KVM: VMX: Always return old for clear_flush_young() when using EPT
[linux-2.6.git] / arch / x86 / kvm / vmx.c
blob7041cc52b562eccc98f4a5fd060390709bc915b4
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
30 #include <asm/io.h>
31 #include <asm/desc.h>
33 #define __ex(x) __kvm_handle_fault_on_reboot(x)
35 MODULE_AUTHOR("Qumranet");
36 MODULE_LICENSE("GPL");
38 static int bypass_guest_pf = 1;
39 module_param(bypass_guest_pf, bool, 0);
41 static int enable_vpid = 1;
42 module_param(enable_vpid, bool, 0);
44 static int flexpriority_enabled = 1;
45 module_param(flexpriority_enabled, bool, 0);
47 static int enable_ept = 1;
48 module_param(enable_ept, bool, 0);
50 struct vmcs {
51 u32 revision_id;
52 u32 abort;
53 char data[0];
56 struct vcpu_vmx {
57 struct kvm_vcpu vcpu;
58 struct list_head local_vcpus_link;
59 int launched;
60 u8 fail;
61 u32 idt_vectoring_info;
62 struct kvm_msr_entry *guest_msrs;
63 struct kvm_msr_entry *host_msrs;
64 int nmsrs;
65 int save_nmsrs;
66 int msr_offset_efer;
67 #ifdef CONFIG_X86_64
68 int msr_offset_kernel_gs_base;
69 #endif
70 struct vmcs *vmcs;
71 struct {
72 int loaded;
73 u16 fs_sel, gs_sel, ldt_sel;
74 int gs_ldt_reload_needed;
75 int fs_reload_needed;
76 int guest_efer_loaded;
77 } host_state;
78 struct {
79 struct {
80 bool pending;
81 u8 vector;
82 unsigned rip;
83 } irq;
84 } rmode;
85 int vpid;
88 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
90 return container_of(vcpu, struct vcpu_vmx, vcpu);
93 static int init_rmode(struct kvm *kvm);
94 static u64 construct_eptp(unsigned long root_hpa);
96 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
97 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
98 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
100 static struct page *vmx_io_bitmap_a;
101 static struct page *vmx_io_bitmap_b;
102 static struct page *vmx_msr_bitmap;
104 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
105 static DEFINE_SPINLOCK(vmx_vpid_lock);
107 static struct vmcs_config {
108 int size;
109 int order;
110 u32 revision_id;
111 u32 pin_based_exec_ctrl;
112 u32 cpu_based_exec_ctrl;
113 u32 cpu_based_2nd_exec_ctrl;
114 u32 vmexit_ctrl;
115 u32 vmentry_ctrl;
116 } vmcs_config;
118 struct vmx_capability {
119 u32 ept;
120 u32 vpid;
121 } vmx_capability;
123 #define VMX_SEGMENT_FIELD(seg) \
124 [VCPU_SREG_##seg] = { \
125 .selector = GUEST_##seg##_SELECTOR, \
126 .base = GUEST_##seg##_BASE, \
127 .limit = GUEST_##seg##_LIMIT, \
128 .ar_bytes = GUEST_##seg##_AR_BYTES, \
131 static struct kvm_vmx_segment_field {
132 unsigned selector;
133 unsigned base;
134 unsigned limit;
135 unsigned ar_bytes;
136 } kvm_vmx_segment_fields[] = {
137 VMX_SEGMENT_FIELD(CS),
138 VMX_SEGMENT_FIELD(DS),
139 VMX_SEGMENT_FIELD(ES),
140 VMX_SEGMENT_FIELD(FS),
141 VMX_SEGMENT_FIELD(GS),
142 VMX_SEGMENT_FIELD(SS),
143 VMX_SEGMENT_FIELD(TR),
144 VMX_SEGMENT_FIELD(LDTR),
148 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
149 * away by decrementing the array size.
151 static const u32 vmx_msr_index[] = {
152 #ifdef CONFIG_X86_64
153 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
154 #endif
155 MSR_EFER, MSR_K6_STAR,
157 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
159 static void load_msrs(struct kvm_msr_entry *e, int n)
161 int i;
163 for (i = 0; i < n; ++i)
164 wrmsrl(e[i].index, e[i].data);
167 static void save_msrs(struct kvm_msr_entry *e, int n)
169 int i;
171 for (i = 0; i < n; ++i)
172 rdmsrl(e[i].index, e[i].data);
175 static inline int is_page_fault(u32 intr_info)
177 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
178 INTR_INFO_VALID_MASK)) ==
179 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
182 static inline int is_no_device(u32 intr_info)
184 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
185 INTR_INFO_VALID_MASK)) ==
186 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
189 static inline int is_invalid_opcode(u32 intr_info)
191 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
192 INTR_INFO_VALID_MASK)) ==
193 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
196 static inline int is_external_interrupt(u32 intr_info)
198 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
199 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
202 static inline int cpu_has_vmx_msr_bitmap(void)
204 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
207 static inline int cpu_has_vmx_tpr_shadow(void)
209 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
212 static inline int vm_need_tpr_shadow(struct kvm *kvm)
214 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
217 static inline int cpu_has_secondary_exec_ctrls(void)
219 return (vmcs_config.cpu_based_exec_ctrl &
220 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
223 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
225 return flexpriority_enabled
226 && (vmcs_config.cpu_based_2nd_exec_ctrl &
227 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
230 static inline int cpu_has_vmx_invept_individual_addr(void)
232 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
235 static inline int cpu_has_vmx_invept_context(void)
237 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
240 static inline int cpu_has_vmx_invept_global(void)
242 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
245 static inline int cpu_has_vmx_ept(void)
247 return (vmcs_config.cpu_based_2nd_exec_ctrl &
248 SECONDARY_EXEC_ENABLE_EPT);
251 static inline int vm_need_ept(void)
253 return (cpu_has_vmx_ept() && enable_ept);
256 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
258 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
259 (irqchip_in_kernel(kvm)));
262 static inline int cpu_has_vmx_vpid(void)
264 return (vmcs_config.cpu_based_2nd_exec_ctrl &
265 SECONDARY_EXEC_ENABLE_VPID);
268 static inline int cpu_has_virtual_nmis(void)
270 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
273 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
275 int i;
277 for (i = 0; i < vmx->nmsrs; ++i)
278 if (vmx->guest_msrs[i].index == msr)
279 return i;
280 return -1;
283 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
285 struct {
286 u64 vpid : 16;
287 u64 rsvd : 48;
288 u64 gva;
289 } operand = { vpid, 0, gva };
291 asm volatile (__ex(ASM_VMX_INVVPID)
292 /* CF==1 or ZF==1 --> rc = -1 */
293 "; ja 1f ; ud2 ; 1:"
294 : : "a"(&operand), "c"(ext) : "cc", "memory");
297 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
299 struct {
300 u64 eptp, gpa;
301 } operand = {eptp, gpa};
303 asm volatile (__ex(ASM_VMX_INVEPT)
304 /* CF==1 or ZF==1 --> rc = -1 */
305 "; ja 1f ; ud2 ; 1:\n"
306 : : "a" (&operand), "c" (ext) : "cc", "memory");
309 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
311 int i;
313 i = __find_msr_index(vmx, msr);
314 if (i >= 0)
315 return &vmx->guest_msrs[i];
316 return NULL;
319 static void vmcs_clear(struct vmcs *vmcs)
321 u64 phys_addr = __pa(vmcs);
322 u8 error;
324 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
325 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
326 : "cc", "memory");
327 if (error)
328 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
329 vmcs, phys_addr);
332 static void __vcpu_clear(void *arg)
334 struct vcpu_vmx *vmx = arg;
335 int cpu = raw_smp_processor_id();
337 if (vmx->vcpu.cpu == cpu)
338 vmcs_clear(vmx->vmcs);
339 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
340 per_cpu(current_vmcs, cpu) = NULL;
341 rdtscll(vmx->vcpu.arch.host_tsc);
342 list_del(&vmx->local_vcpus_link);
343 vmx->vcpu.cpu = -1;
344 vmx->launched = 0;
347 static void vcpu_clear(struct vcpu_vmx *vmx)
349 if (vmx->vcpu.cpu == -1)
350 return;
351 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
354 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
356 if (vmx->vpid == 0)
357 return;
359 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
362 static inline void ept_sync_global(void)
364 if (cpu_has_vmx_invept_global())
365 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
368 static inline void ept_sync_context(u64 eptp)
370 if (vm_need_ept()) {
371 if (cpu_has_vmx_invept_context())
372 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
373 else
374 ept_sync_global();
378 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
380 if (vm_need_ept()) {
381 if (cpu_has_vmx_invept_individual_addr())
382 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
383 eptp, gpa);
384 else
385 ept_sync_context(eptp);
389 static unsigned long vmcs_readl(unsigned long field)
391 unsigned long value;
393 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
394 : "=a"(value) : "d"(field) : "cc");
395 return value;
398 static u16 vmcs_read16(unsigned long field)
400 return vmcs_readl(field);
403 static u32 vmcs_read32(unsigned long field)
405 return vmcs_readl(field);
408 static u64 vmcs_read64(unsigned long field)
410 #ifdef CONFIG_X86_64
411 return vmcs_readl(field);
412 #else
413 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
414 #endif
417 static noinline void vmwrite_error(unsigned long field, unsigned long value)
419 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
420 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
421 dump_stack();
424 static void vmcs_writel(unsigned long field, unsigned long value)
426 u8 error;
428 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
429 : "=q"(error) : "a"(value), "d"(field) : "cc");
430 if (unlikely(error))
431 vmwrite_error(field, value);
434 static void vmcs_write16(unsigned long field, u16 value)
436 vmcs_writel(field, value);
439 static void vmcs_write32(unsigned long field, u32 value)
441 vmcs_writel(field, value);
444 static void vmcs_write64(unsigned long field, u64 value)
446 vmcs_writel(field, value);
447 #ifndef CONFIG_X86_64
448 asm volatile ("");
449 vmcs_writel(field+1, value >> 32);
450 #endif
453 static void vmcs_clear_bits(unsigned long field, u32 mask)
455 vmcs_writel(field, vmcs_readl(field) & ~mask);
458 static void vmcs_set_bits(unsigned long field, u32 mask)
460 vmcs_writel(field, vmcs_readl(field) | mask);
463 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
465 u32 eb;
467 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
468 if (!vcpu->fpu_active)
469 eb |= 1u << NM_VECTOR;
470 if (vcpu->guest_debug.enabled)
471 eb |= 1u << 1;
472 if (vcpu->arch.rmode.active)
473 eb = ~0;
474 if (vm_need_ept())
475 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
476 vmcs_write32(EXCEPTION_BITMAP, eb);
479 static void reload_tss(void)
482 * VT restores TR but not its size. Useless.
484 struct descriptor_table gdt;
485 struct desc_struct *descs;
487 kvm_get_gdt(&gdt);
488 descs = (void *)gdt.base;
489 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
490 load_TR_desc();
493 static void load_transition_efer(struct vcpu_vmx *vmx)
495 int efer_offset = vmx->msr_offset_efer;
496 u64 host_efer = vmx->host_msrs[efer_offset].data;
497 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
498 u64 ignore_bits;
500 if (efer_offset < 0)
501 return;
503 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
504 * outside long mode
506 ignore_bits = EFER_NX | EFER_SCE;
507 #ifdef CONFIG_X86_64
508 ignore_bits |= EFER_LMA | EFER_LME;
509 /* SCE is meaningful only in long mode on Intel */
510 if (guest_efer & EFER_LMA)
511 ignore_bits &= ~(u64)EFER_SCE;
512 #endif
513 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
514 return;
516 vmx->host_state.guest_efer_loaded = 1;
517 guest_efer &= ~ignore_bits;
518 guest_efer |= host_efer & ignore_bits;
519 wrmsrl(MSR_EFER, guest_efer);
520 vmx->vcpu.stat.efer_reload++;
523 static void reload_host_efer(struct vcpu_vmx *vmx)
525 if (vmx->host_state.guest_efer_loaded) {
526 vmx->host_state.guest_efer_loaded = 0;
527 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
531 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
533 struct vcpu_vmx *vmx = to_vmx(vcpu);
535 if (vmx->host_state.loaded)
536 return;
538 vmx->host_state.loaded = 1;
540 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
541 * allow segment selectors with cpl > 0 or ti == 1.
543 vmx->host_state.ldt_sel = kvm_read_ldt();
544 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
545 vmx->host_state.fs_sel = kvm_read_fs();
546 if (!(vmx->host_state.fs_sel & 7)) {
547 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
548 vmx->host_state.fs_reload_needed = 0;
549 } else {
550 vmcs_write16(HOST_FS_SELECTOR, 0);
551 vmx->host_state.fs_reload_needed = 1;
553 vmx->host_state.gs_sel = kvm_read_gs();
554 if (!(vmx->host_state.gs_sel & 7))
555 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
556 else {
557 vmcs_write16(HOST_GS_SELECTOR, 0);
558 vmx->host_state.gs_ldt_reload_needed = 1;
561 #ifdef CONFIG_X86_64
562 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
563 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
564 #else
565 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
566 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
567 #endif
569 #ifdef CONFIG_X86_64
570 if (is_long_mode(&vmx->vcpu))
571 save_msrs(vmx->host_msrs +
572 vmx->msr_offset_kernel_gs_base, 1);
574 #endif
575 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
576 load_transition_efer(vmx);
579 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
581 unsigned long flags;
583 if (!vmx->host_state.loaded)
584 return;
586 ++vmx->vcpu.stat.host_state_reload;
587 vmx->host_state.loaded = 0;
588 if (vmx->host_state.fs_reload_needed)
589 kvm_load_fs(vmx->host_state.fs_sel);
590 if (vmx->host_state.gs_ldt_reload_needed) {
591 kvm_load_ldt(vmx->host_state.ldt_sel);
593 * If we have to reload gs, we must take care to
594 * preserve our gs base.
596 local_irq_save(flags);
597 kvm_load_gs(vmx->host_state.gs_sel);
598 #ifdef CONFIG_X86_64
599 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
600 #endif
601 local_irq_restore(flags);
603 reload_tss();
604 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
605 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
606 reload_host_efer(vmx);
609 static void vmx_load_host_state(struct vcpu_vmx *vmx)
611 preempt_disable();
612 __vmx_load_host_state(vmx);
613 preempt_enable();
617 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
618 * vcpu mutex is already taken.
620 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
622 struct vcpu_vmx *vmx = to_vmx(vcpu);
623 u64 phys_addr = __pa(vmx->vmcs);
624 u64 tsc_this, delta, new_offset;
626 if (vcpu->cpu != cpu) {
627 vcpu_clear(vmx);
628 kvm_migrate_timers(vcpu);
629 vpid_sync_vcpu_all(vmx);
630 local_irq_disable();
631 list_add(&vmx->local_vcpus_link,
632 &per_cpu(vcpus_on_cpu, cpu));
633 local_irq_enable();
636 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
637 u8 error;
639 per_cpu(current_vmcs, cpu) = vmx->vmcs;
640 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
641 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
642 : "cc");
643 if (error)
644 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
645 vmx->vmcs, phys_addr);
648 if (vcpu->cpu != cpu) {
649 struct descriptor_table dt;
650 unsigned long sysenter_esp;
652 vcpu->cpu = cpu;
654 * Linux uses per-cpu TSS and GDT, so set these when switching
655 * processors.
657 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
658 kvm_get_gdt(&dt);
659 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
661 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
662 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
665 * Make sure the time stamp counter is monotonous.
667 rdtscll(tsc_this);
668 if (tsc_this < vcpu->arch.host_tsc) {
669 delta = vcpu->arch.host_tsc - tsc_this;
670 new_offset = vmcs_read64(TSC_OFFSET) + delta;
671 vmcs_write64(TSC_OFFSET, new_offset);
676 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
678 __vmx_load_host_state(to_vmx(vcpu));
681 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
683 if (vcpu->fpu_active)
684 return;
685 vcpu->fpu_active = 1;
686 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
687 if (vcpu->arch.cr0 & X86_CR0_TS)
688 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
689 update_exception_bitmap(vcpu);
692 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
694 if (!vcpu->fpu_active)
695 return;
696 vcpu->fpu_active = 0;
697 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
698 update_exception_bitmap(vcpu);
701 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
703 return vmcs_readl(GUEST_RFLAGS);
706 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
708 if (vcpu->arch.rmode.active)
709 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
710 vmcs_writel(GUEST_RFLAGS, rflags);
713 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
715 unsigned long rip;
716 u32 interruptibility;
718 rip = vmcs_readl(GUEST_RIP);
719 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
720 vmcs_writel(GUEST_RIP, rip);
723 * We emulated an instruction, so temporary interrupt blocking
724 * should be removed, if set.
726 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
727 if (interruptibility & 3)
728 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
729 interruptibility & ~3);
730 vcpu->arch.interrupt_window_open = 1;
733 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
734 bool has_error_code, u32 error_code)
736 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
737 nr | INTR_TYPE_EXCEPTION
738 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
739 | INTR_INFO_VALID_MASK);
740 if (has_error_code)
741 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
744 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
746 struct vcpu_vmx *vmx = to_vmx(vcpu);
748 return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
752 * Swap MSR entry in host/guest MSR entry array.
754 #ifdef CONFIG_X86_64
755 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
757 struct kvm_msr_entry tmp;
759 tmp = vmx->guest_msrs[to];
760 vmx->guest_msrs[to] = vmx->guest_msrs[from];
761 vmx->guest_msrs[from] = tmp;
762 tmp = vmx->host_msrs[to];
763 vmx->host_msrs[to] = vmx->host_msrs[from];
764 vmx->host_msrs[from] = tmp;
766 #endif
769 * Set up the vmcs to automatically save and restore system
770 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
771 * mode, as fiddling with msrs is very expensive.
773 static void setup_msrs(struct vcpu_vmx *vmx)
775 int save_nmsrs;
777 vmx_load_host_state(vmx);
778 save_nmsrs = 0;
779 #ifdef CONFIG_X86_64
780 if (is_long_mode(&vmx->vcpu)) {
781 int index;
783 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
784 if (index >= 0)
785 move_msr_up(vmx, index, save_nmsrs++);
786 index = __find_msr_index(vmx, MSR_LSTAR);
787 if (index >= 0)
788 move_msr_up(vmx, index, save_nmsrs++);
789 index = __find_msr_index(vmx, MSR_CSTAR);
790 if (index >= 0)
791 move_msr_up(vmx, index, save_nmsrs++);
792 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
793 if (index >= 0)
794 move_msr_up(vmx, index, save_nmsrs++);
796 * MSR_K6_STAR is only needed on long mode guests, and only
797 * if efer.sce is enabled.
799 index = __find_msr_index(vmx, MSR_K6_STAR);
800 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
801 move_msr_up(vmx, index, save_nmsrs++);
803 #endif
804 vmx->save_nmsrs = save_nmsrs;
806 #ifdef CONFIG_X86_64
807 vmx->msr_offset_kernel_gs_base =
808 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
809 #endif
810 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
814 * reads and returns guest's timestamp counter "register"
815 * guest_tsc = host_tsc + tsc_offset -- 21.3
817 static u64 guest_read_tsc(void)
819 u64 host_tsc, tsc_offset;
821 rdtscll(host_tsc);
822 tsc_offset = vmcs_read64(TSC_OFFSET);
823 return host_tsc + tsc_offset;
827 * writes 'guest_tsc' into guest's timestamp counter "register"
828 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
830 static void guest_write_tsc(u64 guest_tsc)
832 u64 host_tsc;
834 rdtscll(host_tsc);
835 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
839 * Reads an msr value (of 'msr_index') into 'pdata'.
840 * Returns 0 on success, non-0 otherwise.
841 * Assumes vcpu_load() was already called.
843 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
845 u64 data;
846 struct kvm_msr_entry *msr;
848 if (!pdata) {
849 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
850 return -EINVAL;
853 switch (msr_index) {
854 #ifdef CONFIG_X86_64
855 case MSR_FS_BASE:
856 data = vmcs_readl(GUEST_FS_BASE);
857 break;
858 case MSR_GS_BASE:
859 data = vmcs_readl(GUEST_GS_BASE);
860 break;
861 case MSR_EFER:
862 return kvm_get_msr_common(vcpu, msr_index, pdata);
863 #endif
864 case MSR_IA32_TIME_STAMP_COUNTER:
865 data = guest_read_tsc();
866 break;
867 case MSR_IA32_SYSENTER_CS:
868 data = vmcs_read32(GUEST_SYSENTER_CS);
869 break;
870 case MSR_IA32_SYSENTER_EIP:
871 data = vmcs_readl(GUEST_SYSENTER_EIP);
872 break;
873 case MSR_IA32_SYSENTER_ESP:
874 data = vmcs_readl(GUEST_SYSENTER_ESP);
875 break;
876 default:
877 msr = find_msr_entry(to_vmx(vcpu), msr_index);
878 if (msr) {
879 data = msr->data;
880 break;
882 return kvm_get_msr_common(vcpu, msr_index, pdata);
885 *pdata = data;
886 return 0;
890 * Writes msr value into into the appropriate "register".
891 * Returns 0 on success, non-0 otherwise.
892 * Assumes vcpu_load() was already called.
894 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
896 struct vcpu_vmx *vmx = to_vmx(vcpu);
897 struct kvm_msr_entry *msr;
898 int ret = 0;
900 switch (msr_index) {
901 #ifdef CONFIG_X86_64
902 case MSR_EFER:
903 vmx_load_host_state(vmx);
904 ret = kvm_set_msr_common(vcpu, msr_index, data);
905 break;
906 case MSR_FS_BASE:
907 vmcs_writel(GUEST_FS_BASE, data);
908 break;
909 case MSR_GS_BASE:
910 vmcs_writel(GUEST_GS_BASE, data);
911 break;
912 #endif
913 case MSR_IA32_SYSENTER_CS:
914 vmcs_write32(GUEST_SYSENTER_CS, data);
915 break;
916 case MSR_IA32_SYSENTER_EIP:
917 vmcs_writel(GUEST_SYSENTER_EIP, data);
918 break;
919 case MSR_IA32_SYSENTER_ESP:
920 vmcs_writel(GUEST_SYSENTER_ESP, data);
921 break;
922 case MSR_IA32_TIME_STAMP_COUNTER:
923 guest_write_tsc(data);
924 break;
925 case MSR_P6_PERFCTR0:
926 case MSR_P6_PERFCTR1:
927 case MSR_P6_EVNTSEL0:
928 case MSR_P6_EVNTSEL1:
930 * Just discard all writes to the performance counters; this
931 * should keep both older linux and windows 64-bit guests
932 * happy
934 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
936 break;
937 default:
938 vmx_load_host_state(vmx);
939 msr = find_msr_entry(vmx, msr_index);
940 if (msr) {
941 msr->data = data;
942 break;
944 ret = kvm_set_msr_common(vcpu, msr_index, data);
947 return ret;
951 * Sync the rsp and rip registers into the vcpu structure. This allows
952 * registers to be accessed by indexing vcpu->arch.regs.
954 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
956 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
957 vcpu->arch.rip = vmcs_readl(GUEST_RIP);
961 * Syncs rsp and rip back into the vmcs. Should be called after possible
962 * modification.
964 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
966 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
967 vmcs_writel(GUEST_RIP, vcpu->arch.rip);
970 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
972 unsigned long dr7 = 0x400;
973 int old_singlestep;
975 old_singlestep = vcpu->guest_debug.singlestep;
977 vcpu->guest_debug.enabled = dbg->enabled;
978 if (vcpu->guest_debug.enabled) {
979 int i;
981 dr7 |= 0x200; /* exact */
982 for (i = 0; i < 4; ++i) {
983 if (!dbg->breakpoints[i].enabled)
984 continue;
985 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
986 dr7 |= 2 << (i*2); /* global enable */
987 dr7 |= 0 << (i*4+16); /* execution breakpoint */
990 vcpu->guest_debug.singlestep = dbg->singlestep;
991 } else
992 vcpu->guest_debug.singlestep = 0;
994 if (old_singlestep && !vcpu->guest_debug.singlestep) {
995 unsigned long flags;
997 flags = vmcs_readl(GUEST_RFLAGS);
998 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
999 vmcs_writel(GUEST_RFLAGS, flags);
1002 update_exception_bitmap(vcpu);
1003 vmcs_writel(GUEST_DR7, dr7);
1005 return 0;
1008 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1010 struct vcpu_vmx *vmx = to_vmx(vcpu);
1011 u32 idtv_info_field;
1013 idtv_info_field = vmx->idt_vectoring_info;
1014 if (idtv_info_field & INTR_INFO_VALID_MASK) {
1015 if (is_external_interrupt(idtv_info_field))
1016 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
1017 else
1018 printk(KERN_DEBUG "pending exception: not handled yet\n");
1020 return -1;
1023 static __init int cpu_has_kvm_support(void)
1025 unsigned long ecx = cpuid_ecx(1);
1026 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1029 static __init int vmx_disabled_by_bios(void)
1031 u64 msr;
1033 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1034 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
1035 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1036 == MSR_IA32_FEATURE_CONTROL_LOCKED;
1037 /* locked but not enabled */
1040 static void hardware_enable(void *garbage)
1042 int cpu = raw_smp_processor_id();
1043 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1044 u64 old;
1046 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1047 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1048 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
1049 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1050 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
1051 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1052 /* enable and lock */
1053 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1054 MSR_IA32_FEATURE_CONTROL_LOCKED |
1055 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
1056 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1057 asm volatile (ASM_VMX_VMXON_RAX
1058 : : "a"(&phys_addr), "m"(phys_addr)
1059 : "memory", "cc");
1062 static void vmclear_local_vcpus(void)
1064 int cpu = raw_smp_processor_id();
1065 struct vcpu_vmx *vmx, *n;
1067 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1068 local_vcpus_link)
1069 __vcpu_clear(vmx);
1072 static void hardware_disable(void *garbage)
1074 vmclear_local_vcpus();
1075 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1076 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1079 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1080 u32 msr, u32 *result)
1082 u32 vmx_msr_low, vmx_msr_high;
1083 u32 ctl = ctl_min | ctl_opt;
1085 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1087 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1088 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1090 /* Ensure minimum (required) set of control bits are supported. */
1091 if (ctl_min & ~ctl)
1092 return -EIO;
1094 *result = ctl;
1095 return 0;
1098 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1100 u32 vmx_msr_low, vmx_msr_high;
1101 u32 min, opt, min2, opt2;
1102 u32 _pin_based_exec_control = 0;
1103 u32 _cpu_based_exec_control = 0;
1104 u32 _cpu_based_2nd_exec_control = 0;
1105 u32 _vmexit_control = 0;
1106 u32 _vmentry_control = 0;
1108 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1109 opt = PIN_BASED_VIRTUAL_NMIS;
1110 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1111 &_pin_based_exec_control) < 0)
1112 return -EIO;
1114 min = CPU_BASED_HLT_EXITING |
1115 #ifdef CONFIG_X86_64
1116 CPU_BASED_CR8_LOAD_EXITING |
1117 CPU_BASED_CR8_STORE_EXITING |
1118 #endif
1119 CPU_BASED_CR3_LOAD_EXITING |
1120 CPU_BASED_CR3_STORE_EXITING |
1121 CPU_BASED_USE_IO_BITMAPS |
1122 CPU_BASED_MOV_DR_EXITING |
1123 CPU_BASED_USE_TSC_OFFSETING;
1124 opt = CPU_BASED_TPR_SHADOW |
1125 CPU_BASED_USE_MSR_BITMAPS |
1126 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1127 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1128 &_cpu_based_exec_control) < 0)
1129 return -EIO;
1130 #ifdef CONFIG_X86_64
1131 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1132 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1133 ~CPU_BASED_CR8_STORE_EXITING;
1134 #endif
1135 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1136 min2 = 0;
1137 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1138 SECONDARY_EXEC_WBINVD_EXITING |
1139 SECONDARY_EXEC_ENABLE_VPID |
1140 SECONDARY_EXEC_ENABLE_EPT;
1141 if (adjust_vmx_controls(min2, opt2,
1142 MSR_IA32_VMX_PROCBASED_CTLS2,
1143 &_cpu_based_2nd_exec_control) < 0)
1144 return -EIO;
1146 #ifndef CONFIG_X86_64
1147 if (!(_cpu_based_2nd_exec_control &
1148 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1149 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1150 #endif
1151 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1152 /* CR3 accesses don't need to cause VM Exits when EPT enabled */
1153 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1154 CPU_BASED_CR3_STORE_EXITING);
1155 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1156 &_cpu_based_exec_control) < 0)
1157 return -EIO;
1158 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1159 vmx_capability.ept, vmx_capability.vpid);
1162 min = 0;
1163 #ifdef CONFIG_X86_64
1164 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1165 #endif
1166 opt = 0;
1167 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1168 &_vmexit_control) < 0)
1169 return -EIO;
1171 min = opt = 0;
1172 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1173 &_vmentry_control) < 0)
1174 return -EIO;
1176 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1178 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1179 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1180 return -EIO;
1182 #ifdef CONFIG_X86_64
1183 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1184 if (vmx_msr_high & (1u<<16))
1185 return -EIO;
1186 #endif
1188 /* Require Write-Back (WB) memory type for VMCS accesses. */
1189 if (((vmx_msr_high >> 18) & 15) != 6)
1190 return -EIO;
1192 vmcs_conf->size = vmx_msr_high & 0x1fff;
1193 vmcs_conf->order = get_order(vmcs_config.size);
1194 vmcs_conf->revision_id = vmx_msr_low;
1196 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1197 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1198 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1199 vmcs_conf->vmexit_ctrl = _vmexit_control;
1200 vmcs_conf->vmentry_ctrl = _vmentry_control;
1202 return 0;
1205 static struct vmcs *alloc_vmcs_cpu(int cpu)
1207 int node = cpu_to_node(cpu);
1208 struct page *pages;
1209 struct vmcs *vmcs;
1211 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1212 if (!pages)
1213 return NULL;
1214 vmcs = page_address(pages);
1215 memset(vmcs, 0, vmcs_config.size);
1216 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1217 return vmcs;
1220 static struct vmcs *alloc_vmcs(void)
1222 return alloc_vmcs_cpu(raw_smp_processor_id());
1225 static void free_vmcs(struct vmcs *vmcs)
1227 free_pages((unsigned long)vmcs, vmcs_config.order);
1230 static void free_kvm_area(void)
1232 int cpu;
1234 for_each_online_cpu(cpu)
1235 free_vmcs(per_cpu(vmxarea, cpu));
1238 static __init int alloc_kvm_area(void)
1240 int cpu;
1242 for_each_online_cpu(cpu) {
1243 struct vmcs *vmcs;
1245 vmcs = alloc_vmcs_cpu(cpu);
1246 if (!vmcs) {
1247 free_kvm_area();
1248 return -ENOMEM;
1251 per_cpu(vmxarea, cpu) = vmcs;
1253 return 0;
1256 static __init int hardware_setup(void)
1258 if (setup_vmcs_config(&vmcs_config) < 0)
1259 return -EIO;
1261 if (boot_cpu_has(X86_FEATURE_NX))
1262 kvm_enable_efer_bits(EFER_NX);
1264 return alloc_kvm_area();
1267 static __exit void hardware_unsetup(void)
1269 free_kvm_area();
1272 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1274 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1276 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1277 vmcs_write16(sf->selector, save->selector);
1278 vmcs_writel(sf->base, save->base);
1279 vmcs_write32(sf->limit, save->limit);
1280 vmcs_write32(sf->ar_bytes, save->ar);
1281 } else {
1282 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1283 << AR_DPL_SHIFT;
1284 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1288 static void enter_pmode(struct kvm_vcpu *vcpu)
1290 unsigned long flags;
1292 vcpu->arch.rmode.active = 0;
1294 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1295 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1296 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1298 flags = vmcs_readl(GUEST_RFLAGS);
1299 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1300 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1301 vmcs_writel(GUEST_RFLAGS, flags);
1303 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1304 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1306 update_exception_bitmap(vcpu);
1308 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1309 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1310 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1311 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1313 vmcs_write16(GUEST_SS_SELECTOR, 0);
1314 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1316 vmcs_write16(GUEST_CS_SELECTOR,
1317 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1318 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1321 static gva_t rmode_tss_base(struct kvm *kvm)
1323 if (!kvm->arch.tss_addr) {
1324 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1325 kvm->memslots[0].npages - 3;
1326 return base_gfn << PAGE_SHIFT;
1328 return kvm->arch.tss_addr;
1331 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1333 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1335 save->selector = vmcs_read16(sf->selector);
1336 save->base = vmcs_readl(sf->base);
1337 save->limit = vmcs_read32(sf->limit);
1338 save->ar = vmcs_read32(sf->ar_bytes);
1339 vmcs_write16(sf->selector, save->base >> 4);
1340 vmcs_write32(sf->base, save->base & 0xfffff);
1341 vmcs_write32(sf->limit, 0xffff);
1342 vmcs_write32(sf->ar_bytes, 0xf3);
1345 static void enter_rmode(struct kvm_vcpu *vcpu)
1347 unsigned long flags;
1349 vcpu->arch.rmode.active = 1;
1351 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1352 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1354 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1355 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1357 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1358 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1360 flags = vmcs_readl(GUEST_RFLAGS);
1361 vcpu->arch.rmode.save_iopl
1362 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1364 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1366 vmcs_writel(GUEST_RFLAGS, flags);
1367 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1368 update_exception_bitmap(vcpu);
1370 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1371 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1372 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1374 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1375 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1376 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1377 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1378 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1380 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1381 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1382 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1383 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1385 kvm_mmu_reset_context(vcpu);
1386 init_rmode(vcpu->kvm);
1389 #ifdef CONFIG_X86_64
1391 static void enter_lmode(struct kvm_vcpu *vcpu)
1393 u32 guest_tr_ar;
1395 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1396 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1397 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1398 __func__);
1399 vmcs_write32(GUEST_TR_AR_BYTES,
1400 (guest_tr_ar & ~AR_TYPE_MASK)
1401 | AR_TYPE_BUSY_64_TSS);
1404 vcpu->arch.shadow_efer |= EFER_LMA;
1406 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1407 vmcs_write32(VM_ENTRY_CONTROLS,
1408 vmcs_read32(VM_ENTRY_CONTROLS)
1409 | VM_ENTRY_IA32E_MODE);
1412 static void exit_lmode(struct kvm_vcpu *vcpu)
1414 vcpu->arch.shadow_efer &= ~EFER_LMA;
1416 vmcs_write32(VM_ENTRY_CONTROLS,
1417 vmcs_read32(VM_ENTRY_CONTROLS)
1418 & ~VM_ENTRY_IA32E_MODE);
1421 #endif
1423 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1425 vpid_sync_vcpu_all(to_vmx(vcpu));
1426 if (vm_need_ept())
1427 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1430 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1432 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1433 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1436 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1438 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1439 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1440 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1441 return;
1443 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1444 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1445 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1446 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1450 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1452 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1453 unsigned long cr0,
1454 struct kvm_vcpu *vcpu)
1456 if (!(cr0 & X86_CR0_PG)) {
1457 /* From paging/starting to nonpaging */
1458 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1459 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1460 (CPU_BASED_CR3_LOAD_EXITING |
1461 CPU_BASED_CR3_STORE_EXITING));
1462 vcpu->arch.cr0 = cr0;
1463 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1464 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1465 *hw_cr0 &= ~X86_CR0_WP;
1466 } else if (!is_paging(vcpu)) {
1467 /* From nonpaging to paging */
1468 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1469 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1470 ~(CPU_BASED_CR3_LOAD_EXITING |
1471 CPU_BASED_CR3_STORE_EXITING));
1472 vcpu->arch.cr0 = cr0;
1473 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1474 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1475 *hw_cr0 &= ~X86_CR0_WP;
1479 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1480 struct kvm_vcpu *vcpu)
1482 if (!is_paging(vcpu)) {
1483 *hw_cr4 &= ~X86_CR4_PAE;
1484 *hw_cr4 |= X86_CR4_PSE;
1485 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1486 *hw_cr4 &= ~X86_CR4_PAE;
1489 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1491 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1492 KVM_VM_CR0_ALWAYS_ON;
1494 vmx_fpu_deactivate(vcpu);
1496 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1497 enter_pmode(vcpu);
1499 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1500 enter_rmode(vcpu);
1502 #ifdef CONFIG_X86_64
1503 if (vcpu->arch.shadow_efer & EFER_LME) {
1504 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1505 enter_lmode(vcpu);
1506 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1507 exit_lmode(vcpu);
1509 #endif
1511 if (vm_need_ept())
1512 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1514 vmcs_writel(CR0_READ_SHADOW, cr0);
1515 vmcs_writel(GUEST_CR0, hw_cr0);
1516 vcpu->arch.cr0 = cr0;
1518 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1519 vmx_fpu_activate(vcpu);
1522 static u64 construct_eptp(unsigned long root_hpa)
1524 u64 eptp;
1526 /* TODO write the value reading from MSR */
1527 eptp = VMX_EPT_DEFAULT_MT |
1528 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1529 eptp |= (root_hpa & PAGE_MASK);
1531 return eptp;
1534 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1536 unsigned long guest_cr3;
1537 u64 eptp;
1539 guest_cr3 = cr3;
1540 if (vm_need_ept()) {
1541 eptp = construct_eptp(cr3);
1542 vmcs_write64(EPT_POINTER, eptp);
1543 ept_sync_context(eptp);
1544 ept_load_pdptrs(vcpu);
1545 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1546 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1549 vmx_flush_tlb(vcpu);
1550 vmcs_writel(GUEST_CR3, guest_cr3);
1551 if (vcpu->arch.cr0 & X86_CR0_PE)
1552 vmx_fpu_deactivate(vcpu);
1555 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1557 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1558 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1560 vcpu->arch.cr4 = cr4;
1561 if (vm_need_ept())
1562 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1564 vmcs_writel(CR4_READ_SHADOW, cr4);
1565 vmcs_writel(GUEST_CR4, hw_cr4);
1568 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1570 struct vcpu_vmx *vmx = to_vmx(vcpu);
1571 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1573 vcpu->arch.shadow_efer = efer;
1574 if (!msr)
1575 return;
1576 if (efer & EFER_LMA) {
1577 vmcs_write32(VM_ENTRY_CONTROLS,
1578 vmcs_read32(VM_ENTRY_CONTROLS) |
1579 VM_ENTRY_IA32E_MODE);
1580 msr->data = efer;
1582 } else {
1583 vmcs_write32(VM_ENTRY_CONTROLS,
1584 vmcs_read32(VM_ENTRY_CONTROLS) &
1585 ~VM_ENTRY_IA32E_MODE);
1587 msr->data = efer & ~EFER_LME;
1589 setup_msrs(vmx);
1592 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1594 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1596 return vmcs_readl(sf->base);
1599 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1600 struct kvm_segment *var, int seg)
1602 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1603 u32 ar;
1605 var->base = vmcs_readl(sf->base);
1606 var->limit = vmcs_read32(sf->limit);
1607 var->selector = vmcs_read16(sf->selector);
1608 ar = vmcs_read32(sf->ar_bytes);
1609 if (ar & AR_UNUSABLE_MASK)
1610 ar = 0;
1611 var->type = ar & 15;
1612 var->s = (ar >> 4) & 1;
1613 var->dpl = (ar >> 5) & 3;
1614 var->present = (ar >> 7) & 1;
1615 var->avl = (ar >> 12) & 1;
1616 var->l = (ar >> 13) & 1;
1617 var->db = (ar >> 14) & 1;
1618 var->g = (ar >> 15) & 1;
1619 var->unusable = (ar >> 16) & 1;
1622 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1624 struct kvm_segment kvm_seg;
1626 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1627 return 0;
1629 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1630 return 3;
1632 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1633 return kvm_seg.selector & 3;
1636 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1638 u32 ar;
1640 if (var->unusable)
1641 ar = 1 << 16;
1642 else {
1643 ar = var->type & 15;
1644 ar |= (var->s & 1) << 4;
1645 ar |= (var->dpl & 3) << 5;
1646 ar |= (var->present & 1) << 7;
1647 ar |= (var->avl & 1) << 12;
1648 ar |= (var->l & 1) << 13;
1649 ar |= (var->db & 1) << 14;
1650 ar |= (var->g & 1) << 15;
1652 if (ar == 0) /* a 0 value means unusable */
1653 ar = AR_UNUSABLE_MASK;
1655 return ar;
1658 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1659 struct kvm_segment *var, int seg)
1661 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1662 u32 ar;
1664 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1665 vcpu->arch.rmode.tr.selector = var->selector;
1666 vcpu->arch.rmode.tr.base = var->base;
1667 vcpu->arch.rmode.tr.limit = var->limit;
1668 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1669 return;
1671 vmcs_writel(sf->base, var->base);
1672 vmcs_write32(sf->limit, var->limit);
1673 vmcs_write16(sf->selector, var->selector);
1674 if (vcpu->arch.rmode.active && var->s) {
1676 * Hack real-mode segments into vm86 compatibility.
1678 if (var->base == 0xffff0000 && var->selector == 0xf000)
1679 vmcs_writel(sf->base, 0xf0000);
1680 ar = 0xf3;
1681 } else
1682 ar = vmx_segment_access_rights(var);
1683 vmcs_write32(sf->ar_bytes, ar);
1686 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1688 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1690 *db = (ar >> 14) & 1;
1691 *l = (ar >> 13) & 1;
1694 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1696 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1697 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1700 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1702 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1703 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1706 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1708 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1709 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1712 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1714 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1715 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1718 static int init_rmode_tss(struct kvm *kvm)
1720 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1721 u16 data = 0;
1722 int ret = 0;
1723 int r;
1725 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1726 if (r < 0)
1727 goto out;
1728 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1729 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1730 if (r < 0)
1731 goto out;
1732 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1733 if (r < 0)
1734 goto out;
1735 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1736 if (r < 0)
1737 goto out;
1738 data = ~0;
1739 r = kvm_write_guest_page(kvm, fn, &data,
1740 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1741 sizeof(u8));
1742 if (r < 0)
1743 goto out;
1745 ret = 1;
1746 out:
1747 return ret;
1750 static int init_rmode_identity_map(struct kvm *kvm)
1752 int i, r, ret;
1753 pfn_t identity_map_pfn;
1754 u32 tmp;
1756 if (!vm_need_ept())
1757 return 1;
1758 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1759 printk(KERN_ERR "EPT: identity-mapping pagetable "
1760 "haven't been allocated!\n");
1761 return 0;
1763 if (likely(kvm->arch.ept_identity_pagetable_done))
1764 return 1;
1765 ret = 0;
1766 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1767 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1768 if (r < 0)
1769 goto out;
1770 /* Set up identity-mapping pagetable for EPT in real mode */
1771 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1772 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1773 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1774 r = kvm_write_guest_page(kvm, identity_map_pfn,
1775 &tmp, i * sizeof(tmp), sizeof(tmp));
1776 if (r < 0)
1777 goto out;
1779 kvm->arch.ept_identity_pagetable_done = true;
1780 ret = 1;
1781 out:
1782 return ret;
1785 static void seg_setup(int seg)
1787 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1789 vmcs_write16(sf->selector, 0);
1790 vmcs_writel(sf->base, 0);
1791 vmcs_write32(sf->limit, 0xffff);
1792 vmcs_write32(sf->ar_bytes, 0x93);
1795 static int alloc_apic_access_page(struct kvm *kvm)
1797 struct kvm_userspace_memory_region kvm_userspace_mem;
1798 int r = 0;
1800 down_write(&kvm->slots_lock);
1801 if (kvm->arch.apic_access_page)
1802 goto out;
1803 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1804 kvm_userspace_mem.flags = 0;
1805 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1806 kvm_userspace_mem.memory_size = PAGE_SIZE;
1807 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1808 if (r)
1809 goto out;
1811 down_read(&current->mm->mmap_sem);
1812 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1813 up_read(&current->mm->mmap_sem);
1814 out:
1815 up_write(&kvm->slots_lock);
1816 return r;
1819 static int alloc_identity_pagetable(struct kvm *kvm)
1821 struct kvm_userspace_memory_region kvm_userspace_mem;
1822 int r = 0;
1824 down_write(&kvm->slots_lock);
1825 if (kvm->arch.ept_identity_pagetable)
1826 goto out;
1827 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
1828 kvm_userspace_mem.flags = 0;
1829 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1830 kvm_userspace_mem.memory_size = PAGE_SIZE;
1831 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1832 if (r)
1833 goto out;
1835 down_read(&current->mm->mmap_sem);
1836 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
1837 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
1838 up_read(&current->mm->mmap_sem);
1839 out:
1840 up_write(&kvm->slots_lock);
1841 return r;
1844 static void allocate_vpid(struct vcpu_vmx *vmx)
1846 int vpid;
1848 vmx->vpid = 0;
1849 if (!enable_vpid || !cpu_has_vmx_vpid())
1850 return;
1851 spin_lock(&vmx_vpid_lock);
1852 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1853 if (vpid < VMX_NR_VPIDS) {
1854 vmx->vpid = vpid;
1855 __set_bit(vpid, vmx_vpid_bitmap);
1857 spin_unlock(&vmx_vpid_lock);
1860 static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
1862 void *va;
1864 if (!cpu_has_vmx_msr_bitmap())
1865 return;
1868 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1869 * have the write-low and read-high bitmap offsets the wrong way round.
1870 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1872 va = kmap(msr_bitmap);
1873 if (msr <= 0x1fff) {
1874 __clear_bit(msr, va + 0x000); /* read-low */
1875 __clear_bit(msr, va + 0x800); /* write-low */
1876 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1877 msr &= 0x1fff;
1878 __clear_bit(msr, va + 0x400); /* read-high */
1879 __clear_bit(msr, va + 0xc00); /* write-high */
1881 kunmap(msr_bitmap);
1885 * Sets up the vmcs for emulated real mode.
1887 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1889 u32 host_sysenter_cs;
1890 u32 junk;
1891 unsigned long a;
1892 struct descriptor_table dt;
1893 int i;
1894 unsigned long kvm_vmx_return;
1895 u32 exec_control;
1897 /* I/O */
1898 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1899 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1901 if (cpu_has_vmx_msr_bitmap())
1902 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
1904 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1906 /* Control */
1907 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1908 vmcs_config.pin_based_exec_ctrl);
1910 exec_control = vmcs_config.cpu_based_exec_ctrl;
1911 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1912 exec_control &= ~CPU_BASED_TPR_SHADOW;
1913 #ifdef CONFIG_X86_64
1914 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1915 CPU_BASED_CR8_LOAD_EXITING;
1916 #endif
1918 if (!vm_need_ept())
1919 exec_control |= CPU_BASED_CR3_STORE_EXITING |
1920 CPU_BASED_CR3_LOAD_EXITING;
1921 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1923 if (cpu_has_secondary_exec_ctrls()) {
1924 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1925 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1926 exec_control &=
1927 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1928 if (vmx->vpid == 0)
1929 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1930 if (!vm_need_ept())
1931 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
1932 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1935 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1936 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1937 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1939 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1940 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1941 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1943 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1944 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1945 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1946 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
1947 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
1948 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1949 #ifdef CONFIG_X86_64
1950 rdmsrl(MSR_FS_BASE, a);
1951 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1952 rdmsrl(MSR_GS_BASE, a);
1953 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1954 #else
1955 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1956 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1957 #endif
1959 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1961 kvm_get_idt(&dt);
1962 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1964 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1965 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1966 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1967 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1968 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1970 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1971 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1972 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1973 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1974 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1975 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1977 for (i = 0; i < NR_VMX_MSR; ++i) {
1978 u32 index = vmx_msr_index[i];
1979 u32 data_low, data_high;
1980 u64 data;
1981 int j = vmx->nmsrs;
1983 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1984 continue;
1985 if (wrmsr_safe(index, data_low, data_high) < 0)
1986 continue;
1987 data = data_low | ((u64)data_high << 32);
1988 vmx->host_msrs[j].index = index;
1989 vmx->host_msrs[j].reserved = 0;
1990 vmx->host_msrs[j].data = data;
1991 vmx->guest_msrs[j] = vmx->host_msrs[j];
1992 ++vmx->nmsrs;
1995 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1997 /* 22.2.1, 20.8.1 */
1998 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2000 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2001 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2004 return 0;
2007 static int init_rmode(struct kvm *kvm)
2009 if (!init_rmode_tss(kvm))
2010 return 0;
2011 if (!init_rmode_identity_map(kvm))
2012 return 0;
2013 return 1;
2016 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2018 struct vcpu_vmx *vmx = to_vmx(vcpu);
2019 u64 msr;
2020 int ret;
2022 down_read(&vcpu->kvm->slots_lock);
2023 if (!init_rmode(vmx->vcpu.kvm)) {
2024 ret = -ENOMEM;
2025 goto out;
2028 vmx->vcpu.arch.rmode.active = 0;
2030 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2031 kvm_set_cr8(&vmx->vcpu, 0);
2032 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2033 if (vmx->vcpu.vcpu_id == 0)
2034 msr |= MSR_IA32_APICBASE_BSP;
2035 kvm_set_apic_base(&vmx->vcpu, msr);
2037 fx_init(&vmx->vcpu);
2040 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2041 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2043 if (vmx->vcpu.vcpu_id == 0) {
2044 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2045 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2046 } else {
2047 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2048 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2050 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2051 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2053 seg_setup(VCPU_SREG_DS);
2054 seg_setup(VCPU_SREG_ES);
2055 seg_setup(VCPU_SREG_FS);
2056 seg_setup(VCPU_SREG_GS);
2057 seg_setup(VCPU_SREG_SS);
2059 vmcs_write16(GUEST_TR_SELECTOR, 0);
2060 vmcs_writel(GUEST_TR_BASE, 0);
2061 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2062 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2064 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2065 vmcs_writel(GUEST_LDTR_BASE, 0);
2066 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2067 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2069 vmcs_write32(GUEST_SYSENTER_CS, 0);
2070 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2071 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2073 vmcs_writel(GUEST_RFLAGS, 0x02);
2074 if (vmx->vcpu.vcpu_id == 0)
2075 vmcs_writel(GUEST_RIP, 0xfff0);
2076 else
2077 vmcs_writel(GUEST_RIP, 0);
2078 vmcs_writel(GUEST_RSP, 0);
2080 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2081 vmcs_writel(GUEST_DR7, 0x400);
2083 vmcs_writel(GUEST_GDTR_BASE, 0);
2084 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2086 vmcs_writel(GUEST_IDTR_BASE, 0);
2087 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2089 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2090 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2091 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2093 guest_write_tsc(0);
2095 /* Special registers */
2096 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2098 setup_msrs(vmx);
2100 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2102 if (cpu_has_vmx_tpr_shadow()) {
2103 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2104 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2105 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2106 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2107 vmcs_write32(TPR_THRESHOLD, 0);
2110 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2111 vmcs_write64(APIC_ACCESS_ADDR,
2112 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2114 if (vmx->vpid != 0)
2115 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2117 vmx->vcpu.arch.cr0 = 0x60000010;
2118 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2119 vmx_set_cr4(&vmx->vcpu, 0);
2120 vmx_set_efer(&vmx->vcpu, 0);
2121 vmx_fpu_activate(&vmx->vcpu);
2122 update_exception_bitmap(&vmx->vcpu);
2124 vpid_sync_vcpu_all(vmx);
2126 ret = 0;
2128 out:
2129 up_read(&vcpu->kvm->slots_lock);
2130 return ret;
2133 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2135 struct vcpu_vmx *vmx = to_vmx(vcpu);
2137 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2139 if (vcpu->arch.rmode.active) {
2140 vmx->rmode.irq.pending = true;
2141 vmx->rmode.irq.vector = irq;
2142 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
2143 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2144 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2145 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2146 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
2147 return;
2149 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2150 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2153 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2155 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2156 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2157 vcpu->arch.nmi_pending = 0;
2160 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2162 int word_index = __ffs(vcpu->arch.irq_summary);
2163 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2164 int irq = word_index * BITS_PER_LONG + bit_index;
2166 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2167 if (!vcpu->arch.irq_pending[word_index])
2168 clear_bit(word_index, &vcpu->arch.irq_summary);
2169 vmx_inject_irq(vcpu, irq);
2173 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2174 struct kvm_run *kvm_run)
2176 u32 cpu_based_vm_exec_control;
2178 vcpu->arch.interrupt_window_open =
2179 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2180 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2182 if (vcpu->arch.interrupt_window_open &&
2183 vcpu->arch.irq_summary &&
2184 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
2186 * If interrupts enabled, and not blocked by sti or mov ss. Good.
2188 kvm_do_inject_irq(vcpu);
2190 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2191 if (!vcpu->arch.interrupt_window_open &&
2192 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2194 * Interrupts blocked. Wait for unblock.
2196 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2197 else
2198 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2199 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2202 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2204 int ret;
2205 struct kvm_userspace_memory_region tss_mem = {
2206 .slot = 8,
2207 .guest_phys_addr = addr,
2208 .memory_size = PAGE_SIZE * 3,
2209 .flags = 0,
2212 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2213 if (ret)
2214 return ret;
2215 kvm->arch.tss_addr = addr;
2216 return 0;
2219 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2221 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2223 set_debugreg(dbg->bp[0], 0);
2224 set_debugreg(dbg->bp[1], 1);
2225 set_debugreg(dbg->bp[2], 2);
2226 set_debugreg(dbg->bp[3], 3);
2228 if (dbg->singlestep) {
2229 unsigned long flags;
2231 flags = vmcs_readl(GUEST_RFLAGS);
2232 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2233 vmcs_writel(GUEST_RFLAGS, flags);
2237 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2238 int vec, u32 err_code)
2240 if (!vcpu->arch.rmode.active)
2241 return 0;
2244 * Instruction with address size override prefix opcode 0x67
2245 * Cause the #SS fault with 0 error code in VM86 mode.
2247 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2248 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2249 return 1;
2250 return 0;
2253 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2255 struct vcpu_vmx *vmx = to_vmx(vcpu);
2256 u32 intr_info, error_code;
2257 unsigned long cr2, rip;
2258 u32 vect_info;
2259 enum emulation_result er;
2261 vect_info = vmx->idt_vectoring_info;
2262 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2264 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2265 !is_page_fault(intr_info))
2266 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2267 "intr info 0x%x\n", __func__, vect_info, intr_info);
2269 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2270 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2271 set_bit(irq, vcpu->arch.irq_pending);
2272 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2275 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2276 return 1; /* already handled by vmx_vcpu_run() */
2278 if (is_no_device(intr_info)) {
2279 vmx_fpu_activate(vcpu);
2280 return 1;
2283 if (is_invalid_opcode(intr_info)) {
2284 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2285 if (er != EMULATE_DONE)
2286 kvm_queue_exception(vcpu, UD_VECTOR);
2287 return 1;
2290 error_code = 0;
2291 rip = vmcs_readl(GUEST_RIP);
2292 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2293 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2294 if (is_page_fault(intr_info)) {
2295 /* EPT won't cause page fault directly */
2296 if (vm_need_ept())
2297 BUG();
2298 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2299 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2300 (u32)((u64)cr2 >> 32), handler);
2301 if (vect_info & VECTORING_INFO_VALID_MASK)
2302 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2303 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2306 if (vcpu->arch.rmode.active &&
2307 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2308 error_code)) {
2309 if (vcpu->arch.halt_request) {
2310 vcpu->arch.halt_request = 0;
2311 return kvm_emulate_halt(vcpu);
2313 return 1;
2316 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2317 (INTR_TYPE_EXCEPTION | 1)) {
2318 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2319 return 0;
2321 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2322 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2323 kvm_run->ex.error_code = error_code;
2324 return 0;
2327 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2328 struct kvm_run *kvm_run)
2330 ++vcpu->stat.irq_exits;
2331 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2332 return 1;
2335 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2337 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2338 return 0;
2341 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2343 unsigned long exit_qualification;
2344 int size, down, in, string, rep;
2345 unsigned port;
2347 ++vcpu->stat.io_exits;
2348 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2349 string = (exit_qualification & 16) != 0;
2351 if (string) {
2352 if (emulate_instruction(vcpu,
2353 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2354 return 0;
2355 return 1;
2358 size = (exit_qualification & 7) + 1;
2359 in = (exit_qualification & 8) != 0;
2360 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2361 rep = (exit_qualification & 32) != 0;
2362 port = exit_qualification >> 16;
2364 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2367 static void
2368 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2371 * Patch in the VMCALL instruction:
2373 hypercall[0] = 0x0f;
2374 hypercall[1] = 0x01;
2375 hypercall[2] = 0xc1;
2378 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2380 unsigned long exit_qualification;
2381 int cr;
2382 int reg;
2384 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2385 cr = exit_qualification & 15;
2386 reg = (exit_qualification >> 8) & 15;
2387 switch ((exit_qualification >> 4) & 3) {
2388 case 0: /* mov to cr */
2389 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
2390 (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
2391 switch (cr) {
2392 case 0:
2393 vcpu_load_rsp_rip(vcpu);
2394 kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
2395 skip_emulated_instruction(vcpu);
2396 return 1;
2397 case 3:
2398 vcpu_load_rsp_rip(vcpu);
2399 kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
2400 skip_emulated_instruction(vcpu);
2401 return 1;
2402 case 4:
2403 vcpu_load_rsp_rip(vcpu);
2404 kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
2405 skip_emulated_instruction(vcpu);
2406 return 1;
2407 case 8:
2408 vcpu_load_rsp_rip(vcpu);
2409 kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
2410 skip_emulated_instruction(vcpu);
2411 if (irqchip_in_kernel(vcpu->kvm))
2412 return 1;
2413 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2414 return 0;
2416 break;
2417 case 2: /* clts */
2418 vcpu_load_rsp_rip(vcpu);
2419 vmx_fpu_deactivate(vcpu);
2420 vcpu->arch.cr0 &= ~X86_CR0_TS;
2421 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2422 vmx_fpu_activate(vcpu);
2423 KVMTRACE_0D(CLTS, vcpu, handler);
2424 skip_emulated_instruction(vcpu);
2425 return 1;
2426 case 1: /*mov from cr*/
2427 switch (cr) {
2428 case 3:
2429 vcpu_load_rsp_rip(vcpu);
2430 vcpu->arch.regs[reg] = vcpu->arch.cr3;
2431 vcpu_put_rsp_rip(vcpu);
2432 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2433 (u32)vcpu->arch.regs[reg],
2434 (u32)((u64)vcpu->arch.regs[reg] >> 32),
2435 handler);
2436 skip_emulated_instruction(vcpu);
2437 return 1;
2438 case 8:
2439 vcpu_load_rsp_rip(vcpu);
2440 vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
2441 vcpu_put_rsp_rip(vcpu);
2442 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2443 (u32)vcpu->arch.regs[reg], handler);
2444 skip_emulated_instruction(vcpu);
2445 return 1;
2447 break;
2448 case 3: /* lmsw */
2449 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2451 skip_emulated_instruction(vcpu);
2452 return 1;
2453 default:
2454 break;
2456 kvm_run->exit_reason = 0;
2457 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2458 (int)(exit_qualification >> 4) & 3, cr);
2459 return 0;
2462 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2464 unsigned long exit_qualification;
2465 unsigned long val;
2466 int dr, reg;
2469 * FIXME: this code assumes the host is debugging the guest.
2470 * need to deal with guest debugging itself too.
2472 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2473 dr = exit_qualification & 7;
2474 reg = (exit_qualification >> 8) & 15;
2475 vcpu_load_rsp_rip(vcpu);
2476 if (exit_qualification & 16) {
2477 /* mov from dr */
2478 switch (dr) {
2479 case 6:
2480 val = 0xffff0ff0;
2481 break;
2482 case 7:
2483 val = 0x400;
2484 break;
2485 default:
2486 val = 0;
2488 vcpu->arch.regs[reg] = val;
2489 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2490 } else {
2491 /* mov to dr */
2493 vcpu_put_rsp_rip(vcpu);
2494 skip_emulated_instruction(vcpu);
2495 return 1;
2498 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2500 kvm_emulate_cpuid(vcpu);
2501 return 1;
2504 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2506 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2507 u64 data;
2509 if (vmx_get_msr(vcpu, ecx, &data)) {
2510 kvm_inject_gp(vcpu, 0);
2511 return 1;
2514 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2515 handler);
2517 /* FIXME: handling of bits 32:63 of rax, rdx */
2518 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2519 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2520 skip_emulated_instruction(vcpu);
2521 return 1;
2524 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2526 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2527 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2528 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2530 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2531 handler);
2533 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2534 kvm_inject_gp(vcpu, 0);
2535 return 1;
2538 skip_emulated_instruction(vcpu);
2539 return 1;
2542 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2543 struct kvm_run *kvm_run)
2545 return 1;
2548 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2549 struct kvm_run *kvm_run)
2551 u32 cpu_based_vm_exec_control;
2553 /* clear pending irq */
2554 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2555 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2556 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2558 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2561 * If the user space waits to inject interrupts, exit as soon as
2562 * possible
2564 if (kvm_run->request_interrupt_window &&
2565 !vcpu->arch.irq_summary) {
2566 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2567 ++vcpu->stat.irq_window_exits;
2568 return 0;
2570 return 1;
2573 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2575 skip_emulated_instruction(vcpu);
2576 return kvm_emulate_halt(vcpu);
2579 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2581 skip_emulated_instruction(vcpu);
2582 kvm_emulate_hypercall(vcpu);
2583 return 1;
2586 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2588 skip_emulated_instruction(vcpu);
2589 /* TODO: Add support for VT-d/pass-through device */
2590 return 1;
2593 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2595 u64 exit_qualification;
2596 enum emulation_result er;
2597 unsigned long offset;
2599 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2600 offset = exit_qualification & 0xffful;
2602 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2604 if (er != EMULATE_DONE) {
2605 printk(KERN_ERR
2606 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2607 offset);
2608 return -ENOTSUPP;
2610 return 1;
2613 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2615 unsigned long exit_qualification;
2616 u16 tss_selector;
2617 int reason;
2619 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2621 reason = (u32)exit_qualification >> 30;
2622 tss_selector = exit_qualification;
2624 return kvm_task_switch(vcpu, tss_selector, reason);
2627 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2629 u64 exit_qualification;
2630 enum emulation_result er;
2631 gpa_t gpa;
2632 unsigned long hva;
2633 int gla_validity;
2634 int r;
2636 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2638 if (exit_qualification & (1 << 6)) {
2639 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2640 return -ENOTSUPP;
2643 gla_validity = (exit_qualification >> 7) & 0x3;
2644 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2645 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2646 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2647 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2648 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2649 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2650 (long unsigned int)exit_qualification);
2651 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2652 kvm_run->hw.hardware_exit_reason = 0;
2653 return -ENOTSUPP;
2656 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
2657 hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
2658 if (!kvm_is_error_hva(hva)) {
2659 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
2660 if (r < 0) {
2661 printk(KERN_ERR "EPT: Not enough memory!\n");
2662 return -ENOMEM;
2664 return 1;
2665 } else {
2666 /* must be MMIO */
2667 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2669 if (er == EMULATE_FAIL) {
2670 printk(KERN_ERR
2671 "EPT: Fail to handle EPT violation vmexit!er is %d\n",
2672 er);
2673 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2674 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2675 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2676 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2677 (long unsigned int)exit_qualification);
2678 return -ENOTSUPP;
2679 } else if (er == EMULATE_DO_MMIO)
2680 return 0;
2682 return 1;
2685 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2687 u32 cpu_based_vm_exec_control;
2689 /* clear pending NMI */
2690 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2691 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2692 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2693 ++vcpu->stat.nmi_window_exits;
2695 return 1;
2699 * The exit handlers return 1 if the exit was handled fully and guest execution
2700 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2701 * to be done to userspace and return 0.
2703 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2704 struct kvm_run *kvm_run) = {
2705 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2706 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2707 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2708 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
2709 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2710 [EXIT_REASON_CR_ACCESS] = handle_cr,
2711 [EXIT_REASON_DR_ACCESS] = handle_dr,
2712 [EXIT_REASON_CPUID] = handle_cpuid,
2713 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2714 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2715 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2716 [EXIT_REASON_HLT] = handle_halt,
2717 [EXIT_REASON_VMCALL] = handle_vmcall,
2718 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2719 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2720 [EXIT_REASON_WBINVD] = handle_wbinvd,
2721 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
2722 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
2725 static const int kvm_vmx_max_exit_handlers =
2726 ARRAY_SIZE(kvm_vmx_exit_handlers);
2729 * The guest has exited. See if we can fix it or if we need userspace
2730 * assistance.
2732 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2734 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2735 struct vcpu_vmx *vmx = to_vmx(vcpu);
2736 u32 vectoring_info = vmx->idt_vectoring_info;
2738 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
2739 (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
2741 /* Access CR3 don't cause VMExit in paging mode, so we need
2742 * to sync with guest real CR3. */
2743 if (vm_need_ept() && is_paging(vcpu)) {
2744 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2745 ept_load_pdptrs(vcpu);
2748 if (unlikely(vmx->fail)) {
2749 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2750 kvm_run->fail_entry.hardware_entry_failure_reason
2751 = vmcs_read32(VM_INSTRUCTION_ERROR);
2752 return 0;
2755 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2756 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
2757 exit_reason != EXIT_REASON_EPT_VIOLATION))
2758 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2759 "exit reason is 0x%x\n", __func__, exit_reason);
2760 if (exit_reason < kvm_vmx_max_exit_handlers
2761 && kvm_vmx_exit_handlers[exit_reason])
2762 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2763 else {
2764 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2765 kvm_run->hw.hardware_exit_reason = exit_reason;
2767 return 0;
2770 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2772 int max_irr, tpr;
2774 if (!vm_need_tpr_shadow(vcpu->kvm))
2775 return;
2777 if (!kvm_lapic_enabled(vcpu) ||
2778 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2779 vmcs_write32(TPR_THRESHOLD, 0);
2780 return;
2783 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2784 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2787 static void enable_irq_window(struct kvm_vcpu *vcpu)
2789 u32 cpu_based_vm_exec_control;
2791 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2792 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2793 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2796 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2798 u32 cpu_based_vm_exec_control;
2800 if (!cpu_has_virtual_nmis())
2801 return;
2803 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2804 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2805 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2808 static int vmx_nmi_enabled(struct kvm_vcpu *vcpu)
2810 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2811 return !(guest_intr & (GUEST_INTR_STATE_NMI |
2812 GUEST_INTR_STATE_MOV_SS |
2813 GUEST_INTR_STATE_STI));
2816 static int vmx_irq_enabled(struct kvm_vcpu *vcpu)
2818 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2819 return (!(guest_intr & (GUEST_INTR_STATE_MOV_SS |
2820 GUEST_INTR_STATE_STI)) &&
2821 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
2824 static void enable_intr_window(struct kvm_vcpu *vcpu)
2826 if (vcpu->arch.nmi_pending)
2827 enable_nmi_window(vcpu);
2828 else if (kvm_cpu_has_interrupt(vcpu))
2829 enable_irq_window(vcpu);
2832 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2834 struct vcpu_vmx *vmx = to_vmx(vcpu);
2835 u32 idtv_info_field, intr_info_field, exit_intr_info_field;
2836 int vector;
2838 update_tpr_threshold(vcpu);
2840 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2841 exit_intr_info_field = vmcs_read32(VM_EXIT_INTR_INFO);
2842 idtv_info_field = vmx->idt_vectoring_info;
2843 if (intr_info_field & INTR_INFO_VALID_MASK) {
2844 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2845 /* TODO: fault when IDT_Vectoring */
2846 if (printk_ratelimit())
2847 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2849 enable_intr_window(vcpu);
2850 return;
2852 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2853 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2854 == INTR_TYPE_EXT_INTR
2855 && vcpu->arch.rmode.active) {
2856 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2858 vmx_inject_irq(vcpu, vect);
2859 enable_intr_window(vcpu);
2860 return;
2863 KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
2866 * SDM 3: 25.7.1.2
2867 * Clear bit "block by NMI" before VM entry if a NMI delivery
2868 * faulted.
2870 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2871 == INTR_TYPE_NMI_INTR && cpu_has_virtual_nmis())
2872 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2873 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2874 ~GUEST_INTR_STATE_NMI);
2876 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field
2877 & ~INTR_INFO_RESVD_BITS_MASK);
2878 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2879 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2881 if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
2882 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2883 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2884 enable_intr_window(vcpu);
2885 return;
2887 if (cpu_has_virtual_nmis()) {
2889 * SDM 3: 25.7.1.2
2890 * Re-set bit "block by NMI" before VM entry if vmexit caused by
2891 * a guest IRET fault.
2893 if ((exit_intr_info_field & INTR_INFO_UNBLOCK_NMI) &&
2894 (exit_intr_info_field & INTR_INFO_VECTOR_MASK) != 8)
2895 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2896 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) |
2897 GUEST_INTR_STATE_NMI);
2898 else if (vcpu->arch.nmi_pending) {
2899 if (vmx_nmi_enabled(vcpu))
2900 vmx_inject_nmi(vcpu);
2901 enable_intr_window(vcpu);
2902 return;
2906 if (!kvm_cpu_has_interrupt(vcpu))
2907 return;
2908 if (vmx_irq_enabled(vcpu)) {
2909 vector = kvm_cpu_get_interrupt(vcpu);
2910 vmx_inject_irq(vcpu, vector);
2911 kvm_timer_intr_post(vcpu, vector);
2912 } else
2913 enable_irq_window(vcpu);
2917 * Failure to inject an interrupt should give us the information
2918 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2919 * when fetching the interrupt redirection bitmap in the real-mode
2920 * tss, this doesn't happen. So we do it ourselves.
2922 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2924 vmx->rmode.irq.pending = 0;
2925 if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2926 return;
2927 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2928 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2929 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2930 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2931 return;
2933 vmx->idt_vectoring_info =
2934 VECTORING_INFO_VALID_MASK
2935 | INTR_TYPE_EXT_INTR
2936 | vmx->rmode.irq.vector;
2939 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2941 struct vcpu_vmx *vmx = to_vmx(vcpu);
2942 u32 intr_info;
2945 * Loading guest fpu may have cleared host cr0.ts
2947 vmcs_writel(HOST_CR0, read_cr0());
2949 asm(
2950 /* Store host registers */
2951 #ifdef CONFIG_X86_64
2952 "push %%rdx; push %%rbp;"
2953 "push %%rcx \n\t"
2954 #else
2955 "push %%edx; push %%ebp;"
2956 "push %%ecx \n\t"
2957 #endif
2958 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
2959 /* Check if vmlaunch of vmresume is needed */
2960 "cmpl $0, %c[launched](%0) \n\t"
2961 /* Load guest registers. Don't clobber flags. */
2962 #ifdef CONFIG_X86_64
2963 "mov %c[cr2](%0), %%rax \n\t"
2964 "mov %%rax, %%cr2 \n\t"
2965 "mov %c[rax](%0), %%rax \n\t"
2966 "mov %c[rbx](%0), %%rbx \n\t"
2967 "mov %c[rdx](%0), %%rdx \n\t"
2968 "mov %c[rsi](%0), %%rsi \n\t"
2969 "mov %c[rdi](%0), %%rdi \n\t"
2970 "mov %c[rbp](%0), %%rbp \n\t"
2971 "mov %c[r8](%0), %%r8 \n\t"
2972 "mov %c[r9](%0), %%r9 \n\t"
2973 "mov %c[r10](%0), %%r10 \n\t"
2974 "mov %c[r11](%0), %%r11 \n\t"
2975 "mov %c[r12](%0), %%r12 \n\t"
2976 "mov %c[r13](%0), %%r13 \n\t"
2977 "mov %c[r14](%0), %%r14 \n\t"
2978 "mov %c[r15](%0), %%r15 \n\t"
2979 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2980 #else
2981 "mov %c[cr2](%0), %%eax \n\t"
2982 "mov %%eax, %%cr2 \n\t"
2983 "mov %c[rax](%0), %%eax \n\t"
2984 "mov %c[rbx](%0), %%ebx \n\t"
2985 "mov %c[rdx](%0), %%edx \n\t"
2986 "mov %c[rsi](%0), %%esi \n\t"
2987 "mov %c[rdi](%0), %%edi \n\t"
2988 "mov %c[rbp](%0), %%ebp \n\t"
2989 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2990 #endif
2991 /* Enter guest mode */
2992 "jne .Llaunched \n\t"
2993 __ex(ASM_VMX_VMLAUNCH) "\n\t"
2994 "jmp .Lkvm_vmx_return \n\t"
2995 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
2996 ".Lkvm_vmx_return: "
2997 /* Save guest registers, load host registers, keep flags */
2998 #ifdef CONFIG_X86_64
2999 "xchg %0, (%%rsp) \n\t"
3000 "mov %%rax, %c[rax](%0) \n\t"
3001 "mov %%rbx, %c[rbx](%0) \n\t"
3002 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
3003 "mov %%rdx, %c[rdx](%0) \n\t"
3004 "mov %%rsi, %c[rsi](%0) \n\t"
3005 "mov %%rdi, %c[rdi](%0) \n\t"
3006 "mov %%rbp, %c[rbp](%0) \n\t"
3007 "mov %%r8, %c[r8](%0) \n\t"
3008 "mov %%r9, %c[r9](%0) \n\t"
3009 "mov %%r10, %c[r10](%0) \n\t"
3010 "mov %%r11, %c[r11](%0) \n\t"
3011 "mov %%r12, %c[r12](%0) \n\t"
3012 "mov %%r13, %c[r13](%0) \n\t"
3013 "mov %%r14, %c[r14](%0) \n\t"
3014 "mov %%r15, %c[r15](%0) \n\t"
3015 "mov %%cr2, %%rax \n\t"
3016 "mov %%rax, %c[cr2](%0) \n\t"
3018 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
3019 #else
3020 "xchg %0, (%%esp) \n\t"
3021 "mov %%eax, %c[rax](%0) \n\t"
3022 "mov %%ebx, %c[rbx](%0) \n\t"
3023 "pushl (%%esp); popl %c[rcx](%0) \n\t"
3024 "mov %%edx, %c[rdx](%0) \n\t"
3025 "mov %%esi, %c[rsi](%0) \n\t"
3026 "mov %%edi, %c[rdi](%0) \n\t"
3027 "mov %%ebp, %c[rbp](%0) \n\t"
3028 "mov %%cr2, %%eax \n\t"
3029 "mov %%eax, %c[cr2](%0) \n\t"
3031 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
3032 #endif
3033 "setbe %c[fail](%0) \n\t"
3034 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3035 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3036 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3037 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3038 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3039 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3040 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3041 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3042 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3043 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3044 #ifdef CONFIG_X86_64
3045 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3046 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3047 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3048 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3049 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3050 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3051 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3052 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3053 #endif
3054 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3055 : "cc", "memory"
3056 #ifdef CONFIG_X86_64
3057 , "rbx", "rdi", "rsi"
3058 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3059 #else
3060 , "ebx", "edi", "rsi"
3061 #endif
3064 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3065 if (vmx->rmode.irq.pending)
3066 fixup_rmode_irq(vmx);
3068 vcpu->arch.interrupt_window_open =
3069 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3070 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)) == 0;
3072 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3073 vmx->launched = 1;
3075 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3077 /* We need to handle NMIs before interrupts are enabled */
3078 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200 &&
3079 (intr_info & INTR_INFO_VALID_MASK)) {
3080 KVMTRACE_0D(NMI, vcpu, handler);
3081 asm("int $2");
3085 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3087 struct vcpu_vmx *vmx = to_vmx(vcpu);
3089 if (vmx->vmcs) {
3090 vcpu_clear(vmx);
3091 free_vmcs(vmx->vmcs);
3092 vmx->vmcs = NULL;
3096 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3098 struct vcpu_vmx *vmx = to_vmx(vcpu);
3100 spin_lock(&vmx_vpid_lock);
3101 if (vmx->vpid != 0)
3102 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3103 spin_unlock(&vmx_vpid_lock);
3104 vmx_free_vmcs(vcpu);
3105 kfree(vmx->host_msrs);
3106 kfree(vmx->guest_msrs);
3107 kvm_vcpu_uninit(vcpu);
3108 kmem_cache_free(kvm_vcpu_cache, vmx);
3111 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3113 int err;
3114 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3115 int cpu;
3117 if (!vmx)
3118 return ERR_PTR(-ENOMEM);
3120 allocate_vpid(vmx);
3122 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3123 if (err)
3124 goto free_vcpu;
3126 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3127 if (!vmx->guest_msrs) {
3128 err = -ENOMEM;
3129 goto uninit_vcpu;
3132 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3133 if (!vmx->host_msrs)
3134 goto free_guest_msrs;
3136 vmx->vmcs = alloc_vmcs();
3137 if (!vmx->vmcs)
3138 goto free_msrs;
3140 vmcs_clear(vmx->vmcs);
3142 cpu = get_cpu();
3143 vmx_vcpu_load(&vmx->vcpu, cpu);
3144 err = vmx_vcpu_setup(vmx);
3145 vmx_vcpu_put(&vmx->vcpu);
3146 put_cpu();
3147 if (err)
3148 goto free_vmcs;
3149 if (vm_need_virtualize_apic_accesses(kvm))
3150 if (alloc_apic_access_page(kvm) != 0)
3151 goto free_vmcs;
3153 if (vm_need_ept())
3154 if (alloc_identity_pagetable(kvm) != 0)
3155 goto free_vmcs;
3157 return &vmx->vcpu;
3159 free_vmcs:
3160 free_vmcs(vmx->vmcs);
3161 free_msrs:
3162 kfree(vmx->host_msrs);
3163 free_guest_msrs:
3164 kfree(vmx->guest_msrs);
3165 uninit_vcpu:
3166 kvm_vcpu_uninit(&vmx->vcpu);
3167 free_vcpu:
3168 kmem_cache_free(kvm_vcpu_cache, vmx);
3169 return ERR_PTR(err);
3172 static void __init vmx_check_processor_compat(void *rtn)
3174 struct vmcs_config vmcs_conf;
3176 *(int *)rtn = 0;
3177 if (setup_vmcs_config(&vmcs_conf) < 0)
3178 *(int *)rtn = -EIO;
3179 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3180 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3181 smp_processor_id());
3182 *(int *)rtn = -EIO;
3186 static int get_ept_level(void)
3188 return VMX_EPT_DEFAULT_GAW + 1;
3191 static struct kvm_x86_ops vmx_x86_ops = {
3192 .cpu_has_kvm_support = cpu_has_kvm_support,
3193 .disabled_by_bios = vmx_disabled_by_bios,
3194 .hardware_setup = hardware_setup,
3195 .hardware_unsetup = hardware_unsetup,
3196 .check_processor_compatibility = vmx_check_processor_compat,
3197 .hardware_enable = hardware_enable,
3198 .hardware_disable = hardware_disable,
3199 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3201 .vcpu_create = vmx_create_vcpu,
3202 .vcpu_free = vmx_free_vcpu,
3203 .vcpu_reset = vmx_vcpu_reset,
3205 .prepare_guest_switch = vmx_save_host_state,
3206 .vcpu_load = vmx_vcpu_load,
3207 .vcpu_put = vmx_vcpu_put,
3209 .set_guest_debug = set_guest_debug,
3210 .guest_debug_pre = kvm_guest_debug_pre,
3211 .get_msr = vmx_get_msr,
3212 .set_msr = vmx_set_msr,
3213 .get_segment_base = vmx_get_segment_base,
3214 .get_segment = vmx_get_segment,
3215 .set_segment = vmx_set_segment,
3216 .get_cpl = vmx_get_cpl,
3217 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3218 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3219 .set_cr0 = vmx_set_cr0,
3220 .set_cr3 = vmx_set_cr3,
3221 .set_cr4 = vmx_set_cr4,
3222 .set_efer = vmx_set_efer,
3223 .get_idt = vmx_get_idt,
3224 .set_idt = vmx_set_idt,
3225 .get_gdt = vmx_get_gdt,
3226 .set_gdt = vmx_set_gdt,
3227 .cache_regs = vcpu_load_rsp_rip,
3228 .decache_regs = vcpu_put_rsp_rip,
3229 .get_rflags = vmx_get_rflags,
3230 .set_rflags = vmx_set_rflags,
3232 .tlb_flush = vmx_flush_tlb,
3234 .run = vmx_vcpu_run,
3235 .handle_exit = kvm_handle_exit,
3236 .skip_emulated_instruction = skip_emulated_instruction,
3237 .patch_hypercall = vmx_patch_hypercall,
3238 .get_irq = vmx_get_irq,
3239 .set_irq = vmx_inject_irq,
3240 .queue_exception = vmx_queue_exception,
3241 .exception_injected = vmx_exception_injected,
3242 .inject_pending_irq = vmx_intr_assist,
3243 .inject_pending_vectors = do_interrupt_requests,
3245 .set_tss_addr = vmx_set_tss_addr,
3246 .get_tdp_level = get_ept_level,
3249 static int __init vmx_init(void)
3251 void *va;
3252 int r;
3254 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3255 if (!vmx_io_bitmap_a)
3256 return -ENOMEM;
3258 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3259 if (!vmx_io_bitmap_b) {
3260 r = -ENOMEM;
3261 goto out;
3264 vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3265 if (!vmx_msr_bitmap) {
3266 r = -ENOMEM;
3267 goto out1;
3271 * Allow direct access to the PC debug port (it is often used for I/O
3272 * delays, but the vmexits simply slow things down).
3274 va = kmap(vmx_io_bitmap_a);
3275 memset(va, 0xff, PAGE_SIZE);
3276 clear_bit(0x80, va);
3277 kunmap(vmx_io_bitmap_a);
3279 va = kmap(vmx_io_bitmap_b);
3280 memset(va, 0xff, PAGE_SIZE);
3281 kunmap(vmx_io_bitmap_b);
3283 va = kmap(vmx_msr_bitmap);
3284 memset(va, 0xff, PAGE_SIZE);
3285 kunmap(vmx_msr_bitmap);
3287 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3289 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3290 if (r)
3291 goto out2;
3293 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3294 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3295 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3296 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3297 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3299 if (vm_need_ept()) {
3300 bypass_guest_pf = 0;
3301 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3302 VMX_EPT_WRITABLE_MASK |
3303 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3304 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3305 VMX_EPT_EXECUTABLE_MASK);
3306 kvm_enable_tdp();
3307 } else
3308 kvm_disable_tdp();
3310 if (bypass_guest_pf)
3311 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3313 ept_sync_global();
3315 return 0;
3317 out2:
3318 __free_page(vmx_msr_bitmap);
3319 out1:
3320 __free_page(vmx_io_bitmap_b);
3321 out:
3322 __free_page(vmx_io_bitmap_a);
3323 return r;
3326 static void __exit vmx_exit(void)
3328 __free_page(vmx_msr_bitmap);
3329 __free_page(vmx_io_bitmap_b);
3330 __free_page(vmx_io_bitmap_a);
3332 kvm_exit();
3335 module_init(vmx_init)
3336 module_exit(vmx_exit)