->mmap_sem is required to protect against another thread
2205 * changing the mappings in case we sleep.
2207 verify_mm_writelocked(mm
);
2210 * Clear old maps. this also does some error checking for us
2213 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2214 if (vma
&& vma
->vm_start
< addr
+ len
) {
2215 if (do_munmap(mm
, addr
, len
))
2220 /* Check against address space limits *after* clearing old maps... */
2221 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2224 if (mm
->map_count
> sysctl_max_map_count
)
2227 if (security_vm_enough_memory(len
>> PAGE_SHIFT
))
2230 /* Can we just expand an old private anonymous mapping? */
2231 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2232 NULL
, NULL
, pgoff
, NULL
);
2237 * create a vma struct for an anonymous mapping
2239 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2241 vm_unacct_memory(len
>> PAGE_SHIFT
);
2245 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2247 vma
->vm_start
= addr
;
2248 vma
->vm_end
= addr
+ len
;
2249 vma
->vm_pgoff
= pgoff
;
2250 vma
->vm_flags
= flags
;
2251 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2252 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2254 perf_event_mmap(vma
);
2255 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2256 if (flags
& VM_LOCKED
) {
2257 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
2258 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2263 EXPORT_SYMBOL(do_brk
);
2265 /* Release all mmaps. */
2266 void exit_mmap(struct mm_struct
*mm
)
2268 struct mmu_gather
*tlb
;
2269 struct vm_area_struct
*vma
;
2270 unsigned long nr_accounted
= 0;
2273 /* mm's last user has gone, and its about to be pulled down */
2274 mmu_notifier_release(mm
);
2276 if (mm
->locked_vm
) {
2279 if (vma
->vm_flags
& VM_LOCKED
)
2280 munlock_vma_pages_all(vma
);
2288 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2293 tlb
= tlb_gather_mmu(mm
, 1);
2294 /* update_hiwater_rss(mm) here? but nobody should be looking */
2295 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2296 end
= unmap_vmas(&tlb
, vma
, 0, -1, &nr_accounted
, NULL
);
2297 vm_unacct_memory(nr_accounted
);
2299 free_pgtables(tlb
, vma
, FIRST_USER_ADDRESS
, 0);
2300 tlb_finish_mmu(tlb
, 0, end
);
2303 * Walk the list again, actually closing and freeing it,
2304 * with preemption enabled, without holding any MM locks.
2307 vma
= remove_vma(vma
);
2309 BUG_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2312 /* Insert vm structure into process list sorted by address
2313 * and into the inode's i_mmap tree. If vm_file is non-NULL
2314 * then i_mmap_lock is taken here.
2316 int insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
2318 struct vm_area_struct
* __vma
, * prev
;
2319 struct rb_node
** rb_link
, * rb_parent
;
2322 * The vm_pgoff of a purely anonymous vma should be irrelevant
2323 * until its first write fault, when page's anon_vma and index
2324 * are set. But now set the vm_pgoff it will almost certainly
2325 * end up with (unless mremap moves it elsewhere before that
2326 * first wfault), so /proc/pid/maps tells a consistent story.
2328 * By setting it to reflect the virtual start address of the
2329 * vma, merges and splits can happen in a seamless way, just
2330 * using the existing file pgoff checks and manipulations.
2331 * Similarly in do_mmap_pgoff and in do_brk.
2333 if (!vma
->vm_file
) {
2334 BUG_ON(vma
->anon_vma
);
2335 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2337 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
2338 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
2340 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2341 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2343 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2348 * Copy the vma structure to a new location in the same mm,
2349 * prior to moving page table entries, to effect an mremap move.
2351 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2352 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
2354 struct vm_area_struct
*vma
= *vmap
;
2355 unsigned long vma_start
= vma
->vm_start
;
2356 struct mm_struct
*mm
= vma
->vm_mm
;
2357 struct vm_area_struct
*new_vma
, *prev
;
2358 struct rb_node
**rb_link
, *rb_parent
;
2359 struct mempolicy
*pol
;
2362 * If anonymous vma has not yet been faulted, update new pgoff
2363 * to match new location, to increase its chance of merging.
2365 if (!vma
->vm_file
&& !vma
->anon_vma
)
2366 pgoff
= addr
>> PAGE_SHIFT
;
2368 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2369 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2370 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2373 * Source vma may have been merged into new_vma
2375 if (vma_start
>= new_vma
->vm_start
&&
2376 vma_start
< new_vma
->vm_end
)
2379 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2382 pol
= mpol_dup(vma_policy(vma
));
2385 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2386 if (anon_vma_clone(new_vma
, vma
))
2387 goto out_free_mempol
;
2388 vma_set_policy(new_vma
, pol
);
2389 new_vma
->vm_start
= addr
;
2390 new_vma
->vm_end
= addr
+ len
;
2391 new_vma
->vm_pgoff
= pgoff
;
2392 if (new_vma
->vm_file
) {
2393 get_file(new_vma
->vm_file
);
2394 if (vma
->vm_flags
& VM_EXECUTABLE
)
2395 added_exe_file_vma(mm
);
2397 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2398 new_vma
->vm_ops
->open(new_vma
);
2399 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2407 kmem_cache_free(vm_area_cachep
, new_vma
);
2412 * Return true if the calling process may expand its vm space by the passed
2415 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2417 unsigned long cur
= mm
->total_vm
; /* pages */
2420 lim
= rlimit(RLIMIT_AS
) >> PAGE_SHIFT
;
2422 if (cur
+ npages
> lim
)
2428 static int special_mapping_fault(struct vm_area_struct
*vma
,
2429 struct vm_fault
*vmf
)
2432 struct page
**pages
;
2435 * special mappings have no vm_file, and in that case, the mm
2436 * uses vm_pgoff internally. So we have to subtract it from here.
2437 * We are allowed to do this because we are the mm; do not copy
2438 * this code into drivers!
2440 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2442 for (pages
= vma
->vm_private_data
; pgoff
&& *pages
; ++pages
)
2446 struct page
*page
= *pages
;
2452 return VM_FAULT_SIGBUS
;
2456 * Having a close hook prevents vma merging regardless of flags.
2458 static void special_mapping_close(struct vm_area_struct
*vma
)
2462 static const struct vm_operations_struct special_mapping_vmops
= {
2463 .close
= special_mapping_close
,
2464 .fault
= special_mapping_fault
,
2468 * Called with mm->mmap_sem held for writing.
2469 * Insert a new vma covering the given region, with the given flags.
2470 * Its pages are supplied by the given array of struct page *.
2471 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2472 * The region past the last page supplied will always produce SIGBUS.
2473 * The array pointer and the pages it points to are assumed to stay alive
2474 * for as long as this mapping might exist.
2476 int install_special_mapping(struct mm_struct
*mm
,
2477 unsigned long addr
, unsigned long len
,
2478 unsigned long vm_flags
, struct page
**pages
)
2481 struct vm_area_struct
*vma
;
2483 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2484 if (unlikely(vma
== NULL
))
2487 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2489 vma
->vm_start
= addr
;
2490 vma
->vm_end
= addr
+ len
;
2492 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
;
2493 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2495 vma
->vm_ops
= &special_mapping_vmops
;
2496 vma
->vm_private_data
= pages
;
2498 ret
= security_file_mmap(NULL
, 0, 0, 0, vma
->vm_start
, 1);
2502 ret
= insert_vm_struct(mm
, vma
);
2506 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2508 perf_event_mmap(vma
);
2513 kmem_cache_free(vm_area_cachep
, vma
);
2517 static DEFINE_MUTEX(mm_all_locks_mutex
);
2519 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
2521 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2523 * The LSB of head.next can't change from under us
2524 * because we hold the mm_all_locks_mutex.
2526 spin_lock_nest_lock(&anon_vma
->root
->lock
, &mm
->mmap_sem
);
2528 * We can safely modify head.next after taking the
2529 * anon_vma->root->lock. If some other vma in this mm shares
2530 * the same anon_vma we won't take it again.
2532 * No need of atomic instructions here, head.next
2533 * can't change from under us thanks to the
2534 * anon_vma->root->lock.
2536 if (__test_and_set_bit(0, (unsigned long *)
2537 &anon_vma
->root
->head
.next
))
2542 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
2544 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2546 * AS_MM_ALL_LOCKS can't change from under us because
2547 * we hold the mm_all_locks_mutex.
2549 * Operations on ->flags have to be atomic because
2550 * even if AS_MM_ALL_LOCKS is stable thanks to the
2551 * mm_all_locks_mutex, there may be other cpus
2552 * changing other bitflags in parallel to us.
2554 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
2556 spin_lock_nest_lock(&mapping
->i_mmap_lock
, &mm
->mmap_sem
);
2561 * This operation locks against the VM for all pte/vma/mm related
2562 * operations that could ever happen on a certain mm. This includes
2563 * vmtruncate, try_to_unmap, and all page faults.
2565 * The caller must take the mmap_sem in write mode before calling
2566 * mm_take_all_locks(). The caller isn't allowed to release the
2567 * mmap_sem until mm_drop_all_locks() returns.
2569 * mmap_sem in write mode is required in order to block all operations
2570 * that could modify pagetables and free pages without need of
2571 * altering the vma layout (for example populate_range() with
2572 * nonlinear vmas). It's also needed in write mode to avoid new
2573 * anon_vmas to be associated with existing vmas.
2575 * A single task can't take more than one mm_take_all_locks() in a row
2576 * or it would deadlock.
2578 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2579 * mapping->flags avoid to take the same lock twice, if more than one
2580 * vma in this mm is backed by the same anon_vma or address_space.
2582 * We can take all the locks in random order because the VM code
2583 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2584 * takes more than one of them in a row. Secondly we're protected
2585 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2587 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2588 * that may have to take thousand of locks.
2590 * mm_take_all_locks() can fail if it's interrupted by signals.
2592 int mm_take_all_locks(struct mm_struct
*mm
)
2594 struct vm_area_struct
*vma
;
2595 struct anon_vma_chain
*avc
;
2598 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2600 mutex_lock(&mm_all_locks_mutex
);
2602 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2603 if (signal_pending(current
))
2605 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2606 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
2609 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2610 if (signal_pending(current
))
2613 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2614 vm_lock_anon_vma(mm
, avc
->anon_vma
);
2621 mm_drop_all_locks(mm
);
2626 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
2628 if (test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2630 * The LSB of head.next can't change to 0 from under
2631 * us because we hold the mm_all_locks_mutex.
2633 * We must however clear the bitflag before unlocking
2634 * the vma so the users using the anon_vma->head will
2635 * never see our bitflag.
2637 * No need of atomic instructions here, head.next
2638 * can't change from under us until we release the
2639 * anon_vma->root->lock.
2641 if (!__test_and_clear_bit(0, (unsigned long *)
2642 &anon_vma
->root
->head
.next
))
2644 anon_vma_unlock(anon_vma
);
2648 static void vm_unlock_mapping(struct address_space
*mapping
)
2650 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2652 * AS_MM_ALL_LOCKS can't change to 0 from under us
2653 * because we hold the mm_all_locks_mutex.
2655 spin_unlock(&mapping
->i_mmap_lock
);
2656 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
2663 * The mmap_sem cannot be released by the caller until
2664 * mm_drop_all_locks() returns.
2666 void mm_drop_all_locks(struct mm_struct
*mm
)
2668 struct vm_area_struct
*vma
;
2669 struct anon_vma_chain
*avc
;
2671 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2672 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
2674 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2676 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2677 vm_unlock_anon_vma(avc
->anon_vma
);
2678 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2679 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
2682 mutex_unlock(&mm_all_locks_mutex
);
2686 * initialise the VMA slab
2688 void __init
mmap_init(void)
2692 ret
= percpu_counter_init(&vm_committed_as
, 0);